WO2013146090A1 - Method for manufacturing glass substrate for magnetic disk - Google Patents

Method for manufacturing glass substrate for magnetic disk Download PDF

Info

Publication number
WO2013146090A1
WO2013146090A1 PCT/JP2013/055593 JP2013055593W WO2013146090A1 WO 2013146090 A1 WO2013146090 A1 WO 2013146090A1 JP 2013055593 W JP2013055593 W JP 2013055593W WO 2013146090 A1 WO2013146090 A1 WO 2013146090A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass substrate
base plate
zirconia
magnetic disk
Prior art date
Application number
PCT/JP2013/055593
Other languages
French (fr)
Japanese (ja)
Inventor
京介 飯泉
田村 健
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380009608.4A priority Critical patent/CN104137181A/en
Publication of WO2013146090A1 publication Critical patent/WO2013146090A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing

Definitions

  • the present invention relates to a method for producing a glass substrate for a magnetic disk.
  • a personal computer or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device (HDD: Hard Disk Drive) for data recording.
  • HDD Hard Disk Drive
  • a hard disk device used in a portable computer such as a notebook personal computer
  • a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk.
  • magnetic recording information is recorded on or read from the magnetic layer.
  • a glass substrate is preferably used because it has a property that it is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like.
  • the density of magnetic recording has been increased.
  • the magnetic recording information area (recording bit) is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate.
  • the storage capacity of one disk substrate can be increased.
  • the distance from the magnetic recording layer is extremely shortened by further protruding the recording / reproducing element portion of the magnetic head, thereby further improving the accuracy of information recording / reproducing (S / N). To improve the ratio).
  • Such control of the recording / reproducing element portion of the magnetic head is called a DFH (Dynamic Flying Height) control mechanism, and a magnetic head equipped with this control mechanism is called a DFH head.
  • DFH Dynamic Flying Height
  • a magnetic head equipped with this control mechanism is called a DFH head.
  • the surface irregularity of the substrate is extremely small in order to avoid collision and contact with the magnetic head and the recording / reproducing element portion protruding further therefrom. It is made to be smaller.
  • the main surface of the plate-like glass material that has become flat after press molding is ground on the main surface, and the grinding process remains on the main surface.
  • a main surface polishing step is included for the purpose of removing scratches and distortions.
  • abrasive grains such as cerium oxide (cerium dioxide), silicon dioxide, zirconium dioxide (zirconia) as an abrasive are known.
  • Patent Document 1 discloses a method of polishing a glass substrate for a magnetic disk using a polishing liquid in which calcium aluminate, magnesium sulfate, magnesium chloride or the like is added to zirconia abrasive grains.
  • a magnetic layer was formed on a glass substrate made of zirconia as a polishing material for loose abrasive grains on a glass base plate, a magnetic disk was prepared, and a glide test was performed using a glide head. Compared to a glass substrate produced using an abrasive, a decrease in yield (that is, an increase in defect occurrence rate) was observed. The glide inspection is to determine whether or not the magnetic head can stably operate with a predetermined flying height with respect to the magnetic disk.
  • a glide head equipped with a piezoelectric element or the like is caused to fly with a predetermined flying height with respect to the main surface of the magnetic disk, and whether or not there is a collision between the glide head and a projection such as a foreign object on the main surface of the magnetic disk.
  • the detection is performed by a piezoelectric element or the like.
  • the present invention manufactures a magnetic disk glass substrate in which foreign substances are unlikely to remain on the glass substrate when the magnetic disk glass substrate is manufactured by polishing using zirconia abrasive as an abrasive for free abrasive grains.
  • An object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk.
  • the inventors of the present application have conducted intensive studies in order to investigate the cause of the decrease in yield due to the above glide inspection.
  • the main surface of the glass substrate has zirconia particles adhering to the main surface during the formation of the magnetic layer, even after the main surface is sufficiently cleaned and the particles are removed after polishing with a mirror finish.
  • minute convex portions are formed on the surface of the magnetic disk. And this minute convex part causes troubles, such as a head crash trouble and a thermal asperity trouble.
  • the zirconia particles adhering to the main surface of the glass substrate are also derived from zirconia abrasive grains used for polishing or a part thereof, which are attached to the outer peripheral surface and inner peripheral surface of the glass substrate. It was.
  • cleaning method which removes effectively the zirconia particle adhering to the glass substrate is not established.
  • the inventors of the present application consider the reason why zirconia particles may adhere to the main surface when the magnetic layer is formed even if the main surface is sufficiently washed and particles are removed. Yes. In other words, even if zirconia particles remain on the glass base plate by main surface polishing with zirconia abrasive grains, the zirconia particles remaining on the main surface are removed by final polishing on the main surface, but on the side wall surface of the glass base plate. Residual or adhered zirconia particles are not removed by subsequent cleaning of the glass base plate.
  • the zirconia particles adhere to the side wall surface of the glass base plate by the glass base plate contacting the carrier during polishing. Conceivable. And in the process after the main surface grinding
  • zirconia particles are detached from the side wall surface when the outer side wall surface is gripped in the film forming process on the magnetic disk glass substrate, or from the outer side wall surface in the magnetic disk glass substrate cleaning process. It is also possible that the particles are detached.
  • the inventors of the present application make the zirconia particles used as polishing abrasive grains in the polishing step into a shape that is difficult to adhere to the side wall surface of the glass base plate, thereby forming the side wall surface of the glass base plate. It has been found that the amount of zirconia particles remaining after being fixed is reduced, whereby zirconia is less likely to adhere to the main surface in a later step. Specifically, it has been found that by making the primary particles of zirconia particles rounded, the zirconia particles are difficult to adhere to the side wall surface of the glass substrate. Then, one of the measures for making the primary particles of the zirconia particles rounded is to manufacture the zirconia particles by a wet method, and the invention of the embodiment described below is conceived. It came.
  • a doughnut-shaped glass substrate having at least a pair of main surfaces and two side wall surfaces constituting an inner hole and an outer shape is attached to a polishing platen while being held by a carrier.
  • Manufacturing a glass substrate for a magnetic disk having a polishing step of polishing the glass substrate by planetary gear motion of the carrier while sandwiching the pair of main surfaces with the polishing pad provided and supplying a polishing liquid to the pair of main surfaces The method is characterized in that the polishing liquid contains zirconia particles produced by a wet method as abrasive grains.
  • the zirconia particles are preferably formed by agglomeration of primary particles having a particle size in the range of 70 to 200 nm.
  • the BET specific surface area of the zirconia particles is preferably in the range of 4 to 15 m 2 / g.
  • the average particle diameter (D50) of the zirconia particles is in the range of 0.2 to 0.6 ⁇ m.
  • X1 / X2 is 1. It is preferably 0 to 1.3.
  • the surface roughness of the end face of the carrier that contacts the side wall surface of the glass substrate is preferably 5 ⁇ m or less.
  • the surface roughness of the side wall surface of the glass substrate before being polished with the polishing liquid having zirconia particles is 0.1 ⁇ m or less in terms of arithmetic average roughness Ra. Is preferred.
  • the glass substrate for magnetic disk preferably has a diameter larger than 2.5 inches and a plate thickness of 0.6 mm or less.
  • the fracture toughness value K 1c of the glass substrate is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter. It is preferable to have a chemical strengthening step for chemically strengthening the glass substrate.
  • polishing apparatus double-side polish apparatus used at a 1st grinding
  • polishing process The figure which shows typically the zirconia particle (secondary particle) of embodiment.
  • zirconia particles produced by a wet method schematically showing the state when the zirconia particles are acting in the polishing process between the main surface of the glass base plate and the polishing pad (this polishing step)
  • zirconia particles produced by a dry method unlike the polishing step.
  • Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced. More preferably, it is an amorphous aluminosilicate glass.
  • the composition of the glass substrate for a magnetic disk of this embodiment is not limited, the glass substrate of this embodiment is preferably converted to an oxide standard and expressed in mol%, SiO 2 is 50 to 75%, Al 2 to O 3 to 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, selected from MgO, CaO, SrO, BaO and ZnO 0-20% in total of at least one component, and at least one selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of components.
  • the glass substrate for magnetic disk in this embodiment is an annular thin glass substrate.
  • the size of the glass substrate for magnetic disks is not ask
  • a glass gob made of molten glass is supplied onto a lower mold that is a receiving gob forming mold, and an upper mold that is a lower mold and an opposing gob forming mold is used.
  • Glass gob is press molded. More specifically, after a glass gob made of molten glass is supplied onto the lower mold, the lower surface of the upper mold cylinder and the upper surface of the lower mold cylinder are brought into contact with each other, and the upper mold and the upper mold mold are slid. Form a thin glass blank forming space outside the moving surface and the sliding surface of the lower mold and the lower mold body, and lower the upper mold to perform press molding. To rise.
  • the glass base plate used as the origin of the glass substrate for magnetic discs is shape
  • a glass base plate can be manufactured using not only the method mentioned above but well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
  • lapping processing using alumina-based loose abrasive grains is performed on both main surfaces of the glass base plate cut into a predetermined shape, if necessary.
  • the lapping platen is pressed on both sides of the glass base plate from above and below, a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively.
  • a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively. Perform lapping.
  • a glass base plate is shape
  • a chamfering step of forming a chamfered portion at the ends (outer peripheral end and inner peripheral end) is performed.
  • the outer peripheral end and the inner peripheral end of the annular glass base plate are chamfered with, for example, a metal bond grindstone using diamond abrasive grains to form a chamfered portion.
  • end face polishing (edge polishing) of an annular glass base plate is performed.
  • the inner peripheral side wall surface (end surface) and the outer peripheral side wall surface (end surface) of the glass base plate are mirror-finished by brush polishing.
  • a slurry containing fine particles such as cerium oxide as free abrasive grains is used.
  • the end face polishing step is performed before the first polishing step. It is preferable to carry out. For example, it is preferable to perform the end surface polishing so that the arithmetic average roughness Ra of the end surface of the glass base plate after the end surface polishing step is 0.1 ⁇ m or less.
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular glass base plate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving both the upper surface plate and the lower surface plate, or both of them, the main surface of the glass base plate is ground by relatively moving the glass base plate and each surface plate. be able to.
  • polishing (main surface grinding
  • polishing is given to the main surface of the ground glass base plate.
  • the machining allowance by the first polishing is, for example, about several ⁇ m to 50 ⁇ m.
  • FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus) used in the first polishing step.
  • FIG. 2 is a cross-sectional view of a polishing apparatus (double-side polishing apparatus) used in the first polishing process. Note that the same configuration as this polishing apparatus can be applied to a grinding apparatus used in the above-described grinding process.
  • the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 40 and a lower surface plate 50.
  • An annular glass base plate G is sandwiched between the upper surface plate 40 and the lower surface plate 50, and either one or both of the upper surface plate 40 and the lower surface plate 50 are moved to operate the glass base plate G. By moving the surface plates relative to each other, both main surfaces of the glass base plate G can be polished.
  • an annular flat polishing pad 10 is attached to the upper surface of the lower platen 50 and the bottom surface of the upper platen 40 as a whole.
  • the carrier 30 includes a tooth portion 31 that is provided on the outer peripheral portion and meshes with the sun gear 61 and the internal gear 62, and one or a plurality of holes 32 that accommodate and hold the glass base plate G.
  • the sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole.
  • the disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass base plates G (workpieces).
  • the carrier 30 revolves while rotating as a planetary gear, and the glass base plate G and the lower surface plate 50 are relatively moved.
  • the sun gear 61 rotates in the CCW (counterclockwise) direction
  • the carrier 30 rotates in the CW (clockwise) direction
  • the internal gear 62 rotates in the CCW direction.
  • relative movement occurs between the polishing pad 10 and the glass base plate G.
  • the glass base plate G and the upper surface plate 40 may be relatively moved.
  • the upper surface plate 40 is pressed against the glass base plate G (that is, in the vertical direction) with a predetermined load, and the polishing pad 10 is pressed against the glass base plate G.
  • a polishing liquid (slurry) is supplied between the glass base plate G and the polishing pad 10 from the polishing liquid supply tank 71 via one or a plurality of pipes 72 by a pump (not shown).
  • the main surface of the glass base plate G is polished by the abrasive contained in the polishing liquid.
  • the polishing liquid used for polishing the glass base plate G is discharged from the upper and lower surface plates, returned to the polishing liquid supply tank 71 by a filter and a return pipe (not shown), and reused.
  • the load of the upper surface plate 40 applied to the glass base plate G is adjusted for the purpose of setting a desired polishing load on the glass base plate G.
  • Load, 50 g / cm 2 or more is preferred from the viewpoint of high polishing rate achieved, more preferably 70 g / cm 2 or more, 90 g / cm 2 or more is more preferable.
  • the polishing load is preferably 180 g / cm 2 or less, more preferably 160 g / cm 2 or less, and even more preferably 140 g / cm 2 or less. That is, the load is preferably 50 g / cm 2 to 180 g / cm 2, more preferably 70 g / cm 2 to 160 g / cm 2, and still more preferably 90 g / cm 2 to 140 g / cm 2 .
  • the supply rate of the polishing liquid during polishing processing varies depending on the polishing pad 10, the composition and concentration of the polishing liquid, and the size of the glass base plate G, but is preferably 500 to 5000 ml / min, more preferably from the viewpoint of improving the polishing rate. Is 1000 to 4500 ml / min, more preferably 1500 to 4000 ml / min.
  • the rotation speed of the polishing pad 10 is preferably 10 to 50 rpm, more preferably 20 to 40 rpm, and further preferably 25 to 35 rpm.
  • polishing liquid used in the polishing apparatus of FIG. 1 contains zirconia (ZrO 2 ) particles produced by a wet method rather than a dry method as abrasive grains.
  • the dry method is a method of producing by pulverized product of zirconia or desiliconized zirconia obtained by electrofusion method, pulverized product of baderite or the like.
  • the electrofusion method is a process in which zircon sand, badelite or the like is heated to about 2,700 ° C. to evaporate silicon to lower the silicon concentration and improve the zirconium concentration.
  • Desiliconized zirconia is a powder in which the silicon concentration is reduced by electrofusion.
  • Badelite is a natural mineral, and is a relatively high purity zirconia having a low silicon concentration at the time of the natural mineral.
  • the wet method produces a solution in which a compound containing zirconium is dissolved in a chemical, and crystal growth is performed in the solution to produce a sol containing zirconium, which is then fired to produce zirconium. It is a manufacturing method to do.
  • a zirconia powder is generally produced through the following steps (I) to (V).
  • Flotation process Zircon concentrate by selecting ilmenite, rutile, and monazite using specific gravity ore, using the difference in specific gravity, removing silica sand, and using the difference in specific gravity, magnetism, and conductivity.
  • Zircon sand Caustic soda melting step: Silica is separated by melting zircon sand with caustic soda.
  • Hydrochloric acid decomposition step Decompose and concentrate with hydrochloric acid to produce zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O).
  • a pulverizing step of pulverizing zirconia with any of a ball mill, a jet mill, and a bead mill, or a combination thereof, is performed in order to produce powdered zirconia.
  • the mill used in the pulverization process and its setting vary depending on the target particle size of zirconia and the like.
  • the zirconia produced by the dry method causes intragranular cracking of zirconia in the pulverization step, and becomes particles having a sharp tip.
  • zirconia produced by a wet method is cut at the interface between primary particles with little intragranular cracking in the pulverization process (that is, it becomes a grain boundary crack), and the tip is as in the dry method. Are sharp and few sharp particles are formed.
  • the zirconia particles used as abrasive grains take the form of secondary particles (aggregates of primary particles), and the secondary particles (made by a wet method) are schematically shown in FIG. Show.
  • zirconia particles as abrasive grains take the form of an aggregate of a plurality of primary particles.
  • the shape of primary particles of zirconia particles produced by a wet method is rounded as a whole.
  • FIG. 4 is a diagram illustrating a state in which the glass base plate G is accommodated in the hole 32 of the carrier 30.
  • FIG. 4 in a state where the glass base plate G is accommodated in the carrier 30 of the polishing apparatus, in order to enable the glass base plate G to be detached from the carrier 30, between the carrier 30 and the glass base plate G. Is provided with a slight gap CL in the horizontal direction (that is, the direction parallel to the main surface of the glass base plate G).
  • D2> D1 is established when the outer diameter of the glass base plate G to be polished is D1 and the diameter of the hole 32 of the carrier 30 (the diameter of the contact surface with which the glass base plate abuts) is D2.
  • the gap CL between the side wall surface Gt of the glass base plate G and the side wall surface 30t that forms the hole 32 of the carrier 30 has an abrasive of zirconia (ZrO 2 ) in the polishing liquid. Grain comes in.
  • the glass base plate G moves in an unconstrained state in the hole 32 of the carrier 30 in a direction parallel to the main surface while being subjected to a load by the surface plate in the thickness direction.
  • the side wall surface Gt of the glass base plate G is brought into contact with the side wall surface 30t forming the hole 32, and the zirconia abrasive grains that have entered the gap CL are pressed against the side wall surface Gt of the glass base plate G.
  • FIG. 5 schematically shows a state when the zirconia particles (secondary particles) are pressed against the side wall surface Gt of the glass base plate G.
  • zirconia particles manufactured by a wet method main polishing
  • the case of the zirconia particle manufactured by the dry method different from this polishing process is shown.
  • the figure in the case of zirconia particles produced by a dry process is shown for comparison.
  • the zirconia abrasive grains used in this polishing step are manufactured by a wet method, the primary particles are rounded, and are the main forms during polishing. The surface of some secondary particles is also rounded. Therefore, even if the zirconia abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the side wall surface Gt is hardly pierced and the possibility that zirconia particles remain on the side wall surface Gt after polishing is low. Since the side wall surface Gt is hardly scratched, scratches due to polishing are less likely to occur. On the other hand, in the case of the zirconia particles manufactured by the dry method (lower part of FIG.
  • the side wall surface Gt is easily pierced and then polished on the side wall surface Gt. There is a high possibility that zirconia particles remain, and the side wall surface Gt may be scratched during polishing, and scratches due to polishing are likely to occur.
  • FIG. 6 schematically shows a state in which zirconia particles (secondary particles) are acting in the polishing process between the main surface Gp of the glass base plate G and the polishing pad 10.
  • zirconia particles manufactured in in the case of the main polishing step
  • the case of the zirconia particles manufactured by the dry method is different from the main polishing step.
  • the figure in the case of zirconia particles produced by a dry process is shown for comparison. It is the individual primary particles constituting the zirconia particles that are in the form of secondary particles that contribute to the polishing by contacting with the main surface Gp of the glass base plate G during the polishing process.
  • the zirconia abrasive grains used in this polishing step are manufactured by a wet method, the primary particles are rounded, and therefore scratches are less likely to occur due to contact with the main surface Gp.
  • the shape of the primary particles that contact the main surface Gp has many sharp points such as rocks. The main surface Gp is easily scratched, and scratches due to polishing are likely to occur.
  • the zirconia particles as the abrasive grains are preferably formed by agglomeration of primary particles having a particle size in the range of 70 to 200 nm.
  • FIG. 7 A method for measuring primary particles is shown in FIG. As shown in FIG. 7, the zirconia abrasive grains were observed with an SEM (scanning electron microscope) at a magnification of, for example, 30,000 to 100,000 times, and the major axis length (X1) of the primary particles and the minor axis length were observed.
  • the average value of (X2) ((X1 + X2) / 2) is defined as the primary particle diameter.
  • the major axis and the minor axis are assumed to be orthogonal.
  • the aspect ratio (X1 ⁇ X2 in FIG. 6) of the primary particles of the present embodiment is 1.0 to 1.3, and has a rounded shape as a whole.
  • the BET specific surface area is known as an index having a certain correlation with the primary particle diameter of the abrasive grains.
  • the BET specific surface area of the primary particles of the abrasive grains may be in the range of 4 to 15 m 2 / g. preferable.
  • the BET specific surface area can be measured by a BET single point method by a gas adsorption method using a flow type specific surface area measuring device.
  • zirconia fine particles that are sufficiently small not to contribute to the polishing ability may be contained, but the BET specific surface area can also be increased by increasing the amount of the fine particles. In this case, the BET specific surface area can be changed without changing the primary particle diameter of the zirconia particles contributing to the polishing ability.
  • Secondary particle size of the abrasive grains (hereinafter referred to as “secondary particle size”) Regarding the secondary particle diameter of zirconia abrasive grains, which is the main form at the time of polishing, the lower limit value and the upper limit value are determined by the same idea as the primary particle diameter described above. In addition, when the secondary particle diameter is too large, there is a possibility that the polishing rate may be lowered by reducing the number of secondary particles acting on the polishing under a certain slurry concentration. Therefore, the lower limit value and the upper limit value of the secondary particles are determined from the viewpoint that the polishing action functions effectively (that is, the polishing rate is ensured) and scratches can be reduced.
  • the secondary particle diameter (average particle diameter D50) of the abrasive grains is preferably in the range of 0.2 to 0.6 ⁇ m.
  • the preferable particle diameter range is a value in a state where the zirconia abrasive grains are scattered by the polishing process. Become a range. That is, zirconia is generally used for ceramics, electronic materials, and refractory applications.
  • the secondary particle diameter can be intentionally increased to about several tens of ⁇ m by using spray drying or the like in the drying step.
  • intentionally increasing the secondary particle diameter is called granulation, but the granulated zirconia is easily broken by polishing.
  • zirconia is aggregated with a weak cohesive force due to moisture aggregation or the like, the aggregated zirconia is easily broken by polishing.
  • the average particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.
  • the surface roughness (Ra) of the side wall surface of the glass base plate before the first polishing is preferably 0.1 ⁇ m or less, and more preferably 0.05 ⁇ m or less.
  • the surface roughness (Ra) here can be measured with a stylus roughness meter. Since the surface roughness of the side wall surface of the glass base plate G is so small, the contact area with the carrier 30 can be increased, and the number of abrasive grains entering between the glass base plate G and the carrier 30 increases. And since force will be disperse
  • the surface roughness of the end surface (wall surface facing the side wall surface of the glass base plate G) in the hole 32 of the carrier 30 that is in contact with the side wall surface of the glass base plate G is 5 ⁇ m or less, preferably 3 ⁇ m or less.
  • the surface roughness (Ra) wrinkle here can be measured by moving the needle in the circumferential direction with respect to the end face of the hole 32 using a stylus type roughness meter.
  • the contact area with the glass base plate G can be increased, so that the number of abrasive grains entering between them increases, and more Since the force is dispersed in the abrasive grains, the zirconia particles are less likely to pierce the side wall surface of the glass base plate G. Further, if the roughness of the end surface of the hole 32 of the carrier 30 is small, scratches are less likely to enter the glass base plate G when the end surface comes into contact with the glass base plate G. Therefore, the zirconia abrasive grains captured by the scratches By reducing the number, the probability of piercing the side wall surface of the glass base plate G can be reduced indirectly. While the first polishing is performed, the side wall surface of the glass base plate G is prevented from being excessively roughened, and the zirconia abrasive grains are difficult to adhere to the side wall surface of the glass base plate G.
  • the manufacturing method of this embodiment is suitable for manufacturing a glass substrate for a magnetic disk having a diameter larger than 2.5 inch size and a plate thickness of 0.6 mm or less.
  • a glass substrate for a magnetic disk has a higher aspect ratio (diameter / plate thickness) than the conventional one. For this reason, since the plate
  • zirconia particles are likely to adhere to the side wall surface of the glass base plate, and the proportion of zirconia particles attached to the side wall surface of the glass base plate tends to be relatively high.
  • the secondary particles which are the main forms of zirconia abrasive grains, are rounded, the surfaces thereof are rounded. Even if the abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the occurrence of such a problem can be suppressed because the side wall surface Gt is rarely pierced.
  • the roughness (Ra) of the main surface of the glass base plate is set to 0.5 nm or less and the micro waveness (MW- Polishing is performed so that Rq) is 0.5 nm or less.
  • the micro waveness can be expressed by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 ⁇ m in an area having a radius of 14.0 to 31.5 mm on the entire main surface. It can be measured using a surface profile measuring machine.
  • the roughness of the main surface is expressed by an arithmetic average roughness Ra defined by JIS B0601: 2001.
  • the roughness is 0.006 ⁇ m or more and 200 ⁇ m or less, for example, the roughness is measured with a stylus type roughness measuring machine, and JIS B0633: It can be calculated by the method defined in 2001.
  • the roughness can be measured by a scanning probe microscope (atomic force microscope; AFM) and calculated by a method defined in JIS R1683: 2007.
  • AFM atomic force microscope
  • JIS R1683 it is possible to use the arithmetic average roughness Ra when measured at a resolution of 256 ⁇ 256 pixels in a measurement area of 1 ⁇ m ⁇ 1 ⁇ m square.
  • the glass base plate after the first polishing is chemically strengthened.
  • the chemical strengthening solution for example, a mixed solution of potassium nitrate (60% by weight) and sodium sulfate (40% by weight) can be used.
  • the chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C., and after the cleaned glass base plate is preheated to, for example, 200 ° C. to 300 ° C., the glass base plate is placed in the chemical strengthening liquid, for example, 1 Soak for 5 to 5 hours.
  • the immersion is preferably performed in a state of being housed in a holder so that the plurality of glass base plates are held by the side wall surfaces so that the entire main surfaces of both glass base plates are chemically strengthened.
  • the glass base plate is strengthened.
  • the chemically strengthened glass base plate is washed. For example, after washing with sulfuric acid, it is washed with pure water or the like.
  • the glass substrate that has been chemically strengthened and sufficiently cleaned is subjected to final polishing.
  • the machining allowance by the final polishing is 5 ⁇ m or less.
  • the polishing apparatus used in the first polishing is used.
  • the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • the free abrasive grains used in the final polishing for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
  • a glass substrate for a magnetic disk can be obtained by washing the polished glass base plate with a neutral detergent, pure water, IPA or the like.
  • the order of a process is not restricted to the order mentioned above.
  • particles such as colloidal silica are supplied between the glass base plate and the hole of the carrier, whereby the side wall surface of the glass base plate is polished and adhered to the side wall surface.
  • the zirconia particles that may be removed may be removed.
  • the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter.
  • the compressed layer formed on the side wall surface of the glass base plate by chemical strengthening is used to make the zirconia abrasive grains, which are abrasive grains in the first polishing step, which is a subsequent step, of the glass base plate. It can function as a sticking prevention layer for preventing sticking to the side wall surface.
  • the chemical strengthening treatment conditions such that the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter are, for example, in advance It may be determined by changing various chemical treatment conditions.
  • the fracture toughness value K 1c is more preferably 1.0 [MPa / m 1/2 ] or more. Moreover, it is still more preferable in it being 1.3 [MPa / m 1/2 ] or more. Fracture toughness value K 1c is preferably higher, the upper limit of the fracture toughness value K 1c is not particularly provided.
  • the fracture toughness value K 1c is a sharp diamond indenter of known Vickers hardness meter can be measured by the method of pushing the glass workpiece. That is, the fracture toughness value K1c is obtained by the following equation from the size of the indentation of the indenter remaining on the glass base plate when the Vickers indenter is pushed in and the length of the crack generated from the corner of the indentation.
  • P is the indentation load [N] of the Vickers indenter
  • a is the length [m] half of the diagonal length of the Vickers indentation.
  • E is the Young's modulus [Pa] of the glass base plate
  • C is the length [m] that is half the length of the string.
  • the chemical strengthening treatment conditions include the type of chemical strengthening solution (for example, the mixing ratio of potassium nitrate and sodium sulfate), the temperature of the chemical strengthening solution, the chemical strengthening treatment time, and the like. It is also possible to select a glass composition of the glass base plate such that the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as described above.
  • the main surface of the glass base plate is a measurement target of the fracture toughness value K1c , but the chemical strengthening is performed because the side wall surface of the end face of the glass base plate is chemically strengthened in the same manner as the main surface.
  • fracture toughness K 1c of the side wall surface of the glass workpiece is the same as the measurement results of fracture toughness K 1c of the main surface can be replaced by fracture toughness K 1c of the main surface.
  • a magnetic disk is obtained as follows using a magnetic disk glass substrate.
  • the magnetic disk is, for example, on the main surface of a glass substrate for magnetic disk (hereinafter simply referred to as “substrate”), in order from the closest to the main surface, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), and a protective layer.
  • a layer and a lubricating layer are laminated.
  • the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method.
  • a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
  • the produced magnetic disk is preferably incorporated in an HDD (Hard Disk Drive) as a magnetic recording / reproducing apparatus together with a magnetic head equipped with a DFH (Dynamic Flying Height) control mechanism.
  • HDD Hard Disk Drive
  • DFH Dynamic Flying Height
  • a 2.5-inch magnetic disk was produced from the manufactured glass substrate for magnetic disk.
  • the produced glass substrate for a magnetic disk is an amorphous aluminosilicate glass having the following composition.
  • Glass composition Converted to oxide basis, expressed in mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O 5 to 35% in total, 0 to 20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO, and ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Amorphous aluminosilicate glass having a composition having a total of 0 to 10% of at least one component selected from Ta 2 O 5 , Nb 2 O 5 and HfO 2
  • each process of the manufacturing method of the glass substrate for magnetic disks of this embodiment was performed in order.
  • a press molding method used in the method for producing a glass substrate for a magnetic disk described in JP 2011-138589 A was used.
  • lapping alumina-based free abrasive grains having an average particle diameter of 20 ⁇ m were used.
  • a plurality of glass base plates laminated with a spacer interposed between the glass base plates is polished using cerium oxide having an average particle size (D50) of 1.0 ⁇ m as free abrasive grains. Polished with a brush.
  • D50 average particle size
  • the diamond sheet was ground using a grinding device that was bonded to the upper surface plate and the lower surface plate.
  • polishing was performed for 60 minutes using the polishing apparatus of FIGS. Detailed polishing conditions are as shown below.
  • the chemical strengthening of (7) a liquid mixture of potassium nitrate (60% by weight) and sodium nitrate (40% by weight) is used as the chemical strengthening liquid, the temperature of the chemical strengthening liquid is set to 350 ° C., and preheated to 200 ° C. in advance. The glass base plate was immersed in the chemical strengthening solution for 4 hours.
  • polishing was performed for a predetermined time using colloidal silica having a particle diameter of 10 to 50 ⁇ m using another polishing apparatus similar to that shown in FIGS. Thereby, arithmetic mean roughness Ra (JIS B0601: 2001) of the main surface was made into 0.15 nm or less.
  • the glass substrate after the final polishing was cleaned using a neutral cleaning solution and an alkaline cleaning solution. This obtained the glass substrate for magnetic discs.
  • Polishing pad Hard urethane pad (JIS-A hardness: 80-100) Polishing load: 120 g / cm 2 ⁇ Surface plate speed: 30 rpm Polishing fluid supply flow rate: 3000 L / min Polishing liquid: containing 10% by weight of zirconia (ZrO 2 ) abrasive grains. All the zirconia abrasive grains of the examples were prepared by a wet method. The zirconia abrasive grains of the comparative example were produced by a dry method.
  • the setting of the zirconia abrasive grains in the first polishing of (6) was changed to evaluate the polishing rate in the polishing process and the presence or absence of scratches on the glass base plate after the polishing process.
  • the results shown in Table 1 and Table 2 were obtained.
  • the said evaluation was performed about what wash
  • the secondary particle diameter (average particle diameter D50) of the zirconia abrasive grains was measured by a light scattering method using a particle diameter / particle size distribution measuring apparatus.
  • the average particle size D50 is the particle size at which the cumulative volume frequency is 50% when the total volume frequency is determined with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. is there.
  • the primary particle diameter was measured by a method as shown in FIG. 7 with zirconia abrasive grains magnified 30,000 to 100,000 times with a scanning electron microscope. Further, the BET specific surface area was measured by a BET single point method by a gas adsorption method using a fluid specific surface area measuring device.
  • polishing rate evaluation criteria The polishing rate was evaluated based on the following criteria by measuring the polishing rate of the first batch. ⁇ , ⁇ or ⁇ is acceptable. ⁇ : Greater than 1.8 ⁇ m / min ⁇ : Greater than 1.6 ⁇ m / min, 1.8 ⁇ m / min or less ⁇ : Greater than 1.4 ⁇ m / min, 1.6 ⁇ m / min or less X: 1.4 ⁇ m / min or less
  • a magnetic disk was manufactured by laminating an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer on the glass substrates for magnetic disks of Examples 1 to 13 and Comparative Example, and a glide head.
  • the glide test was performed with the flying height of 7 nm set to 7 nm.
  • the yield inspection pass rate
  • the yield was lower than 90%, which was unacceptable.
  • the defect position detected by the glide inspection was observed by SEM / EDX, a foreign matter was found.
  • composition analysis of the found foreign matter revealed that it was a foreign matter derived from a zirconia abrasive. That is, it is considered that the zirconia particles used in the polishing step were found as foreign substances by attaching to the glass base plate during the polishing process.
  • the order of the steps is (7) chemical strengthening, (6) first polishing, (8) second polishing, not (6) first polishing, (7) chemical strengthening, and (8) second polishing.
  • the glass substrate for magnetic disks was produced by changing the above. At this time, the manufacturing method of zirconia abrasive grains in the first polishing and the primary particle diameter and secondary particle diameter D50 of the zirconia abrasive grains were the same as those in Example 3 in Table 1. Further, the glass substrate for a magnetic disk with various changes in the fracture toughness value K 1c was prepared as shown in Table 3 below by appropriately changing the strengthening temperature and the immersion time in the chemical strengthening step (Example 14 in Table 3). 15). Table 3 shows the evaluation results of the glass base plate after the first polishing at this time.
  • the production method of the zirconia abrasive grains, the primary particle diameter of the zirconia abrasive grains, and the secondary particle diameter D50 are the same as those in Example 8 of Table 1, and carriers having different surface roughness of the end faces are used in the polishing apparatus for the first polishing.
  • first polishing was performed to produce glass substrates for magnetic disks (Examples 16 to 18 in Table 4).
  • the order of the steps was (6) first polishing, (7) chemical strengthening, and (8) second polishing in this order to produce a magnetic disk glass substrate.
  • Table 4 shows the evaluation results of the glass base plate after the first polishing at this time.
  • the scratch evaluation was good when the surface roughness Ra of the end face of the carrier was 5 ⁇ m or less, and even better when it was 3 ⁇ m or less. This is because, as the surface roughness of the end face of the carrier is smaller, the number of zirconia abrasive grains entering between the glass base plate and the carrier increases, and the force is dispersed to more abrasive grains. This is considered to be because it is difficult to pierce the side wall surface of the glass base plate.

Abstract

This invention provides a method for manufacturing a glass substrate for a magnetic disk in which malfunctions such as head crashes and/or thermal asperities are less likely to occur when manufacturing a glass substrate for a magnetic disk by polishing the substrate using a zirconia abrasive as the polishing abrasive in a loose abrasive. A method for manufacturing a glass substrate for a magnetic disk having a polishing step in which, in a state where a donut-shaped glass substrate having at least a pair of main surfaces and two sidewall surfaces forming an inner hole and the contour of the glass substrate is held in a carrier, the pair of main surfaces are sandwiched by polishing pads attached to a turntable, and the glass substrate is polished due to the planetary gear motion of the carrier while a polishing solution is supplied to the pair of main surfaces, the manufacturing method being characterized in that the polishing solution contains, as the polishing abrasive, zirconia particles manufactured using a wet process.

Description

磁気ディスク用ガラス基板の製造方法Manufacturing method of glass substrate for magnetic disk
 本発明は、磁気ディスク用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for a magnetic disk.
 今日、パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置(HDD:Hard Disk Drive)が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッドで磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板として、金属基板(アルミニウム基板)等に比べて塑性変形し難い性質を持つことから、ガラス基板が好適に用いられる。 Today, a personal computer or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device (HDD: Hard Disk Drive) for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk. Thus, magnetic recording information is recorded on or read from the magnetic layer. As a substrate for this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like.
 また、ハードディスク装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリア(記録ビット)の微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。さらに、記憶容量の一層の増大化のために、磁気ヘッドの記録再生素子部をさらに突き出すことによって磁気記録層との距離を極めて短くして、情報の記録再生の精度をより高める(S/N比を向上させる)ことも行われている。なお、このような磁気ヘッドの記録再生素子部の制御はDFH(Dynamic Flying Height)制御機構と呼ばれ、この制御機構を搭載した磁気ヘッドはDFHヘッドと呼ばれている。このようなDFHヘッドと組み合わされてHDDに用いられる磁気ディスク用の基板においては、磁気ヘッドやそこからさらに突き出された記録再生素子部との衝突や接触を避けるために、基板の表面凹凸は極めて小さくなるように作製されている。 In addition, in response to a request for an increase in storage capacity in a hard disk device, the density of magnetic recording has been increased. For example, the magnetic recording information area (recording bit) is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate. Thereby, the storage capacity of one disk substrate can be increased. Furthermore, in order to further increase the storage capacity, the distance from the magnetic recording layer is extremely shortened by further protruding the recording / reproducing element portion of the magnetic head, thereby further improving the accuracy of information recording / reproducing (S / N). To improve the ratio). Such control of the recording / reproducing element portion of the magnetic head is called a DFH (Dynamic Flying Height) control mechanism, and a magnetic head equipped with this control mechanism is called a DFH head. In a substrate for a magnetic disk used in an HDD in combination with such a DFH head, the surface irregularity of the substrate is extremely small in order to avoid collision and contact with the magnetic head and the recording / reproducing element portion protruding further therefrom. It is made to be smaller.
 磁気ディスク用ガラス基板を作製する工程には、プレス成形後に平板状となった板状ガラス素材の主表面に対して固定砥粒による研削を行う研削工程と、この研削工程によって主表面に残留したキズ、歪みの除去を目的として主表面の研磨工程が含まれる。
 従来、磁気ディスク用ガラス基板の主表面の研磨工程においては、研磨剤として酸化セリウム(二酸化セリウム)、二酸化珪素、二酸化ジルコニウム(ジルコニア)等の様々な砥粒を用いる方法が知られている。例えば、特許文献1には、ジルコニア砥粒に、アルミン酸カルシウム、硫酸マグネシウム、塩化マグネシウム等を添加した研磨液を使用して磁気ディスク用ガラス基板を研磨する方法が開示されている。
In the process of producing the glass substrate for magnetic disk, the main surface of the plate-like glass material that has become flat after press molding is ground on the main surface, and the grinding process remains on the main surface. A main surface polishing step is included for the purpose of removing scratches and distortions.
Conventionally, in the polishing process of the main surface of the glass substrate for magnetic disks, methods using various abrasive grains such as cerium oxide (cerium dioxide), silicon dioxide, zirconium dioxide (zirconia) as an abrasive are known. For example, Patent Document 1 discloses a method of polishing a glass substrate for a magnetic disk using a polishing liquid in which calcium aluminate, magnesium sulfate, magnesium chloride or the like is added to zirconia abrasive grains.
特許第2783329号Japanese Patent No. 2783329
 しかし、ジルコニアをガラス素板の遊離砥粒の研磨材として作製したガラス基板に磁気層を成膜して磁気ディスクを作製し、グライドヘッドを用いてグライド検査を行ったところ、従来の酸化セリウムを研磨材として用いて作製したガラス基板に比べて、歩留まりの低下(つまり、不良発生率の上昇)が認められた。グライド検査は、磁気ヘッドが磁気ディスクに対する所定の浮上量で安定して動作を維持できるか否かを判別するものである。グライド検査は、圧電素子等を取り付けたグライドヘッドを磁気ディスクの主表面上に対して所定の浮上量で飛行させ、グライドヘッドと磁気ディスク主表面上の異物等の突起物との衝突の有無を圧電素子等によって検出することにより行われる。 However, when a magnetic layer was formed on a glass substrate made of zirconia as a polishing material for loose abrasive grains on a glass base plate, a magnetic disk was prepared, and a glide test was performed using a glide head. Compared to a glass substrate produced using an abrasive, a decrease in yield (that is, an increase in defect occurrence rate) was observed. The glide inspection is to determine whether or not the magnetic head can stably operate with a predetermined flying height with respect to the magnetic disk. In the glide inspection, a glide head equipped with a piezoelectric element or the like is caused to fly with a predetermined flying height with respect to the main surface of the magnetic disk, and whether or not there is a collision between the glide head and a projection such as a foreign object on the main surface of the magnetic disk. The detection is performed by a piezoelectric element or the like.
 そこで、本発明は、ジルコニア砥粒を遊離砥粒の研磨材として用いて研磨を行って磁気ディスク用ガラス基板を製造するとき、ガラス基板上に異物が残留し難い磁気ディスク用ガラス基板を製造することができる磁気ディスク用ガラス基板の製造方法を提供することを目的とする。 Therefore, the present invention manufactures a magnetic disk glass substrate in which foreign substances are unlikely to remain on the glass substrate when the magnetic disk glass substrate is manufactured by polishing using zirconia abrasive as an abrasive for free abrasive grains. An object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk.
 本願発明者らは、上記グライド検査による歩留まりの低下の原因を究明するために鋭意検討した。その結果、ガラス基板の主表面には、鏡面仕上げの研磨後、主表面が十分に洗浄されて粒子等が取り除かれても、磁性層の成膜時、主表面にジルコニア粒子が付着している場合があることがわかった。この場合、ジルコニア粒子の上方に磁性層等が積層されるため、磁気ディスクの表面に微小凸部が形成される。そして、この微小凸部がヘッドクラッシュ障害やサーマルアスペリティ障害等の不具合の原因となる。さらに、ガラス基板の主表面に付着したジルコニア粒子は、研磨に用いたジルコニア砥粒やその一部分であって、ガラス基板の外周面及び内周面の側壁面に付着したものに由来することもわかった。なお、ガラス基板に付着したジルコニア粒子を効果的に除去する洗浄方法は確立されていない。 The inventors of the present application have conducted intensive studies in order to investigate the cause of the decrease in yield due to the above glide inspection. As a result, the main surface of the glass substrate has zirconia particles adhering to the main surface during the formation of the magnetic layer, even after the main surface is sufficiently cleaned and the particles are removed after polishing with a mirror finish. I found out that there was a case. In this case, since a magnetic layer or the like is laminated above the zirconia particles, minute convex portions are formed on the surface of the magnetic disk. And this minute convex part causes troubles, such as a head crash trouble and a thermal asperity trouble. Furthermore, the zirconia particles adhering to the main surface of the glass substrate are also derived from zirconia abrasive grains used for polishing or a part thereof, which are attached to the outer peripheral surface and inner peripheral surface of the glass substrate. It was. In addition, the washing | cleaning method which removes effectively the zirconia particle adhering to the glass substrate is not established.
 本願発明者らは、主表面が十分に洗浄されて粒子等が取り除かれても、磁性層の成膜時、主表面にジルコニア粒子が付着している場合がある理由を、以下のとおり考えている。つまり、ジルコニア砥粒による主表面研磨によってガラス素板にジルコニア粒子が残留した場合でも、その後の主表面に対する最終研磨によって主表面に残留したジルコニア粒子は除去されるが、ガラス素板の側壁面に残留あるいは付着したジルコニア粒子は、その後のガラス素板の洗浄によっては除去されない。特に、ジルコニア砥粒による主表面研磨において、ガラス素板をキャリアに保持させて行う場合には、研磨中にガラス素板がキャリアに当接することによってジルコニア粒子がガラス素板の側壁面に固着すると考えられる。そして、ジルコニア砥粒による主表面研磨の後の工程において、側壁面に付着していたジルコニア粒子が離脱してガラス素板あるいは磁気ディスク用ガラス基板の主表面に付着すると推察される。例えば、ガラス素板の主表面研磨の後には、主表面の表面性状を悪化させることがないように、工程上ガラス素板あるいは磁気ディスク用ガラス基板の側壁面が把持されるが、それによってジルコニア粒子が離脱することが考えられる。また、磁気ディスク用ガラス基板に対して成膜する工程において外形の側壁面を把持するときにジルコニア粒子が側壁面から離脱することや、磁気ディスク用ガラス基板の洗浄工程において外形の側壁面からジルコニア粒子が離脱することも考えられる。 The inventors of the present application consider the reason why zirconia particles may adhere to the main surface when the magnetic layer is formed even if the main surface is sufficiently washed and particles are removed. Yes. In other words, even if zirconia particles remain on the glass base plate by main surface polishing with zirconia abrasive grains, the zirconia particles remaining on the main surface are removed by final polishing on the main surface, but on the side wall surface of the glass base plate. Residual or adhered zirconia particles are not removed by subsequent cleaning of the glass base plate. In particular, in the main surface polishing with zirconia abrasive grains, when the glass base plate is held on a carrier, the zirconia particles adhere to the side wall surface of the glass base plate by the glass base plate contacting the carrier during polishing. Conceivable. And in the process after the main surface grinding | polishing by a zirconia abrasive grain, it is guessed that the zirconia particle adhering to the side wall surface will detach | leave and adhere to the main surface of a glass base plate or the glass substrate for magnetic discs. For example, after polishing the main surface of the glass base plate, the side wall surface of the glass base plate or the magnetic disk glass substrate is gripped in the process so as not to deteriorate the surface properties of the main surface. It is considered that the particles are detached. In addition, zirconia particles are detached from the side wall surface when the outer side wall surface is gripped in the film forming process on the magnetic disk glass substrate, or from the outer side wall surface in the magnetic disk glass substrate cleaning process. It is also possible that the particles are detached.
 上述した点に鑑み、本願発明者らは、研磨工程で研磨砥粒として使用するジルコニア粒子を、ガラス素板の側壁面に固着し難い形状のものにすることで、ガラス素板の側壁面に固着して残留するジルコニア粒子が少なくなり、それによってジルコニアが後工程で主表面に付着することが少なくなることを見出した。具体的には、ジルコニア粒子の1次粒子を丸みを帯びた形状とすることで、ジルコニアの粒子がガラス基板の側壁面に固着し難くなることがわかった。そして、ジルコニア粒子の1次粒子を丸みを帯びた形状とするための方策の一つは、ジルコニア粒子を湿式法で製造することであることに着眼し、下記記載の態様の発明を想到するに至った。 In view of the above-mentioned points, the inventors of the present application make the zirconia particles used as polishing abrasive grains in the polishing step into a shape that is difficult to adhere to the side wall surface of the glass base plate, thereby forming the side wall surface of the glass base plate. It has been found that the amount of zirconia particles remaining after being fixed is reduced, whereby zirconia is less likely to adhere to the main surface in a later step. Specifically, it has been found that by making the primary particles of zirconia particles rounded, the zirconia particles are difficult to adhere to the side wall surface of the glass substrate. Then, one of the measures for making the primary particles of the zirconia particles rounded is to manufacture the zirconia particles by a wet method, and the invention of the embodiment described below is conceived. It came.
 すなわち、本発明の一態様は、一対の主表面と、内孔及び外形を構成する2つの側壁面と、を少なくとも有するドーナツ型のガラス基板をキャリアに保持させた状態で、研磨定盤に取り付けられた研磨パッドで前記一対の主表面を挟み、研磨液を前記一対の主表面へ供給しつつ、前記キャリアの遊星歯車運動によって前記ガラス基板を研磨する研磨工程を有する磁気ディスク用ガラス基板の製造方法であって、前記研磨液は、湿式法で製造されたジルコニア粒子を研磨砥粒として含有することを特徴とする。 That is, according to one embodiment of the present invention, a doughnut-shaped glass substrate having at least a pair of main surfaces and two side wall surfaces constituting an inner hole and an outer shape is attached to a polishing platen while being held by a carrier. Manufacturing a glass substrate for a magnetic disk having a polishing step of polishing the glass substrate by planetary gear motion of the carrier while sandwiching the pair of main surfaces with the polishing pad provided and supplying a polishing liquid to the pair of main surfaces The method is characterized in that the polishing liquid contains zirconia particles produced by a wet method as abrasive grains.
 上記磁気ディスク用ガラス基板の製造方法において、前記ジルコニア粒子は、粒径が70~200nmの範囲内の1次粒子が集合してなるものであることが好ましい。 In the above method for producing a glass substrate for a magnetic disk, the zirconia particles are preferably formed by agglomeration of primary particles having a particle size in the range of 70 to 200 nm.
 上記磁気ディスク用ガラス基板の製造方法において、前記ジルコニア粒子のBET比表面積は、4~15m/gの範囲内にあることが好ましい。 In the method for manufacturing a glass substrate for a magnetic disk, the BET specific surface area of the zirconia particles is preferably in the range of 4 to 15 m 2 / g.
 上記磁気ディスク用ガラス基板の製造方法において、前記ジルコニア粒子の平均粒径(D50)が0.2~0.6μmの範囲内にあることが好ましい。 In the method for producing a glass substrate for a magnetic disk, it is preferable that the average particle diameter (D50) of the zirconia particles is in the range of 0.2 to 0.6 μm.
 上記磁気ディスク用ガラス基板の製造方法において、前記ジルコニア粒子の1次粒子の長軸の長さをX1、長軸と直交する短軸の長さをX2としたときに、X1/X2が1.0~1.3であることが好ましい。 In the above method for producing a glass substrate for magnetic disk, when the length of the major axis of the primary particles of the zirconia particles is X1, and the length of the minor axis perpendicular to the major axis is X2, X1 / X2 is 1. It is preferably 0 to 1.3.
 上記磁気ディスク用ガラス基板の製造方法において、前記ガラス基板の側壁面と接触する前記キャリアの端面の表面粗さが5μm以下であることが好ましい。 In the method for manufacturing a glass substrate for a magnetic disk, the surface roughness of the end face of the carrier that contacts the side wall surface of the glass substrate is preferably 5 μm or less.
 上記磁気ディスク用ガラス基板の製造方法において、前記ジルコニア粒子を有する研磨液を用いて研磨される前のガラス基板の側壁面の表面粗さが、算術平均粗さRaで0.1μm以下であることが好ましい。 In the method for producing a glass substrate for magnetic disk, the surface roughness of the side wall surface of the glass substrate before being polished with the polishing liquid having zirconia particles is 0.1 μm or less in terms of arithmetic average roughness Ra. Is preferred.
 上記磁気ディスク用ガラス基板の製造方法において、前記磁気ディスク用ガラス基板は、直径が2.5インチサイズよりも大きく、かつ、板厚が0.6mm以下であることが好ましい。 In the method for manufacturing a glass substrate for magnetic disk, the glass substrate for magnetic disk preferably has a diameter larger than 2.5 inches and a plate thickness of 0.6 mm or less.
 上記磁気ディスク用ガラス基板の製造方法は、前記研磨工程の後に、前記ガラス基板の破壊靱性値K1cが、ビッカース硬度計による計測で0.7[MPa/m1/2]以上となる処理条件で、前記ガラス基板に対して化学強化を行う化学強化工程、を有することが好ましい。 In the method for manufacturing a glass substrate for a magnetic disk, after the polishing step, the fracture toughness value K 1c of the glass substrate is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter. It is preferable to have a chemical strengthening step for chemically strengthening the glass substrate.
第1研磨工程で使用される研磨装置(両面研磨装置)の分解斜視図。The disassembled perspective view of the grinding | polishing apparatus (double-side polish apparatus) used at a 1st grinding | polishing process. 第1研磨工程で使用される研磨装置(両面研磨装置)の断面図。Sectional drawing of the polisher (double-side polish apparatus) used at a 1st grinding | polishing process. 実施形態のジルコニア粒子(2次粒子)を模式的に示す図。The figure which shows typically the zirconia particle (secondary particle) of embodiment. 実施形態のジルコニア粒子の作用を説明するための図。The figure for demonstrating the effect | action of the zirconia particle of embodiment. ジルコニア粒子がガラス素板の側壁面に押し付けられた状態を示す図であり、湿式法で製造されたジルコニア粒子の場合と、乾式法で製造されたジルコニア粒子の場合とを示す。It is a figure which shows the state by which the zirconia particle was pressed on the side wall surface of a glass base plate, and shows the case of the zirconia particle manufactured by the wet method, and the case of the zirconia particle manufactured by the dry method. ジルコニア粒子がガラス素板の主表面と研磨パッドとの間で研磨加工において作用しているときの状態を模式的に示すものであって、湿式法で製造されたジルコニア粒子の場合(本研磨工程の場合)と、本研磨工程とは異なり乾式法で製造されたジルコニア粒子の場合とを示す。In the case of zirconia particles produced by a wet method, schematically showing the state when the zirconia particles are acting in the polishing process between the main surface of the glass base plate and the polishing pad (this polishing step) And the case of zirconia particles produced by a dry method, unlike the polishing step. ジルコニア粒子の1次粒子の粒径の測定方法を示す図。The figure which shows the measuring method of the particle size of the primary particle of a zirconia particle.
 以下、本実施形態の磁気ディスク用ガラス基板の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this embodiment will be described in detail.
[磁気ディスク用ガラス基板]
 本実施形態における磁気ディスク用ガラス基板の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。アモルファスのアルミノシリケートガラスとするとさらに好ましい。
[Magnetic disk glass substrate]
Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced. More preferably, it is an amorphous aluminosilicate glass.
 本実施形態の磁気ディスク用ガラス基板の組成を限定するものではないが、本実施形態のガラス基板は好ましくは、酸化物基準に換算し、モル%表示で、SiOを50~75%、Alを1~15%、LiO、NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラスである。 Although the composition of the glass substrate for a magnetic disk of this embodiment is not limited, the glass substrate of this embodiment is preferably converted to an oxide standard and expressed in mol%, SiO 2 is 50 to 75%, Al 2 to O 3 to 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, selected from MgO, CaO, SrO, BaO and ZnO 0-20% in total of at least one component, and at least one selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of components.
 本実施形態における磁気ディスク用ガラス基板は、円環状の薄板のガラス基板である。磁気ディスク用ガラス基板のサイズは問わないが、例えば、公称直径2.5インチの磁気ディスク用ガラス基板として好適である。 The glass substrate for magnetic disk in this embodiment is an annular thin glass substrate. Although the size of the glass substrate for magnetic disks is not ask | required, for example, it is suitable as a glass substrate for magnetic disks with a nominal diameter of 2.5 inches.
[磁気ディスク用ガラス基板の製造方法]
 以下、本実施形態の磁気ディスク用ガラス基板の製造方法について、工程毎に説明する。ただし、各工程の順番は適宜入れ替えてもよい。
[Method of manufacturing glass substrate for magnetic disk]
Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this embodiment is demonstrated for every process. However, the order of each step may be changed as appropriate.
 (1)ガラス素板の成形およびラッピング工程
 例えばフロート法によるガラス素板の成形工程では先ず、錫などの溶融金属の満たされた浴槽内に、例えば上述した組成の溶融ガラスを連続的に流し入れることで板状ガラスを得る。溶融ガラスは厳密な温度操作が施された浴槽内で進行方向に沿って流れ、最終的に所望の厚さ、幅に調整された板状ガラスが形成される。この板状ガラスから、磁気ディスク用ガラス基板の元となる所定形状のガラス素板が切り出される。浴槽内の溶融錫の表面は水平であるために、フロート法により得られるガラス素板は、その表面の平坦度が十分に高いものとなる。
 また、例えばプレス成形法よるガラス素板の成形工程では、受けゴブ形成型である下型上に、溶融ガラスからなるガラスゴブが供給され、下型と対向ゴブ形成型である上型を使用してガラスゴブがプレス成形される。より具体的には、下型上に溶融ガラスからなるガラスゴブを供給した後に上型用胴型の下面と下型用胴型の上面を当接させ、上型と上型用胴型との摺動面および下型と下型用胴型との摺動面を超えて外側に肉薄ガラス素板の成形空間を形成し、さらに上型を下降してプレス成形を行い、プレス成形直後に上型を上昇する。これにより、磁気ディスク用ガラス基板の元となるガラス素板が成形される。
 なお、ガラス素板は、上述した方法に限らず、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。
(1) Molding and lapping process of glass base plate In the process of forming a glass base plate by, for example, the float process, first, for example, molten glass having the above-described composition is continuously poured into a bath filled with a molten metal such as tin. To obtain plate glass. The molten glass flows along the traveling direction in a bathtub that has been subjected to a strict temperature operation, and finally a plate-like glass adjusted to a desired thickness and width is formed. From this plate glass, a glass base plate having a predetermined shape as a base of the glass substrate for a magnetic disk is cut out. Since the surface of the molten tin in the bath is horizontal, the flatness of the surface of the glass base plate obtained by the float process is sufficiently high.
For example, in a glass base plate molding process by a press molding method, a glass gob made of molten glass is supplied onto a lower mold that is a receiving gob forming mold, and an upper mold that is a lower mold and an opposing gob forming mold is used. Glass gob is press molded. More specifically, after a glass gob made of molten glass is supplied onto the lower mold, the lower surface of the upper mold cylinder and the upper surface of the lower mold cylinder are brought into contact with each other, and the upper mold and the upper mold mold are slid. Form a thin glass blank forming space outside the moving surface and the sliding surface of the lower mold and the lower mold body, and lower the upper mold to perform press molding. To rise. Thereby, the glass base plate used as the origin of the glass substrate for magnetic discs is shape | molded.
In addition, a glass base plate can be manufactured using not only the method mentioned above but well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
 次に、所定形状に切り出されたガラス素板の両主表面に対して、必要に応じて、アルミナ系遊離砥粒を用いたラッピング加工を行う。具体的には、ガラス素板の両面に上下からラップ定盤を押圧させ、遊離砥粒を含む研削液(スラリー)をガラス素板の主表面上に供給し、これらを相対的に移動させてラッピング加工を行う。なお、フロート法でガラス素板を成形した場合には、成形後の主表面の粗さの精度が高いため、このラッピング加工を省略してもよい。 Next, lapping processing using alumina-based loose abrasive grains is performed on both main surfaces of the glass base plate cut into a predetermined shape, if necessary. Specifically, the lapping platen is pressed on both sides of the glass base plate from above and below, a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively. Perform lapping. In addition, when a glass base plate is shape | molded with the float glass process, since the precision of the roughness of the main surface after shaping | molding is high, you may abbreviate | omit this lapping process.
 (2)コアリング工程
 円筒状のダイヤモンドドリルを用いて、ガラス素板の中心部に内孔を形成し、円環状のガラス素板とする。
(2) Coring process Using a cylindrical diamond drill, an inner hole is formed in the center of the glass base plate to obtain an annular glass base plate.
 (3)チャンファリング工程
 コアリング工程の後、端部(外周端部及び内周端部)に面取り部を形成するチャンファリング工程が行われる。チャンファリング工程では、円環状のガラス素板の外周端部及び内周端部に対して、例えば、ダイヤモンド砥粒を用いたメタルボンド砥石等によって面取りが施され、面取り部が形成される。
(3) Chamfering step After the coring step, a chamfering step of forming a chamfered portion at the ends (outer peripheral end and inner peripheral end) is performed. In the chamfering step, the outer peripheral end and the inner peripheral end of the annular glass base plate are chamfered with, for example, a metal bond grindstone using diamond abrasive grains to form a chamfered portion.
 (4)端面研磨工程
 次に、円環状のガラス素板の端面研磨(エッジポリッシング)が行われる。
 端面研磨では、ガラス素板の内周側の側壁面(端面)及び外周側の側壁面(端面)をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス素板の側壁面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
 ガラス素板の端面を平滑にし、それによって後工程の第1の研磨工程においてジルコニア砥粒がガラス素板の側壁面に付着し難くするために、端面研磨工程は、第1の研磨工程の前に行うことが好ましい。例えば、端面研磨工程後のガラス素板の端面の算術平均粗さRaを0.1μm以下とするように、端面研磨を行うことが好ましい。
(4) End face polishing step Next, end face polishing (edge polishing) of an annular glass base plate is performed.
In the end surface polishing, the inner peripheral side wall surface (end surface) and the outer peripheral side wall surface (end surface) of the glass base plate are mirror-finished by brush polishing. At this time, a slurry containing fine particles such as cerium oxide as free abrasive grains is used. By performing end surface polishing, removal of contamination such as dust on the side wall surface of the glass base plate, damage or scratches, etc., preventing the occurrence of thermal asperity, corrosion of sodium and potassium, etc. It is possible to prevent the occurrence of ion precipitation that is a cause.
In order to make the end face of the glass base plate smooth, thereby making it difficult for the zirconia abrasive grains to adhere to the side wall surface of the glass base plate in the first polishing step of the subsequent step, the end face polishing step is performed before the first polishing step. It is preferable to carry out. For example, it is preferable to perform the end surface polishing so that the arithmetic average roughness Ra of the end surface of the glass base plate after the end surface polishing step is 0.1 μm or less.
 (5)固定砥粒による研削工程
 固定砥粒による研削工程では、遊星歯車機構を備えた両面研削装置を用いて円環状のガラス素板の主表面に対して研削加工を行う。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間に円環状のガラス素板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作することにより、ガラス素板と各定盤とを相対的に移動させることで、ガラス素板の両主表面を研削することができる。
(5) Grinding process using fixed abrasive grains In the grinding process using fixed abrasive grains, grinding is performed on the main surface of the annular glass base plate using a double-side grinding apparatus equipped with a planetary gear mechanism. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular glass base plate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving both the upper surface plate and the lower surface plate, or both of them, the main surface of the glass base plate is ground by relatively moving the glass base plate and each surface plate. be able to.
 (6)第1研磨(主表面研磨)工程
 次に、研削されたガラス素板の主表面に第1研磨が施される。第1研磨による取り代は、例えば数μm~50μm程度である。
(6) 1st grinding | polishing (main surface grinding | polishing) process Next, 1st grinding | polishing is given to the main surface of the ground glass base plate. The machining allowance by the first polishing is, for example, about several μm to 50 μm.
 (6-1)研磨装置
 第1研磨工程で使用される研磨装置について、図1及び図2を参照して説明する。図1は、第1研磨工程で使用される研磨装置(両面研磨装置)の分解斜視図である。図2は、第1研磨工程で使用される研磨装置(両面研磨装置)の断面図である。なお、この研磨装置と同様の構成は、上述した研削工程に使用される研削装置においても適用できる。
(6-1) Polishing Device A polishing device used in the first polishing step will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus) used in the first polishing step. FIG. 2 is a cross-sectional view of a polishing apparatus (double-side polishing apparatus) used in the first polishing process. Note that the same configuration as this polishing apparatus can be applied to a grinding apparatus used in the above-described grinding process.
 図1に示すように、研磨装置は、上下一対の定盤、すなわち上定盤40および下定盤50を有している。上定盤40および下定盤50の間に円環状のガラス素板Gが狭持され、上定盤40または下定盤50のいずれか一方、または、双方を移動操作することにより、ガラス素板Gと各定盤とを相対的に移動させることで、このガラス素板Gの両主表面を研磨することができる。 As shown in FIG. 1, the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 40 and a lower surface plate 50. An annular glass base plate G is sandwiched between the upper surface plate 40 and the lower surface plate 50, and either one or both of the upper surface plate 40 and the lower surface plate 50 are moved to operate the glass base plate G. By moving the surface plates relative to each other, both main surfaces of the glass base plate G can be polished.
 図1及び図2を参照して研磨装置の構成をさらに具体的に説明する。
 研磨装置において、下定盤50の上面および上定盤40の底面には、全体として円環形状の平板の研磨パッド10が取り付けられている。キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス素板Gを収容し保持するための1または複数の孔部32とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、ガラス素板G(ワーク)を1または複数を収容し保持する。下定盤50上では、キャリア30が遊星歯車として自転しながら公転し、ガラス素板Gと下定盤50とが相対的に移動させられる。例えば、太陽歯車61がCCW(反時計回り)の方向に回転すれば、キャリア30はCW(時計回り)の方向に回転し、内歯車62はCCWの方向に回転する。その結果、研磨パッド10とガラス素板Gの間に相対運動が生じる。同様にして、ガラス素板Gと上定盤40とを相対的に移動させてよい。
The configuration of the polishing apparatus will be described more specifically with reference to FIGS.
In the polishing apparatus, an annular flat polishing pad 10 is attached to the upper surface of the lower platen 50 and the bottom surface of the upper platen 40 as a whole. The carrier 30 includes a tooth portion 31 that is provided on the outer peripheral portion and meshes with the sun gear 61 and the internal gear 62, and one or a plurality of holes 32 that accommodate and hold the glass base plate G. The sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole. The disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass base plates G (workpieces). On the lower surface plate 50, the carrier 30 revolves while rotating as a planetary gear, and the glass base plate G and the lower surface plate 50 are relatively moved. For example, if the sun gear 61 rotates in the CCW (counterclockwise) direction, the carrier 30 rotates in the CW (clockwise) direction, and the internal gear 62 rotates in the CCW direction. As a result, relative movement occurs between the polishing pad 10 and the glass base plate G. Similarly, the glass base plate G and the upper surface plate 40 may be relatively moved.
 上記相対運動の動作中には、上定盤40がガラス素板Gに対して(つまり、鉛直方向に)所定の荷重で押圧され、ガラス素板Gに対して研磨パッド10が押圧される。また、図示しないポンプによって研磨液(スラリー)が、研磨液供給タンク71から1または複数の配管72を経由してガラス素板Gと研磨パッド10の間に供給される。この研磨液に含まれる研磨材によってガラス素板Gの主表面が研磨される。ここで、ガラス素板Gの研磨に使用された研磨液は上下定盤から排出され、図示しないフィルタ及びリターン配管によって研磨液供給タンク71へ戻されて再使用されるのが好ましい。 During the relative movement, the upper surface plate 40 is pressed against the glass base plate G (that is, in the vertical direction) with a predetermined load, and the polishing pad 10 is pressed against the glass base plate G. A polishing liquid (slurry) is supplied between the glass base plate G and the polishing pad 10 from the polishing liquid supply tank 71 via one or a plurality of pipes 72 by a pump (not shown). The main surface of the glass base plate G is polished by the abrasive contained in the polishing liquid. Here, it is preferable that the polishing liquid used for polishing the glass base plate G is discharged from the upper and lower surface plates, returned to the polishing liquid supply tank 71 by a filter and a return pipe (not shown), and reused.
 なお、この研磨装置では、ガラス素板Gに対する所望の研磨負荷を設定する目的で、ガラス素板Gに与えられる上定盤40の荷重が調整されることが好ましい。荷重は、高研磨速度達成の観点から50g/cm以上が好ましく、70g/cm以上がより好ましく、90g/cm以上がさらに好ましい。またスクラッチ低減及び品質安定化の観点から、研磨荷重は180g/cm以下が好ましく、160g/cm以下がより好ましく、140g/cm以下がさらに好ましい。すなわち、荷重は、50g/cm~180g/cmが好ましく、70g/cm~160g/cmがより好ましく、90g/cm~140g/cmがさらに好ましい。 In this polishing apparatus, it is preferable that the load of the upper surface plate 40 applied to the glass base plate G is adjusted for the purpose of setting a desired polishing load on the glass base plate G. Load, 50 g / cm 2 or more is preferred from the viewpoint of high polishing rate achieved, more preferably 70 g / cm 2 or more, 90 g / cm 2 or more is more preferable. Further, from the viewpoint of reducing scratches and stabilizing the quality, the polishing load is preferably 180 g / cm 2 or less, more preferably 160 g / cm 2 or less, and even more preferably 140 g / cm 2 or less. That is, the load is preferably 50 g / cm 2 to 180 g / cm 2, more preferably 70 g / cm 2 to 160 g / cm 2, and still more preferably 90 g / cm 2 to 140 g / cm 2 .
 研磨加工時の研磨液の供給速度は、研磨パッド10、研磨液の組成及び濃度、ガラス素板Gの大きさによって異なるが、研磨速度を向上させる観点から500~5000ml/分が好ましく、より好ましくは1000~4500ml/分であり、さらに好ましくは1500~4000ml/分である。研磨パッド10の回転数は10~50rpmが好ましく、20~40rpmがより好ましく、25~35rpmがさらに好ましい。 The supply rate of the polishing liquid during polishing processing varies depending on the polishing pad 10, the composition and concentration of the polishing liquid, and the size of the glass base plate G, but is preferably 500 to 5000 ml / min, more preferably from the viewpoint of improving the polishing rate. Is 1000 to 4500 ml / min, more preferably 1500 to 4000 ml / min. The rotation speed of the polishing pad 10 is preferably 10 to 50 rpm, more preferably 20 to 40 rpm, and further preferably 25 to 35 rpm.
 (6-2)研磨砥粒(ジルコニア(ZrO2))
 (A)研磨砥粒の精製法
 図1の研磨装置に使用する研磨液は、乾式法ではなく湿式法で作製したジルコニア(ZrO2)粒子を研磨砥粒として含む。
 ここで、乾式法とは、電融法で得られたジルコニアや脱珪ジルコニアの粉砕品、バデライトの粉砕品等により製造する方法である。なお、電融法は、ジルコンサンドやバデライト等を2,700℃程度に加熱し、珪素を蒸発させて珪素濃度を低くし、ジルコニウム濃度を向上させるプロセスである。脱珪ジルコニアは、電融法で珪素濃度を低下させた粉末である。バデライトは天然鉱物であり、天然鉱物の時点で珪素濃度が低く、比較的高純度なジルコニアである。
 一方、湿式法は、乾式法とは異なり、ジルコニウムを含む化合物を薬品に溶かした溶液を生成し、その溶液中で結晶成長をさせてジルコニウムを含むゾル等を生成し、焼成してジルコニウムを製造する製法である。例えば公知の湿式法では、概ね以下の工程(I)~(V)を経てジルコニアの粉末を生成する。
(6-2) Polishing abrasive (Zirconia (ZrO 2 ))
(A) Polishing Abrasive Grain Purification Method The polishing liquid used in the polishing apparatus of FIG. 1 contains zirconia (ZrO 2 ) particles produced by a wet method rather than a dry method as abrasive grains.
Here, the dry method is a method of producing by pulverized product of zirconia or desiliconized zirconia obtained by electrofusion method, pulverized product of baderite or the like. The electrofusion method is a process in which zircon sand, badelite or the like is heated to about 2,700 ° C. to evaporate silicon to lower the silicon concentration and improve the zirconium concentration. Desiliconized zirconia is a powder in which the silicon concentration is reduced by electrofusion. Badelite is a natural mineral, and is a relatively high purity zirconia having a low silicon concentration at the time of the natural mineral.
On the other hand, unlike the dry method, the wet method produces a solution in which a compound containing zirconium is dissolved in a chemical, and crystal growth is performed in the solution to produce a sol containing zirconium, which is then fired to produce zirconium. It is a manufacturing method to do. For example, in a known wet method, a zirconia powder is generally produced through the following steps (I) to (V).
 (I) 浮遊選鉱工程:ジルコニウム鉱を比重の差を利用した、比重選鉱で珪砂を除き、更に比重の差や磁性、電導性を利用して、イルメナイト、ルチル、モナズ石を選別しジルコン精鉱(ジルコンサンド)とする。
 (II) 苛性ソーダ溶融工程:ジルコンサンドを苛性ソーダで溶融してシリカを分離する。
 (III) 塩酸分解工程:塩酸で分解、濃縮してオキシ塩化ジルコニウム(ZrOCl2・8H2O)を作製する。
 (IV) 水洗・濾過工程:オキシ塩化ジルコニウムを水洗・濾過し、水酸化ジルコニウム(Zr(OH)4)とする。
 (V) 焼成・粉砕工程:水酸化ジルコニウムを焼成、粉砕し、ジルコニアの粉末を作製する。
(I) Flotation process: Zircon concentrate by selecting ilmenite, rutile, and monazite using specific gravity ore, using the difference in specific gravity, removing silica sand, and using the difference in specific gravity, magnetism, and conductivity. (Zircon sand).
(II) Caustic soda melting step: Silica is separated by melting zircon sand with caustic soda.
(III) Hydrochloric acid decomposition step: Decompose and concentrate with hydrochloric acid to produce zirconium oxychloride (ZrOCl 2 · 8H 2 O).
(IV) Washing and filtration step: Zirconium oxychloride is washed with water and filtered to obtain zirconium hydroxide (Zr (OH) 4 ).
(V) Firing and pulverizing step: Zirconium hydroxide is baked and pulverized to produce zirconia powder.
 乾式法及び湿式法のいずれの方法を用いても、粉末状のジルコニアを生成するためにボールミルやジェットミル、ビーズミルのいずれかを、又はそれらを組み合わせてジルコニアを粉砕する粉砕工程が行われる。粉砕工程で使用されるミル及びその設定は、目標とするジルコニアの粒子径等により異なる。ここで、乾式法で製造されたジルコニアは、粉砕工程においてジルコニアの粒内割れが生じ、先端が鋭く尖る部分をもつ粒子となる。それに対して、湿式法で製造されたジルコニアは、粉砕工程において、粒内割れはほとんど発生せずに1次粒子同士の界面で切断され(つまり、粒界割れとなり)、乾式法のように先端が鋭く、尖った粒子はほとんど形成されない。その結果、湿式法で作製したジルコニア粒子の1次粒子は、乾式法とは異なり、丸みを帯びた形状となる。
 研磨砥粒として使用されるジルコニア粒子は2次粒子(1次粒子の集合体)の形態をとり、その2次粒子(湿式法で作製されたもの)を模式的に表したものを図3に示す。図3に示すように、研磨砥粒としてのジルコニア粒子は、複数の1次粒子の集合体の形態をとる。図3に示すように、湿式法で作製したジルコニア粒子の1次粒子の形状は、全体として丸みを帯びた形状となっている。
Regardless of whether the dry method or the wet method is used, a pulverizing step of pulverizing zirconia with any of a ball mill, a jet mill, and a bead mill, or a combination thereof, is performed in order to produce powdered zirconia. The mill used in the pulverization process and its setting vary depending on the target particle size of zirconia and the like. Here, the zirconia produced by the dry method causes intragranular cracking of zirconia in the pulverization step, and becomes particles having a sharp tip. On the other hand, zirconia produced by a wet method is cut at the interface between primary particles with little intragranular cracking in the pulverization process (that is, it becomes a grain boundary crack), and the tip is as in the dry method. Are sharp and few sharp particles are formed. As a result, the primary particles of the zirconia particles produced by the wet method have a rounded shape unlike the dry method.
The zirconia particles used as abrasive grains take the form of secondary particles (aggregates of primary particles), and the secondary particles (made by a wet method) are schematically shown in FIG. Show. As shown in FIG. 3, zirconia particles as abrasive grains take the form of an aggregate of a plurality of primary particles. As shown in FIG. 3, the shape of primary particles of zirconia particles produced by a wet method is rounded as a whole.
 本研磨工程において、湿式法で製造されたジルコニア粒子を研磨砥粒として研磨液に含有させることによる作用について、図4及び図5を参照して説明する。
 図4は、ガラス素板Gがキャリア30の孔部32に収容された状態を示す図である。図4に示すように、研磨装置のキャリア30にガラス素板Gが収容された状態では、ガラス素板Gのキャリア30からの着脱を可能にするために、キャリア30とガラス素板Gの間には、水平方向(つまり、ガラス素板Gの主表面と平行な方向)に僅かな間隙CLが設けられている。つまり、研磨対象であるガラス素板Gの外径をD1、キャリア30の孔部32の径(ガラス素板が当接する当接面の径)をD2としたときにはD2>D1が成立する。それによって、研磨中には、ガラス素板Gの側壁面Gtと、キャリア30の孔部32を形成する側壁面30tとの間の間隙CLには、研磨液中のジルコニア(ZrO2)の砥粒が入り込むようになる。
With reference to FIGS. 4 and 5, description will be given of the action of adding zirconia particles produced by a wet method in the polishing liquid as polishing abrasive grains in this polishing step.
FIG. 4 is a diagram illustrating a state in which the glass base plate G is accommodated in the hole 32 of the carrier 30. As shown in FIG. 4, in a state where the glass base plate G is accommodated in the carrier 30 of the polishing apparatus, in order to enable the glass base plate G to be detached from the carrier 30, between the carrier 30 and the glass base plate G. Is provided with a slight gap CL in the horizontal direction (that is, the direction parallel to the main surface of the glass base plate G). That is, D2> D1 is established when the outer diameter of the glass base plate G to be polished is D1 and the diameter of the hole 32 of the carrier 30 (the diameter of the contact surface with which the glass base plate abuts) is D2. Thus, during polishing, the gap CL between the side wall surface Gt of the glass base plate G and the side wall surface 30t that forms the hole 32 of the carrier 30 has an abrasive of zirconia (ZrO 2 ) in the polishing liquid. Grain comes in.
 研磨加工中においてガラス素板Gは、板厚方向に定盤による荷重が掛かりつつ、主表面と平行な方向についてはキャリア30の孔部32内を拘束されない状態で運動する。このとき、ガラス素板Gの側壁面Gtは、孔部32を形成する側壁面30tに当接させられるとともに、間隙CLに入り込んだジルコニア砥粒がガラス素板Gの側壁面Gtに押し付けられる。図5は、ジルコニア粒子(2次粒子)がガラス素板Gの側壁面Gtに押し付けられたときの状態を模式的に示すものであって、湿式法で製造されたジルコニア粒子の場合(本研磨工程の場合)と、本研磨工程とは異なり乾式法で製造されたジルコニア粒子の場合とが示される。乾式法で製造されたジルコニア粒子の場合の図は比較のために図示してある。 During the polishing process, the glass base plate G moves in an unconstrained state in the hole 32 of the carrier 30 in a direction parallel to the main surface while being subjected to a load by the surface plate in the thickness direction. At this time, the side wall surface Gt of the glass base plate G is brought into contact with the side wall surface 30t forming the hole 32, and the zirconia abrasive grains that have entered the gap CL are pressed against the side wall surface Gt of the glass base plate G. FIG. 5 schematically shows a state when the zirconia particles (secondary particles) are pressed against the side wall surface Gt of the glass base plate G. In the case of zirconia particles manufactured by a wet method (main polishing) In the case of a process), the case of the zirconia particle manufactured by the dry method different from this polishing process is shown. The figure in the case of zirconia particles produced by a dry process is shown for comparison.
 図5の上部に示すように、本研磨工程で使用するジルコニア砥粒は、湿式法で製造されているために1次粒子は丸みを帯びたものとなっており、研磨時の主要な形態である2次粒子についてもその表面は丸みを帯びたものとなっている。そのため、ジルコニア砥粒がガラス素板Gの側壁面Gtに押し付けられたとしても、側壁面Gtに突き刺さることが少なく研磨後に側壁面Gtにジルコニア粒子が残留する可能性が低く、また、研磨中に側壁面Gtを引っ掻くことが少ないため、研磨によるスクラッチが生じ難い。それに対して、乾式法で製造されたジルコニア粒子の場合には(図5の下部)、先端が鋭く尖る部分をもつ粒子が形成されているため、側壁面Gtに突き刺さりやすく研磨後に側壁面Gtにジルコニア粒子が残留する可能性が高く、また、研磨中に側壁面Gtを引っ掻くことがあり、研磨によるスクラッチが生じやすい。 As shown in the upper part of FIG. 5, since the zirconia abrasive grains used in this polishing step are manufactured by a wet method, the primary particles are rounded, and are the main forms during polishing. The surface of some secondary particles is also rounded. Therefore, even if the zirconia abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the side wall surface Gt is hardly pierced and the possibility that zirconia particles remain on the side wall surface Gt after polishing is low. Since the side wall surface Gt is hardly scratched, scratches due to polishing are less likely to occur. On the other hand, in the case of the zirconia particles manufactured by the dry method (lower part of FIG. 5), since the particles having a sharp pointed tip are formed, the side wall surface Gt is easily pierced and then polished on the side wall surface Gt. There is a high possibility that zirconia particles remain, and the side wall surface Gt may be scratched during polishing, and scratches due to polishing are likely to occur.
 図6は、ジルコニア粒子(2次粒子)がガラス素板Gの主表面Gpと研磨パッド10との間で研磨加工において作用しているときの状態を模式的に示すものであって、湿式法で製造されたジルコニア粒子の場合(本研磨工程の場合)と、本研磨工程とは異なり乾式法で製造されたジルコニア粒子の場合とが示される。乾式法で製造されたジルコニア粒子の場合の図は比較のために図示してある。
 研磨加工時にガラス素板Gの主表面Gpと接触して研磨に寄与するのは、2次粒子の形態となっているジルコニア粒子を構成する個々の1次粒子であるが、上述したように、本研磨工程で使用するジルコニア砥粒は、湿式法で製造されているために1次粒子は丸みを帯びたものとなっているため、主表面Gpとの接触によってスクラッチが生じ難い。その一方で、乾式法で製造されたジルコニア粒子の場合には(図6の下部)、主表面Gpと接触する1次粒子の形状が岩石のような尖った箇所が多く存在するため、研磨によって主表面Gpを引っ掻きやすく、研磨によるスクラッチが生じやすい。
FIG. 6 schematically shows a state in which zirconia particles (secondary particles) are acting in the polishing process between the main surface Gp of the glass base plate G and the polishing pad 10. In the case of the zirconia particles manufactured in (in the case of the main polishing step), the case of the zirconia particles manufactured by the dry method is different from the main polishing step. The figure in the case of zirconia particles produced by a dry process is shown for comparison.
It is the individual primary particles constituting the zirconia particles that are in the form of secondary particles that contribute to the polishing by contacting with the main surface Gp of the glass base plate G during the polishing process. Since the zirconia abrasive grains used in this polishing step are manufactured by a wet method, the primary particles are rounded, and therefore scratches are less likely to occur due to contact with the main surface Gp. On the other hand, in the case of zirconia particles produced by the dry method (lower part of FIG. 6), the shape of the primary particles that contact the main surface Gp has many sharp points such as rocks. The main surface Gp is easily scratched, and scratches due to polishing are likely to occur.
 要するに、本研磨工程では、湿式法で製造されたジルコニア粒子を研磨砥粒として研磨液に含有させているため、研磨後にガラス素板Gの側壁面Gtにジルコニア粒子が残留し難く、かつ側壁面Gt及び主表面Gpにスクラッチが生じ難い、という利点がある。 In short, in this polishing step, since zirconia particles produced by a wet method are contained in the polishing liquid as polishing abrasive grains, the zirconia particles hardly remain on the side wall surface Gt of the glass base plate G after polishing, and the side wall surface There is an advantage that scratches hardly occur on Gt and the main surface Gp.
 (B)研磨砥粒の1次粒子の粒径(以下、「1次粒子径」という。)
 ジルコニア砥粒の1次粒子径が小さいほど研磨加工中においてガラス素板Gの主表面との接触点が増えるため(つまり、多くの1次粒子によって接触が行われるため)、相対的にそれぞれの1次粒子が定盤から受ける力が減少し、結果的にガラス素板Gに生ずるスクラッチが低減する。その一方で、ジルコニア砥粒の1次粒子が小さ過ぎると、ガラス素板Gとの接触面積が低下することで、研磨加工中にジルコニア砥粒がガラス素板G上で滑りやすくなり、研磨作用が有効に機能しなくなって研磨レートが低下してしまう。よって、ジルコニア砥粒の1次粒子の好ましい粒径については、下限値が存在する。
 また、ジルコニア砥粒の1次粒子径が大きくなると、相対的にそれぞれの1次粒子が定盤から受ける力が増加し、結果的にガラス素板Gに生ずるスクラッチが増加する。よって、ジルコニア砥粒の1次粒子の好ましい粒径については、上限値が存在する。
 本発明者らが試行錯誤した結果によれば、研磨砥粒としてのジルコニア粒子は、粒径が70~200nmの範囲内の1次粒子が集合してなるものであることが好ましい。
(B) Primary particle size of abrasive grains (hereinafter referred to as “primary particle size”)
Since the contact point with the main surface of the glass base plate G increases during the polishing process as the primary particle diameter of the zirconia abrasive grains is smaller (that is, contact is made by many primary particles) The force that the primary particles receive from the surface plate is reduced, and as a result, scratches generated on the glass base plate G are reduced. On the other hand, if the primary particles of the zirconia abrasive grains are too small, the contact area with the glass base plate G is reduced, so that the zirconia abrasive grains are easily slipped on the glass base plate G during the polishing process. Will not function effectively and the polishing rate will decrease. Therefore, there is a lower limit for the preferred particle size of the primary particles of zirconia abrasive grains.
Moreover, when the primary particle diameter of a zirconia abrasive grain becomes large, the force which each primary particle receives from a surface plate will increase relatively, and the scratch which arises in the glass base plate G will increase as a result. Therefore, there is an upper limit for the preferred particle size of the primary particles of zirconia abrasive grains.
According to the results of trial and error by the present inventors, the zirconia particles as the abrasive grains are preferably formed by agglomeration of primary particles having a particle size in the range of 70 to 200 nm.
 1次粒子の測定方法を図7に示す。図7に示すように、ジルコニア砥粒をSEM(走査電子顕微鏡)で例えば3万倍~10万倍に拡大して観察し、1次粒子の長軸の長さ(X1)と短軸の長さ(X2)の平均値((X1+X2)/2)を1次粒子径とする。なお、長軸と短軸は直交させるものとする。
 なお、本実施形態の1次粒子のアスペクト比(図6のX1÷X2)は、1.0~1.3であり、全体として丸みを帯びた形状となっている。
A method for measuring primary particles is shown in FIG. As shown in FIG. 7, the zirconia abrasive grains were observed with an SEM (scanning electron microscope) at a magnification of, for example, 30,000 to 100,000 times, and the major axis length (X1) of the primary particles and the minor axis length were observed. The average value of (X2) ((X1 + X2) / 2) is defined as the primary particle diameter. The major axis and the minor axis are assumed to be orthogonal.
The aspect ratio (X1 ÷ X2 in FIG. 6) of the primary particles of the present embodiment is 1.0 to 1.3, and has a rounded shape as a whole.
 また、研磨砥粒の1次粒子径とは一定の相関関係にある指標として、BET比表面積が知られている。BET比表面積の観点からも同様にして、本発明者らが試行錯誤した結果によれば、研磨砥粒の1次粒子のBET比表面積は、4~15m/gの範囲内にあることが好ましい。なお、BET比表面積は、流動式比表面積測定装置を用いて、ガス吸着法により、BET1点法で測定できる。
 また、製造条件によっては、研磨能力に寄与しないほど十分小さいジルコニア微粒子が含まれる場合があるが、この微粒子の量を増加させることによっても、BET比表面積を増大させることができる。この場合、研磨能力に寄与するジルコニア粒子の1次粒子径は変えずに、BET比表面積を変化させることができる。
Further, the BET specific surface area is known as an index having a certain correlation with the primary particle diameter of the abrasive grains. Similarly, from the viewpoint of the BET specific surface area, according to the results of trial and error by the inventors, the BET specific surface area of the primary particles of the abrasive grains may be in the range of 4 to 15 m 2 / g. preferable. The BET specific surface area can be measured by a BET single point method by a gas adsorption method using a flow type specific surface area measuring device.
Depending on the manufacturing conditions, zirconia fine particles that are sufficiently small not to contribute to the polishing ability may be contained, but the BET specific surface area can also be increased by increasing the amount of the fine particles. In this case, the BET specific surface area can be changed without changing the primary particle diameter of the zirconia particles contributing to the polishing ability.
 (C)研磨砥粒の2次粒子の粒径(以下、「2次粒子径」という。)
 研磨加工時の主要な形態であるジルコニア砥粒の2次粒子径についても、上述した1次粒子径と同様の考え方によって下限値及び上限値が定まる。また、2次粒子径が大き過ぎる場合には、一定のスラリー濃度の下では、研磨に作用する2次粒子の数が少なくなることで研磨レートが低下する虞もある。そこで、研磨作用が有効に機能し(つまり、研磨レートを確保し)かつスクラッチが低減できるようにする観点から、2次粒子の下限値及び上限値が定まる。
 本発明者らが試行錯誤した結果によれば、研磨砥粒の2次粒子径(平均粒径D50)は、0.2~0.6μmの範囲内にあることが好ましい。なお、ジルコニア砥粒が造粒されている場合や、研磨加工で崩れる程度に凝集している場合には、上記好ましい粒径の範囲は、研磨加工でジルコニア砥粒がばらけた状態での値の範囲になる。すなわち、一般にジルコニアは、セラミックス用途や電子材料用途、耐火物用途に用いられており、セラミックス用途では、セラミックス製造時にジルコニアの密度を上げるために、ジルコニア製造時に平均粒径を1um以下まで湿式粉砕した後、乾燥工程にスプレードライ等を用いることで、意図的に数10μm程度に2次粒子径を大きくすることができる。このように、意図的に2次粒子径を大きくすることを造粒というが、造粒されたジルコニアは研磨加工で容易に崩れることになる。また、水分凝集等によって弱い凝集力でジルコニアが凝集している場合にも同様に、その凝集されたジルコニアは研磨加工で容易に崩れることになる。そこで、研磨砥粒の2次粒子径は、研磨加工により砥粒がばらけた状態での値で評価することが好ましい。
 なお、平均粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さいほうから計算して50%となる粒径を意味している。
(C) Secondary particle size of the abrasive grains (hereinafter referred to as “secondary particle size”)
Regarding the secondary particle diameter of zirconia abrasive grains, which is the main form at the time of polishing, the lower limit value and the upper limit value are determined by the same idea as the primary particle diameter described above. In addition, when the secondary particle diameter is too large, there is a possibility that the polishing rate may be lowered by reducing the number of secondary particles acting on the polishing under a certain slurry concentration. Therefore, the lower limit value and the upper limit value of the secondary particles are determined from the viewpoint that the polishing action functions effectively (that is, the polishing rate is ensured) and scratches can be reduced.
According to the results of trial and error by the present inventors, the secondary particle diameter (average particle diameter D50) of the abrasive grains is preferably in the range of 0.2 to 0.6 μm. In addition, when the zirconia abrasive grains are granulated, or when the zirconia abrasive grains are aggregated to such an extent that they are broken by the polishing process, the preferable particle diameter range is a value in a state where the zirconia abrasive grains are scattered by the polishing process. Become a range. That is, zirconia is generally used for ceramics, electronic materials, and refractory applications. In ceramics, in order to increase the density of zirconia during ceramic production, wet pulverization was performed to an average particle size of 1 um or less during zirconia production. Thereafter, the secondary particle diameter can be intentionally increased to about several tens of μm by using spray drying or the like in the drying step. Thus, intentionally increasing the secondary particle diameter is called granulation, but the granulated zirconia is easily broken by polishing. Similarly, when zirconia is aggregated with a weak cohesive force due to moisture aggregation or the like, the aggregated zirconia is easily broken by polishing. Therefore, it is preferable to evaluate the secondary particle diameter of the abrasive grains by a value in a state where the abrasive grains are scattered by the polishing process.
The average particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.
 なお、第1研磨を行う前のガラス素板の側壁面の表面粗さ(Ra)は、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましい。ここでいう表面粗さ(Ra)は、触針式粗さ計で測定できる。ガラス素板Gの側壁面の表面粗さがこのように小さいことによって、キャリア30との接触面積を大きくすることができ、ガラス素板Gとキャリア30との間に入り込む砥粒の数が増加して、より多くの砥粒に力が分散することになるので、ジルコニア粒子がガラス素板Gの側壁面に突き刺さりにくくなる。また、第1研磨を行う前のガラス素板Gの側壁面の表面粗さが小さいと、キャリア30と接触したときにキャリア30によるキズも入りにくくなるので、そのキズによって捕捉されるジルコニア砥粒の数が減ることで、ガラス素板Gの側壁面に突き刺さる確率を間接的にも小さくすることができる。そのため、第1研磨が行われる間に、ガラス素板Gの側壁面にジルコニア砥粒が刺さる等して固着することが起こり難くなる。 The surface roughness (Ra) of the side wall surface of the glass base plate before the first polishing is preferably 0.1 μm or less, and more preferably 0.05 μm or less. The surface roughness (Ra) here can be measured with a stylus roughness meter. Since the surface roughness of the side wall surface of the glass base plate G is so small, the contact area with the carrier 30 can be increased, and the number of abrasive grains entering between the glass base plate G and the carrier 30 increases. And since force will be disperse | distributed to more abrasive grains, it will become difficult to pierce the zirconia particle to the side wall surface of the glass base plate G. FIG. Further, if the surface roughness of the side wall surface of the glass base plate G before the first polishing is small, scratches caused by the carrier 30 when entering the carrier 30 are difficult to enter, so zirconia abrasive grains captured by the scratch By reducing the number, the probability of piercing the side wall surface of the glass base plate G can be reduced indirectly. For this reason, it is difficult for zirconia abrasive grains to stick to the side wall surface of the glass base plate G during the first polishing.
 また、キャリア30の孔部32のうちガラス素板Gの側壁面と接触する端面(ガラス素板Gの側壁面と対向する壁面)の表面粗さは、5μm以下、好ましくは3μm以下である。ここでいう表面粗さ(Ra) は、触針式粗さ計を用いて、孔部32の端面に対し円周方向に針を動かすことで測定できる。キャリアの孔部32の端面の表面粗さがこのように小さいことによって、ガラス素板Gとの接触面積を大きくすることができるので、間に入り込む砥粒の数が増加して、より多くの砥粒に力が分散することになるので、ジルコニア粒子がガラス素板Gの側壁面に突き刺さりにくくなる。また、キャリア30の孔部32の端面の粗さが小さいと、その端面がガラス素板Gと接触したときにガラス素板Gにキズも入りにくくなるので、そのキズに捕捉されるジルコニア砥粒の数が減ることで、ガラス素板Gの側壁面に突き刺さる確率を間接的にも小さくすることができる。第1研磨が行われる間に、ガラス素板Gの側壁面が荒らされ過ぎることが抑えられ、ガラス素板Gの側壁面にジルコニア砥粒が固着し難くなる。 In addition, the surface roughness of the end surface (wall surface facing the side wall surface of the glass base plate G) in the hole 32 of the carrier 30 that is in contact with the side wall surface of the glass base plate G is 5 μm or less, preferably 3 μm or less. The surface roughness (Ra) wrinkle here can be measured by moving the needle in the circumferential direction with respect to the end face of the hole 32 using a stylus type roughness meter. Since the surface roughness of the end face of the hole portion 32 of the carrier is so small, the contact area with the glass base plate G can be increased, so that the number of abrasive grains entering between them increases, and more Since the force is dispersed in the abrasive grains, the zirconia particles are less likely to pierce the side wall surface of the glass base plate G. Further, if the roughness of the end surface of the hole 32 of the carrier 30 is small, scratches are less likely to enter the glass base plate G when the end surface comes into contact with the glass base plate G. Therefore, the zirconia abrasive grains captured by the scratches By reducing the number, the probability of piercing the side wall surface of the glass base plate G can be reduced indirectly. While the first polishing is performed, the side wall surface of the glass base plate G is prevented from being excessively roughened, and the zirconia abrasive grains are difficult to adhere to the side wall surface of the glass base plate G.
 本実施形態の製造方法は、直径が2.5インチサイズよりも大きく、かつ、板厚が0.6mm以下である磁気ディスク用ガラス基板を製造する場合に好適である。このような磁気ディスク用ガラス基板は、従来に比べ、アスペクト比(直径/板厚)が高い。このため、ガラス素板の板厚が薄く、キャリアの端面との接触面積が小さいため、ガラス素板はより強い力でキャリアの端面に接触しやすい。また、ガラス素板の主表面の面積が大きく、研磨パッドから摩擦力を受けやすいため、このことによっても、ガラス素板はより強い力でキャリアの端面に接触しやすい。このような理由から、ガラス素板の側壁面にジルコニア粒子が付着しやすく、ガラス素板の側壁面にジルコニア粒子が付着している割合が相対的に高くなりやすい。しかし、本実施形態の製造方法によれば、上述のように、ジルコニア砥粒の、研磨時の主要な形態である2次粒子について、その表面が丸みを帯びたものとなっているため、ジルコニア砥粒がガラス素板Gの側壁面Gtに押し付けられたとしても、側壁面Gtに突き刺さることが少ないため、そのような問題の発生を抑制できる。 The manufacturing method of this embodiment is suitable for manufacturing a glass substrate for a magnetic disk having a diameter larger than 2.5 inch size and a plate thickness of 0.6 mm or less. Such a glass substrate for a magnetic disk has a higher aspect ratio (diameter / plate thickness) than the conventional one. For this reason, since the plate | board thickness of a glass base plate is thin and a contact area with the end surface of a carrier is small, a glass base plate tends to contact the end surface of a carrier with a stronger force. Moreover, since the area of the main surface of a glass base plate is large and it is easy to receive a frictional force from a polishing pad, this also makes a glass base plate contact the end surface of a carrier with a stronger force. For these reasons, zirconia particles are likely to adhere to the side wall surface of the glass base plate, and the proportion of zirconia particles attached to the side wall surface of the glass base plate tends to be relatively high. However, according to the manufacturing method of the present embodiment, as described above, since the secondary particles, which are the main forms of zirconia abrasive grains, are rounded, the surfaces thereof are rounded. Even if the abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the occurrence of such a problem can be suppressed because the side wall surface Gt is rarely pierced.
 (6-3)ガラス素板の主表面の表面凹凸
 第1研磨工程では、ガラス素板の主表面の表面凹凸について、粗さ(Ra)を0.5nm以下とし、かつマイクロウェービネス(MW-Rq)を0.5nm以下とするように研磨が行われる。ここで、マイクロウェービネスは、主表面全面の半径14.0~31.5mmの領域における波長帯域100~500μmの粗さとして算出されるRMS(Rq)値で表すことができ、例えば、光学式表面形状測定機を用いて計測できる。
 主表面の粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、0.006μm以上200μm以下の場合は、例えば、触針式粗さ測定機で測定し、JIS B0633:2001で規定される方法で算出できる。その結果、粗さが0.03μm以下であった場合は、例えば、走査型プローブ顕微鏡(原子間力顕微鏡;AFM)で計測しJIS R1683:2007で規定される方法で算出できる。本願においては、1μm×1μm角の測定エリアにおいて、256×256ピクセルの解像度で測定したときの算術平均粗さRaを用いる
ことができる。
(6-3) Surface irregularities on the main surface of the glass base plate In the first polishing step, the roughness (Ra) of the main surface of the glass base plate is set to 0.5 nm or less and the micro waveness (MW- Polishing is performed so that Rq) is 0.5 nm or less. Here, the micro waveness can be expressed by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 μm in an area having a radius of 14.0 to 31.5 mm on the entire main surface. It can be measured using a surface profile measuring machine.
The roughness of the main surface is expressed by an arithmetic average roughness Ra defined by JIS B0601: 2001. When the roughness is 0.006 μm or more and 200 μm or less, for example, the roughness is measured with a stylus type roughness measuring machine, and JIS B0633: It can be calculated by the method defined in 2001. As a result, when the roughness is 0.03 μm or less, for example, the roughness can be measured by a scanning probe microscope (atomic force microscope; AFM) and calculated by a method defined in JIS R1683: 2007. In the present application, it is possible to use the arithmetic average roughness Ra when measured at a resolution of 256 × 256 pixels in a measurement area of 1 μm × 1 μm square.
 (7)化学強化工程
 次に、第1研磨後のガラス素板は化学強化される。
 化学強化液として、例えば硝酸カリウム(60重量%)と硫酸ナトリウム(40重量%)の混合液等を用いることができる。化学強化では、化学強化液が、例えば300℃~400℃に加熱され、洗浄したガラス素板が、例えば200℃~300℃に予熱された後、ガラス素板が化学強化液中に、例えば1時間~5時間浸漬される。この浸漬の際には、ガラス素板の両主表面全体が化学強化されるように、複数のガラス素板が側壁面で保持されるように、ホルダに収納した状態で行うことが好ましい。
 このように、ガラス素板を化学強化液に浸漬することによって、ガラス素板の表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換され、ガラス素板が強化される。なお、化学強化処理されたガラス素板は洗浄される。例えば、硫酸で洗浄された後に、純水等で洗浄される。
(7) Chemical strengthening process Next, the glass base plate after the first polishing is chemically strengthened.
As the chemical strengthening solution, for example, a mixed solution of potassium nitrate (60% by weight) and sodium sulfate (40% by weight) can be used. In chemical strengthening, the chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C., and after the cleaned glass base plate is preheated to, for example, 200 ° C. to 300 ° C., the glass base plate is placed in the chemical strengthening liquid, for example, 1 Soak for 5 to 5 hours. The immersion is preferably performed in a state of being housed in a holder so that the plurality of glass base plates are held by the side wall surfaces so that the entire main surfaces of both glass base plates are chemically strengthened.
In this way, by immersing the glass base plate in the chemical strengthening solution, lithium ions and sodium ions on the surface layer of the glass base plate are replaced with sodium ions and potassium ions having a relatively large ion radius in the chemical strengthening solution, respectively. The glass base plate is strengthened. The chemically strengthened glass base plate is washed. For example, after washing with sulfuric acid, it is washed with pure water or the like.
 (8)第2研磨工程
 次に、化学強化されて十分に洗浄されたガラス素板に最終研磨が施される。最終研磨による取り代は、5μm以下である。最終研磨では例えば、第1研磨で用いた研磨装置を用いる。このとき、第1研磨と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。最終研磨に用いる遊離砥粒として、例えば、スラリーに混濁させたコロイダルシリカ等の微粒子(粒子サイズ:直径10~50nm程度)が用いられる。
 研磨されたガラス素板を中性洗剤、純水、IPA等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。
(8) Second Polishing Step Next, the glass substrate that has been chemically strengthened and sufficiently cleaned is subjected to final polishing. The machining allowance by the final polishing is 5 μm or less. In the final polishing, for example, the polishing apparatus used in the first polishing is used. At this time, the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different. As the free abrasive grains used in the final polishing, for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
A glass substrate for a magnetic disk can be obtained by washing the polished glass base plate with a neutral detergent, pure water, IPA or the like.
 以上、本実施形態の磁気ディスク用ガラス基板の製造方法を工程毎に説明したが、工程の順序は、上述した順序に限られない。
 なお、第2研磨工程において、ガラス素板とキャリアの孔部との間にコロイダルシリカ等の粒子が供給されるようにして、それによってガラス素板の側壁面を研磨して側壁面に付着しうるジルコニア粒子を除去するようにしてもよい。
As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this embodiment was demonstrated for every process, the order of a process is not restricted to the order mentioned above.
In the second polishing step, particles such as colloidal silica are supplied between the glass base plate and the hole of the carrier, whereby the side wall surface of the glass base plate is polished and adhered to the side wall surface. The zirconia particles that may be removed may be removed.
 上述した磁気ディスク用ガラス基板の製造方法では、化学強化工程、第1研磨工程、第2研磨工程の順に行ってもよい。この工程順で行う場合には、化学強化工程において、化学強化後の前記ガラス素板の破壊靱性値K1cが、ビッカース硬度計による計測で0.7[MPa/m1/2]以上となるように化学強化の処理条件が調整されることが好ましい。かかる処理条件で化学強化を行うことで、化学強化によってガラス素板の側壁面に形成される圧縮層を、後工程である第1研磨工程の研磨砥粒であるジルコニア砥粒がガラス素板の側壁面に固着することを防止するための固着防止層として機能させることができる。 In the manufacturing method of the glass substrate for magnetic disks mentioned above, you may perform in order of a chemical strengthening process, a 1st grinding | polishing process, and a 2nd grinding | polishing process. In the case of performing in this order of steps, in the chemical strengthening step, the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter. Thus, it is preferable to adjust the treatment conditions for chemical strengthening. By performing chemical strengthening under such processing conditions, the compressed layer formed on the side wall surface of the glass base plate by chemical strengthening is used to make the zirconia abrasive grains, which are abrasive grains in the first polishing step, which is a subsequent step, of the glass base plate. It can function as a sticking prevention layer for preventing sticking to the side wall surface.
 この場合、化学強化後のガラス素板の破壊靱性値K1cが、ビッカース硬度計による計測で0.7[MPa/m1/2]以上となるような化学強化の処理条件は、例えば、予め化学処理条件を種々変化させて決定するとよい。なお、破壊靱性値K1cが1.0[MPa/m1/2]以上であることがより好ましい。また、1.3[MPa/m1/2]以上であるとさらにより好ましい。破壊靱性値K1cは、高いほど好ましく、破壊靱性値K1cの上限は特に設けない。ここで、破壊靱性値K1cは、周知のビッカース硬度計の鋭いダイヤモンド圧子をガラス素板に押し込む方法により測定することができる。すなわち、破壊靱性値K1cは、ビッカース圧子を押しこんだときにガラス素板に残る圧子の圧痕の大きさと圧痕の隅から発生するクラックの長さより次式で求められる。Pはビッカース圧子の押しこみ荷重[N]であり、aはビッカース圧痕の対角線長の半分の長さ[m]である。Eはガラス素板のヤング率[Pa]、Cはき列長さの半分の長さ[m]である。 In this case, the chemical strengthening treatment conditions such that the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter are, for example, in advance It may be determined by changing various chemical treatment conditions. The fracture toughness value K 1c is more preferably 1.0 [MPa / m 1/2 ] or more. Moreover, it is still more preferable in it being 1.3 [MPa / m 1/2 ] or more. Fracture toughness value K 1c is preferably higher, the upper limit of the fracture toughness value K 1c is not particularly provided. Here, the fracture toughness value K 1c is a sharp diamond indenter of known Vickers hardness meter can be measured by the method of pushing the glass workpiece. That is, the fracture toughness value K1c is obtained by the following equation from the size of the indentation of the indenter remaining on the glass base plate when the Vickers indenter is pushed in and the length of the crack generated from the corner of the indentation. P is the indentation load [N] of the Vickers indenter, and a is the length [m] half of the diagonal length of the Vickers indentation. E is the Young's modulus [Pa] of the glass base plate, and C is the length [m] that is half the length of the string.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、化学強化の処理条件とは、化学強化液の種類(例えば、硝酸カリウムと硫酸ナトリウムの混合比)、化学強化液の温度、化学強化処理時間等を含む。また、化学強化後のガラス素板の破壊靱性値K1cが、上述した0.7[MPa/m1/2]以上となるようなガラス素板のガラス組成を選択することもできる。
 なお、本実施形態では、ガラス素板の主表面を破壊靱性値K1cの計測対象とするが、化学強化は、ガラス素板の端面の側壁面も主表面と同等に化学強化されるので、ガラス素板の側壁面の破壊靱性値K1cは、主表面の破壊靱性値K1cの計測結果と同じであり、主表面の破壊靱性値K1cで代用することができる。
The chemical strengthening treatment conditions include the type of chemical strengthening solution (for example, the mixing ratio of potassium nitrate and sodium sulfate), the temperature of the chemical strengthening solution, the chemical strengthening treatment time, and the like. It is also possible to select a glass composition of the glass base plate such that the fracture toughness value K 1c of the glass base plate after chemical strengthening is 0.7 [MPa / m 1/2 ] or more as described above.
In the present embodiment, the main surface of the glass base plate is a measurement target of the fracture toughness value K1c , but the chemical strengthening is performed because the side wall surface of the end face of the glass base plate is chemically strengthened in the same manner as the main surface. fracture toughness K 1c of the side wall surface of the glass workpiece is the same as the measurement results of fracture toughness K 1c of the main surface can be replaced by fracture toughness K 1c of the main surface.
 [磁気ディスク]
 磁気ディスクは、磁気ディスク用ガラス基板を用いて以下のようにして得られる。
 磁気ディスクは、例えば磁気ディスク用ガラス基板(以下、単に「基板」という。)の主表面上に、主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。
 例えば基板を、真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、基板の主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。磁性層としては、例えばCoPt系合金を用いることができる。また、L10規則構造のCoPt系合金やFePt系合金を形成して熱アシスト磁気記録用の磁性層とすることもできる。上記成膜後、例えばCVD法によりCを用いて保護層を成膜し、続いて表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(パーフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
 作製された磁気ディスクは、好ましくは、DFH(Dynamic Flying Height)コントロール機構を搭載した磁気ヘッドとともに、磁気記録再生装置としてのHDD(Hard Disk Drive)に組み込まれる。
[Magnetic disk]
A magnetic disk is obtained as follows using a magnetic disk glass substrate.
The magnetic disk is, for example, on the main surface of a glass substrate for magnetic disk (hereinafter simply referred to as “substrate”), in order from the closest to the main surface, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), and a protective layer. A layer and a lubricating layer are laminated.
For example, the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method. For example, CrTi can be used as the adhesion layer, and CrRu can be used as the underlayer. As the magnetic layer, for example, a CoPt alloy can be used. It is also possible to form a CoPt-based alloy and FePt based alloy L 10 regular structure and magnetic layer for heat-assisted magnetic recording. After the above film formation, a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
The produced magnetic disk is preferably incorporated in an HDD (Hard Disk Drive) as a magnetic recording / reproducing apparatus together with a magnetic head equipped with a DFH (Dynamic Flying Height) control mechanism.
[実施例、比較例]
 本実施形態の磁気ディスク用ガラス基板の製造方法の効果を確認するために、製造した磁気ディスク用ガラス基板から2.5インチの磁気ディスクを作製した。作製した磁気ディスク用ガラス基板は、以下の組成からなるアモルファスのアルミノシリケートガラスである。
 [ガラスの組成]
 酸化物基準に換算し、モル%表示で、SiOを50~75%、Alを1~15%、LiO、NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラス
[Examples and Comparative Examples]
In order to confirm the effect of the manufacturing method of the glass substrate for magnetic disk of this embodiment, a 2.5-inch magnetic disk was produced from the manufactured glass substrate for magnetic disk. The produced glass substrate for a magnetic disk is an amorphous aluminosilicate glass having the following composition.
[Glass composition]
Converted to oxide basis, expressed in mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O 5 to 35% in total, 0 to 20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO, and ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Amorphous aluminosilicate glass having a composition having a total of 0 to 10% of at least one component selected from Ta 2 O 5 , Nb 2 O 5 and HfO 2
 本実施形態の磁気ディスク用ガラス基板の製造方法の各工程を順序通りに行った。
 ここで、
 (1)のガラス素板の成形は、特開2011-138589号公報に記載される磁気ディスク用ガラス基板の製造方法で用いられるプレス成形方法を用いた。ラッピングでは、平均粒径20μmのアルミナ系遊離砥粒を用いた。
 (4)の端面研磨では、スペーサをガラス素板間に挟んで積層した複数のガラス素板を、粒径の平均値(D50)が1.0μmの酸化セリウムを遊離砥粒として用いて、研磨ブラシにより研磨した。
 (5)の固定砥粒による研削では、ダイヤモンドシートを上定盤、下定盤に貼り付けた研削装置を用いて研削した。
 (6)の第1研磨では、図1及び図2の研磨装置を用いて60分間研磨した。詳しい研磨条件は、下記に示すとおりである。
 (7)の化学強化では、化学強化液として硝酸カリウム(60重量%)と硝酸ナトリウム(40重量%)の混合液等を用い、化学強化液の温度を350℃とし、予め200℃に予熱されたガラス素板を化学強化液内に4時間浸漬させた。
 (8)の第2研磨では、図1及び図2と同様の別の研磨装置を用いて、粒径10~50μmのコロイダルシリカを用いて、所定の時間研磨をした。これにより、主表面の算術平均粗さRa(JIS B0601:2001)を0.15nm以下にした。最終研磨後のガラス素板は、中性洗浄液及びアルカリ性洗浄液を用いて洗浄された。これにより、磁気ディスク用ガラス基板を得た。
Each process of the manufacturing method of the glass substrate for magnetic disks of this embodiment was performed in order.
here,
For forming the glass base plate (1), a press molding method used in the method for producing a glass substrate for a magnetic disk described in JP 2011-138589 A was used. In lapping, alumina-based free abrasive grains having an average particle diameter of 20 μm were used.
In the end face polishing of (4), a plurality of glass base plates laminated with a spacer interposed between the glass base plates is polished using cerium oxide having an average particle size (D50) of 1.0 μm as free abrasive grains. Polished with a brush.
In the grinding with the fixed abrasive of (5), the diamond sheet was ground using a grinding device that was bonded to the upper surface plate and the lower surface plate.
In the first polishing of (6), polishing was performed for 60 minutes using the polishing apparatus of FIGS. Detailed polishing conditions are as shown below.
In the chemical strengthening of (7), a liquid mixture of potassium nitrate (60% by weight) and sodium nitrate (40% by weight) is used as the chemical strengthening liquid, the temperature of the chemical strengthening liquid is set to 350 ° C., and preheated to 200 ° C. in advance. The glass base plate was immersed in the chemical strengthening solution for 4 hours.
In the second polishing of (8), polishing was performed for a predetermined time using colloidal silica having a particle diameter of 10 to 50 μm using another polishing apparatus similar to that shown in FIGS. Thereby, arithmetic mean roughness Ra (JIS B0601: 2001) of the main surface was made into 0.15 nm or less. The glass substrate after the final polishing was cleaned using a neutral cleaning solution and an alkaline cleaning solution. This obtained the glass substrate for magnetic discs.
 <第1研磨の研磨条件>
 ・研磨パッド:硬質ウレタンパッド(JIS-A硬度:80~100)
 ・研磨荷重:120g/cm
 ・定盤回転数:30rpm
 ・研磨液供給流量:3000L/min
 ・研磨液:ジルコニア(ZrO2)砥粒を10重量%含む。実施例のジルコニア砥粒はすべて湿式法で作製した。比較例のジルコニア砥粒は乾式法で作製した。
<Polishing conditions for first polishing>
・ Polishing pad: Hard urethane pad (JIS-A hardness: 80-100)
Polishing load: 120 g / cm 2
・ Surface plate speed: 30 rpm
Polishing fluid supply flow rate: 3000 L / min
Polishing liquid: containing 10% by weight of zirconia (ZrO 2 ) abrasive grains. All the zirconia abrasive grains of the examples were prepared by a wet method. The zirconia abrasive grains of the comparative example were produced by a dry method.
 磁気ディスク用ガラス基板を作製する過程において、(6)の第1研磨におけるジルコニア砥粒の設定を変えて、研磨加工における研磨レート、及び研磨加工後のガラス素板のスクラッチの有無を評価したところ、表1及び表2に示す結果となった。なお、第一研磨工程後に洗浄及び乾燥を実施したものについて上記評価を行った。
 ここで、ジルコニア砥粒の2次粒子径(平均粒径D50)は、粒子径・粒度分布測定装置を用いて光散乱法により測定した。平均粒径D50とは、光散乱法により測定された粒度分布における粉体の集団の全体積を100%として累積体積頻度を求めたとき、その累積体積頻度が50%となる点の粒径である。1次粒子径は、ジルコニア砥粒を走査型電子顕微鏡で3万倍~10万倍に拡大して、図7に示したような方法で測定した。また、BET比表面積は、流動式比表面積測定装置を用いて、ガス吸着法により、BET1点法で測定した。
In the process of producing the glass substrate for magnetic disk, the setting of the zirconia abrasive grains in the first polishing of (6) was changed to evaluate the polishing rate in the polishing process and the presence or absence of scratches on the glass base plate after the polishing process. The results shown in Table 1 and Table 2 were obtained. In addition, the said evaluation was performed about what wash | cleaned and dried after the 1st grinding | polishing process.
Here, the secondary particle diameter (average particle diameter D50) of the zirconia abrasive grains was measured by a light scattering method using a particle diameter / particle size distribution measuring apparatus. The average particle size D50 is the particle size at which the cumulative volume frequency is 50% when the total volume frequency is determined with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. is there. The primary particle diameter was measured by a method as shown in FIG. 7 with zirconia abrasive grains magnified 30,000 to 100,000 times with a scanning electron microscope. Further, the BET specific surface area was measured by a BET single point method by a gas adsorption method using a fluid specific surface area measuring device.
 表1及び表2において、研磨レート及びスクラッチ評価の評価基準は、以下のとおりとした。
・研磨レートの評価基準
 研磨レートの評価は、1番目のバッチの研磨レートを計測し、以下の基準に基づいて行った。◎、○または△が合格である。
 ◎:1.8μm/分より大
 ○:1.6μm/分より大きく、1.8μm/分以下
 △:1.4μm/分より大きく、1.6μm/分以下
 ×:1.4μm/分以下
In Tables 1 and 2, the evaluation criteria for polishing rate and scratch evaluation were as follows.
Polishing rate evaluation criteria The polishing rate was evaluated based on the following criteria by measuring the polishing rate of the first batch. ◎, ○ or △ is acceptable.
◎: Greater than 1.8 μm / min ○: Greater than 1.6 μm / min, 1.8 μm / min or less Δ: Greater than 1.4 μm / min, 1.6 μm / min or less X: 1.4 μm / min or less
・スクラッチ評価の評価基準
 スクラッチ評価は、各実施例のN=200枚のガラス素板の研磨加工後の主表面について、CR中の暗幕内で集光ランプを照射して目視検査を行い、目視検査OK品の比率に基づいて評価した。目視検査OK品は、ガラス素板の主表面にスクラッチが目視検査で確認されなかったものであり、目視検査NG品は、ガラス素板の主表面にスクラッチが目視検査で確認されたものである。◎、○または△が合格である。
 ◎:目視検査OK品が全体の95%以上
 ○:目視検査OK品が全体の90%以上95%未満
 △:目視検査OK品が全体の70%以上90%未満
 ×:目視検査OK品が全体の70%未満
・ Evaluation criteria for scratch evaluation Scratch evaluation was performed by visually inspecting the main surface after polishing of N = 200 glass base plates in each Example by irradiating a condensing lamp in a dark curtain in CR. Evaluation was based on the ratio of inspection OK products. In the visual inspection OK product, scratches were not confirmed by visual inspection on the main surface of the glass base plate, and in the visual inspection NG product, scratches were confirmed by visual inspection on the main surface of the glass base plate. . ◎, ○ or △ is acceptable.
A: Visual inspection OK product is 95% or more of the whole ○: Visual inspection OK product is 90% or more and less than 95% Δ: Visual inspection OK product is 70% or more and less than 90% of the whole ×: Visual inspection OK product is whole Less than 70%
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、乾式法で作製したジルコニア粒子の場合には、スクラッチ評価が不合格となることが確認された。湿式法で作製したジルコニア粒子の1次粒子径が70~200nmの範囲内にある場合には、研磨レート及びスクラッチ評価の双方で良好な結果になることがわかった。また、表2の結果から、研磨砥粒として使用するジルコニア粒子のBET比表面積が4~15m/gの範囲内にある場合には、研磨レート及びスクラッチ評価の双方で良好な結果になることがわかった。
 加えてジルコニア粒子の平均粒径(D50)を0.2~0.6μmの範囲内にすると、研磨レート及びスクラッチ評価の双方でさらに良好な結果になることがわかった。
From the results shown in Table 1, it was confirmed that the scratch evaluation was rejected in the case of zirconia particles produced by a dry method. It was found that when the primary particle diameter of the zirconia particles produced by the wet method is in the range of 70 to 200 nm, good results are obtained in both the polishing rate and scratch evaluation. Further, from the results of Table 2, when the BET specific surface area of the zirconia particles used as the abrasive grains is in the range of 4 to 15 m 2 / g, good results are obtained in both the polishing rate and the scratch evaluation. I understood.
In addition, it was found that when the average particle diameter (D50) of the zirconia particles is in the range of 0.2 to 0.6 μm, better results are obtained in both polishing rate and scratch evaluation.
 次に、実施例1~13及び比較例の磁気ディスク用ガラス基板に、付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層を積層させて磁気ディスクを作製し、グライドヘッドの浮上量を7nmに設定してグライド検査を行った。その結果、各実施例について100枚を検査したときの歩留まり(検査合格率)が90%以上となり、すべて合格であった。
 他方、乾式法で作製したジルコニア砥粒を用いた比較例では、歩留まりは90%より低くなり、不合格であった。さらに、グライド検査で検出した不良位置をSEM/EDXによって観察したところ、異物が発見された。発見された異物について組成分析を行ったところ、ジルコニアの研磨剤に由来する異物であることがわかった。すなわち、研磨工程で使用したジルコニア粒子が研磨加工中にガラス素板に付着して異物として発見されたと考えられる。
Next, a magnetic disk was manufactured by laminating an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer on the glass substrates for magnetic disks of Examples 1 to 13 and Comparative Example, and a glide head. The glide test was performed with the flying height of 7 nm set to 7 nm. As a result, the yield (inspection pass rate) when 100 sheets were inspected for each example was 90% or more, and all passed.
On the other hand, in the comparative example using the zirconia abrasives produced by the dry method, the yield was lower than 90%, which was unacceptable. Furthermore, when the defect position detected by the glide inspection was observed by SEM / EDX, a foreign matter was found. Composition analysis of the found foreign matter revealed that it was a foreign matter derived from a zirconia abrasive. That is, it is considered that the zirconia particles used in the polishing step were found as foreign substances by attaching to the glass base plate during the polishing process.
 なお、(6)第1研磨、(7)化学強化、(8)第2研磨の工程順ではなく、(7)化学強化、(6)第1研磨、(8)第2研磨の順に工程順を変更して、磁気ディスク用ガラス基板を作製した。このとき、第1研磨におけるジルコニア砥粒の製法、ジルコニア砥粒の1次粒子径、2次粒子径D50については、表1の実施例3と同一とした。また、化学強化工程における強化温度及び浸漬時間を適宜変更して、下記表3に示すように、破壊靱性値K1cを種々変化させた磁気ディスク用ガラス基板を作製した(表3の実施例14、15)。このときの第1研磨後のガラス素板の評価結果を表3に示す。 It should be noted that the order of the steps is (7) chemical strengthening, (6) first polishing, (8) second polishing, not (6) first polishing, (7) chemical strengthening, and (8) second polishing. The glass substrate for magnetic disks was produced by changing the above. At this time, the manufacturing method of zirconia abrasive grains in the first polishing and the primary particle diameter and secondary particle diameter D50 of the zirconia abrasive grains were the same as those in Example 3 in Table 1. Further, the glass substrate for a magnetic disk with various changes in the fracture toughness value K 1c was prepared as shown in Table 3 below by appropriately changing the strengthening temperature and the immersion time in the chemical strengthening step (Example 14 in Table 3). 15). Table 3 shows the evaluation results of the glass base plate after the first polishing at this time.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、第1研磨の前に、破壊靱性値K1cが0.7[MPa/m1/2]以上となる化学強化の処理条件で化学強化を行うことによって、より良好なスクラッチ評価が得られることがわかった。これは、化学強化によってガラス基板の側壁面に形成される圧縮層が、その後に行われた第1研磨で使用されるジルコニア砥粒の固着防止層として機能したためであると考えられる。 As shown in Table 3, by performing the chemical strengthening under the chemical strengthening treatment conditions such that the fracture toughness value K 1c is 0.7 [MPa / m 1/2 ] or more before the first polishing, the better It was found that a scratch evaluation can be obtained. This is considered to be because the compression layer formed on the side wall surface of the glass substrate by chemical strengthening functioned as an anti-adhesion layer for zirconia abrasive grains used in the first polishing performed thereafter.
 次いで、ジルコニア砥粒の製法、ジルコニア砥粒の1次粒子径、2次粒子径D50を、表1の実施例8と同一とし、第1研磨の研磨装置において端面の表面粗さが異なるキャリアを用いて第1研磨を行って、磁気ディスク用ガラス基板を作製した(表4の実施例16~18)。このとき、工程順は、実施例8と同様に、(6)第1研磨、(7)化学強化、(8)第2研磨の順で行って磁気ディスク用ガラス基板を作製した。このときの第1研磨後のガラス素板の評価結果を表4に示す。
 
Next, the production method of the zirconia abrasive grains, the primary particle diameter of the zirconia abrasive grains, and the secondary particle diameter D50 are the same as those in Example 8 of Table 1, and carriers having different surface roughness of the end faces are used in the polishing apparatus for the first polishing. Using this, first polishing was performed to produce glass substrates for magnetic disks (Examples 16 to 18 in Table 4). At this time, in the same manner as in Example 8, the order of the steps was (6) first polishing, (7) chemical strengthening, and (8) second polishing in this order to produce a magnetic disk glass substrate. Table 4 shows the evaluation results of the glass base plate after the first polishing at this time.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、スクラッチ評価は、キャリアの端面の表面粗さRaが5μm以下となると良好となり、3μm以下となるとさらに良好となった。これは、キャリアの端面の表面粗さが小さいほど、ガラス素板とキャリアの間に入り込むジルコニア砥粒の数が増加して、より多くの砥粒に力が分散することになるので、ジルコニア粒子がガラス素板の側壁面に突き刺さりにくくなるためであると考えられる。 As shown in Table 4, the scratch evaluation was good when the surface roughness Ra of the end face of the carrier was 5 μm or less, and even better when it was 3 μm or less. This is because, as the surface roughness of the end face of the carrier is smaller, the number of zirconia abrasive grains entering between the glass base plate and the carrier increases, and the force is dispersed to more abrasive grains. This is considered to be because it is difficult to pierce the side wall surface of the glass base plate.
 以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのは勿論である。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.

Claims (9)

  1.  一対の主表面と、内孔及び外形を構成する2つの側壁面と、を少なくとも有するドーナツ型のガラス基板をキャリアに保持させた状態で、研磨定盤に取り付けられた研磨パッドで前記一対の主表面を挟み、研磨液を前記一対の主表面へ供給しつつ、前記キャリアの遊星歯車運動によって前記ガラス基板を研磨する研磨工程を有する磁気ディスク用ガラス基板の製造方法であって、
     前記研磨液は、湿式法で製造されたジルコニア粒子を研磨砥粒として含有することを特徴とする、磁気ディスク用ガラス基板の製造方法。
    A pair of main surfaces and a pair of main surfaces with a polishing pad attached to a polishing surface plate in a state where a donut-shaped glass substrate having at least two side walls constituting an inner hole and an outer shape is held by a carrier. A method for producing a glass substrate for a magnetic disk comprising a polishing step of polishing the glass substrate by planetary gear movement of the carrier while sandwiching surfaces and supplying a polishing liquid to the pair of main surfaces,
    The method for producing a glass substrate for a magnetic disk, wherein the polishing liquid contains zirconia particles produced by a wet method as abrasive grains.
  2.  前記ジルコニア粒子は、粒径が70~200nmの範囲内の1次粒子が集合してなるものであることを特徴とする、
     請求項1に記載された磁気ディスク用ガラス基板の製造方法。
    The zirconia particles are characterized in that primary particles having a particle size in the range of 70 to 200 nm are aggregated.
    The manufacturing method of the glass substrate for magnetic discs described in Claim 1.
  3.  前記ジルコニア粒子のBET比表面積は、4~15m/gの範囲内にあることを特徴とする、
     請求項1に記載された磁気ディスク用ガラス基板の製造方法。
    The BET specific surface area of the zirconia particles is in the range of 4 to 15 m 2 / g,
    The manufacturing method of the glass substrate for magnetic discs described in Claim 1.
  4.  前記ジルコニア粒子の平均粒径(D50)が0.2~0.6μmの範囲内にあることを特徴とする、
     請求項2又は3に記載された磁気ディスク用ガラス基板の製造方法。
    The average particle diameter (D50) of the zirconia particles is in the range of 0.2 to 0.6 μm,
    The manufacturing method of the glass substrate for magnetic discs described in Claim 2 or 3.
  5.  前記ジルコニア粒子の1次粒子の長軸の長さをX1、長軸と直交する短軸の長さをX2としたときに、X1/X2が1.0~1.3であることを特徴とする、請求項2~4のいずれかに記載された磁気ディスク用ガラス基板の製造方法。 X1 / X2 is 1.0 to 1.3, where X1 is a major axis length of primary particles of the zirconia particles and X2 is a minor axis perpendicular to the major axis. The method for producing a glass substrate for a magnetic disk according to any one of claims 2 to 4.
  6.  前記ガラス基板の側壁面と接触する前記キャリアの端面の表面粗さが5μm以下であることを特徴とする、請求項1~4のいずれかに記載された磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 4, wherein the surface roughness of the end face of the carrier that contacts the side wall surface of the glass substrate is 5 μm or less.
  7.  前記ジルコニア粒子を有する研磨液を用いて研磨される前のガラス基板の側壁面の表面粗さが、算術平均粗さRaで0.1μm以下であることを特徴とする、請求項1~5のいずれかに記載された磁気ディスク用ガラス基板の製造方法。 The surface roughness of the side wall surface of the glass substrate before being polished with the polishing liquid having zirconia particles is an arithmetic average roughness Ra of 0.1 μm or less, characterized in that The manufacturing method of the glass substrate for magnetic discs described in one.
  8.  前記研磨工程の後に、前記ガラス基板の破壊靱性値K1cが、ビッカース硬度計による計測で0.7[MPa/m1/2]以上となる処理条件で、前記ガラス基板に対して化学強化を行う化学強化工程、を有することを特徴とする、請求項1~7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 After the polishing step, the glass substrate is chemically strengthened under processing conditions such that the fracture toughness value K 1c of the glass substrate is 0.7 [MPa / m 1/2 ] or more as measured by a Vickers hardness meter. The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 7, further comprising a chemical strengthening step.
  9.  前記磁気ディスク用ガラス基板は、直径が2.5インチサイズよりも大きく、かつ、板厚が0.6mm以下であることを特徴とする、請求項1~8のいずれかに記載された磁気ディスク用ガラス基板の製造方法。
     
    9. The magnetic disk according to claim 1, wherein the glass substrate for a magnetic disk has a diameter larger than 2.5 inch size and a plate thickness of 0.6 mm or less. Method for manufacturing glass substrate.
PCT/JP2013/055593 2012-03-30 2013-02-28 Method for manufacturing glass substrate for magnetic disk WO2013146090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380009608.4A CN104137181A (en) 2012-03-30 2013-02-28 Method for manufacturing glass substrate for magnetic disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-083025 2012-03-30
JP2012083025 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146090A1 true WO2013146090A1 (en) 2013-10-03

Family

ID=49259365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055593 WO2013146090A1 (en) 2012-03-30 2013-02-28 Method for manufacturing glass substrate for magnetic disk

Country Status (3)

Country Link
JP (1) JPWO2013146090A1 (en)
CN (1) CN104137181A (en)
WO (1) WO2013146090A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10783921B2 (en) * 2017-09-29 2020-09-22 Hoya Corporation Glass spacer and hard disk drive apparatus
CN111094502B (en) 2017-10-31 2021-11-16 Hoya株式会社 Polishing liquid, method for producing glass substrate, and method for producing magnetic disk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121034A (en) * 1996-03-18 1998-05-12 Showa Denko Kk Composition for polishing magnetic disk substrate
WO2006123562A1 (en) * 2005-05-20 2006-11-23 Nissan Chemical Industries, Ltd. Process for producing composition for polishing
JP2011134367A (en) * 2009-12-22 2011-07-07 Asahi Glass Co Ltd Method for manufacturing glass substrate for data storage medium and glass substrate
WO2012029857A1 (en) * 2010-08-31 2012-03-08 Hoya株式会社 Method for producing glass substrate for magnetic disks, and method for producing magnetic disk
JP5126401B1 (en) * 2011-09-28 2013-01-23 旭硝子株式会社 Glass substrate for magnetic recording media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006526A (en) * 2006-06-28 2008-01-17 Konica Minolta Opto Inc Polishing carrier
JP4246791B2 (en) * 2007-05-30 2009-04-02 東洋鋼鈑株式会社 Surface finishing method of glass substrate for magnetic disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121034A (en) * 1996-03-18 1998-05-12 Showa Denko Kk Composition for polishing magnetic disk substrate
WO2006123562A1 (en) * 2005-05-20 2006-11-23 Nissan Chemical Industries, Ltd. Process for producing composition for polishing
JP2011134367A (en) * 2009-12-22 2011-07-07 Asahi Glass Co Ltd Method for manufacturing glass substrate for data storage medium and glass substrate
WO2012029857A1 (en) * 2010-08-31 2012-03-08 Hoya株式会社 Method for producing glass substrate for magnetic disks, and method for producing magnetic disk
JP5126401B1 (en) * 2011-09-28 2013-01-23 旭硝子株式会社 Glass substrate for magnetic recording media

Also Published As

Publication number Publication date
CN104137181A (en) 2014-11-05
JPWO2013146090A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5860195B1 (en) Glass substrate for magnetic disk
JP6215770B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP5967999B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2012090510A1 (en) Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
WO2011125894A1 (en) Manufacturing method for glass substrates for magnetic disks
JP6060166B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5661950B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6577501B2 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
JP4623211B2 (en) Manufacturing method of glass substrate for information recording medium and magnetic disk using the same
WO2013146090A1 (en) Method for manufacturing glass substrate for magnetic disk
JP5977520B2 (en) Method for manufacturing glass substrate for magnetic disk and glass substrate for magnetic disk
JP6099034B2 (en) Method for manufacturing glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing apparatus
JP5870187B2 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP2014116046A (en) Manufacturing method of glass substrate for magnetic disk
JP2012142071A (en) Method for manufacturing glass substrate for magnetic disk
WO2013100157A1 (en) Method for producing glass substrate for magnetic disks
JP2016071907A (en) Manufacturing method of magnetic disk substrate
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2013030268A (en) Magnetic disk glass substrate and magnetic disk
WO2011040431A1 (en) Manufacturing method of magnetic disk-use glass substrate, and magnetic disk
JP2014194833A (en) Manufacturing method of magnetic disk glass substrate, manufacturing method of magnetic disk, and polishing liquid
JP2013140649A (en) Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk and basket for chemical strengthening
JP2015011736A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767396

Country of ref document: EP

Kind code of ref document: A1