JP2007136583A - Method of producing magnetic disk substrate - Google Patents

Method of producing magnetic disk substrate Download PDF

Info

Publication number
JP2007136583A
JP2007136583A JP2005331632A JP2005331632A JP2007136583A JP 2007136583 A JP2007136583 A JP 2007136583A JP 2005331632 A JP2005331632 A JP 2005331632A JP 2005331632 A JP2005331632 A JP 2005331632A JP 2007136583 A JP2007136583 A JP 2007136583A
Authority
JP
Japan
Prior art keywords
polishing
substrate
magnetic disk
acid
processing pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331632A
Other languages
Japanese (ja)
Inventor
Koji Taira
幸治 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005331632A priority Critical patent/JP2007136583A/en
Publication of JP2007136583A publication Critical patent/JP2007136583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a highly smooth substrate that is necessary for a magnetic disk substrate of high recording density, and particularly of high recording density of 50 G bit/inch<SP>2</SP>. <P>SOLUTION: The method of producing the magnetic disk substrate comprises a step of feeding a grinding liquid composition A containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm, to the substrate, grinding the substrate with a main machining pressure of ≥6 kPa, and thereafter grinding the substrate with a machining pressure of 20 to 80% of the main machining pressure. Alternatively the method comprises a step (step 1) of feeding a grinding liquid composition B containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm, to the substrate, and grinding the substrate with a main machining pressure of ≥6 kPa, and a step (step 2) of feeding a grinding liquid composition C containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm, to the substrate obtained by the step 1, and grinding the substrate with a machining pressure of 20 to 80% of the main machining pressure in the step 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気ディスク用基板の製造方法に関する。   The present invention relates to a method for manufacturing a magnetic disk substrate.

ハードディスクの最小記録面積を小さくして、高容量化を推進するために、磁気ヘッドの浮上量を小さくすることが求められている。このヘッド浮上量を小さくするためには、ハードディスク基板の平滑性が重要となる。これまで、平滑性は、代表的には、触針径0.2μm、カットオフ25μm(すなわち波長:0.2〜25μm)で測定される表面粗さや、触針径0.2μm、カットオフ800μm(すなわち波長:0.2〜800μm)で測定される微少うねりで評価され、平滑性の向上のために、前記のような表面粗さや微小うねりの低減が図られてきた。   In order to reduce the minimum recording area of the hard disk and promote higher capacity, it is required to reduce the flying height of the magnetic head. In order to reduce the head flying height, the smoothness of the hard disk substrate is important. Up to now, the smoothness has typically been a surface roughness measured with a stylus diameter of 0.2 μm and a cutoff of 25 μm (ie, wavelength: 0.2 to 25 μm), a stylus diameter of 0.2 μm, and a cutoff of 800 μm. The surface roughness and the minute waviness as described above have been reduced in order to improve the smoothness, as evaluated by the slight waviness measured at (that is, wavelength: 0.2 to 800 μm).

平滑性を向上させた、具体的には、前記のような表面粗さや微小うねりを低減させた基板を製造する方法として、研磨パッドの孔径制御、硬さ制御や研磨時の加工条件を制御するといった機械的条件が検討されている。例えば、特許文献1では、アルミナ砥粒を用い加工荷重や回転数を制御する方法、文献2では、複数段による研磨加工を行い、最終加工前に粒径0.3〜5μmの金属酸化物を含んだ研磨液で研磨し、さらに0.01〜0.3μmのコロイド粒子を含んだ研磨液を用いて加工を施す方法が検討されてきた。
特開平9−330518号公報 特開平11−10492号公報
As a method of manufacturing a substrate with improved smoothness, specifically with reduced surface roughness and micro-waviness as described above, control the polishing pad hole diameter, hardness control, and polishing processing conditions. Such mechanical conditions are being studied. For example, in Patent Document 1, a method of controlling the processing load and the rotational speed using alumina abrasive grains, and in Document 2, a polishing process by a plurality of stages is performed, and a metal oxide having a particle diameter of 0.3 to 5 μm is formed before final processing. A method has been studied in which polishing is carried out using a polishing solution containing the colloidal particles of 0.01 to 0.3 μm.
JP 9-330518 A Japanese Patent Laid-Open No. 11-10492

しかしながら、前記特許文献に開示される方法はいずれも、従来の表面粗さや微少うねりは下げられるものの、高記録密度、特に50G(ギガ)ビット/平方インチを超えるような高記録密度のハードディスク用磁気ディスク基板を製造する方法として十分とはいえない。   However, although all of the methods disclosed in the above-mentioned patent documents can reduce the conventional surface roughness and microwaviness, magnetic recording for a hard disk having a high recording density, in particular, a high recording density exceeding 50 G (giga) bits per square inch. It is not a sufficient method for manufacturing a disk substrate.

本発明は、高記録密度、特に50Gビット/平方インチ以上の高記録密度の磁気ディスク用基板に必要な高平滑な基板の製造方法を提供することを目的とする。中でも、実生産レベルの加工速度を有し、面内全体にわたる長いうねり低減を満足させた磁気ディスク用基板の製造方法を提供することを目的とする。   It is an object of the present invention to provide a method for producing a highly smooth substrate necessary for a magnetic disk substrate having a high recording density, particularly 50 Gbit / in 2 or more. In particular, it is an object of the present invention to provide a method for manufacturing a magnetic disk substrate that has a processing speed of an actual production level and satisfies the long waviness reduction over the entire surface.

即ち、本発明の要旨は、
[1] 体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Aを基板に供給して6kPa以上の主加工圧で該基板を研磨した後、さらに主加工圧の20〜80%の加工圧で該基板を研磨する工程を有する磁気ディスク用基板の製造方法、
[2] 下記の工程を有する磁気ディスク用基板の製造方法:
(工程1) 体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Bを基板に供給し、6kPa以上の主加工圧で該基板を研磨する工程、及び
(工程2) 工程1で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Cを供給し、工程1の主加工圧の20〜80%の加工圧で該基板を研磨する工程、ならびに
[3] 工程2の後にさらに下記の研磨工程3を有する前記[2]記載の磁気ディスク用基板の製造方法:
(工程3) 工程2で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Dを供給し、工程2の加工圧の80%以下の加工圧で該基板を研磨する工程
に関する。
That is, the gist of the present invention is as follows.
[1] After supplying the polishing composition A containing colloidal particles having a volume average particle size of 0.005 to 0.1 μm to the substrate and polishing the substrate with a main processing pressure of 6 kPa or more, A method for producing a magnetic disk substrate, comprising a step of polishing the substrate at a processing pressure of 20 to 80%,
[2] Method for producing a magnetic disk substrate having the following steps:
(Step 1) A step of supplying a polishing composition B containing colloidal particles having a volume average particle size of 0.005 to 0.1 μm to the substrate and polishing the substrate with a main processing pressure of 6 kPa or more, and (Step 2) ) A polishing liquid composition C containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate obtained in step 1, and the processing pressure is 20 to 80% of the main processing pressure in step 1 Polishing the substrate with, and
[3] The method for manufacturing a magnetic disk substrate according to [2], further comprising the following polishing step 3 after the step 2:
(Step 3) A polishing liquid composition D containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate obtained in Step 2, and the processing pressure is 80% or less of the processing pressure in Step 2. The present invention relates to a step of polishing the substrate with pressure.

本発明により、高記録密度、特に50Gビット/平方インチ以上の高記録密度の磁気ディスク用基板に必要な高平滑な基板を得ることができる。中でも、実生産レベルの加工速度を有し、面内全体にわたる長いうねり低減を満足させた磁気ディスク用基板を得ることができるという効果が奏される。   According to the present invention, it is possible to obtain a highly smooth substrate necessary for a magnetic disk substrate having a high recording density, particularly a high recording density of 50 Gbit / in 2 or more. In particular, there is an effect that it is possible to obtain a magnetic disk substrate that has a processing speed of an actual production level and satisfies the long-stress reduction over the entire surface.

上記の通り、従来よりヘッド浮上量の低減の観点から、うねり低減が求められてきたが、従来のうねり評価は、微少領域(およそ5mm角)のうねり測定によって行われており、かかる評価でのうねりの低減が追求されてきた。
これに対し、本発明は、基板の「面内全体にわたる長いうねり(以下、「面内平均長波長うねり」と称することがある)」を低減させること、中でも、基板の外周部の長波長うねりを低減させることが、より高密度記録に必要なハードディスクドライブのヘッド浮上量の低減に重要なポイントであることを見出したことに基づいてなされたものである。
As described above, waviness reduction has been demanded from the viewpoint of reducing the head flying height, but conventional waviness evaluation has been performed by measuring waviness in a very small area (approximately 5 mm square). Reduction of undulation has been pursued.
On the other hand, the present invention reduces the “long waviness over the entire surface (hereinafter sometimes referred to as“ in-plane average long wavelength waviness ”)” of the substrate, and in particular, the long wavelength waviness of the outer peripheral portion of the substrate. This is based on the finding that it is an important point to reduce the head flying height of a hard disk drive necessary for higher density recording.

外周部のうねりが悪化する原因の詳細は不明であるが、以下のように推定される。即ち、研磨される際の基板の振動が大きい基板外周部では、基板の振動の小さい基板内周部よりも研磨圧力が高くなることから、加圧による熱で化学研磨力が増大することが原因であると推定される。そこで、本発明者らは、これらの圧力の差によって発生する基板外周部のうねりの悪化を軽減させることで、面内全体にわたる長いうねりが低くなり、且つ基板の内周部と外周部のうねりの差が低くなることを見出した。
なお、本明細書において、「面内平均長波長うねり」とは、基板の一定面積中の二乗平均平方根うねりを指し、「内周部うねり」又は「外周部うねり」とは、それぞれ基板の内周部分又は外周部分の一定半径の位置における二乗平均平方根うねりを指す。
Although the details of the cause of the worsening of the swell of the outer peripheral portion are unknown, it is estimated as follows. That is, since the polishing pressure is higher at the outer peripheral portion of the substrate where the vibration of the substrate during polishing is larger than the inner peripheral portion of the substrate where the vibration of the substrate is small, the chemical polishing force is increased due to heat due to pressurization. It is estimated that. Therefore, the present inventors have reduced the waviness of the entire outer surface of the substrate by reducing the deterioration of the waviness of the outer peripheral portion of the substrate caused by the difference between these pressures, and the waviness of the inner peripheral portion and the outer peripheral portion of the substrate. We found that the difference between the two becomes lower.
In this specification, “in-plane average long wavelength waviness” refers to the root mean square waviness in a certain area of the substrate, and “inner peripheral waviness” or “outer peripheral waviness” The root mean square undulation at a position of a constant radius of the peripheral portion or the peripheral portion.

従って、本発明の第1の態様は、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Aを基板に供給して6kPa以上の主加工圧で該基板を研磨した後、さらに主加工圧の20〜80%の加工圧で該基板を研磨する工程を有することを特徴とする磁気ディスク用基板の製造方法(以下、「態様1の製造方法」と称することがある)である。かかる特徴を有することにより、本発明の磁気ディスク用基板の製造方法は、実生産レベルの加工速度を有しながら、面内平均長波長うねり低減を満足させた磁気ディスク用基板を提供することができる。   Accordingly, in the first aspect of the present invention, the polishing liquid composition A containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate and the substrate is polished at a main processing pressure of 6 kPa or more. After that, the method for manufacturing a magnetic disk substrate (hereinafter referred to as “production method of embodiment 1”) is characterized by further comprising a step of polishing the substrate at a processing pressure of 20 to 80% of the main processing pressure. Yes). With this feature, the method for manufacturing a magnetic disk substrate according to the present invention can provide a magnetic disk substrate that satisfies the in-plane average long wavelength waviness reduction while having a processing speed of an actual production level. it can.

研磨液組成物Aに含有されるコロイダル粒子としては、例えばコロイダルシリカ粒子、コロイダルセリア粒子、コロイダルアルミナ粒子、コロイダルチタニア粒子が挙げられる。中でも、面内平均長波長うねり低減、及び表面欠損となるナノスクラッチ低減等の観点から、コロイダルシリカ粒子がより適している。コロイダルシリカ粒子は、例えば珪酸水溶液から生成させる製法によって得ることができる。また、これらコロイダル粒子を官能基で表面修飾あるいは表面改質したもの、界面活性剤や他の研磨材で複合粒子化したもの等もコロイダル粒子として用いることができる。また、前記コロイダル粒子は、単独で用いてもよいし、二種以上を混合して用いてもよい。   Examples of the colloidal particles contained in the polishing composition A include colloidal silica particles, colloidal ceria particles, colloidal alumina particles, and colloidal titania particles. Among these, colloidal silica particles are more suitable from the viewpoints of reducing in-plane average long wavelength waviness and reducing nanoscratches that cause surface defects. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution. Further, those obtained by surface modification or surface modification of these colloidal particles with functional groups, those obtained by compounding with surfactants or other abrasives, and the like can also be used as colloidal particles. Moreover, the said colloidal particle may be used independently and may be used in mixture of 2 or more types.

コロイダル粒子の体積平均粒子径は、AFM表面粗さ及び面内平均長波長うねりの低減、並びに研磨速度向上の観点から、0.005〜0.1μmであり、0.008〜0.08μmが好ましく、0.01〜0.05μmがより好ましい。これらの体積平均粒子径は、透過電子顕微鏡(1万〜5万倍)(商品名「JEM−2000FX」)で観察した写真をパソコンでスキャナに取り込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて、コロイダル粒子データについて1個1個のコロイダル粒子の円相当径を求め、それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、粒子直径から粒子体積に換算してシリカの体積基準の粒径分布より求められる。観察個数としては、最低でも1000個あることが好ましく、より好ましくは3000個以上、更に好ましくは5000個以上である。   The volume average particle diameter of the colloidal particles is 0.005 to 0.1 μm, preferably 0.008 to 0.08 μm, from the viewpoint of reducing the AFM surface roughness and in-plane average long wavelength waviness and improving the polishing rate. 0.01 to 0.05 μm is more preferable. These volume average particle diameters are obtained by taking a photograph observed with a transmission electron microscope (10,000 to 50,000 times) (trade name “JEM-2000FX”) into a scanner with a personal computer and analyzing software “WinROOF” (distributor: Mitani Corporation) ), The equivalent circle diameter of each colloidal particle is obtained from the colloidal particle data, and this is used as the diameter. Using the spreadsheet software “EXCEL” (manufactured by Microsoft), the particle diameter is converted to the particle volume. And obtained from the volume-based particle size distribution of silica. The number of observations is preferably at least 1000, more preferably 3000 or more, and still more preferably 5000 or more.

表面粗さ低減及び面内平均長波長うねり低減の観点から、コロイダル粒子としては、前記のようにして測定された体積平均粒子径が0.05μm以下であることが好ましく、0.04μm以下であることがより好ましい。   From the viewpoint of reducing the surface roughness and reducing the in-plane average long wavelength waviness, the colloidal particles preferably have a volume average particle diameter of 0.05 μm or less, as described above, and 0.04 μm or less. It is more preferable.

また、コロイダル粒子の一次粒子の平均粒径は、ナノスクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、0.005〜0.05μmが好ましい。同時に研磨速度を向上させる観点から、より好ましくは0.005〜0.04μm、さらに好ましくは0.005〜0.03μmである。   The average particle size of the primary particles of the colloidal particles is 0.005 to 0 from the viewpoint of reducing nanoscratches and the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax). .05 μm is preferred. From the viewpoint of simultaneously improving the polishing rate, the thickness is more preferably 0.005 to 0.04 μm, and further preferably 0.005 to 0.03 μm.

使用時における研磨液組成物A中のコロイダル粒子の含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらにより好ましくは5重量%以上であり、また、経済的に表面品質を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらにより好ましくは10重量%以下である。従って、研磨速度を向上させ、且つ経済的に表面品質を向上させる観点から該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらにより好ましくは5〜10重量%である。コロイダル粒子の該含有量は、研磨液組成物A製造時における含有量あるいは使用時における含有量のいずれであってもよく、通常、濃縮液として製造され、これを使用時に希釈して用いる場合が多い。   The content of the colloidal particles in the polishing liquid composition A at the time of use is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate. Further more preferably 5% by weight or more, and from the viewpoint of economically improving the surface quality, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and even more preferably. Is 10% by weight or less. Therefore, from the viewpoint of improving the polishing rate and economically improving the surface quality, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, and further preferably 3 to 13% by weight. %, Even more preferably 5 to 10% by weight. The content of the colloidal particles may be either the content at the time of producing the polishing liquid composition A or the content at the time of use. Usually, it is produced as a concentrated liquid, and this may be used after being diluted. Many.

研磨液組成物Aに使用される水としては、イオン交換水、蒸留水、超純水等が挙げられる。水の含有量は、研磨液組成物100重量%からコロイダル粒子及び他の成分を除いた残部に相当し、60〜99重量%が好ましく、80〜97重量%がより好ましい。   Examples of water used in the polishing liquid composition A include ion exchange water, distilled water, and ultrapure water. The water content corresponds to the balance obtained by removing colloidal particles and other components from 100% by weight of the polishing liquid composition, preferably 60 to 99% by weight, and more preferably 80 to 97% by weight.

面内平均長波長うねり低減及びナノスクラッチ低減の観点から、研磨液組成物Aは、さらに酸を含有することが好ましい。かかる酸としては、具体的には、硝酸、硫酸、亜硝酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸などが挙げられる。中でもナノスクラッチを低減する観点から、無機酸又は有機ホスホン酸が好ましい。   From the viewpoint of reducing in-plane average long wavelength waviness and reducing nanoscratches, it is preferable that the polishing composition A further contains an acid. Specific examples of such acids include nitric acid, sulfuric acid, nitrous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid and the like, 2- Aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane -1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2 -Diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobuta Organic phosphonic acids such as -2,3,4-tricarboxylic acid and α-methylphosphonosuccinic acid, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid, carboxylic acids such as oxalic acid, nitroacetic acid, maleic acid and oxaloacetic acid An acid etc. are mentioned. Of these, inorganic acids or organic phosphonic acids are preferred from the viewpoint of reducing nanoscratches.

また、無機酸の中では、硝酸、硫酸、塩酸又は過塩素酸がより好ましく、有機ホスホン酸の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)又はジエチレントリアミンペンタ(メチレンホスホン酸)がより好ましい。これらの酸は、単独で又は二種以上を混合して用いられてもよい。   Among inorganic acids, nitric acid, sulfuric acid, hydrochloric acid or perchloric acid is more preferable. Among organic phosphonic acids, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra ( Methylenephosphonic acid) or diethylenetriaminepenta (methylenephosphonic acid) is more preferred. These acids may be used alone or in admixture of two or more.

研磨液組成物A中における前記酸の含有量としては、面内平均長波長うねり低減及びナノスクラッチ低減の観点から、好ましくは0.1〜10重量%、より好ましくは0.2〜5重量%、さらに好ましくは0.3〜3重量%である。   The content of the acid in the polishing liquid composition A is preferably from 0.1 to 10% by weight, more preferably from 0.2 to 5% by weight, from the viewpoint of reducing in-plane average long wavelength waviness and reducing nanoscratches. More preferably, it is 0.3 to 3% by weight.

また、被研磨物の材質により一概に規定することは出来ないが、一般に金属材料では研磨速度を向上させる観点から、研磨液組成物Aに酸化剤を添加することができる。酸化剤としては、過酸化水素、及び過マンガン酸、クロム酸、硝酸、硫酸、ペルオキソ酸、酸素酸又はこれらの塩及び酸化性金属塩などが挙げられる。中でも、被研磨基板表面の汚染性の観点から、過酸化水素が好ましい。前記酸化剤は、単独で用いてもよいし、二種以上を混合して用いてもよい。   Further, although it cannot be generally defined by the material of the object to be polished, in general, an oxidizing agent can be added to the polishing composition A from the viewpoint of improving the polishing rate for metal materials. Examples of the oxidizing agent include hydrogen peroxide, permanganic acid, chromic acid, nitric acid, sulfuric acid, peroxo acid, oxyacid, or salts thereof and oxidizing metal salts. Among these, hydrogen peroxide is preferable from the viewpoint of contamination of the surface of the substrate to be polished. The said oxidizing agent may be used independently and may be used in mixture of 2 or more types.

研磨液組成物A中の酸化剤の含有量としては、研磨速度の向上、面内平均長波長うねりの低減、及びピットやスクラッチ等の表面欠陥の低減の観点から、好ましくは0.002〜10重量%、より好ましくは0.005〜5重量%、さらに好ましくは0.007〜3重量%である。   The content of the oxidizing agent in the polishing composition A is preferably 0.002 to 10 from the viewpoint of improving the polishing rate, reducing the in-plane average long wavelength waviness, and reducing surface defects such as pits and scratches. % By weight, more preferably 0.005 to 5% by weight, still more preferably 0.007 to 3% by weight.

研磨液組成物AのpHについては、特に制限はなく、被研磨物の種類や要求特性に応じて決定することが好ましい。被研磨物の材質が金属材料では、研磨速度を向上させる観点から、pHは、好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下である。また、人体への影響や研磨装置の腐食防止の観点から、pHは、好ましくは0.5以上、より好ましくは1以上、さらに好ましくは1.4以上である。特に、ニッケル-リン(Ni-P)メッキされたアルミニウム合金基板のように被研磨物の材質が金属材料の精密部品用基板においては、前記観点を考慮してpHは、0.5〜6が好ましく、より好ましくは1.0〜5、さらに好ましくは1.4〜4である。   There is no restriction | limiting in particular about pH of polishing liquid composition A, It is preferable to determine according to the kind and required characteristic of to-be-polished object. When the material of the object to be polished is a metal material, the pH is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less, from the viewpoint of improving the polishing rate. Further, from the viewpoint of the influence on the human body and the prevention of corrosion of the polishing apparatus, the pH is preferably 0.5 or more, more preferably 1 or more, and still more preferably 1.4 or more. In particular, in the case of a precision component substrate whose material to be polished is a metal material, such as a nickel-phosphorus (Ni-P) plated aluminum alloy substrate, the pH is 0.5 to 6 in consideration of the above viewpoint. More preferably, it is 1.0-5, More preferably, it is 1.4-4.

研磨液組成物Aは、目的成分を任意の方法で添加、混合して製造され得るが、必要に応じてさらに他の成分を配合することができる。係る他の成分としては、例えば、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。   The polishing liquid composition A can be produced by adding and mixing target components by any method, but other components can be further blended as necessary. Examples of such other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.

態様1の製造方法は、上記のようにして製造される研磨液組成物Aを基板に供給して6kPa以上の主加工圧で該基板を研磨した後、さらに主加工圧の20〜80%の加工圧で該基板を研磨する工程を有する。かかる研磨する工程としては、例えば、不織布、有機高分子系研磨布(研磨パッド)を貼り付けた研磨盤に被研磨基板を挟み込み、研磨液組成物Aを供給しながら、即ち、研磨パッドを貼り付けた研磨盤で挟み込まれた基板研磨面に研磨液組成物Aが供給され、所定の加工圧の下で研磨盤及び/又は基板を動かすことにより研磨する工程が挙げられる。   In the production method of aspect 1, the polishing liquid composition A produced as described above is supplied to the substrate, the substrate is polished at a main processing pressure of 6 kPa or more, and then 20 to 80% of the main processing pressure. A step of polishing the substrate with a processing pressure. As the polishing step, for example, the substrate to be polished is sandwiched between polishing boards to which a nonwoven fabric or an organic polymer polishing cloth (polishing pad) is attached, and the polishing composition A is supplied, that is, the polishing pad is applied. The polishing liquid composition A is supplied to the substrate polishing surface sandwiched between the attached polishing discs, and polishing is performed by moving the polishing disc and / or the substrate under a predetermined processing pressure.

本発明における主加工圧とは、研磨工程時における最大加工圧を指す。研磨前の基板におけるピット、スクラッチ等の欠陥を除去するために必要な一定量以上の研磨量を短時間で得る観点、即ち、量産化製造の観点から、主加工圧は、6kPa以上であり、7kPa以上が好ましく、7.5kPa以上がより好ましい。また、基板と研磨パッド間の摩擦を適度に保つことにより、研磨機の停止等のトラブルを回避する観点から、主加工圧は、好ましくは15kPa以下、より好ましくは13kPa以下、さらに好ましくは12kPa以下である。即ち、主加工圧は、6kPa以上であり、6〜15kPaが好ましく、7〜13kPaがより好ましく、7.5〜12kPaがさらに好ましい。   The main processing pressure in the present invention refers to the maximum processing pressure during the polishing process. From the viewpoint of obtaining a polishing amount of a certain amount or more necessary for removing defects such as pits and scratches in the substrate before polishing in a short time, that is, from the viewpoint of mass production, the main processing pressure is 6 kPa or more, 7 kPa or more is preferable, and 7.5 kPa or more is more preferable. In addition, from the viewpoint of avoiding troubles such as polishing machine stoppage by appropriately maintaining the friction between the substrate and the polishing pad, the main processing pressure is preferably 15 kPa or less, more preferably 13 kPa or less, and even more preferably 12 kPa or less. It is. That is, the main processing pressure is 6 kPa or more, preferably 6 to 15 kPa, more preferably 7 to 13 kPa, and even more preferably 7.5 to 12 kPa.

態様1の製造方法が有する研磨工程では、前記のような主加工圧で基板を研磨した(以後、「主加工圧研磨」と称することがある)後、さらに主加工圧の20〜80%の加工圧で該基板を研磨(以後、「軽加工圧研磨」と称することがある)する。かかる軽加工圧で研磨することにより、基板の振動が少なくなることから、基板の外周にかかる圧力が平均化される。その結果、外周部における基板と研磨パッド間の摩擦による化学研磨力が内周部と同じ程度になるため、外周部うねりが改善されるという効果が奏されると推定される。   In the polishing step of the production method of aspect 1, after polishing the substrate with the main processing pressure as described above (hereinafter, sometimes referred to as “main processing pressure polishing”), the polishing process further comprises 20 to 80% of the main processing pressure. The substrate is polished with a processing pressure (hereinafter, sometimes referred to as “light processing pressure polishing”). By polishing with such a light processing pressure, the vibration of the substrate is reduced, so that the pressure applied to the outer periphery of the substrate is averaged. As a result, the chemical polishing force due to the friction between the substrate and the polishing pad at the outer peripheral portion becomes the same as that at the inner peripheral portion, so that it is estimated that the effect of improving the outer peripheral waviness is achieved.

十分な外周部うねり改善効果を得る観点から、前記の軽加工圧研磨は、好ましくは主加工圧の70%以下、より好ましくは60%以下で行われる。また、十分な外周部うねり改善効果を奏するために所望される研磨量を得る観点及び研磨装置の基板キャリアからの基板の脱離による研磨パッドの損傷などを回避する観点から、前記の軽加工圧研磨は、好ましくは主加工圧の25%以上、より好ましくは30%以上で行われる。従って、態様1の製造方法において、軽加工圧研磨は、主加工圧の20〜80%、好ましくは25〜70%、より好ましくは30〜60%の加工圧で行われる。   From the viewpoint of obtaining a sufficient effect of improving the outer peripheral waviness, the light working pressure polishing is preferably performed at 70% or less, more preferably 60% or less of the main working pressure. In addition, from the viewpoint of obtaining a desired polishing amount in order to achieve a sufficient effect of improving the waviness of the outer peripheral portion and from the viewpoint of avoiding damage to the polishing pad due to detachment of the substrate from the substrate carrier of the polishing apparatus, Polishing is preferably performed at 25% or more, more preferably 30% or more of the main working pressure. Therefore, in the manufacturing method of aspect 1, the light working pressure polishing is performed at a working pressure of 20 to 80%, preferably 25 to 70%, more preferably 30 to 60% of the main working pressure.

また、外周部うねりの改善及び研磨装置の基板キャリアからの基板の脱離を防ぐ観点から、前記の軽加工圧研磨は、好ましくは1.5〜6kPa、より好ましくは1.7〜5.5kPa、さらに好ましくは1.9〜5kPaで行われることが望ましい。   From the viewpoint of improving the waviness of the outer peripheral portion and preventing the substrate from being detached from the substrate carrier of the polishing apparatus, the light processing pressure polishing is preferably 1.5 to 6 kPa, more preferably 1.7 to 5.5 kPa. More preferably, it is performed at 1.9 to 5 kPa.

主加工圧から軽加工圧への加工圧の調節は、一段階で行ってもよく、複数回にわたって徐々に行ってもよい。   The adjustment of the processing pressure from the main processing pressure to the light processing pressure may be performed in one step, or may be performed gradually over a plurality of times.

態様1の製造方法において、研磨工程における磁気ディスク用基板と研磨パッドとの相対速度を減じることで、基板の外周部の長波長うねりをさらに改善させることができる。長波長うねり低減の観点から、主加工圧研磨時の前記相対速度は、好ましくは0.9m/s以下、より好ましくは0.8m/s以下、さらに好ましくは0.7m/s以下であり、軽加工圧研磨時の前記相対速度は、好ましくは0.6m/s以下である。   In the manufacturing method of aspect 1, the long wavelength waviness of the outer peripheral portion of the substrate can be further improved by reducing the relative speed between the magnetic disk substrate and the polishing pad in the polishing step. From the viewpoint of reducing long wavelength waviness, the relative speed during main processing pressure polishing is preferably 0.9 m / s or less, more preferably 0.8 m / s or less, and even more preferably 0.7 m / s or less. The relative speed at the time of light working pressure polishing is preferably 0.6 m / s or less.

態様1の製造方法で使用される研磨パッドについては、特に限定されないが、研磨速度向上、うねり低減、ナノスクラッチ低減の観点から、スエードタイプが好ましい。ここで、スエードタイプとは少なくともベース層と発泡した表面層とを有する構造の研磨パッドをいう。ベース層の材質としては、ポリエチレンテレフタレート(PET)等の高硬度樹脂が好ましい。また、表面層の材質としてはポリウレタン系樹脂が好ましい。さらに研磨パッドの表面平均気孔径は、研磨速度に関わる研磨液組成物の保持性、排出性やうねり、ナノスクラッチ低減等の観点から、5〜70μmが好ましく、10〜60μmがより好ましく、15〜50μmがさらに好ましい。スエードタイプの研磨パッドの例としては、例えば特開平11−335979号公報、特開2001−62704号公報に記載のものなどが挙げられる。   Although it does not specifically limit about the polishing pad used with the manufacturing method of aspect 1, A suede type is preferable from a viewpoint of a polishing rate improvement, waviness reduction, and nano scratch reduction. Here, the suede type refers to a polishing pad having a structure having at least a base layer and a foamed surface layer. As the material of the base layer, a high-hardness resin such as polyethylene terephthalate (PET) is preferable. The material for the surface layer is preferably a polyurethane resin. Furthermore, the surface average pore diameter of the polishing pad is preferably 5 to 70 μm, more preferably 10 to 60 μm, more preferably 15 to 60 μm, from the viewpoints of retention of the polishing composition relating to the polishing rate, dischargeability and undulation, nanoscratch reduction, and the like. 50 μm is more preferable. Examples of the suede type polishing pad include those described in JP-A-11-335979 and JP-A-2001-62704, for example.

態様1の製造方法における被研磨基板としては、ハードディスク用基板として用いられる通常公知のものであれば特に限定はなく、例えば、Ni−Pメッキされたアルミニウム合金基板、Ni−Pメッキされたガラス基板、アルミニウムディスク等の表面層に金属層を有する基板、カーボンディスク、ガラス基板等のガラス状の物質又はセラミック材料を有する基板、またそれらが複合された基板等を挙げることができる。その中でも、本発明の製造方法の効果は、Ni−Pメッキされたアルミニウム合金基板、Ni−Pメッキされたガラス基板、アルミニウムディスク等の表面層に金属層を有する基板でより顕著に奏される。   The substrate to be polished in the production method of aspect 1 is not particularly limited as long as it is a generally known substrate used as a hard disk substrate. For example, Ni-P plated aluminum alloy substrate, Ni-P plated glass substrate Examples thereof include a substrate having a metal layer on the surface layer such as an aluminum disk, a substrate having a glassy substance or ceramic material such as a carbon disk or a glass substrate, and a substrate in which they are combined. Among them, the effect of the manufacturing method of the present invention is more remarkably exhibited in a substrate having a metal layer on a surface layer such as a Ni—P plated aluminum alloy substrate, a Ni—P plated glass substrate, an aluminum disk, or the like. .

前記の被研磨基板は、面内平均長波長うねり低減の観点から,予め粗研磨工程を経たものであることが好ましく、例えば、うねりが2.5nm程度であり、表面粗さが1.5nm程度のものが好ましい。粗研磨工程に用いられる研磨材としては、研磨用に一般的に使用されているものを使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例としては、シリカ、アルミナ、炭化珪素、ダイヤモンド、酸化マンガン、酸化マグネシウム、酸化亜鉛、チタニア、セリア、酸化ジルコニウム等が挙げられ、これらの1種以上を使用することは研磨速度を向上させる観点から好ましい。中でも、シリカ、アルミナ、チタニア、セリア、酸化ジルコニウム等が研磨速度の向上及び経済性の観点から好ましい。   The substrate to be polished is preferably subjected to a rough polishing step in advance from the viewpoint of reducing the in-plane average long wavelength waviness, for example, the waviness is about 2.5 nm and the surface roughness is about 1.5 nm. Are preferred. As the abrasive used in the rough polishing process, those generally used for polishing can be used, such as metal, metal or metalloid carbide, nitride, oxide, boride, diamond, etc. Is mentioned. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include silica, alumina, silicon carbide, diamond, manganese oxide, magnesium oxide, zinc oxide, titania, ceria, zirconium oxide, and the like. It is preferable from the viewpoint of improvement. Among these, silica, alumina, titania, ceria, zirconium oxide, and the like are preferable from the viewpoints of improving the polishing rate and economy.

研磨条件については、上記以外には特に制限はない。   There are no particular restrictions on the polishing conditions other than those described above.

本発明の第2の態様は、下記の工程を有する磁気ディスク用基板の製造方法(以下、「態様2の製造方法」と称することがある):
(工程1) 体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Bを基板に供給し、6kPa以上の主加工圧で該基板を研磨する工程、及び
(工程2) 工程1で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Cを供給し、工程1の主加工圧の20〜80%の加工圧で該基板を研磨する工程
に関する。かかる特徴を有することにより、本発明の磁気ディスク用基板の製造方法は、実生産レベルの加工速度を有しながら、面内平均長波長うねり低減を満足させた磁気ディスク用基板を提供することができる。
A second aspect of the present invention is a method for manufacturing a magnetic disk substrate having the following steps (hereinafter, may be referred to as “manufacturing method according to aspect 2”):
(Step 1) A step of supplying a polishing composition B containing colloidal particles having a volume average particle size of 0.005 to 0.1 μm to the substrate and polishing the substrate with a main processing pressure of 6 kPa or more, and (Step 2) ) A polishing liquid composition C containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate obtained in step 1, and the processing pressure is 20 to 80% of the main processing pressure in step 1 The step of polishing the substrate. With this feature, the method for manufacturing a magnetic disk substrate according to the present invention can provide a magnetic disk substrate that satisfies the in-plane average long wavelength waviness reduction while having a processing speed of an actual production level. it can.

態様2の製造方法で使用される研磨液組成物B及び研磨液組成物Cとしては、それぞれ独立して前記の研磨液組成物Aと同様のものを例示することができる。従って、研磨液組成物Bに含有されるコロイダル粒子と研磨液組成物Cに含有されるコロイダル粒子は、同じものであってもよいし、互いに異なる種類や異なる粒径のものであってもよい。また、研磨液組成物Bと研磨液組成物Cの組成は、同じでもよいし、異なっていてもよい。   Examples of the polishing liquid composition B and the polishing liquid composition C used in the production method of aspect 2 can be the same as the polishing liquid composition A described above. Therefore, the colloidal particles contained in the polishing liquid composition B and the colloidal particles contained in the polishing liquid composition C may be the same, or may be of different types or different particle sizes. . Moreover, the composition of the polishing liquid composition B and the polishing liquid composition C may be the same or different.

ここで、ナノスクラッチ低減及び面内平均長波長うねり低減の観点から、研磨液組成物B及び/又はCは、酸を含有することが好ましい。好ましい酸の種類及びその含有量は前記の第1の態様で記載したものと同様である。   Here, it is preferable that polishing composition B and / or C contain an acid from a viewpoint of nano scratch reduction and an in-plane average long wavelength waviness reduction. Preferred acid types and their contents are the same as those described in the first embodiment.

また、研磨速度向上の観点から、研磨液組成物B及び/又はCは、酸化剤を含有することが好ましい。好ましい酸化剤の種類及びその含有量は前記の第1の態様で記載したものと同様である。   Moreover, it is preferable that polishing composition B and / or C contain an oxidizing agent from a viewpoint of a polishing rate improvement. Preferred types and contents of the oxidizing agent are the same as those described in the first embodiment.

従って、面内平均長波長うねり低減の観点及び研磨速度向上の観点から、研磨液組成物B又はCが酸を含有し、もう一方が酸化剤を含有すること、あるいは研磨液組成物B及び/又はCが、酸と酸化剤とを含有することが、より好ましい。   Therefore, from the viewpoint of reducing the in-plane average long wavelength waviness and improving the polishing rate, the polishing composition B or C contains an acid and the other contains an oxidizing agent, or the polishing composition B and / or Or it is more preferable that C contains an acid and an oxidizing agent.

また、塩基性の研磨液組成物は、酸性のものに比べて外周部うねりを低減し得る点で好ましい。また、酸性の研磨液組成物は、塩基性のものに比べてナノスクラッチを発生させにくく、面内平均長波長うねりを低減させ、高い研磨速度を実現することができる点で好ましい。   In addition, the basic polishing composition is preferable in that the waviness of the outer peripheral portion can be reduced as compared with the acidic one. An acidic polishing liquid composition is preferred in that it is less likely to generate nanoscratches than a basic one, can reduce in-plane average long wavelength waviness, and can achieve a high polishing rate.

従って、研磨速度向上及びさらなる面内平均長波長うねり低減の観点から、研磨液組成物Bが酸と酸化剤とを含有し、研磨液組成物Cが塩基性であること、あるいは研磨液組成物Bが酸と酸化剤とを含有し、研磨液組成物Cが酸を含有するが酸化剤を含有しないことが、さらに好ましい。かかる研磨液組成物の組合せにおいては、工程2における化学研磨力がより小さくなるため、外周部うねりのさらなる改善が可能となると推定されるからである。   Therefore, from the viewpoint of improving the polishing rate and further reducing the in-plane average long wavelength waviness, the polishing liquid composition B contains an acid and an oxidizing agent, and the polishing liquid composition C is basic, or the polishing liquid composition More preferably, B contains an acid and an oxidizing agent, and the polishing composition C contains an acid but no oxidizing agent. This is because, in such a combination of polishing liquid compositions, the chemical polishing power in step 2 becomes smaller, so that it is estimated that further improvement in the waviness of the outer peripheral portion is possible.

工程1と工程2については、同じ研磨機にて連続研磨を実施しても別々の研磨工程を経てもかまわない。複数段加工する場合は、段階的に砥粒径が小さくなるようにすることが好ましく、また、これらは同じ研磨機で連続的に実施しても良いが、前段階の砥粒や研磨液の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、各段階後に基板を洗浄することが好ましい。   About the process 1 and the process 2, even if it implements continuous grinding | polishing with the same grinding machine, it does not matter even if it passes through a separate grinding | polishing process. In the case of multi-stage processing, it is preferable to reduce the abrasive grain size stepwise, and these may be carried out continuously with the same polishing machine, but the previous stage abrasive grains and polishing liquid In order to avoid mixing, different polishing machines may be used, and when different polishing machines are used, it is preferable to clean the substrate after each step.

工程1における磁気ディスク用基板の片面の研磨量については、面内の長波長うねりを十分に低減させる観点及び粗研磨工程時等に発生するスクラッチ、ピット等の被研磨基板の表面欠陥を除去する観点から0.05μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは、0.15μm以上である。なお、片面の研磨量は、後述の実施例に記載のようにして得ることができる。   As for the polishing amount of one surface of the magnetic disk substrate in step 1, the surface defects of the substrate to be polished such as scratches and pits generated during the rough polishing step are removed from the viewpoint of sufficiently reducing long-wave waviness in the surface. From a viewpoint, 0.05 micrometer or more is preferable, More preferably, it is 0.1 micrometer or more, More preferably, it is 0.15 micrometer or more. The amount of polishing on one side can be obtained as described in the examples below.

また、工程1での片面の研磨量に対する工程2での片面の研磨量(工程2の片面研磨量/工程1の片面研磨量)の比は、十分な外周部うねり低減効果を得る観点から、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましい。また、前記の比は、量産化製造のための加工速度を得る観点から、1.0以下が好ましく、0.9以下がより好ましく、0.8以下がさらに好ましい。即ち、前記の比は、0.1〜1.0が好ましく、0.2〜0.9がより好ましく、0.3〜0.8がさらに好ましい。   Further, the ratio of the single-side polishing amount in step 2 to the single-side polishing amount in step 1 (single-side polishing amount in step 2 / single-side polishing amount in step 1) is from the viewpoint of obtaining a sufficient outer peripheral waviness reduction effect. 0.1 or more is preferable, 0.2 or more is more preferable, and 0.3 or more is more preferable. The ratio is preferably 1.0 or less, more preferably 0.9 or less, and even more preferably 0.8 or less from the viewpoint of obtaining a processing speed for mass production. That is, the ratio is preferably 0.1 to 1.0, more preferably 0.2 to 0.9, and still more preferably 0.3 to 0.8.

工程1における主加工圧及び工程2における加工圧は、それぞれ態様1の製造方法における主加工圧及び軽加工圧と同様であればよい。   The main processing pressure in step 1 and the processing pressure in step 2 may be the same as the main processing pressure and the light processing pressure in the manufacturing method of aspect 1, respectively.

また、工程1及び工程2で使用される研磨パッド、被研磨基板、磁気ディスク用基板と研磨パッドとの相対速度は、それぞれ態様1の製造方法におけるものと同様であればよく、研磨条件については、前記以外には特に制限はない。   Further, the relative speeds of the polishing pad, the substrate to be polished, the magnetic disk substrate and the polishing pad used in step 1 and step 2 may be the same as those in the manufacturing method of aspect 1, and the polishing conditions are as follows. Other than the above, there is no particular limitation.

態様2の製造方法はまた、外周部のうねり低減の観点から、(工程3) 工程2で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Dを供給し、工程2の加工圧の80%以下の加工圧で該基板を研磨する工程、を有していることが好ましい。   The production method of aspect 2 is also a polishing liquid composition containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm on the substrate obtained in step 2 from the viewpoint of reducing waviness of the outer peripheral portion. It is preferable to have a step of supplying the product D and polishing the substrate with a processing pressure of 80% or less of the processing pressure in the step 2.

工程3で使用される研磨液組成物Dとしては、前記の研磨液組成物Aと同様のものを例示することができる。研磨液組成物Dに含有されるコロイダル粒子は、研磨液組成物B又はCに含有されるコロイダル粒子と、同じものであってもよいし、互いに異なる種類や異なる粒径のものであってもよい。また、研磨液組成物Dと研磨液組成物B又はCの組成は、同じでもよいし、異なっていてもよい。   As the polishing liquid composition D used in step 3, the same polishing liquid composition A as that described above can be exemplified. The colloidal particles contained in the polishing liquid composition D may be the same as the colloidal particles contained in the polishing liquid composition B or C, or may be of different types or different particle sizes. Good. Moreover, the composition of the polishing composition D and the polishing composition B or C may be the same or different.

面内平均長波長うねり低減及び研磨速度向上の観点から、研磨液組成物Dは、酸化剤を含有することが好ましい。好ましい酸化剤の種類及びその含有量は前記の第1の態様で記載したものと同様である。   From the viewpoint of reducing the in-plane average long wavelength waviness and improving the polishing rate, it is preferable that the polishing composition D contains an oxidizing agent. Preferred types and contents of the oxidizing agent are the same as those described in the first embodiment.

工程3における研磨時の加工圧は、外周部のうねり低減の観点から、工程2の加工圧の80%以下であることが好ましく、より好ましくは75%以下、さらに好ましくは70%以下である。また、研磨速度向上の観点から、前記加工圧は、工程2の加工圧の40%以上であることが好ましく、より好ましくは45%以上、さらに好ましくは50%以上である。なお、工程1〜3を通じて所望される合計研磨量の10%程度を工程3で行うことが好ましい。   The processing pressure at the time of polishing in Step 3 is preferably 80% or less, more preferably 75% or less, and further preferably 70% or less of the processing pressure in Step 2 from the viewpoint of reducing the waviness of the outer peripheral portion. Further, from the viewpoint of improving the polishing rate, the processing pressure is preferably 40% or more, more preferably 45% or more, and further preferably 50% or more of the processing pressure in step 2. In addition, it is preferable to perform about 10% of the total polishing amount desired through the steps 1 to 3 in the step 3.

また、工程3で使用される研磨パッド、被研磨基板、磁気ディスク用基板と研磨パッドとの相対速度は、それぞれ態様1の製造方法におけるものと同様であればよく、研磨条件については、前記以外には特に制限はない。   In addition, the relative speeds of the polishing pad, the substrate to be polished, the magnetic disk substrate and the polishing pad used in step 3 may be the same as those in the production method of aspect 1, and the polishing conditions are other than those described above. There are no particular restrictions.

本発明の態様1及び態様2の製造方法により、面内平均長波長うねりが、例えば1.2nm以下、好ましくは1.1nm以下、より好ましくは1.0nm以下である磁気ディスク用基板や、外周部長波長うねりが、例えば1.8nm以下、好ましくは1.7nm以下、より好ましくは1.6nm以下である磁気ディスク用基板が得られる。前記の面内平均長波長うねりは、例えば、THoTテクノロジー社製「THoT MODEL 4224」等の光学計測機器にて測定可能である。   According to the manufacturing method of aspect 1 and aspect 2 of the present invention, the in-plane average long wavelength undulation is, for example, 1.2 nm or less, preferably 1.1 nm or less, more preferably 1.0 nm or less, and the outer circumference A magnetic disk substrate having a long-wavelength undulation of, for example, 1.8 nm or less, preferably 1.7 nm or less, and more preferably 1.6 nm or less is obtained. The in-plane average long wavelength waviness can be measured by an optical measuring instrument such as “THoT MODEL 4224” manufactured by THoT Technology.

さらに、本発明の態様1及び態様2の製造方法により得られる磁気ディスク用基板の表面粗さは、ヘッド浮上量低減の観点から、0.2nm以下が好ましく、より好ましくは0.18nm以下、さらに好ましくは0.15nm以下である。   Furthermore, the surface roughness of the magnetic disk substrate obtained by the production method of Embodiment 1 and Embodiment 2 of the present invention is preferably 0.2 nm or less, more preferably 0.18 nm or less, from the viewpoint of reducing the head flying height. Preferably it is 0.15 nm or less.

前記の表面粗さは、例えば、原子間力顕微鏡(AFM)における波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さRa(AFM−Ra)として表すことができる。   The surface roughness can be evaluated as roughness measurable at a short wavelength of 10 μm or less in an atomic force microscope (AFM), for example, and can be expressed as center line average roughness Ra (AFM-Ra).

得られた磁気ディスク用基板は、表面性能が極めて優れたものであるため、高記録密度のハードディスクを製造する基板として好適に使用することができる。   Since the obtained magnetic disk substrate has an extremely excellent surface performance, it can be suitably used as a substrate for producing a high recording density hard disk.

<研磨液組成物の調製>
イオン交換水に所定量の、35重量%過酸化水素水(旭電化製)、60重量%のHEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)水溶液(ソルーシア・ジャパン製)、及び95重量%の硫酸(和光純薬製)を、表1に示す組成になるよう添加、混合した水溶液の撹拌下に、以下のコロイダルシリカスラリーを添加して研磨液組成物a〜fを調製した。
研磨液組成物a、e、及びfにおいては、コロイダルシリカスラリー(デュポン社製、一次粒子の体積平均砥粒径27nm、シリカ粒子濃度40重量%品)を用いた。研磨液組成物bにおいては、コロイダルシリカスラリー(日産化学工業製、一次粒子の体積平均砥粒径14nm、シリカ粒子濃度30重量%品)を用いた。研磨液組成物c及びdにおいては、コロイダルシリカスラリー(触媒化成工業製、一次粒子の体積平均砥粒径25nm、シリカ粒子濃度30重量%品)を用いた。
<Preparation of polishing liquid composition>
Predetermined amounts of 35% by weight hydrogen peroxide water (made by Asahi Denka), 60% by weight HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) aqueous solution (made by Solusia Japan), and 95% by weight in ion-exchanged water % Of sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added so as to have the composition shown in Table 1, and the following colloidal silica slurry was added under stirring of the mixed aqueous solution to prepare polishing liquid compositions a to f.
In the polishing composition a, e, and f, colloidal silica slurry (manufactured by DuPont, primary particle volume average abrasive particle size 27 nm, silica particle concentration 40% by weight) was used. In the polishing composition b, a colloidal silica slurry (manufactured by Nissan Chemical Industries, volume average abrasive particle size of primary particles 14 nm, silica particle concentration 30% by weight) was used. In the polishing composition c and d, colloidal silica slurry (manufactured by Catalyst Kasei Kogyo Co., Ltd., volume average abrasive particle size of primary particles 25 nm, silica particle concentration 30% by weight) was used.

実施例1〜10及び比較例1〜5
厚さ1.27mm、直径3.5インチのNi−Pメッキされたアルミニウム合金(両面面積131.9cm、Ni−Pメッキ密度8.4g/cm)からなる基板(「THoT MODEL 4224」(THoTテクノロジー社製)によって測定した研磨前の該基板の面内平均長波長うねりは1.9nm、内周部長波長うねりは1.4nm、外周部長波長うねりは2.5nmであった。)の表面を両面加工機にて下記研磨条件及び表3記載の加工条件で研磨を実施した。得られた研磨基板について、下記条件にて長波長うねり及びAFM表面粗さの測定を行った。結果を表3に示す。
Examples 1-10 and Comparative Examples 1-5
A substrate ("THoT MODEL 4224") made of a Ni-P plated aluminum alloy (both sides area 131.9 cm 2 , Ni-P plating density 8.4 g / cm 3 ) having a thickness of 1.27 mm and a diameter of 3.5 inches ( In-plane average long wavelength waviness of the substrate before polishing measured by THoT Technology) was 1.9 nm, inner peripheral long wavelength waviness was 1.4 nm, and outer peripheral long wavelength waviness was 2.5 nm. Was polished with a double-side processing machine under the following polishing conditions and the processing conditions described in Table 3. The obtained polished substrate was measured for long wavelength waviness and AFM surface roughness under the following conditions. The results are shown in Table 3.

1.研磨条件
両面加工機により、以下の設定条件でポリッシングを行った。
<両面加工機の設定条件>
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨パッド:FILWEL社製、ウレタン製仕上げ研磨用パッド
・研磨液組成物供給量:100mL/min
・投入した基板の枚数:10枚
・定盤回転数/相対速度:表2参照
・加工圧:表2参照
1. Polishing conditions Polishing was performed with a double-sided processing machine under the following setting conditions.
<Setting conditions of double-sided machine>
・ Polishing tester: Speed Fam Co., double-sided 9B polishing machine ・ Polishing pad: FILWEL, urethane final polishing pad ・ Polishing liquid composition supply amount: 100 mL / min
・ Number of loaded substrates: 10 ・ Rotating plate speed / relative speed: See Table 2 ・ Processing pressure: See Table 2

<研磨量及び研磨量比の評価方法>
10枚の基板について、研磨前後の各基板の重さをSartorius社製のBP−210S(商品名)を用いて量り、得られた各基板の重量変化を基に、下式より片面研磨量を求めた。
なお、研磨量比は、予め表2に示す研磨条件で実施例及び比較例で使用した被研磨基板と同じ基板を研磨して求めておいた片面研磨速度を基に、下式から計算して得た。
<Evaluation method of polishing amount and polishing amount ratio>
For 10 substrates, the weight of each substrate before and after polishing is measured using BP-210S (trade name) manufactured by Sartorius, and based on the weight change of each substrate obtained, the amount of single-side polishing is calculated from the following formula. Asked.
The polishing amount ratio is calculated from the following formula based on the single-side polishing rate obtained by polishing the same substrate as the substrate to be polished used in Examples and Comparative Examples under the polishing conditions shown in Table 2 in advance. Obtained.

Figure 2007136583
Figure 2007136583

2.長波長うねりの測定条件
研磨後の基板を下記の条件で測定した。
・機器:THoT MODEL4224 (THoTテクノロジー社製)
・測定波長:0.2mm−5mm
・ゲイン:16
・フィルター:10kHz
・レーザーレンジ:5mm/s/V
・測定領域 Inner Radius:20mm、Outer Radius:46mm (測定面積:54cm
・トラックピッチ:0.01mm
・スピンドルスピード:8000r/min
2. Measurement conditions of long wavelength waviness The substrate after polishing was measured under the following conditions.
・ Equipment: THoT MODEL 4224 (manufactured by THoT Technology)
・ Measurement wavelength: 0.2mm-5mm
・ Gain: 16
・ Filter: 10kHz
・ Laser range: 5mm / s / V
Measurement area Inner Radius: 20 mm, Outer Radius: 46 mm (Measurement area: 54 cm 2 )
・ Track pitch: 0.01mm
・ Spindle speed: 8000r / min

研磨後の各基板10枚の内、任意に2枚の基板を抽出し、基板両面のそれぞれ半径20mmから46mmの間(測定面積54cm)の長波長うねりを平均して「面内平均長波長うねり」とした。また、内周部の長波長うねりと外周部の長波長うねりは、それぞれ、半径20mm部分と半径46mm部分の長波長うねりとして求めた。 Of the 10 substrates after polishing, two substrates are arbitrarily extracted, and the long-wave waviness between the radii of 20 mm to 46 mm (measurement area of 54 cm 2 ) on both surfaces of the substrate is averaged to obtain the “in-plane average long wavelength” "Swell". Further, the long wavelength waviness of the inner peripheral portion and the long wavelength waviness of the outer peripheral portion were obtained as long wavelength waviness of a radius 20 mm portion and a radius 46 mm portion, respectively.

3.AFM表面粗さの測定条件
研磨後の各基板を下記の条件で測定した。
・機器:原子間力顕微鏡(Veeco社製:M5E)
・Cantilever:UL20B
・Mode: Non−Contact
・Scanrate:1.0Hz
・Scanarea:5μm×5μm
・針径:10nm
3. Measurement conditions of AFM surface roughness Each substrate after polishing was measured under the following conditions.
Equipment: Atomic force microscope (Veeco: M5E)
・ Cantilever: UL20B
・ Mode: Non-Contact
・ Scanrate: 1.0 Hz
・ Scanarea: 5 μm × 5 μm
・ Needle diameter: 10nm

測定エリアの中心がディスクの内周と外周の中心線上にあり、かつ該エリアの長辺がディスク円の接線方向となるように測定エリアを選んだ。これを円周方向に均等にディスク1枚当たり表と裏それぞれ5エリアずつ測定し、その平均値をそのディスクの「AFM表面粗さ」とした。   The measurement area was selected so that the center of the measurement area was on the center line of the inner and outer circumferences of the disc and the long side of the area was in the tangential direction of the disc circle. This was measured evenly in the circumferential direction for each of the front and back 5 areas per disk, and the average value was defined as the “AFM surface roughness” of the disk.

Figure 2007136583
Figure 2007136583

Figure 2007136583
Figure 2007136583

Figure 2007136583
Figure 2007136583

表3より、実施例1〜10で製造された基板は、比較例1〜5で製造された基板に比べて、顕著に面内平均長波長うねり及び外周部長波長うねりが低減されており、かつ、表面粗さも十分に低減されていた。従って、実施例1〜10で製造された基板はいずれも、優れた表面平滑性を有するものであることが分かる。   From Table 3, the substrate manufactured in Examples 1 to 10 has significantly reduced in-plane average long wavelength waviness and outer peripheral long wavelength waviness as compared to the substrates manufactured in Comparative Examples 1 to 5, and The surface roughness was also sufficiently reduced. Therefore, it turns out that all the substrates manufactured in Examples 1 to 10 have excellent surface smoothness.

本発明の製造方法により得られる磁気ディスク用基板は、高記録密度のハードディスクの製造に好適に使用することができる。特に50Gビット/平方インチ以上の高記録密度のハードディスクの製造を産業的に実施可能にすることができる。   The magnetic disk substrate obtained by the manufacturing method of the present invention can be suitably used for manufacturing a high recording density hard disk. In particular, it is possible to industrially manufacture a hard disk with a high recording density of 50 Gbit / in 2 or more.

Claims (8)

体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Aを基板に供給して6kPa以上の主加工圧で該基板を研磨した後、さらに主加工圧の20〜80%の加工圧で該基板を研磨する工程を有する磁気ディスク用基板の製造方法。   After polishing composition A containing colloidal particles having a volume average particle size of 0.005 to 0.1 μm is supplied to the substrate and the substrate is polished at a main processing pressure of 6 kPa or more, the main processing pressure of 20 to 80 is further increased. A method for manufacturing a magnetic disk substrate, comprising a step of polishing the substrate with a processing pressure of 1%. 研磨液組成物Aが酸を含有する請求項1記載の磁気ディスク用基板の製造方法。   The method for producing a magnetic disk substrate according to claim 1, wherein the polishing liquid composition A contains an acid. 下記の工程を有する磁気ディスク用基板の製造方法:
(工程1) 体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Bを基板に供給し、6kPa以上の主加工圧で該基板を研磨する工程、及び
(工程2) 工程1で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Cを供給し、工程1の主加工圧の20〜80%の加工圧で該基板を研磨する工程。
A method of manufacturing a magnetic disk substrate having the following steps:
(Step 1) A step of supplying a polishing composition B containing colloidal particles having a volume average particle size of 0.005 to 0.1 μm to the substrate and polishing the substrate with a main processing pressure of 6 kPa or more, and (Step 2) ) A polishing liquid composition C containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate obtained in step 1, and the processing pressure is 20 to 80% of the main processing pressure in step 1 And polishing the substrate.
工程1における基板の片面研磨量が0.05μm以上で、且つ工程1の片面研磨量に対する工程2の片面研磨量(工程2の片面研磨量/工程1の片面研磨量)の比が0.1〜1.0である請求項3記載の磁気ディスク用基板の製造方法。   The single-side polishing amount of the substrate in step 1 is 0.05 μm or more, and the ratio of the single-side polishing amount in step 2 (single-side polishing amount in step 2 / single-side polishing amount in step 1) to the single-side polishing amount in step 1 is 0.1. The method for producing a magnetic disk substrate according to claim 3, which is from ˜1.0. 工程2の後にさらに下記の研磨工程3を有する請求項3又は4記載の磁気ディスク用基板の製造方法:
(工程3) 工程2で得られた基板に、体積平均粒子径0.005〜0.1μmのコロイダル粒子を含有する研磨液組成物Dを供給し、工程2の加工圧の80%以下の加工圧で該基板を研磨する工程。
5. The method for manufacturing a magnetic disk substrate according to claim 3, further comprising the following polishing step 3 after the step 2:
(Step 3) A polishing liquid composition D containing colloidal particles having a volume average particle diameter of 0.005 to 0.1 μm is supplied to the substrate obtained in Step 2, and the processing pressure is 80% or less of the processing pressure in Step 2. Polishing the substrate with pressure.
研磨液組成物Bが酸を含有する請求項3〜5いずれか記載の磁気ディスク用基板の製造方法。   The method for producing a magnetic disk substrate according to claim 3, wherein the polishing liquid composition B contains an acid. 研磨液組成物Cが酸を含有する請求項3〜6いずれか記載の磁気ディスク用基板の製造方法。   The method for producing a magnetic disk substrate according to claim 3, wherein the polishing composition C contains an acid. 研磨液組成物Dが酸化剤を含有する請求項5〜7いずれか記載の磁気ディスク用基板の製造方法。   The method for producing a magnetic disk substrate according to claim 5, wherein the polishing liquid composition D contains an oxidizing agent.
JP2005331632A 2005-11-16 2005-11-16 Method of producing magnetic disk substrate Pending JP2007136583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331632A JP2007136583A (en) 2005-11-16 2005-11-16 Method of producing magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331632A JP2007136583A (en) 2005-11-16 2005-11-16 Method of producing magnetic disk substrate

Publications (1)

Publication Number Publication Date
JP2007136583A true JP2007136583A (en) 2007-06-07

Family

ID=38200052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331632A Pending JP2007136583A (en) 2005-11-16 2005-11-16 Method of producing magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP2007136583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302489A (en) * 2007-06-11 2008-12-18 Kao Corp Manufacturing method for hard disk substrate
JP2013000836A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Method of preparing polishing slurry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330518A (en) * 1996-06-07 1997-12-22 Showa Alum Corp Polishing processing method for magnetic disk substrate
JP2001006161A (en) * 1999-06-23 2001-01-12 Nippon Sheet Glass Co Ltd Manufacture for glass substrate for information- recording medium
JP2005063530A (en) * 2003-08-08 2005-03-10 Kao Corp Substrate for magnetic disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330518A (en) * 1996-06-07 1997-12-22 Showa Alum Corp Polishing processing method for magnetic disk substrate
JP2001006161A (en) * 1999-06-23 2001-01-12 Nippon Sheet Glass Co Ltd Manufacture for glass substrate for information- recording medium
JP2005063530A (en) * 2003-08-08 2005-03-10 Kao Corp Substrate for magnetic disk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302489A (en) * 2007-06-11 2008-12-18 Kao Corp Manufacturing method for hard disk substrate
JP2013000836A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Method of preparing polishing slurry

Similar Documents

Publication Publication Date Title
JP4707311B2 (en) Magnetic disk substrate
JP4231632B2 (en) Polishing liquid composition
JP4273475B2 (en) Polishing composition
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
TWI506621B (en) Polishing composition for hard disk substrate
JP3997152B2 (en) Polishing liquid composition
JP2007168034A (en) Polishing liquid composite for hard disc substrate
JP4836441B2 (en) Polishing liquid composition
GB2398075A (en) Polishing composition
TWI411667B (en) Polishing composition for magnetic disk substrate
JP4986099B2 (en) Substrate manufacturing method
US7267702B2 (en) Polishing composition
JP5613422B2 (en) Polishing liquid composition for magnetic disk substrate
JP2007168057A (en) Manufacturing method of magnetic disk substrate
JP2004300348A (en) Polishing composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4462599B2 (en) Polishing liquid composition
JP2004253058A (en) Polishing liquid composition
JP3877924B2 (en) Magnetic disk substrate polishing composition
JP2007136583A (en) Method of producing magnetic disk substrate
JP4373776B2 (en) Polishing liquid composition
JP3997154B2 (en) Polishing liquid composition
JP3997153B2 (en) Polishing liquid composition
JP2011134388A (en) Polishing liquid composition for magnetic disk substrate
JP2008094982A (en) Polishing liquid composition for memory hard disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101117