JP2011134388A - Polishing liquid composition for magnetic disk substrate - Google Patents

Polishing liquid composition for magnetic disk substrate Download PDF

Info

Publication number
JP2011134388A
JP2011134388A JP2009293090A JP2009293090A JP2011134388A JP 2011134388 A JP2011134388 A JP 2011134388A JP 2009293090 A JP2009293090 A JP 2009293090A JP 2009293090 A JP2009293090 A JP 2009293090A JP 2011134388 A JP2011134388 A JP 2011134388A
Authority
JP
Japan
Prior art keywords
polishing
acid
magnetic disk
substrate
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293090A
Other languages
Japanese (ja)
Other versions
JP5473587B2 (en
Inventor
Kanji Sato
寛司 佐藤
Yoshiaki Oshima
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009293090A priority Critical patent/JP5473587B2/en
Publication of JP2011134388A publication Critical patent/JP2011134388A/en
Application granted granted Critical
Publication of JP5473587B2 publication Critical patent/JP5473587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing liquid composition for a magnetic disk substrate capable of reducing a scratch on a substrate surface and a nano protrusion defect after polishing and to provide a method for manufacturing the magnetic disk substrate using the same. <P>SOLUTION: In the polishing liquid composition for the magnetic disk substrate containing colloidal silica, a heterocyclic aromatic compound including two or more nitrogen atoms in a heterocycle, an acid, an oxidizing agent and water, the colloidal silica has 0 to 10% ΔCV value, 1 to 35% CV90 and 1 to 40 nm average particle diameter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法に関する。   The present invention relates to a polishing composition for a magnetic disk substrate and a method for producing a magnetic disk substrate using the same.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化するために、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上させるため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性・平坦性の向上(表面粗さ、うねり、端面ダレの低減)と欠陥低減(スクラッチ、突起、ピット等の低減)に対する要求が厳しくなっている。このような要求に対し、研磨粒子としてコロイダルシリカの粒径分布を規定した研磨液組成物やベンゾトリアゾール(BTA)のようなアゾール類を含有する研磨液組成物が提案されている(例えば、特許文献1及び2参照)。   In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. In order to increase the recording density, the unit recording area is reduced, and in order to improve the detection sensitivity of the weakened magnetic signal, technical development for lowering the flying height of the magnetic head has been advanced. Magnetic disk substrates have improved smoothness and flatness (reduced surface roughness, waviness, and edge sagging) and reduced defects (scratches, protrusions, pits) in order to reduce the flying height of the magnetic head and secure a recording area. Etc.) is becoming stricter. In response to such demands, there have been proposed polishing liquid compositions that define the particle size distribution of colloidal silica as polishing particles and polishing liquid compositions containing azoles such as benzotriazole (BTA) (for example, patents). Reference 1 and 2).

特許文献1には、特定の粒径分布を持つコロイダルシリカを用いた研磨液組成物が開示されており、この研磨液組成物によれば、コロイダルシリカの粒径を小さくし、その粒径分布をシャープにすることにより、メモリーハードディスク用基板の表面粗さを低減できることが記載されている。   Patent Document 1 discloses a polishing liquid composition using colloidal silica having a specific particle size distribution. According to this polishing liquid composition, the particle size distribution of the colloidal silica is reduced. It is described that the surface roughness of a memory hard disk substrate can be reduced by sharpening the thickness.

特許文献2には、アゾール類を含有する研磨液組成物が開示されており、この研磨液組成物によれば、メモリーハードディスク用基板の基板表面上のスクラッチを低減できることが記載されている。   Patent Document 2 discloses a polishing liquid composition containing azoles, and it is described that according to this polishing liquid composition, scratches on the substrate surface of a memory hard disk substrate can be reduced.

特開2004−204151号公報JP 2004-204151 A 特開2007−92064号公報JP 2007-92064 A

磁気ディスクドライブのさらなる大容量化を実現するためには、従来の研磨液組成物による表面粗さやスクラッチの低減だけでは不十分である。従来の課題に加えて、研磨後の基板表面のナノ突起欠陥をも低減する必要がある。   In order to realize a further increase in capacity of the magnetic disk drive, it is not sufficient to reduce the surface roughness and scratches with the conventional polishing composition. In addition to the conventional problems, it is necessary to reduce nano-projection defects on the substrate surface after polishing.

また、大容量化に伴い、磁気ディスクにおける記録方式が水平磁気記録方式から垂直磁気記録方式へと移行した。垂直磁気記録方式の磁気ディスクの製造工程では、水平磁気記録方式で磁化方向を揃えるために必要であったテクスチャ工程が不要となり、研磨後の基板表面に直接磁性層が形成される。そのため、テクスチャ工程で除かれていた研磨後の基板表面の欠陥を研磨工程において取り除く必要があり、研磨後の基板表面品質に対する要求特性はさらに厳しくなっている。従来の研磨液組成物では、垂直磁気記録方式の基板表面に求められるナノ突起欠陥及びスクラッチの要求レベルを十分に満足することができない。   As the capacity has increased, the recording method for magnetic disks has shifted from the horizontal magnetic recording method to the perpendicular magnetic recording method. In the manufacturing process of the magnetic disk of the perpendicular magnetic recording system, the texture process required for aligning the magnetization direction in the horizontal magnetic recording system is not required, and a magnetic layer is directly formed on the polished substrate surface. For this reason, it is necessary to remove defects on the substrate surface after polishing, which have been removed in the texture process, in the polishing process, and the required characteristics for the substrate surface quality after polishing have become more severe. The conventional polishing liquid composition cannot sufficiently satisfy the required level of nanoprotrusion defects and scratches required for the surface of a perpendicular magnetic recording substrate.

そこで、本発明は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減を実現できる磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法を提供する。   Accordingly, the present invention provides a polishing composition for a magnetic disk substrate that can realize reduction of scratches and nanoprotrusion defects on the surface of the substrate after polishing, and a method for producing a magnetic disk substrate using the same.

本発明は、コロイダルシリカ、複素環内に窒素原子を2個以上含む複素環芳香族化合物、酸、酸化剤、及び水を含有する磁気ディスク基板用研磨液組成物であって、前記コロイダルシリカは、ΔCV値が0〜10%であり、CV90が1〜35%であり、かつ、平均粒径が1〜40nmであり、ここで、前記ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、前記CV90は、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値であり、前記平均粒径は、動的光散乱法による検出角90°における散乱強度分布に基づく平均粒径である磁気ディスク基板用研磨液組成物に関する。   The present invention relates to a polishing composition for a magnetic disk substrate containing colloidal silica, a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring, an acid, an oxidizing agent, and water, wherein the colloidal silica is The ΔCV value is 0 to 10%, the CV90 is 1 to 35%, and the average particle size is 1 to 40 nm, where the ΔCV value is a detection angle of 30 ° by the dynamic light scattering method. (CV30) obtained by dividing the standard deviation based on the scattering intensity distribution at 100 by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30), and the standard deviation based on the scattering intensity distribution at a detection angle of 90 ° by the dynamic light scattering method Is a difference value (ΔCV = CV30−CV90) obtained by dividing by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (ΔCV = CV30−CV90), and the CV90 is a detection angle 90 by the dynamic light scattering method. Scattering at ° The standard deviation based on the degree distribution is divided by the average particle diameter based on the scattering intensity distribution and multiplied by 100, and the average particle diameter is based on the scattering intensity distribution at a detection angle of 90 ° by the dynamic light scattering method. The present invention relates to a polishing liquid composition for a magnetic disk substrate having an average particle diameter.

また、本発明の磁気ディスク基板の製造方法は、本発明の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法に関する。   The method for producing a magnetic disk substrate of the present invention also relates to a method for producing a magnetic disk substrate including a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate of the present invention.

本発明の磁気ディスク基板用研磨液組成物によれば、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板を製造できるという効果が好ましくは奏される。   According to the polishing composition for a magnetic disk substrate of the present invention, in addition to scratches on the surface of the substrate after polishing, the magnetic disk substrate in which nano-protrusion defects on the surface of the substrate after polishing are reduced, particularly the magnetic field of the perpendicular magnetic recording system. The effect that a disk substrate can be manufactured is preferably achieved.

[ナノ突起欠陥]
本明細書において「ナノ突起欠陥」とは、磁気ディスク基板の製造工程における研磨後の基板表面の欠陥であって、光学的に検出され得る10nm未満程度の大きさの凸欠陥をいう。磁気ディスクの高密度化・大容量化のためには、磁気ヘッドと磁気ディスクとの間隔は10nm未満にする必要がある。研磨後の基板表面のナノ突起を低減することができれば、さらに磁気ヘッドの浮上量を低減できるため、より小さな磁気信号の検出が可能となる。つまり、ナノ突起を低減することで単位記録面積をより小さくして基板1枚当りの記録密度の向上が可能となる。
[Nanoprotrusion defect]
In the present specification, the “nanoprotrusion defect” refers to a defect on the surface of a substrate after polishing in a manufacturing process of a magnetic disk substrate, and a convex defect having a size of less than 10 nm that can be detected optically. In order to increase the density and capacity of the magnetic disk, the distance between the magnetic head and the magnetic disk needs to be less than 10 nm. If the nano-projections on the substrate surface after polishing can be reduced, the flying height of the magnetic head can be further reduced, so that a smaller magnetic signal can be detected. That is, by reducing the nanoprotrusions, the unit recording area can be made smaller and the recording density per substrate can be improved.

[スクラッチ]
本明細書において「スクラッチ」とは、深さが1nm以上、幅が100nm以上、長さが1000nm以上の基板表面の微細な傷で、光学式欠陥検出装置であるKLA Tencor社製のCandela6100シリーズや日立ハイテクノロジ−社製のNS1500シリーズで検出可能であり、スクラッチ数として定量評価できる。さらに、検出したスクラッチは原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)で大きさや形状を解析することができる。
[scratch]
In this specification, “scratch” is a fine scratch on a substrate surface having a depth of 1 nm or more, a width of 100 nm or more, and a length of 1000 nm or more. It can be detected by NS 1500 series manufactured by Hitachi High-Technologies Corporation and can be quantitatively evaluated as the number of scratches. Further, the size and shape of the detected scratch can be analyzed with an atomic force microscope (AFM), a scanning electron microscope (SEM), and a transmission electron microscope (TEM).

本発明は、コロイダルシリカ、酸、及び酸化剤を含有する磁気ディスク基板用研磨液組成物において、複素環内に窒素原子を2個以上含む複素環芳香族化合物と特定のコロイダルシリカとを併用することにより、研磨後の基板のスクラッチの低減のみならず、研磨後基板のナノ突起欠陥をも低減でき、記録容量の大容量化の要請に応え得る磁気ディスク基板を製造できるという知見に基づく。   In the polishing composition for a magnetic disk substrate containing colloidal silica, an acid, and an oxidizing agent, the present invention uses a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring and a specific colloidal silica. This is based on the knowledge that not only the scratch of the substrate after polishing can be reduced, but also the nano-projection defects of the substrate after polishing can be reduced, and a magnetic disk substrate that can meet the demand for higher recording capacity can be manufactured.

具体的には、複素環内に窒素原子を2個以上含む複素環芳香族化合物と、平均粒径、粒径分布の広がりを示す変動係数の値(CV値)、及び動的光散乱法における散乱強度分布の角度依存性(ΔCV値)の3つのパラメータを用いるコロイダルシリカの制御を加えた。複素環内に窒素原子を2個以上含む複素環芳香族化合物とコロイダルシリカの前記制御との組合せにより、従来知られていたスクラッチの低減が促進され、さらに、ナノ突起欠陥が著しく低減されることが見出された。   Specifically, in the heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring, the average particle size, the value of the coefficient of variation (CV value) indicating the spread of the particle size distribution, and the dynamic light scattering method Control of colloidal silica using three parameters of angle dependence (ΔCV value) of scattering intensity distribution was added. Reduction of scratches, which has been conventionally known, is promoted by the combination of the heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring and the above control of colloidal silica, and nanoprotrusion defects are significantly reduced. Was found.

すなわち、本発明は、一態様において、磁気ディスク基板用研磨液組成物であって、コロイダルシリカ、複素環内に窒素原子を2個以上含む複素環芳香族化合物、酸、酸化剤及び水を含有し、前記コロイダルシリカは、ΔCV値が0〜10%であり、CV90が1〜35%であり、かつ、平均粒径が1〜40nmであり、ここで、前記ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、前記CV90は、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値であり、前記平均粒径は、動的光散乱法による検出角90°における散乱強度分布に基づく平均粒径である磁気ディスク基板用研磨液組成物(以下、本発明の研磨液組成物ともいう)に関する。   That is, the present invention, in one aspect, is a polishing composition for a magnetic disk substrate, comprising colloidal silica, a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring, an acid, an oxidizing agent, and water. The colloidal silica has a ΔCV value of 0 to 10%, a CV90 of 1 to 35%, and an average particle size of 1 to 40 nm, where the ΔCV value is a dynamic light scattering. The value obtained by dividing the standard deviation based on the scattering intensity distribution at the detection angle of 30 ° by the method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30), and the scattering at the detection angle of 90 ° by the dynamic light scattering method It is a difference value (ΔCV = CV30−CV90) from a value obtained by dividing the standard deviation based on the intensity distribution by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (ΔCV = CV30−CV90). By scattering method The standard deviation based on the scattering intensity distribution at a detection angle of 90 ° is divided by the average particle size based on the scattering intensity distribution and multiplied by 100. The average particle size is a detection angle of 90 ° by the dynamic light scattering method. The present invention relates to a magnetic disk substrate polishing liquid composition (hereinafter also referred to as the polishing liquid composition of the present invention) having an average particle diameter based on the scattering intensity distribution in FIG.

本発明の研磨液組成物によれば、研磨後の基板において、スクラッチの低減のみならず、研磨後の基板表面のナノ突起欠陥を低減できるという効果を奏し得る。   According to the polishing liquid composition of the present invention, not only the scratch can be reduced but also the nanoprojection defect on the polished substrate surface can be reduced in the polished substrate.

本発明の研磨液組成物がスクラッチのみならず研磨後の基板表面のナノ突起欠陥を低減できるメカニズムの詳細は明らかでないが、研磨時において複素環芳香族化合物が被研磨基板上に保護膜を形成するとともに、コロイダルシリカの一次粒子が凝集して生じた50〜200nmのシリカ凝集体(非球状シリカ)が少ないコロイダルシリカを用いることによって、一層スクラッチを低減し、さらに、ナノ突起欠陥を低減することができると推定される。但し、本発明はこのメカニズムに限定されない。   Although the details of the mechanism by which the polishing composition of the present invention can reduce not only scratches but also nano-protrusion defects on the substrate surface after polishing are not clear, a heterocyclic aromatic compound forms a protective film on the substrate to be polished during polishing At the same time, by using colloidal silica with a small amount of 50-200 nm silica aggregates (non-spherical silica) formed by agglomeration of primary particles of colloidal silica, scratches can be further reduced, and nanoprotrusion defects can be further reduced. It is estimated that However, the present invention is not limited to this mechanism.

[ΔCV値]
本明細書においてコロイダルシリカのΔCV値は、動的光散乱法により検出角30°(前方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱法により検出角30°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数(CV)の値(CV30)と、動的光散乱法により検出角90°(側方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱法により検出角90°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30−CV90)をいい、動的光散乱法により測定される散乱強度分布の角度依存性を示す値をいう。ΔCV値は、具体的には実施例に記載の方法により測定することができる。
[ΔCV value]
In this specification, the ΔCV value of colloidal silica is the standard deviation of the particle diameter measured based on the scattering intensity distribution at a detection angle of 30 ° (forward scattering) by the dynamic light scattering method, and the detection angle of 30 by the dynamic light scattering method. Scattering with a coefficient of variation (CV30) multiplied by 100 divided by the average particle diameter measured based on the scattering intensity distribution of ° C (CV30) and a detection angle of 90 ° (side scattering) by the dynamic light scattering method A coefficient of variation (CV90) obtained by dividing the standard deviation of the particle diameter measured based on the intensity distribution by the average particle diameter measured based on the scattering intensity distribution at a detection angle of 90 ° by the dynamic light scattering method and multiplying by 100. ) (ΔCV = CV30−CV90) and a value indicating the angular dependence of the scattering intensity distribution measured by the dynamic light scattering method. Specifically, the ΔCV value can be measured by the method described in Examples.

本発明者らは、コロイダルシリカのΔCV値とスクラッチ数との間には相関関係があること、及びコロイダルシリカのΔCV値と非球状シリカの含有量との間に相関関係があることを見出した。コロイダルシリカの一次粒子が凝集して生じた50〜200nmのシリカ凝集体(非球状シリカ)がスクラッチやナノ突起発生の原因物質であり、かかる凝集体が少ないためスクラッチ及びナノ突起が低減されると推定している。   The present inventors have found that there is a correlation between the ΔCV value of colloidal silica and the number of scratches, and that there is a correlation between the ΔCV value of colloidal silica and the content of non-spherical silica. . A 50-200 nm silica aggregate (non-spherical silica) produced by agglomeration of primary particles of colloidal silica is a causative substance for generation of scratches and nanoprotrusions, and since such aggregates are few, scratches and nanoprotrusions are reduced. Estimated.

すなわち、ΔCV値に着目することで、従来では検出することが困難であったコロイダルシリカ粒子分散液中の非球状粒子の存在を検出できるから、そのような非球状粒子を含む研磨液組成物を使用することを回避でき、その結果、スクラッチ及びナノ突起の低減を達成できると考えられる。   That is, by paying attention to the ΔCV value, it is possible to detect the presence of non-spherical particles in the colloidal silica particle dispersion liquid that has been difficult to detect in the past, and therefore, a polishing liquid composition containing such non-spherical particles can be obtained. It is believed that use can be avoided and, as a result, reduction of scratches and nanoprotrusions can be achieved.

ここで、粒子分散液試料中の粒子が球状か非球状かは、一般に、動的散乱法により測定される拡散係数(D=Γ/q2)の角度依存性を指標とする方法(例えば、特開平10−195152号公報参照)により判断されている。具体的には散乱ベクトルq2に対するΓ/q2をプロットしたグラフにおいて示される角度依存性が小さいほどその分散液中の粒子の平均的な形状は真球状であると判断し、角度依存性が大きいほどその分散液中の粒子の平均的な形状は非球状であると判断される。すなわち、この、動的散乱法により測定される拡散係数の角度依存性を指標とする従来の方法は、系全体で均一の粒子が分散していると仮定して粒子の形状や粒径等を検出・測定する方法である。それゆえ、球状粒子が大勢を占める分散液試料中の一部に存在する非球状粒子は検出が困難となる。 Here, whether the particles in the particle dispersion sample are spherical or non-spherical is generally determined by a method using the angle dependency of the diffusion coefficient (D = Γ / q 2 ) measured by the dynamic scattering method as an index (for example, Jpn. Pat. Appln. KOKAI Publication No. 10-195152). Specifically, the smaller the angle dependency shown in the graph plotting Γ / q 2 with respect to the scattering vector q 2, the more the average shape of the particles in the dispersion is judged to be spherical, and the angle dependency is The larger the particle size, the more the average shape of the particles in the dispersion is judged to be non-spherical. In other words, the conventional method using the angular dependence of the diffusion coefficient measured by the dynamic scattering method as an index assumes that the uniform shape of particles is dispersed throughout the system, and the particle shape, particle size, etc. It is a method of detecting and measuring. Therefore, it is difficult to detect non-spherical particles present in a part of the dispersion sample in which spherical particles are predominant.

一方、動的光散乱法では、原理的に200nm以下の真球状粒子分散溶液を測定した場合、散乱強度分布は検出角に関係なくほぼ一定の結果が得られるため測定結果は検出角に依存しない。しかし、非球状粒子を含む真球状粒子分散溶液の動的光散乱の散乱強度分布は非球状粒子の存在により検出角によって大きく変化し、低角の検出角ほど散乱強度分布は分布がブロードになる。そのため、動的光散乱の散乱強度分布の測定結果は検出角に依存することとなり、「動的光散乱法により測定される散乱強度分布の角度依存性」の指標の1つであるΔCV値を測定することで、球状粒子分散溶液中に存在するわずかな非球状粒子を測定できると考えられる。なお、本発明はこれらのメカニズムに限定されない。   On the other hand, in the dynamic light scattering method, when measuring a spherical particle dispersion solution of 200 nm or less in principle, the measurement result does not depend on the detection angle because the scattering intensity distribution is almost constant regardless of the detection angle. . However, the scattering intensity distribution of dynamic light scattering of a spherical dispersion containing non-spherical particles varies greatly depending on the detection angle due to the presence of non-spherical particles, and the distribution of the scattering intensity distribution becomes broader at lower detection angles. . Therefore, the measurement result of the scattering intensity distribution of dynamic light scattering depends on the detection angle, and the ΔCV value, which is one of the indicators of “angle dependency of the scattering intensity distribution measured by the dynamic light scattering method”, is It is considered that a few non-spherical particles existing in the spherical particle dispersion solution can be measured by measuring. Note that the present invention is not limited to these mechanisms.

[散乱強度分布]
本明細書において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒径分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。通常、サブミクロン以下の粒子は溶媒中でブラウン運動をしており、レーザー光を照射すると散乱光強度が時間的に変化する(ゆらぐ)。この散乱光強度のゆらぎを、例えば、光子相関法(JIS Z 8826)を用いて自己相関関数を求め、キュムラント(Cumulant)法解析により、ブラウン運動速度を示す拡散係数(D)を算出して、さらにアインシュタイン・ストークスの式を用い、平均粒径(d:流体力学的径)を求めることができる。また、粒径分布解析は、キュムラント法による多分散性指数(Polydispersity Index, PI)のほかに、ヒストグラム法(Marquardt法)、ラプラス逆変換法(CONTIN法)、非負最小2乗法(NNLS法)等がある。
[Scattering intensity distribution]
In this specification, “scattering intensity distribution” means three particle size distributions of sub-micron or less particles obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It means the particle size distribution of scattering intensity among (scattering intensity, volume conversion, number conversion). Usually, the sub-micron particles have Brownian motion in a solvent, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light. For this fluctuation of scattered light intensity, for example, an autocorrelation function is obtained using a photon correlation method (JIS Z 8826), and a diffusion coefficient (D) indicating a Brownian motion velocity is calculated by cumulant method analysis. Furthermore, the average particle diameter (d: hydrodynamic diameter) can be obtained using the Einstein-Stokes equation. In addition to polydispersity index (PI) by cumulant method, particle size distribution analysis includes histogram method (Marquardt method), Laplace inverse transformation method (CONTIN method), non-negative least square method (NNLS method), etc. There is.

動的光散乱法の粒径分布解析では、通常、キュムラント法による多分散性指数(Polydispersity Index, PI)が広く用いられている。しかしながら、粒子分散液中にわずかに存在する非球状粒子の検出を可能とする検出方法においては、ヒストグラム法(Marquardt法)やラプラス逆変換法(CONTIN法)による粒径分布解析から平均粒径(d50)と標準偏差を求め、CV値(Coefficient of variation:標準偏差を平均粒径で割って100をかけた数値)を算出し、その角度依存性(ΔCV値)を用いることが好ましい。
(参考資料)
第12回散乱研究会(2000年11月22日開催)テキスト、1.散乱基礎講座「動的光散乱法」(東京大学 柴山充弘)
第20回散乱研究会(2008年12月4日開催)テキスト、5.動的光散乱によるナノ粒子の粒径分布測定(同志社大学 森康維)
In the particle size distribution analysis of the dynamic light scattering method, the polydispersity index (PI) by the cumulant method is generally widely used. However, in the detection method that enables detection of non-spherical particles that are slightly present in the particle dispersion, the average particle size (from the particle size distribution analysis by the histogram method (Marquardt method) or the Laplace inverse transform method (CONTIN method)) It is preferable to obtain d50) and the standard deviation, calculate a CV value (Coefficient of variation: a value obtained by dividing the standard deviation by the average particle size and multiply by 100), and use the angular dependence (ΔCV value).
(Reference document)
Text of the 12th Scattering Study Group (held on November 22, 2000) Scattering Basic Course "Dynamic Light Scattering Method" (Mitsuhiro Shibayama, University of Tokyo)
Text of the 20th Scattering Study Group (held on December 4, 2008) Measurement of size distribution of nanoparticles by dynamic light scattering (Doshisha University Yasumori Mori)

[散乱強度分布の角度依存性]
本明細書において「粒子分散液の散乱強度分布の角度依存性」とは、動的光散乱法により異なる検出角で前記粒子分散液の散乱強度分布を測定した場合の、散乱角度に応じた散乱強度分布の変動の大きさをいう。例えば、検出角30°と検出角90°とでの散乱強度分布の差が大きければ、その粒子分散液の散乱強度分布の角度依存性は大きいといえる。よって、本明細書において、散乱強度分布の角度依存性の測定は、異なる2つの検出角で測定した散乱強度分布に基づく測定値の差(ΔCV値)を求めることを含む。
[Angle dependence of scattering intensity distribution]
In this specification, “angle dependency of the scattering intensity distribution of the particle dispersion” means scattering according to the scattering angle when the scattering intensity distribution of the particle dispersion is measured at different detection angles by the dynamic light scattering method. The magnitude of fluctuation in intensity distribution. For example, if the difference in the scattering intensity distribution between the detection angle of 30 ° and the detection angle of 90 ° is large, it can be said that the angle dependency of the scattering intensity distribution of the particle dispersion is large. Therefore, in this specification, the measurement of the angle dependence of the scattered intensity distribution includes obtaining a difference (ΔCV value) between measured values based on the scattered intensity distribution measured at two different detection angles.

散乱強度分布の角度依存性の測定で用いる2つの検出角の組合せとしては、非球状粒子の検出の確度向上の点からは、前方散乱と側方若しくは後方散乱との組合せが好ましい。前記前方散乱の検出角としては、同様の観点から、0〜80°が好ましく、0〜60°がより好ましく、10〜50°がさらに好ましく、20〜40°がさらにより好ましい。前記側方若しくは後方散乱の検出角としては、同様の観点から、80〜180°が好ましく、85〜175°がより好ましい。本発明においては、ΔCV値を求める2つの検出角として30°と90°を使用している。   As a combination of the two detection angles used in the measurement of the angle dependence of the scattering intensity distribution, a combination of forward scattering and side or back scattering is preferable from the viewpoint of improving the accuracy of detection of non-spherical particles. From the same viewpoint, the forward scattering detection angle is preferably 0 to 80 °, more preferably 0 to 60 °, still more preferably 10 to 50 °, and still more preferably 20 to 40 °. From the same viewpoint, the side or backscattering detection angle is preferably 80 to 180 °, more preferably 85 to 175 °. In the present invention, 30 ° and 90 ° are used as two detection angles for obtaining the ΔCV value.

[コロイダルシリカ]
本発明の研磨液組成物に用いられるコロイダルシリカは、ケイ酸水溶液から生成させる公知の製造方法等により得られたものでもよい。シリカ粒子の使用形態としては、操作性の観点からスラリー状であることが好ましい。
[Colloidal silica]
The colloidal silica used in the polishing composition of the present invention may be obtained by a known production method or the like produced from an aqueous silicic acid solution. The usage form of the silica particles is preferably a slurry from the viewpoint of operability.

〔ΔCV値〕
本発明に使用されるコロイダルシリカのΔCV値は、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減する観点から、0〜10%であり、好ましくは0〜8%、より好ましくは0〜6%、さらにより好ましくは0〜5%である。また、研磨液組成物の生産性向上の観点からは、ΔCV値は、0.001%以上であることが好ましく、0.01%以上であることがより好ましい。
[ΔCV value]
The ΔCV value of the colloidal silica used in the present invention is 0 to 10%, preferably 0 to 8%, more preferably 0 to 6 from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. %, Even more preferably 0 to 5%. Further, from the viewpoint of improving the productivity of the polishing composition, the ΔCV value is preferably 0.001% or more, and more preferably 0.01% or more.

〔CV値〕
本発明に使用されるコロイダルシリカのCV値(CV90)は、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減する観点から、1〜35%であり、好ましくは5〜34%、より好ましくは10〜33%である。ここで、CV値とは、動的光散乱法において散乱強度分布に基づく標準偏差を平均粒径で除して100を掛けた変動係数の値であって、本明細書では特に、検出角90°(側方散乱)で測定されるCV値をCV90、検出角30°(前方散乱)で測定されるCV値をCV30という。コロイダルシリカのCV値は、具体的には実施例に記載の方法により得ることができる。
[CV value]
The CV value (CV90) of the colloidal silica used in the present invention is 1 to 35%, preferably 5 to 34%, more preferably from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. 10 to 33%. Here, the CV value is a value of a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution by the average particle diameter and multiplying by 100 in the dynamic light scattering method. The CV value measured at ° (side scatter) is called CV90, and the CV value measured at a detection angle of 30 ° (forward scatter) is called CV30. Specifically, the CV value of colloidal silica can be obtained by the method described in Examples.

〔平均粒径〕
本発明における「コロイダルシリカの平均粒径」とは、動的光散乱法により測定される散乱強度分布に基づく平均粒径をいい、特に言及のない場合、「コロイダルシリカの平均粒径」とは、動的光散乱法において検出角90°で測定される散乱強度分布に基づく平均粒径をいう。本発明におけるコロイダルシリカの平均粒径は、具体的には実施例に記載の方法により得ることができる。
[Average particle size]
The “average particle size of colloidal silica” in the present invention refers to the average particle size based on the scattering intensity distribution measured by the dynamic light scattering method, and unless otherwise specified, the “average particle size of colloidal silica” The average particle diameter based on the scattering intensity distribution measured at a detection angle of 90 ° in the dynamic light scattering method. The average particle diameter of the colloidal silica in the present invention can be specifically obtained by the method described in Examples.

本発明に使用されるコロイダルシリカの平均粒径は、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減する観点から、1〜40nmであり、好ましくは5〜37nm、より好ましくは10〜35nmである。   The average particle diameter of the colloidal silica used in the present invention is 1 to 40 nm, preferably 5 to 37 nm, more preferably 10 to 35 nm, from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. is there.

コロイダルシリカのΔCV値の調整方法としては、研磨液組成物の調製で50〜200nmのシリカ凝集物(非球状シリカ)を生成しないようにする下記の方法が挙げられる。
A)研磨液組成物のろ過による方法
B)コロイダルシリカ製造時の工程管理による方法
Examples of the method for adjusting the ΔCV value of colloidal silica include the following methods for preventing formation of 50 to 200 nm silica aggregates (non-spherical silica) in the preparation of the polishing composition.
A) Method by filtration of polishing liquid composition B) Method by process control at the time of colloidal silica production

上記A)では、例えば、遠心分離や精密フィルターろ過(特開2006‐102829及び特開2006‐136996)により、50〜200nmのシリカ凝集体を除去することでΔCVを低減できる。具体的には、シリカ濃度20重量%以下になるように適度に希釈したコロイダルシリカ水溶液を、stokesの式より算出した50nm粒子が除去できる条件(例えば、10,000G以上、遠沈管高さ約10cm、2時間以上)で遠心分離する方法や、孔径が0.05μmまたは0.1μmのメンブランフィルター(例えば、アドバンテック、住友3M、Millipore)を用いて加圧ろ過する方法等によりΔCVを低減できる。   In the above A), ΔCV can be reduced by removing silica aggregates of 50 to 200 nm by, for example, centrifugation or fine filter filtration (Japanese Patent Laid-Open No. 2006-102829 and Japanese Patent Laid-Open No. 2006-136996). Specifically, a colloidal silica aqueous solution appropriately diluted so as to have a silica concentration of 20% by weight or less can be removed under conditions where 50 nm particles calculated from the Stokes equation can be removed (for example, 10,000 G or more, centrifuge tube height of about 10 cm). ΔCV can be reduced by a method of centrifuging for 2 hours or more, a method of pressure filtration using a membrane filter having a pore size of 0.05 μm or 0.1 μm (for example, Advantech, Sumitomo 3M, Millipore).

また、コロイダルシリカ粒子は、通常、1)10重量%未満の3号ケイ酸ソーダと種粒子(小粒径シリカ)の混合液(シード液)を反応層に入れ、60℃以上に加熱し、2)そこに3号ケイ酸ソーダを陽イオン交換樹脂に通した酸性の活性ケイ酸水溶液とアルカリ(アルカリ金属または第4級アンモニウム)とを滴下してpHを一定にして球状の粒子を成長させ、3)熟成後に蒸発法や限外ろ過法で濃縮することで得られる(特開昭47−1964、特公平1−23412、特公平4−55125、特公平4−55127)。しかし、同じ製造プロセスで少し工程を変えると非球状粒子の製造も可能であることが多く報告されている。たとえば、活性ケイ酸は非常に不安定なため意図的にCaやMgなどの多価金属イオンを添加すると細長い形状のシリカゾルを製造できる。さらに、反応層の温度(水の沸点を越えると蒸発し気液界面でシリカが乾燥)、反応層のpH(9以下ではシリカ粒子の連結が起きやすい)、反応層のSiO2/M2O(Mはアルカリ金属または第4級アンモニウム)、及びモル比(30〜60で非球状シリカを選択的に生成)などを変えることで非球状シリカが製造できる(特公平8−5657、特許2803134、特開2006−80406、特開2007−153671)。したがって、上記B)では、公知の球状コロイダルシリカ製造プロセスにおいて、局部的に非球状シリカが生成する条件にならないように工程管理を行うことでΔCVを小さく調整することができる。 The colloidal silica particles are usually 1) a mixed solution (seed solution) of less than 10% by weight of No. 3 sodium silicate and seed particles (small particle silica) in a reaction layer, and heated to 60 ° C. or higher. 2) An acidic active silicic acid aqueous solution in which No. 3 sodium silicate is passed through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) are dropped to grow a spherical particle with a constant pH. 3) It can be obtained by concentrating by evaporation or ultrafiltration after aging (Japanese Patent Application Laid-Open No. 47-1964, Japanese Patent Publication No. 1-223412, Japanese Patent Publication No. 4-55125, Japanese Patent Publication No. 4-55127). However, it is often reported that non-spherical particles can be produced by slightly changing the process in the same production process. For example, activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced. Further, the temperature of the reaction layer (evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface), the pH of the reaction layer (silica particles are liable to be linked below 9), the SiO 2 / M 2 O of the reaction layer (M is an alkali metal or quaternary ammonium), and non-spherical silica can be produced by changing the molar ratio (selectively producing non-spherical silica at 30 to 60) (Japanese Patent Publication No. 8-5657, Patent 2803134, JP, 2006-80406, JP, 2007-153671). Therefore, in the above-mentioned B), ΔCV can be adjusted to be small by performing process control so as not to be a condition for generating non-spherical silica locally in a known spherical colloidal silica production process.

コロイダルシリカの粒径分布を調整する方法は、特に限定されないが、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。   The method for adjusting the particle size distribution of the colloidal silica is not particularly limited, but a method of giving a desired particle size distribution by adding particles as a new nucleus in the particle growth process in the production stage, or a different particle size Examples thereof include a method of mixing two or more types of silica particles having a distribution to give a desired particle size distribution.

本発明の研磨液組成物中におけるコロイダルシリカの含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらにより好ましくは4重量%以上であり、また、基板表面の平坦性をより向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらにより好ましくは10重量%以下である。すなわち、上記シリカ粒子の含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらにより好ましくは4〜10重量%である。   The content of colloidal silica in the polishing composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate. More preferably, it is 4% by weight or more, and from the viewpoint of further improving the flatness of the substrate surface, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, even more preferably. Is 10% by weight or less. That is, the content of the silica particles is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and even more preferably 4 to 10% by weight.

[複素環芳香族化合物]
本発明の研磨液組成物に含有される複素環芳香族化合物は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、複素環内に窒素原子を2個以上含む複素環芳香族化合物であり、複素環内に窒素原子を3個以上有することが好ましく、3〜9個がより好ましく、3〜5個がさらに好ましく、3又は4個がさらにより好ましい。
[Heterocyclic aromatic compounds]
The heterocyclic aromatic compound contained in the polishing liquid composition of the present invention is a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring from the viewpoint of reducing scratches and nanoprotrusion defects of the substrate after polishing. It is preferable that it has 3 or more nitrogen atoms in the heterocyclic ring, more preferably 3 to 9, more preferably 3 to 5, and still more preferably 3 or 4.

本発明の研磨液組成物に含有される複素環芳香族化合物は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、ピリミジン、ピラジン、ピリダジン、1,2,3−トリアジン、1,2,4−トリアジン、1,2,5−トリアジン、1,3,5−トリアジン、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、3-アミノピラゾール、4−アミノピラゾール、3,5−ジメチルピラゾール、ピラゾール、2−アミノイミダゾール、4−アミノイミダゾール、5−アミノイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、イミダゾール、ベンゾイミダゾール、1,2,3−トリアゾール、4−アミノー1,2,3−トリアゾール、5−アミノー1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノー1,2,4−トリアゾール、5−アミノー1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、1H−テトラゾール、5−アミノテトラゾール、1H−ベンゾトリアゾール、1H−トリルトリアゾール、2−アミノベンゾトリアゾール、3−アミノベンゾトリアゾール、又はこられのアルキル置換体若しくはアミン置換体が好ましく、1H−ベンゾトリアゾール、1H−トリルトリアゾールがより好ましく、1H−ベンゾトリアゾールがさらに好ましい。前記アルキル置換体のアルキル基としては例えば、炭素数1〜4の低級アルキル基が挙げられ、より具体的にはメチル基、エチル基が挙げられる。また、前記アミン置換体としては1−[N,N−ビス(ヒドロキシエチレン)アミノメチル]ベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチレン)アミノメチル]トリルトリアゾールが挙げられる。   The heterocyclic aromatic compound contained in the polishing liquid composition of the present invention includes pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1, 2,4-triazine, 1,2,5-triazine, 1,3,5-triazine, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole Azole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 3-aminopyrazole, 4-aminopyrazole, 3,5-dimethylpyrazole, pyrazole, 2-aminoimidazole, 4-aminoimidazole, 5-amino Imidazole, 2-methylimidazole, 2-ethylimidazole, imidazole, benzimidazole, 1,2,3-triazole, 4-amino-1,2 3-triazole, 5-amino-1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 5-amino-1,2,4-triazole, 3-mercapto-1 , 2,4-triazole, 1H-tetrazole, 5-aminotetrazole, 1H-benzotriazole, 1H-tolyltriazole, 2-aminobenzotriazole, 3-aminobenzotriazole, or an alkyl or amine substituent thereof. 1H-benzotriazole, 1H-tolyltriazole is more preferable, and 1H-benzotriazole is more preferable. Examples of the alkyl group of the alkyl-substituted product include a lower alkyl group having 1 to 4 carbon atoms, and more specifically, a methyl group and an ethyl group. Examples of the amine-substituted product include 1- [N, N-bis (hydroxyethylene) aminomethyl] benzotriazole and 1- [N, N-bis (hydroxyethylene) aminomethyl] tolyltriazole.

本発明の研磨液組成物における複素環芳香族化合物の含有量は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、研磨液組成物全体の重量に対して0.01〜10重量%であることが好ましく、0.05〜5重量%がより好ましく、0.1〜1重量%がさらに好ましい。なお、研磨液組成物中の複素環芳香族化合物は1種類であってもよく、2種類以上であってもよい。   The content of the heterocyclic aromatic compound in the polishing liquid composition of the present invention is 0.01 to 10 wt% with respect to the total weight of the polishing liquid composition from the viewpoint of reducing scratches on the substrate after polishing and reducing nanoprotrusion defects. %, More preferably 0.05 to 5% by weight, still more preferably 0.1 to 1% by weight. Note that the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.

また、研磨液組成物中における、コロイダルシリカと複素環芳香族化合物との濃度比[コロイダルシリカの濃度(重量%)/複素環芳香族化合物の濃度(重量%)]は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、2〜100が好ましく、5〜50がより好ましく、10〜25がさらに好ましい。   The concentration ratio of colloidal silica and heterocyclic aromatic compound [concentration of colloidal silica (% by weight) / concentration of heterocyclic aromatic compound (% by weight)] in the polishing liquid composition is the substrate surface after polishing. From the viewpoint of reducing scratches and nanoprotrusion defects, 2 to 100 is preferable, 5 to 50 is more preferable, and 10 to 25 is more preferable.

[酸]
本発明の研磨液組成物は、研磨速度を向上させる観点から、酸を含有する。本明細書において、酸の使用は、酸及び又はその塩の使用を含む。本発明の研磨液組成物に使用される酸としては、研磨速度の向上の観点から、その酸のpK1が2以下の化合物が好ましく、スクラッチを低減する観点から、好ましくはpK1が1.5以下、より好ましくは1以下、さらに好ましくはpK1で表せない程の強い酸性を示す化合物である。好ましい酸は、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1,−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸、クエン酸、酒石酸、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸等が挙げられる。中でも、スクラッチ低減の観点から、無機酸、カルボン酸、有機ホスホン酸が好ましく、酸化剤の安定性向上及び廃液処理性向上の観点から、さらに無機酸、有機ホスホン酸が好ましい。また、無機酸の中では、硝酸、硫酸、塩酸、過塩素酸がより好ましく、リン酸、硫酸がさらに好ましい。カルボン酸の中では、クエン酸、酒石酸、マレイン酸がより好ましく、クエン酸がさらに好ましい。有機ホスホン酸の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましく、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)がさらに好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよいが、研磨速度の向上、ナノ突起低減及び基板の洗浄性向上の観点から、2種以上を混合して用いることが好ましく、リン酸、硫酸、クエン酸及び1−ヒドロキシエチリデン−1,1−ジホスホン酸からなる群から選択される2種以上の酸を混合して用いることがさらに好ましい。ここで、pK1とは有機化合物または無機化合物の第一酸解離定数(25℃)の逆数の対数値である。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。
[acid]
The polishing composition of the present invention contains an acid from the viewpoint of improving the polishing rate. In this specification, the use of an acid includes the use of an acid and / or a salt thereof. The acid used in the polishing composition of the present invention is preferably a compound having a pK1 of 2 or less from the viewpoint of improving the polishing rate, and preferably has a pK1 of 1.5 or less from the viewpoint of reducing scratches. More preferably, it is a compound exhibiting strong acidity that cannot be expressed by pK1, more preferably 1 or less. Preferred acids are inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, 2-aminoethylphosphonic acid, 1- Hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1,1,2 -Triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxy Phosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4 Organic phosphonic acids such as tricarboxylic acid and α-methylphosphonosuccinic acid, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid, carboxylic acids such as citric acid, tartaric acid, oxalic acid, nitroacetic acid, maleic acid and oxaloacetic acid Is mentioned. Among these, inorganic acids, carboxylic acids, and organic phosphonic acids are preferable from the viewpoint of reducing scratches, and inorganic acids and organic phosphonic acids are more preferable from the viewpoint of improving the stability of the oxidizing agent and improving the waste liquid treatment properties. Among inorganic acids, nitric acid, sulfuric acid, hydrochloric acid, and perchloric acid are more preferable, and phosphoric acid and sulfuric acid are more preferable. Among the carboxylic acids, citric acid, tartaric acid, and maleic acid are more preferable, and citric acid is more preferable. Among organic phosphonic acids, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), and salts thereof are more preferable. More preferred are -hydroxyethylidene-1,1-diphosphonic acid and aminotri (methylenephosphonic acid). These acids and salts thereof may be used alone or in combination of two or more, but from the viewpoint of improving the polishing rate, reducing nanoprotrusions and improving the cleaning property of the substrate, use two or more in combination. It is more preferable to use a mixture of two or more acids selected from the group consisting of phosphoric acid, sulfuric acid, citric acid and 1-hydroxyethylidene-1,1-diphosphonic acid. Here, pK1 is a logarithmic value of the reciprocal of the first acid dissociation constant (25 ° C.) of the organic compound or inorganic compound. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan).

これらの酸の塩を用いる場合の対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等のイオンが挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。   There are no particular limitations on the counter ion when these acid salts are used, and specific examples include ions of metals, ammonium, alkylammonium, and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing scratches.

研磨液組成物中における前記酸の含有量は、研磨速度向上及び作業環境の安全性向上の観点から、0.001〜5重量%が好ましく、より好ましくは0.01〜4重量%であり、さらに好ましくは0.05〜3重量%、さらにより好ましくは0.1〜2.0重量%である。   The content of the acid in the polishing composition is preferably 0.001 to 5% by weight, more preferably 0.01 to 4% by weight, from the viewpoint of improving the polishing rate and improving the safety of the working environment. More preferably, it is 0.05-3 weight%, More preferably, it is 0.1-2.0 weight%.

[酸化剤]
本発明の研磨液組成物は、研磨速度向上の観点から、酸化剤を含有する。本発明の研磨液組成物に使用できる酸化剤としては、研磨速度を向上させる観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硝酸類、硫酸類等が挙げられる。
[Oxidant]
The polishing composition of the present invention contains an oxidizing agent from the viewpoint of improving the polishing rate. As an oxidizing agent that can be used in the polishing liquid composition of the present invention, from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.

前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等が挙げられ、過マンガン酸又はその塩としては、過マンガン酸カリウム等が挙げられ、クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等が挙げられ、ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等が挙げられ、酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられ、金属塩類としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。   Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc., examples of the permanganic acid or salt thereof include potassium permanganate, and examples of the chromic acid or salt thereof include chromium. Acid metal salts, metal dichromates, and the like. Peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, peroxodisulfate metal salts, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, and performic acid. Peroxyacetic acid, perbenzoic acid, perphthalic acid, etc., and oxygen acids or salts thereof include hypochlorous acid, hypobromous acid, hypoiodous acid, chloric acid, bromic acid, iodic acid, hypochlorous acid. Examples thereof include sodium chlorate and calcium hypochlorite. Examples of metal salts include iron (III) chloride, iron (III) sulfate, iron (III) nitrate, and iron citrate. III), ammonium iron (III), and the like.

好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。より好ましい酸化剤としては、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。   Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. As a more preferable oxidizing agent, hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上であり、基板の表面粗さ低減の観点から、好ましくは4重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。従って、表面品質を保ちつつ研磨速度を向上させるためには、上記含有量は、好ましくは0.01〜4重量%、より好ましくは0.05〜2重量%、さらに好ましくは0.1〜1重量%である。   The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. In view of reducing the surface roughness of the substrate, it is preferably 4% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1. % By weight.

[水]
本発明の研磨液組成物は、媒体として水を含む。前記水としては蒸留水、イオン交換水、超純水等が挙げられる。被研磨基板の表面清浄性の観点からイオン交換水及び超純水が好ましく、超純水がより好ましい。研磨液組成物中の水の含有量は、60〜99.4重量%が好ましく、70〜98.9重量%がより好ましい。また、本発明の効果を阻害しない範囲内でアルコール等の有機溶剤を配合してもよい。
[water]
The polishing composition of the present invention contains water as a medium. Examples of the water include distilled water, ion exchange water, and ultrapure water. From the viewpoint of the surface cleanliness of the substrate to be polished, ion exchange water and ultrapure water are preferable, and ultrapure water is more preferable. The content of water in the polishing composition is preferably 60 to 99.4% by weight, and more preferably 70 to 98.9% by weight. Moreover, you may mix | blend organic solvents, such as alcohol, in the range which does not inhibit the effect of this invention.

[その他の成分]
本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。研磨液組成物中のこれら他の任意成分の含有量は、0〜10重量%が好ましく、0〜5重量%がより好ましい。
[Other ingredients]
In the polishing composition of the present invention, other components can be blended as necessary. Examples of other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant. 0-10 weight% is preferable and, as for content of these other arbitrary components in polishing liquid composition, 0-5 weight% is more preferable.

[研磨液組成物のpH]
本発明の研磨液組成物のpHは、研磨速度向上の観点から3.0以下が好ましく、より好ましくは2.5以下、さらに好ましくは2.0以下、さらにより好ましくは1.8以下である。また、基板の表面粗さ低減及び作業環境の安全性向上の観点から、0.5以上が好ましく、より好ましくは0.8以上、さらに好ましくは1.0以上、さらにより好ましくは1.2以上である。また、研磨液組成物の廃液pHは、研磨速度向上の観点から3以下が好ましく、より好ましくは2.5以下、さらに好ましくは2.2以下、さらにより好ましくは2.0以下である。また、基板の表面粗さ低減、作業環境の安全性向上及び環境保護の観点から、研磨液組成物の廃液pHは、0.8以上が好ましく、より好ましくは1.0以上、さらに好ましくは1.2以上、さらにより好ましくは1.5以上である。なお、廃液pHとは、研磨液組成物を用いた研磨工程における研磨廃液、即ち、研磨機より排出された直後の研磨液組成物のpHをいう。
[PH of polishing composition]
The pH of the polishing composition of the present invention is preferably 3.0 or less from the viewpoint of improving the polishing rate, more preferably 2.5 or less, still more preferably 2.0 or less, and even more preferably 1.8 or less. . Further, from the viewpoint of reducing the surface roughness of the substrate and improving the safety of the work environment, 0.5 or more is preferable, more preferably 0.8 or more, still more preferably 1.0 or more, and even more preferably 1.2 or more. It is. In addition, the waste liquid pH of the polishing composition is preferably 3 or less, more preferably 2.5 or less, still more preferably 2.2 or less, and even more preferably 2.0 or less, from the viewpoint of improving the polishing rate. Further, from the viewpoint of reducing the surface roughness of the substrate, improving the safety of the working environment and protecting the environment, the waste liquid pH of the polishing composition is preferably 0.8 or more, more preferably 1.0 or more, and still more preferably 1. .2 or more, even more preferably 1.5 or more. The waste liquid pH refers to the polishing waste liquid in the polishing step using the polishing liquid composition, that is, the pH of the polishing liquid composition immediately after being discharged from the polishing machine.

[研磨液組成物の調製方法]
本発明の研磨液組成物は、例えば、水と、コロイダルシリカと、複素環芳香族化合物と、酸と、酸化剤と、さらに所望により、他の成分とを公知の方法で混合することにより調製できる。この際、コロイダルシリカは、濃縮されたスラリーの状態で混合されてもよいし、水等で希釈してから混合されてもよい。本発明の研磨液組成物中における各成分の含有量や濃度は、上述した範囲であるが、その他の態様として、本発明の研磨液組成物を濃縮物として調製してもよい。
[Method for preparing polishing liquid composition]
The polishing liquid composition of the present invention is prepared, for example, by mixing water, colloidal silica, a heterocyclic aromatic compound, an acid, an oxidizing agent, and, if desired, other components by a known method. it can. Under the present circumstances, colloidal silica may be mixed in the state of the concentrated slurry, and may be mixed after diluting with water etc. Although content and density | concentration of each component in the polishing liquid composition of this invention are the ranges mentioned above, you may prepare the polishing liquid composition of this invention as a concentrate as another aspect.

本発明は、その他の態様として、コロイダルシリカ、複素環芳香族化合物、酸、酸化剤及び水を含有する磁気ディスク基板用研磨液組成物の調製方法であって、ΔCV値が0〜10%であり、CV90が1〜35%であり、かつ、平均粒径が1〜40nmであるコロイダルシリカを選択及び又は確認して使用することを含む磁気ディスク基板用研磨液組成物の調製方法を提供し得る。上記コロイダルシリカを用いた磁気ディスク基板用研磨液組成物であれば、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減できる。当然に、この磁気ディスク基板用研磨液組成物の調製方法であれば、本発明の研磨液組成物も製造することができる。   In another aspect, the present invention provides a method for preparing a polishing liquid composition for a magnetic disk substrate containing colloidal silica, a heterocyclic aromatic compound, an acid, an oxidizing agent, and water, wherein the ΔCV value is 0 to 10%. And a method for preparing a polishing composition for a magnetic disk substrate, comprising selecting and / or using colloidal silica having a CV90 of 1 to 35% and an average particle diameter of 1 to 40 nm. obtain. If it is the polishing composition for magnetic disk substrates using the colloidal silica, scratches and nanoprotrusion defects on the substrate surface after polishing can be reduced. Of course, the polishing composition of the present invention can also be produced by this method of preparing a polishing composition for a magnetic disk substrate.

[磁気ディスク基板の製造方法]
本発明は、その他の態様として、磁気ディスク基板の製造方法(以下、本発明の製造方法ともいう。)に関する。本発明の製造方法は、上述した本発明の研磨液組成物を用いて被研磨基板を研磨する工程(以下、本発明の研磨液組成物を用いた研磨工程ともいう。)を含む磁気ディスク基板の製造方法である。これにより、研磨速度の低下を抑制でき、生産性及び研磨後の基板の表面粗さを大きく損なうことなく、研磨後の基板表面のスクラッチ及びナノ突起欠陥が低減された磁気ディスク基板を好ましくは提供できる。本発明の製造方法は、とりわけ、垂直磁気記録方式用磁気ディスク基板の製造方法に適している。よって、本発明の製造方法は、その他の態様として、本発明の研磨液組成物を用いた研磨工程を含む垂直磁気記録方式用磁気ディスク基板の製造方法である。
[Method of manufacturing magnetic disk substrate]
As another aspect, the present invention relates to a method of manufacturing a magnetic disk substrate (hereinafter also referred to as a manufacturing method of the present invention). The manufacturing method of the present invention includes a step of polishing a substrate to be polished using the above-described polishing liquid composition of the present invention (hereinafter also referred to as a polishing process using the polishing liquid composition of the present invention). It is a manufacturing method. Thereby, it is possible to suppress a decrease in polishing rate, and preferably provide a magnetic disk substrate in which scratches and nanoprotrusion defects on the substrate surface after polishing are reduced without significantly impairing the productivity and surface roughness of the substrate after polishing. it can. The manufacturing method of the present invention is particularly suitable for a method for manufacturing a magnetic disk substrate for perpendicular magnetic recording. Therefore, as another aspect, the manufacturing method of the present invention is a method of manufacturing a magnetic disk substrate for a perpendicular magnetic recording system including a polishing step using the polishing composition of the present invention.

本発明の研磨液組成物を用いて被研磨基板を研磨する方法の具体例としては、不織布状の有機高分子系研磨布等の研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本発明の研磨液組成物を研磨機に供給しながら、定盤や被研磨基板を動かして被研磨基板を研磨する方法が挙げられる。   As a specific example of a method for polishing a substrate to be polished using the polishing liquid composition of the present invention, the substrate to be polished is sandwiched between a surface plate to which a polishing pad such as a non-woven organic polymer polishing cloth is attached. A method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while supplying the polishing composition of the invention to the polishing machine can be mentioned.

被研磨基板の研磨工程が多段階で行われる場合は、本発明の研磨液組成物を用いた研磨工程は2段階目以降に行われるのが好ましく、最終研磨工程で行われるのがより好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、研磨工程毎に被研磨基板を洗浄することが好ましい。また使用した研磨液を再利用する循環研磨においても、本発明の研磨液組成物は使用できる。なお、研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。   In the case where the polishing process of the substrate to be polished is performed in multiple stages, the polishing process using the polishing composition of the present invention is preferably performed in the second stage and more preferably in the final polishing process. At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and in the case of using different polishing machines, polishing is performed for each polishing process. It is preferable to clean the substrate. Further, the polishing composition of the present invention can also be used in cyclic polishing in which the used polishing liquid is reused. The polishing machine is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.

[研磨パッド]
本発明で使用される研磨パッドとしては、特に制限はなく、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、又はこれらを積層した二層タイプ等の研磨パッドを使用することができるが、研磨速度の観点から、スエードタイプの研磨パッドが好ましい。
[Polishing pad]
The polishing pad used in the present invention is not particularly limited, and a polishing pad of a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used. From the viewpoint, a suede type polishing pad is preferable.

研磨パッドの表面部材の平均気孔径は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減及びパッド寿命の観点から、50μm以下が好ましく、より好ましくは45μm以下、さらに好ましくは40μm以下、さらにより好ましくは35μm以下である。パッドの研磨液保持性の観点から、気孔で研磨液を保持し液切れを起こさないようにするために、平均気孔径は0.01μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは1μm以上、さらにより好ましくは10μm以上である。また、研磨パッドの気孔径の最大値は、研磨速度維持の観点から、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。   The average pore diameter of the surface member of the polishing pad is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, and even more preferably from the viewpoints of reduction of scratches and nanoprotrusion defects on the substrate surface after polishing and pad life. Preferably it is 35 micrometers or less. From the viewpoint of holding the polishing liquid of the pad, the average pore diameter is preferably 0.01 μm or more, more preferably 0.1 μm or more, and still more preferably, in order to keep the polishing liquid in the pores and prevent the liquid from running out. It is 1 μm or more, more preferably 10 μm or more. Further, the maximum value of the pore size of the polishing pad is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 60 μm or less, and particularly preferably 50 μm or less from the viewpoint of maintaining the polishing rate.

[研磨荷重]
本発明の研磨液組成物を用いた研磨工程における研磨荷重は、好ましくは5.9kPa以上、より好ましくは6.9kPa以上、さらに好ましくは7.5kPa以上である。これにより、研磨速度の低下を抑制できるため、生産性の向上が可能となる。なお、本発明の製造方法において研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力をいう。また、本発明の研磨液組成物を用いた研磨工程において、研磨荷重は20kPa以下が好ましく、より好ましくは18kPa以下、さらに好ましくは16kPa以下である。これにより、スクラッチ及びナノ突起欠陥の発生を抑制することができる。したがって、本発明の研磨液組成物を用いた研磨工程において研磨荷重は5.9〜20kPaが好ましく、6.9〜18kPaがより好ましく、7.5〜16kPaがさらに好ましい。研磨荷重の調整は、定盤及び被研磨基板のうち少なくとも一方に空気圧や重りを負荷することにより行うことができる。
[Polishing load]
The polishing load in the polishing step using the polishing liquid composition of the present invention is preferably 5.9 kPa or more, more preferably 6.9 kPa or more, and further preferably 7.5 kPa or more. Thereby, since the fall of a grinding | polishing speed | rate can be suppressed, productivity can be improved. In the production method of the present invention, the polishing load refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing. In the polishing step using the polishing composition of the present invention, the polishing load is preferably 20 kPa or less, more preferably 18 kPa or less, and further preferably 16 kPa or less. Thereby, generation | occurrence | production of a scratch and a nanoprotrusion defect can be suppressed. Therefore, in the polishing step using the polishing liquid composition of the present invention, the polishing load is preferably 5.9 to 20 kPa, more preferably 6.9 to 18 kPa, and further preferably 7.5 to 16 kPa. The polishing load can be adjusted by applying air pressure or weight to at least one of the surface plate and the substrate to be polished.

[研磨液組成物の供給]
本発明の研磨液組成物を用いた研磨工程における本発明の研磨液組成物の供給速度は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、被研磨基板1cm2当たり、好ましくは0.05〜15mL/分であり、より好ましくは0.06〜10mL/分であり、さらに好ましくは0.07〜1mL/分、さらにより好ましくは0.08〜0.5mL/分、さらにより好ましくは0.12〜0.5mL/分である。
[Supply of polishing liquid composition]
In the polishing process using the polishing liquid composition of the present invention, the supply rate of the polishing liquid composition of the present invention is preferably 1 cm 2 of the substrate to be polished from the viewpoint of reducing scratches on the surface of the substrate after polishing and reducing nanoprotrusion defects. Is 0.05 to 15 mL / min, more preferably 0.06 to 10 mL / min, still more preferably 0.07 to 1 mL / min, even more preferably 0.08 to 0.5 mL / min, further More preferably, it is 0.12-0.5 mL / min.

本発明の研磨液組成物を研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本発明の研磨液組成物となる。   As a method for supplying the polishing composition of the present invention to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned. When supplying the polishing composition to the polishing machine, in addition to the method of supplying one component containing all the components, considering the stability of the polishing composition, etc., it is divided into a plurality of compounding component liquids, Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition of the present invention.

[被研磨基板]
本発明において好適に使用される被研磨基板の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金や、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質や、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料や、ポリイミド樹脂等の樹脂等が挙げられる。中でも、アルミニウム、ニッケル、タングステン、銅等の金属や、これらの金属を主成分とする合金を含有する被研磨基板が好適である。特にNi−Pメッキされたアルミニウム合金基板や、結晶化ガラス、強化ガラス等のガラス基板に適しており、中でもNi−Pメッキされたアルミニウム合金基板が適している。
[Polished substrate]
Examples of the material of the substrate to be polished preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, or an alloy containing these metals as a main component is preferable. It is particularly suitable for Ni-P plated aluminum alloy substrates and glass substrates such as crystallized glass and tempered glass, among which Ni-P plated aluminum alloy substrates are suitable.

また、本発明によれば、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板を提供できるため、高度の表面平滑性が要求される垂直磁気記録方式の磁気ディスク基板の研磨に好適に用いることができる。   Further, according to the present invention, in addition to scratching of the substrate surface after polishing, a magnetic disk substrate with reduced nano-projection defects on the substrate surface after polishing can be provided, so that a high degree of surface smoothness is required. It can be suitably used for polishing a magnetic recording type magnetic disk substrate.

上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2〜95mm程度であり、その厚みは例えば0.5〜2mm程度である。   There is no restriction | limiting in particular in the shape of the said to-be-polished substrate, For example, what is necessary is just the shape which has planar parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens. Of these, a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, about 2 to 95 mm, and the thickness is, for example, about 0.5 to 2 mm.

[研磨方法]
本発明は、その他の態様として、上述した研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨することを含む被研磨基板の研磨方法に関する。本発明の研磨方法を使用することにより、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板が好ましくは提供される。本発明の研磨方法における前記被研磨基板としては、上述のとおり、磁気ディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられ、なかでも、垂直磁気記録方式用磁気ディスク基板の製造に用いる基板が好ましい。なお、具体的な研磨の方法及び条件は、上述のとおりとすることができる。
[Polishing method]
As another aspect, the present invention relates to a method for polishing a substrate to be polished, which comprises polishing the substrate to be polished while bringing the above-mentioned polishing composition into contact with a polishing pad. By using the polishing method of the present invention, in addition to scratches on the polished substrate surface, a magnetic disk substrate with reduced nanoprojection defects on the polished substrate surface, particularly a perpendicular magnetic recording type magnetic disk substrate is preferred. Is provided. Examples of the substrate to be polished in the polishing method of the present invention include those used in the manufacture of a magnetic disk substrate and a magnetic recording medium substrate as described above. A substrate used for production is preferred. The specific polishing method and conditions can be as described above.

下記のように実施例1〜5及び比較例1〜8の研磨液組成物を調製して被研磨基板の研磨を行い、研磨後の基板のスクラッチ及びナノ突起欠陥並びに研磨速度を評価した。評価結果を下記表1に示す。研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。   The polishing liquid compositions of Examples 1 to 5 and Comparative Examples 1 to 8 were prepared as described below to polish the substrate to be polished, and scratches and nanoprojection defects of the substrate after polishing and the polishing rate were evaluated. The evaluation results are shown in Table 1 below. A method for preparing the polishing liquid composition, a method for measuring each parameter, a polishing condition (polishing method), and an evaluation method are as follows.

[研磨液組成物の調製方法]
コロイダルシリカ(シリカA〜G:日揮触媒化成社製、シリカH〜I:DAナノマテリアルズ社製)、複素環芳香族化合物(1H−ベンゾトリアゾール(BTA))、酸(硫酸)、及び酸化剤(過酸化水素)を用いて実施例1〜5及び比較例1〜8の研磨液組成物を調製した。実施例1〜5、比較例1〜3、6〜8の各成分の濃度は、コロイダルシリカ5重量%、硫酸0.4重量%、過酸化水素0.4重量%、ベンゾトリアゾール0.1重量%、残部イオン交換水とした。なお、比較例4ではコロイダルシリカ5重量%、リン酸2重量%、過酸化水素0.62重量%、ベンゾトリアゾール0.1重量%、K2HPO40.8重量%、残部イオン交換水とした。比較例5ではコロイダルシリカ5重量%、マレイン酸1%、過酸化水素0.62重量%、ベンゾトリアゾール0.1重量%、K2HPO40.8%を使用した。
[Method for preparing polishing liquid composition]
Colloidal silica (silica A to G: manufactured by JGC Catalysts & Chemicals, silica HI: manufactured by DA Nanomaterials), heterocyclic aromatic compound (1H-benzotriazole (BTA)), acid (sulfuric acid), and oxidizing agent The polishing composition of Examples 1-5 and Comparative Examples 1-8 was prepared using (hydrogen peroxide). The concentration of each component of Examples 1 to 5, Comparative Examples 1 to 3 and 6 to 8 was 5% by weight of colloidal silica, 0.4% by weight of sulfuric acid, 0.4% by weight of hydrogen peroxide, and 0.1% by weight of benzotriazole. %, The balance was ion exchange water. In Comparative Example 4, 5% by weight of colloidal silica, 2% by weight of phosphoric acid, 0.62% by weight of hydrogen peroxide, 0.1% by weight of benzotriazole, 0.8% by weight of K 2 HPO 4 , and the remaining ion-exchanged water did. In Comparative Example 5, 5% by weight of colloidal silica, 1% of maleic acid, 0.62% by weight of hydrogen peroxide, 0.1% by weight of benzotriazole, and 0.8% of K 2 HPO 4 were used.

[動的光散乱法で測定されるシリカ粒子の平均粒径、CV90、ΔCV値の測定方法]
〔平均粒径及びCV90〕
コロイダルシリカと、硫酸と、過酸化水素水とをイオン交換水に添加し、これらを混合することにより、標準試料を作製した。標準試料中におけるコロイダルシリカ、硫酸、過酸化水素の含有量は、それぞれ5重量%、0.4重量%、0.4重量%であった。この標準試料を大塚電子社製動的光散乱装置DLS−6500により、同メーカーが添付した説明書に従って、200回積算した際の検出角90°におけるMarquardt法によって得られる散乱強度分布の面積が全体の50%となる粒径を求め、シリカ粒子の平均粒径とした。また、検出角90°におけるコロイダルシリカのCV値(CV90)を、上記測定法に従って測定した散乱強度分布における標準偏差を前記平均粒径で除して100をかけた値として算出した。
〔ΔCV値〕
上記CV90の測定法と同様に、検出角30°におけるコロイダルシリカのCV値(CV30)を測定し、CV30からCV90を引いた値を求め、シリカ粒子のΔCV値とした。
(DLS−6500の測定条件)
検出角:90°
Sampling time : 4(μm)
Correlation Channel : 256(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
検出角:30°
Sampling time : 10(μm)
Correlation Channel : 1024(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
[Measuring method of average particle diameter, CV90, and ΔCV value of silica particles measured by dynamic light scattering method]
[Average particle size and CV90]
Colloidal silica, sulfuric acid, and hydrogen peroxide water were added to ion exchange water, and these were mixed to prepare a standard sample. The contents of colloidal silica, sulfuric acid, and hydrogen peroxide in the standard sample were 5% by weight, 0.4% by weight, and 0.4% by weight, respectively. The total area of the scattering intensity distribution obtained by the Marquardt method at a detection angle of 90 ° when this standard sample is integrated 200 times with the dynamic light scattering device DLS-6500 manufactured by the same manufacturer according to the instructions attached by the manufacturer. The average particle size of the silica particles was determined. Further, the CV value (CV90) of colloidal silica at a detection angle of 90 ° was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the average particle diameter and multiplying by 100.
[ΔCV value]
Similar to the CV90 measurement method, the CV value (CV30) of colloidal silica at a detection angle of 30 ° was measured, and the value obtained by subtracting CV90 from CV30 was determined to be the ΔCV value of the silica particles.
(Measurement conditions for DLS-6500)
Detection angle: 90 °
Sampling time: 4 (μm)
Correlation Channel: 256 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)
Detection angle: 30 °
Sampling time: 10 (μm)
Correlation Channel: 1024 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)

[研磨]
[被研磨基板]
被研磨基板としては、Ni−Pメッキされたアルミニウム合金基板を予めアルミナ研磨材を含有する研磨液組成物で粗研磨した基板を用いた。なお、この被研磨基板は、厚さが1.27mm、外径が95mm、内径が25mmであり、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが1nm、長波長うねり(波長0.4〜2mm)の振幅は2nm、短波長うねり(波長50〜400μm)の振幅は2nmであった。
[Polishing]
[Polished substrate]
As the substrate to be polished, a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni-P in advance with a polishing composition containing an alumina abrasive was used. The substrate to be polished has a thickness of 1.27 mm, an outer diameter of 95 mm, an inner diameter of 25 mm, a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM), 1 nm, and a long wavelength. The amplitude of the undulation (wavelength 0.4 to 2 mm) was 2 nm, and the amplitude of the short wavelength undulation (wavelength 50 to 400 μm) was 2 nm.

[研磨条件]
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:フジボウ社製スエードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cm2あたりの供給速度:0.072mL/分)
下定盤回転数:32.5rpm
研磨荷重:7.9kPa
研磨時間:5分間
[Polishing conditions]
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: Fujibo's suede type (thickness 0.9mm, average hole diameter 30μm)
Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of polishing substrate: 0.072 mL / min)
Lower platen rotation speed: 32.5 rpm
Polishing load: 7.9 kPa
Polishing time: 5 minutes

[研磨速度の測定方法]
研磨前後の各基板の重さを重量計(Sartorius社製「BP−210S」)を用いて測定し、各基板の重量変化を求め、10枚の平均値を重量減少量とし、それを研磨時間で割った値を重量減少速度とした。この重量減少速度を下記の式に導入し、研磨速度(μm/min)に変換した。
研磨速度(μm/min)=重量減少速度(g/min)/基板片面面積(mm2)/Ni−Pメッキ密度(g/cm3)×106
(基板片面面積:6597mm2、Ni−Pメッキ密度:7.99g/cm3として算出)
[Measurement method of polishing rate]
The weight of each substrate before and after polishing was measured using a weigh scale ("BP-210S" manufactured by Sartorius) to determine the weight change of each substrate, and the average value of 10 substrates was used as the weight reduction amount, which was used as the polishing time. The value obtained by dividing by was used as the weight reduction rate. This weight reduction rate was introduced into the following formula and converted into a polishing rate (μm / min).
Polishing rate (μm / min) = weight reduction rate (g / min) / substrate single-sided area (mm 2 ) / Ni-P plating density (g / cm 3 ) × 10 6
(Substrate single-sided area: 6597 mm 2 , Ni—P plating density: calculated as 7.9 g / cm 3 )

[ナノ突起欠陥及びスクラッチの評価方法]
測定機器:KLA Tencor社製、OSA6100
評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してナノ突起欠陥及びスクラッチを測定した。その4枚の基板の各々両面にあるスクラッチ数(本)の合計を8で除して、基板面当たりのナノ突起欠陥及びスクラッチの数を算出した。その結果を、下記表1に、比較例1を100とした相対値として示す。
[Evaluation method of nanoprotrusion defects and scratches]
Measuring instrument: OSA6100, manufactured by KLA Tencor
Evaluation: Four substrates were randomly selected from the substrates put in the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure nanoprotrusion defects and scratches. The total number of scratches (lines) on each of the four substrates was divided by 8 to calculate the number of nanoprotrusion defects and scratches per substrate surface. The results are shown in Table 1 below as relative values with Comparative Example 1 taken as 100.

Figure 2011134388
Figure 2011134388

上記表1に示すように、実施例1〜5の研磨液組成物を用いると、比較例1〜8に比べ、研磨後の基板のスクラッチに加えて、基板表面のナノ突起を低減できた。   As shown in Table 1, when the polishing liquid compositions of Examples 1 to 5 were used, compared to Comparative Examples 1 to 8, in addition to scratches on the substrate after polishing, nanoprojections on the substrate surface could be reduced.

本発明によれば、例えば、高記録密度化に適した磁気ディスク基板を提供できる。   According to the present invention, for example, a magnetic disk substrate suitable for increasing the recording density can be provided.

Claims (4)

コロイダルシリカ、複素環内に窒素原子を2個以上含む複素環芳香族化合物、酸、酸化剤及び水を含有する磁気ディスク基板用研磨液組成物であって、
前記コロイダルシリカは、ΔCV値が0〜10%であり、CV90が1〜35%であり、かつ、平均粒径が1〜40nmであり、
ここで、前記ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、
前記CV90は、動的光散乱法による検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値であり、
前記平均粒径は、動的光散乱法による検出角90°における散乱強度分布に基づく平均粒径である、磁気ディスク基板用研磨液組成物。
A polishing liquid composition for a magnetic disk substrate comprising colloidal silica, a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring, an acid, an oxidizing agent and water,
The colloidal silica has a ΔCV value of 0 to 10%, a CV90 of 1 to 35%, and an average particle size of 1 to 40 nm.
Here, the ΔCV value is obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30), A difference value (ΔCV = CV30−) obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 90 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV90). CV90)
The CV90 is a value obtained by dividing a standard deviation based on a scattering intensity distribution at a detection angle of 90 ° by a dynamic light scattering method by an average particle diameter based on the scattering intensity distribution and multiplying by 100.
The magnetic particle substrate polishing liquid composition, wherein the average particle size is an average particle size based on a scattering intensity distribution at a detection angle of 90 ° by a dynamic light scattering method.
前記複素環芳香族化合物が、ピリミジン、ピラジン、ピリダジン、1,2,3−トリアジン、1,2,4−トリアジン、1,2,5−トリアジン、1,3,5−トリアジン、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、3-アミノピラゾール、4−アミノピラゾール、3,5−ジメチルピラゾール、ピラゾール、2−アミノイミダゾール、4−アミノイミダゾール、5−アミノイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、イミダゾール、ベンゾイミダゾール、1,2,3−トリアゾール、4−アミノー1,2,3−トリアゾール、5−アミノー1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノー1,2,4−トリアゾール、5−アミノー1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、1H−テトラゾール、5−アミノテトラゾール、1H−ベンゾトリアゾール、1H−トリルトリアゾール、2−アミノベンゾトリアゾール、3−アミノベンゾトリアゾール及びこられのアルキル置換体又はアミン置換体からなる群から選択される、請求項1記載の磁気ディスク基板用研磨液組成物。 The heterocyclic aromatic compound is pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1,2,4-triazine, 1,2,5-triazine, 1,3,5-triazine, 1,2, 4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 3-aminopyrazole, 4-amino Pyrazole, 3,5-dimethylpyrazole, pyrazole, 2-aminoimidazole, 4-aminoimidazole, 5-aminoimidazole, 2-methylimidazole, 2-ethylimidazole, imidazole, benzimidazole, 1,2,3-triazole, 4 -Amino-1,2,3-triazole, 5-amino-1,2,3-triazole, 1,2,4-triazole, 3 Amino-1,2,4-triazole, 5-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 1H-tetrazole, 5-aminotetrazole, 1H-benzotriazole, 1H-tolyltriazole 2. The polishing composition for a magnetic disk substrate according to claim 1, wherein the polishing liquid composition is selected from the group consisting of 2-aminobenzotriazole, 3-aminobenzotriazole and alkyl substitution products or amine substitution products thereof. 酸のpK1が2以下である、請求項1又は2に記載の磁気ディスク基板用研磨液組成物。 The polishing composition for a magnetic disk substrate according to claim 1 or 2, wherein the acid has a pK1 of 2 or less. 請求項1又は2いずれかに記載の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。 A method for producing a magnetic disk substrate, comprising a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to claim 1.
JP2009293090A 2009-12-24 2009-12-24 Polishing liquid composition for magnetic disk substrate Active JP5473587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293090A JP5473587B2 (en) 2009-12-24 2009-12-24 Polishing liquid composition for magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293090A JP5473587B2 (en) 2009-12-24 2009-12-24 Polishing liquid composition for magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2011134388A true JP2011134388A (en) 2011-07-07
JP5473587B2 JP5473587B2 (en) 2014-04-16

Family

ID=44346953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293090A Active JP5473587B2 (en) 2009-12-24 2009-12-24 Polishing liquid composition for magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP5473587B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153003A (en) * 2012-01-24 2013-08-08 Hitachi Chemical Co Ltd Polishing liquid and polishing method of substrate
JP5531236B2 (en) * 2010-12-06 2014-06-25 株式会社Moresco Glass substrate polishing composition and polishing slurry
JP2014130663A (en) * 2012-12-28 2014-07-10 Kao Corp Manufacturing method for magnetic disk substrate
JP2017075316A (en) * 2016-10-25 2017-04-20 花王株式会社 Manufacturing method of polishing liquid composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092064A (en) * 2005-09-29 2007-04-12 Fujimi Inc Polishing composition
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2009181690A (en) * 2009-04-02 2009-08-13 Kao Corp Method of manufacturing substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092064A (en) * 2005-09-29 2007-04-12 Fujimi Inc Polishing composition
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2012211080A (en) * 2007-03-27 2012-11-01 Fuso Chemical Co Ltd Method for producing colloidal silica
JP2009181690A (en) * 2009-04-02 2009-08-13 Kao Corp Method of manufacturing substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531236B2 (en) * 2010-12-06 2014-06-25 株式会社Moresco Glass substrate polishing composition and polishing slurry
JP2013153003A (en) * 2012-01-24 2013-08-08 Hitachi Chemical Co Ltd Polishing liquid and polishing method of substrate
JP2014130663A (en) * 2012-12-28 2014-07-10 Kao Corp Manufacturing method for magnetic disk substrate
JP2017075316A (en) * 2016-10-25 2017-04-20 花王株式会社 Manufacturing method of polishing liquid composition

Also Published As

Publication number Publication date
JP5473587B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5657247B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
JP5630992B2 (en) Polishing liquid composition for magnetic disk substrate
JP5940270B2 (en) Polishing liquid composition
JP5473544B2 (en) Polishing liquid composition for magnetic disk substrate
JP5769284B2 (en) Polishing liquid composition for magnetic disk substrate
WO2010053096A1 (en) Polishing liquid composition for magnetic disk substrate
JP6251033B2 (en) Polishing liquid composition for magnetic disk substrate
US6910952B2 (en) Polishing composition
US7303601B2 (en) Polishing composition
US20140346138A1 (en) Polishing composition for magnetic disk substrate
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP5613422B2 (en) Polishing liquid composition for magnetic disk substrate
JP4651532B2 (en) Manufacturing method of magnetic disk substrate
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP6425303B2 (en) Polishing liquid composition
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP4462599B2 (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4373776B2 (en) Polishing liquid composition
JP2008101132A (en) Polishing fluid composition for memory hard disk substrate
JP2008094982A (en) Polishing liquid composition for memory hard disk substrate
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP4640981B2 (en) Substrate manufacturing method
JP6910940B2 (en) Abrasive liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R151 Written notification of patent or utility model registration

Ref document number: 5473587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250