JP5531236B2 - Glass substrate polishing composition and polishing slurry - Google Patents

Glass substrate polishing composition and polishing slurry Download PDF

Info

Publication number
JP5531236B2
JP5531236B2 JP2012547881A JP2012547881A JP5531236B2 JP 5531236 B2 JP5531236 B2 JP 5531236B2 JP 2012547881 A JP2012547881 A JP 2012547881A JP 2012547881 A JP2012547881 A JP 2012547881A JP 5531236 B2 JP5531236 B2 JP 5531236B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
polishing slurry
surface roughness
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012547881A
Other languages
Japanese (ja)
Other versions
JPWO2012077693A1 (en
Inventor
研太郎 浜島
秀和 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moresco Corp
Original Assignee
Moresco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moresco Corp filed Critical Moresco Corp
Priority to JP2012547881A priority Critical patent/JP5531236B2/en
Publication of JPWO2012077693A1 publication Critical patent/JPWO2012077693A1/en
Application granted granted Critical
Publication of JP5531236B2 publication Critical patent/JP5531236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、ハードディスク用ガラス基板、光ディスク用ガラス基板、プラズマディスプレイ(PDP)用ガラス基板、液晶ディスプレイ(LCD)用ガラス基板及びフォトマスク用ガラス基板などの各種ガラス基板研磨用組成物(以下、研磨用組成物)及びそれを用いた研磨スラリーに関する。更に詳しくは、仕上げ面粗さ及び表面凹凸欠陥の改善に優れた研磨用組成物並びに研磨スラリーに関する。   The present invention relates to various glass substrate polishing compositions such as hard disk glass substrates, optical disk glass substrates, plasma display (PDP) glass substrates, liquid crystal display (LCD) glass substrates, and photomask glass substrates (hereinafter referred to as polishing). And a polishing slurry using the same. More specifically, the present invention relates to a polishing composition and polishing slurry excellent in improving finished surface roughness and surface irregularity defects.

近年ハードディスクは、高記録密度化が求められている。ハードディスクドライブの記録密度を向上させるためには、磁気信号の検出感度を向上させるために、磁気ヘッドと磁気ディスクのフライングハイトをより狭くする必要がある。このためにガラス基板には仕上げ面粗さ及び表面凹凸欠陥の改善が重要課題となっている。
この高記録密度化の流れは年々加速しており、ガラス基板研磨スラリーへの要求が高くなっている。その要求項目は仕上げ面粗さが低いことに始まり、微小ピット、微小突起及び微小スクラッチ等の表面欠陥が無いことやガラス基板の生産能力を向上させるために研磨速度が高いことが求められている。
上記研磨用組成物として、高品質のガラス基板を得るための研磨用組成物が種々提案されている。
例えば特許文献1では、第1級アミノ基を有する脂肪族アミン又はアンモニアを含む研磨スラリーが提案されている。また、特許文献2では、炭酸塩又は硫酸塩を含む研磨スラリーが提案されている。しかしながら、従来技術を用いた研磨用組成物では高記録密度化に適合する仕上げ面粗さが得られていない点において課題が残されている。
In recent years, high recording density has been demanded for hard disks. In order to improve the recording density of the hard disk drive, it is necessary to narrow the flying height of the magnetic head and the magnetic disk in order to improve the detection sensitivity of the magnetic signal. For this reason, improvement of finished surface roughness and surface irregularity defects is an important issue for glass substrates.
This trend toward higher recording density is accelerating year by year, and the demand for glass substrate polishing slurry is increasing. The required items start with low finished surface roughness, and are required to have no surface defects such as micro pits, micro protrusions and micro scratches, and to have a high polishing rate in order to improve the glass substrate production capacity. .
Various polishing compositions for obtaining a high-quality glass substrate have been proposed as the polishing composition.
For example, Patent Document 1 proposes a polishing slurry containing an aliphatic amine having a primary amino group or ammonia. In Patent Document 2, a polishing slurry containing carbonate or sulfate is proposed. However, the polishing composition using the prior art still has a problem in that the finished surface roughness suitable for increasing the recording density is not obtained.

WO2004/100242WO2004 / 100242 特開2006−315160JP 2006-315160 A

本発明の課題は、ガラス基板の加工において、仕上げ面粗さ及び表面凹凸欠陥を改善することのできる研磨スラリー並びに当該研磨スラリーを調製するための研磨用組成物を提供することにある。
本発明者は、特定の研磨用組成物及び研磨砥粒を含む研磨スラリーが上記課題を解決することを見出し、本発明を完成するに至った。
The subject of this invention is providing the polishing composition for preparing the polishing slurry which can improve a finishing surface roughness and surface unevenness defect, and the said polishing slurry in the process of a glass substrate.
The present inventor has found that a polishing slurry containing a specific polishing composition and abrasive grains solves the above problems, and has completed the present invention.

本発明は、下記の発明に係る。
1.(A)及び(B)の成分を含むガラス基板研磨用組成物。
(A)メルカプト基、アルキルチオ基及びアルキル基から選ばれる少なくとも1つの基を有するテトラゾール誘導体
(B)水
2.(A)、(B)及び(C)の成分を含むガラス基板研磨用組成物。
(A)メルカプト基、アルキルチオ基及びアルキル基から選ばれる少なくとも1つの基を有するテトラゾール誘導体
(B)水
(C)高分子多糖類
3.(A)、(B)、(C)及び(D)の成分を含むガラス基板研磨用組成物。
(A)メルカプト基、アルキルチオ基及びアルキル基から選ばれる少なくとも1つの基を有するテトラゾール誘導体
(B)水
(C)高分子多糖類
(D)アミン
4.(A)を0.01〜20重量%、(C)を0.01〜20重量%、(D)を0.01〜20重量%、(B)を残部、からなる上記1〜3のいずれかに記載の組成物。
5.ガラス基板が、ハードディスクガラス基板である上記1〜4のいずれかに記載の組成物。
6.上記のいずれかに記載の研磨用組成物及び研磨砥粒を含む研磨スラリー。
The present invention relates to the following inventions.
1. A composition for polishing a glass substrate comprising the components (A) and (B).
(A) a tetrazole derivative having at least one group selected from a mercapto group, an alkylthio group and an alkyl group (B) water 2. A composition for polishing a glass substrate comprising the components (A), (B) and (C).
(A) a tetrazole derivative having at least one group selected from a mercapto group, an alkylthio group and an alkyl group (B) water (C) a high molecular polysaccharide; A composition for polishing a glass substrate comprising the components (A), (B), (C) and (D).
(A) a tetrazole derivative having at least one group selected from a mercapto group, an alkylthio group and an alkyl group (B) water (C) a high molecular polysaccharide (D) amine Any one of the above 1 to 3 comprising (A) 0.01 to 20% by weight, (C) 0.01 to 20% by weight, (D) 0.01 to 20% by weight, and (B) the remainder. A composition according to claim 1.
5. 5. The composition according to any one of 1 to 4 above, wherein the glass substrate is a hard disk glass substrate.
6). A polishing slurry comprising the polishing composition according to any one of the above and polishing abrasive grains.

本発明により、各種ガラス基板の加工において、仕上げ面粗さ及び表面凹凸欠陥を改善させることが可能である。更に、研磨速度を向上させることができる。   According to the present invention, it is possible to improve finished surface roughness and surface irregularity defects in the processing of various glass substrates. Furthermore, the polishing rate can be improved.

本発明のガラス基板研磨用組成物の各成分について以下に詳しく説明する。
(A)メルカプト基、アルキルチオ基及びアルキル基から選ばれる少なくとも1つの基を有するテトラゾール誘導体において、アルキルチオ基としては例えば、炭素数1〜4の低級アルキルチオ基が挙げられ、アルキル基としては例えば、炭素数1〜4の低級アルキル基が挙げられる。具体的には、5−メルカプト−1−メチルテトラゾール、1−[2−(ジメチルアミノ)エチル]−5−メルカプト−1H−テトラゾール、5−(メチルチオ)−1H−テトラゾール、5−(エチルチオ)−1H−テトラゾール、5−メチルテトラゾール、5−エチルテトラゾール等が挙げられる。
(B)水としては、イオン交換水もしくは純水等の精製水が好ましい。
(C)高分子多糖類としては、例えば、プルラン、アミロース、アミロペクチン、グリコーゲン、デキストリン、ヒアルロン酸等が挙げられる。
(D)アミンは、特に限定されないが、例えば、イソプロピルアミン、シクロヘキシルアミン、ジエチルアミン、トリエチルアミン等の炭素数1〜10の鎖状又は環状のアルキルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、N−メチルモノエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、ジグリコールアミン、2−アミノ−2−メチル−1−プロパノール、n−ブタノールアミン、イソブタノールアミン、tert−ブタノールアミン等の炭素数1〜10のアルカノールアミン、モルホリン、N−(2−アミノエチル)ピペラジン等の炭素数4〜10、好ましくは炭素数4〜6の環状アミン等が挙げられる。これらアミンのうち、一般式
(R)mN(−R−OH)n
(Rは炭素数2〜5の直鎖又は分岐のアルキレン基であり、Rは水素原子又は炭素数1〜3のアルキル基を示す。mは0、1又は2、nは1〜3の整数であり、m+n=3である。)で表わされるアミン、モルホリン、N−(2−アミノエチル)ピペラジンが好ましい。
更に、これら組成物に加え、多価アルコール類を適宜用いても良い。多価アルコール類としては多価アルコール及び多価アルコールのアルキルエーテルを例示でき、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブチルカルビトール、ヘキシレングリコール、ブタンジオール、ブチルジグリコール、グリセリン、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ソルビトール、スクロース等が挙げられる。
研磨用組成物における成分(A)〜(D)の含有量は特に限定されないが、成分(A)の含有量としては0.01〜20重量%が好ましく、0.05〜10重量%がより好ましく、0.1〜5重量%が更に好ましく、1〜5重量%が最も好ましい。成分(A)の含有量が上記範囲であれば、仕上げ面粗さ及び表面凹凸欠陥の改善効果が得られる。更には、研磨速度も向上できる。
高分子多糖類(C)の含有量としては0.01〜20重量%が好ましく、0.05〜10重量%がより好ましく、0.1〜5重量%が更に好ましく、1〜5重量%が最も好ましい。成分(C)の含有量を上記範囲であれば、特に表面凹凸欠陥の改善効果が得られる。
アミン(D)の含有量としては0.01〜20重量%が好ましく、0.05〜10重量%がより好ましく、0.1〜5重量%が更に好ましく、1〜5重量%が最も好ましい。成分(D)の含有量を上記範囲であれば、pHをアルカリ性へ調整でき、仕上げ面粗さ及び表面凹凸欠陥の改善効果が得られる。好ましいpH範囲は、8〜13である。
水(B)の含有量は、残部である。
本発明の研磨用組成物に研磨砥粒を分散させることにより、本発明の研磨スラリーを得ることができる。研磨砥粒としては、例えば、コロイダルシリカ、フュームドシリカ、ダイヤモンド、アルミナ、セリア、ジルコニア、チタニアなどの種々公知の研磨砥粒に適用できる。なかでも研磨砥粒としてはコロイダルシリカ及びジルコニアが好ましい。コロイダルシリカの大きさとしては、一般に平均粒子径0.001〜1μm、好ましくは0.001〜0.5μm、より好ましくは0.001〜0.2μm程度が良い。研磨スラリー中のコロイダルシリカの含有量は特に限定されないが、通常40重量%以下、好ましくは0.1〜20重量%が良い。ジルコニアの大きさとしては、一般に平均粒子径0.1〜15μm、好ましくは0.1〜10μm、より好ましくは0.1〜5μm程度が良い。研磨スラリー中のジルコニアの含有量は特に限定されないが、通常20重量%以下、好ましくは0.1〜10重量%が良い。
本発明のガラス基板研磨用組成物及び研磨スラリーによって研磨されるガラス基板は特に限定されないが、例えば珪酸を主成分とし、他にガラス中にアルミナ、酸化ナトリウム、酸化カリウム等の金属化合物を含有してもよい。
本発明の研磨スラリーは、ガラス基板加工用の研磨スラリーであって、ハードディスクNiP合金基板加工用の研磨スラリーや、通常の鉄やアルミ材料の水溶性切削加工、水溶性研削加工、水溶性研磨加工液とは、区別されるものである。上記通常の加工においては、循環使用が一般的であり、防腐、消泡、防錆などの二次性能等において要求性能が大きく異なる。
Each component of the composition for glass substrate polishing of this invention is demonstrated in detail below.
(A) In the tetrazole derivative having at least one group selected from a mercapto group, an alkylthio group and an alkyl group, examples of the alkylthio group include a lower alkylthio group having 1 to 4 carbon atoms, and examples of the alkyl group include carbon. The lower alkyl group of number 1-4 is mentioned. Specifically, 5-mercapto-1-methyltetrazole, 1- [2- (dimethylamino) ethyl] -5-mercapto-1H-tetrazole, 5- (methylthio) -1H-tetrazole, 5- (ethylthio)- 1H-tetrazole, 5-methyltetrazole, 5-ethyltetrazole and the like can be mentioned.
(B) The water is preferably purified water such as ion exchange water or pure water.
Examples of the (C) high molecular polysaccharide include pullulan, amylose, amylopectin, glycogen, dextrin, hyaluronic acid and the like.
(D) The amine is not particularly limited. For example, a linear or cyclic alkylamine having 1 to 10 carbon atoms such as isopropylamine, cyclohexylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, monoisopropanol Amine, diisopropanolamine, triisopropanolamine, N-methylmonoethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, diglycolamine, 2-amino C1-C10 alkanolamines such as 2-methyl-1-propanol, n-butanolamine, isobutanolamine, tert-butanolamine, morpholine, N- (2 4-10 carbon atoms, such as aminoethyl) piperazine, and the like, preferably a cyclic amine having 4 to 6 carbon atoms. Of these amines, the general formula (R 2 ) mN (—R 1 —OH) n
(R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, m is 0, 1 or 2, and n is 1 to 3) And an amine represented by m + n = 3), morpholine, and N- (2-aminoethyl) piperazine are preferable.
Furthermore, in addition to these compositions, polyhydric alcohols may be used as appropriate. Examples of polyhydric alcohols include polyhydric alcohols and alkyl ethers of polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butyl carbitol, Xylene glycol, butanediol, butyl diglycol, glycerin, ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monobutyl ether Jie Glycol dimethyl ether, diethylene glycol diethyl ether, sorbitol, sucrose and the like.
Although content of component (A)-(D) in polishing composition is not specifically limited, As content of component (A), 0.01-20 weight% is preferable and 0.05-10 weight% is more. Preferably, 0.1 to 5% by weight is more preferable, and 1 to 5% by weight is most preferable. If content of a component (A) is the said range, the finishing surface roughness and the improvement effect of a surface uneven | corrugated defect will be acquired. Furthermore, the polishing rate can be improved.
The content of the polymeric polysaccharide (C) is preferably 0.01 to 20% by weight, more preferably 0.05 to 10% by weight, further preferably 0.1 to 5% by weight, and 1 to 5% by weight. Most preferred. If content of a component (C) is the said range, the improvement effect of a surface uneven | corrugated defect will be acquired especially.
The content of amine (D) is preferably 0.01 to 20% by weight, more preferably 0.05 to 10% by weight, still more preferably 0.1 to 5% by weight, and most preferably 1 to 5% by weight. If content of a component (D) is the said range, pH can be adjusted to alkalinity and the finishing surface roughness and the improvement effect of a surface uneven | corrugated defect will be acquired. A preferred pH range is 8-13.
The content of water (B) is the balance.
The polishing slurry of the present invention can be obtained by dispersing abrasive grains in the polishing composition of the present invention. As abrasive grains, for example, various known abrasive grains such as colloidal silica, fumed silica, diamond, alumina, ceria, zirconia, and titania can be applied. Of these, colloidal silica and zirconia are preferred as the abrasive grains. The size of the colloidal silica is generally about 0.001 to 1 μm, preferably 0.001 to 0.5 μm, more preferably about 0.001 to 0.2 μm. The colloidal silica content in the polishing slurry is not particularly limited, but is usually 40% by weight or less, preferably 0.1 to 20% by weight. The size of zirconia is generally about 0.1 to 15 μm, preferably 0.1 to 10 μm, more preferably about 0.1 to 5 μm. The content of zirconia in the polishing slurry is not particularly limited, but is usually 20% by weight or less, preferably 0.1 to 10% by weight.
The glass substrate polished by the glass substrate polishing composition of the present invention and the polishing slurry is not particularly limited. For example, the main component is silicic acid, and the glass contains a metal compound such as alumina, sodium oxide, or potassium oxide. May be.
The polishing slurry of the present invention is a polishing slurry for processing a glass substrate, and is a polishing slurry for processing a hard disk NiP alloy substrate, a water-soluble cutting process of a normal iron or aluminum material, a water-soluble grinding process, a water-soluble polishing process Liquid is to be distinguished. In the above-mentioned normal processing, circulation is generally used, and the required performance differs greatly in secondary performance such as antiseptic, antifoaming, and rust prevention.

以下に示す実施例及び比較例においては、以下に示す研磨評価を行った。ただし、本発明は実施例に限定されるものではない。
実施例1〜8及び比較例1〜6
下記表1〜3に示す成分(数値は重量%)を配合してガラス基板研磨用組成物を調製した。水は純水を用いた。比較例1のN−(2−アミノエチル)ピペラジン(AEP)は、WO2004/100242(特許文献1)で用いられる第1級アミノ基を有する脂肪族アミンである。比較例2の炭酸カリウムは、特開2006−315160(特許文献2)で用いられる炭酸塩である。比較例4〜6の1H−テトラゾール、イミダゾール、ベンゾトリアゾールは、一般的に金属材料の研磨スラリーに使用されている複素環化合物である。
ガラス基板用研磨スラリーは、研磨用組成物250gを純水2875gで希釈後、コロイダルシリカスラリー(アデライトAT−40:シリカ濃度40%、一次粒子径10−20nm)を1875g添加することによりコロイダルシリカ含有量が15重量%の研磨スラリーを調製した。この研磨スラリーを使用し、ハードディスクガラス基板の研磨評価を行った。結果を表1〜3に示す。表1〜3の研磨後の表面粗さ(仕上げ面粗さ)、最大高低差及び研磨速度の結果は、比較例1のN−(2−アミノエチル)ピペラジン(AEP)の各性能を1.00とした相対比較である。
実施例1〜8及び比較例1〜6の特性は以下の方法により測定した。
研磨特性評価
スウェードパッド(ニッタ・ハース株式会社製Supreme RN−R)をCMP研磨装置(ナノファクター製NF−300)に設置し、プラテン回転数30回転/分、ヘッド回転数30回転/分、研磨圧力90g/cmの条件で研磨スラリーを150ml/分の速度で供給しつつ、直径2.5インチのハードディスクガラス基板を研磨時間5分で研磨評価を行った。研磨後の表面粗さ(仕上げ面粗さ)、最大高低差及び研磨速度を評価することによって研磨評価を行った。なお、研磨後の表面粗さ、最大高低差及び研磨速度の測定方法は以下の方法で測定した。
表面粗さ
研磨後の表面粗さ(Ra)は走査プローブ顕微鏡(エスアイアイ・ナノテクノロジー製SPA−400)を用いて、AFMモードで測定した。
最大高低差
最大高低差とは、ガラス表面の最大山(Rp)と最大谷(Rv)の距離のことであり、表面凹凸欠陥の評価方法である。研磨後の最大高低差は走査プローブ顕微鏡(SPA−400)を用いて、AFMモードで測定した。
研磨速度
研磨前後のガラス基板の重量変化を電子天秤(ザルトリウス社製LE225D)により測定して研磨量を求め研磨速度を求めた。

Figure 0005531236
Figure 0005531236
Figure 0005531236
表1より実施例1〜3の研磨用組成物は、表面粗さ(仕上げ面粗さ)及び最大高低差において比較例1〜3より改善することが確認できる。
表2より実施例2及び4〜6の研磨用組成物は、表面粗さ(仕上げ面粗さ)及び最大高低差において比較例4〜6の1H−テトラゾール、イミダゾール、ベンゾトリアゾールより改善されていることが確認できる。
表3より高分子多糖類の添加により、最大高低差が大幅に改善することが確認できる。更に、高分子多糖類及びアミンの添加により、表面粗さ(仕上げ面粗さ)及び最大高低差の両立が可能であることが確認できる。
実施例9〜10及び比較例7
下記表4に示す成分(数値は重量%)を配合してガラス基板研磨用組成物を調製した。水は純水を用いた。比較例7は、水のみである。
ガラス基板用研磨スラリーは、研磨用組成物10gを純水170gで希釈後、ジルコニア(キシダ化学製:粒子径約4μm)を20g添加することによりジルコニア含有量が10重量%の研磨スラリーを調製した。この研磨スラリーを使用し、ハードディスクガラス基板の研磨評価を行った。結果を表4に示す。表4の研磨後の表面粗さ(仕上げ面粗さ)、最大高低差及び研磨速度の結果は、比較例1の各性能を1.00とした相対比較で示した。
実施例9〜10及び比較例7の特性は以下の方法により測定した。
研磨特性評価
ウレタンパッド(ニッタ・ハース株式会社製IC1000)をCMP研磨装置(ナノファクター製NF−300)に設置し、プラテン回転数50回転/分、ヘッド回転数50回転/分、研磨圧力360g/cmの条件で研磨スラリーを50ml/分の速度で供給しつつ、直径2.5インチのハードディスクガラス基板を研磨時間2分で研磨評価を行った。研磨後の表面粗さ(仕上げ面粗さ)、最大高低差及び研磨速度を評価することによって研磨評価を行った。なお、研磨後の表面粗さ、最大高低差及び研磨速度の測定方法は以下の方法で測定した。
表面粗さ
研磨後の表面粗さ(Ra)は走査プローブ顕微鏡(島津製作所製SPM−9700)を用いて、DFMモードで測定した。
最大高低差
最大高低差とは、ガラス表面の最大山(Rp)と最大谷(Rv)の距離のことであり、表面凹凸欠陥の評価方法である。研磨後の最大高低差は走査プローブ顕微鏡(島津製作所製SPM−9700)を用いて、DFMモードで測定した。
研磨速度
研磨前後のガラス基板の重量変化を電子天秤(ザルトリウス社製LE225D)により測定して研磨量を求め研磨速度を求めた。
Figure 0005531236
表4より実施例9〜10の研磨用組成物は、表面粗さ(仕上げ面粗さ)、最大高低差及び研磨速度において比較例7より改善することが確認できる。In the following examples and comparative examples, the following polishing evaluation was performed. However, the present invention is not limited to the examples.
Examples 1-8 and Comparative Examples 1-6
The components shown in the following Tables 1 to 3 (numerical values are% by weight) were blended to prepare a glass substrate polishing composition. Pure water was used as the water. N- (2-aminoethyl) piperazine (AEP) of Comparative Example 1 is an aliphatic amine having a primary amino group used in WO2004 / 100242 (Patent Document 1). The potassium carbonate of Comparative Example 2 is a carbonate used in JP-A-2006-315160 (Patent Document 2). 1H-tetrazole, imidazole, and benzotriazole of Comparative Examples 4 to 6 are heterocyclic compounds that are generally used in polishing slurries of metal materials.
The polishing slurry for glass substrate contains colloidal silica by adding 1875 g of colloidal silica slurry (Adelite AT-40: silica concentration 40%, primary particle diameter 10-20 nm) after diluting 250 g of the polishing composition with 2875 g of pure water. A polishing slurry having an amount of 15% by weight was prepared. Polishing evaluation of the hard disk glass substrate was performed using this polishing slurry. The results are shown in Tables 1-3. The results of the surface roughness after polishing (finished surface roughness), the maximum height difference, and the polishing rate in Tables 1 to 3 indicate that each performance of N- (2-aminoethyl) piperazine (AEP) of Comparative Example 1 is 1. The relative comparison is 00.
The characteristics of Examples 1 to 8 and Comparative Examples 1 to 6 were measured by the following method.
Polishing characteristics evaluation A suede pad (Supreme RN-R manufactured by Nitta Haas Co., Ltd.) is installed in a CMP polishing apparatus (NF-300 manufactured by Nano Factor), and the platen rotation speed is 30 rpm and the head rotation speed is 30 rpm. Polishing evaluation was performed on a hard disk glass substrate having a diameter of 2.5 inches with a polishing time of 5 minutes while supplying the polishing slurry at a rate of 150 ml / min under the condition of a pressure of 90 g / cm 2 . Polishing evaluation was performed by evaluating the surface roughness after polishing (finished surface roughness), the maximum height difference, and the polishing rate. In addition, the surface roughness after grinding | polishing, the maximum height difference, and the measuring method of polishing rate were measured with the following method.
Surface Roughness Surface roughness (Ra) after polishing was measured in an AFM mode using a scanning probe microscope (SP-400 manufactured by SII Nanotechnology).
Maximum height difference The maximum height difference is the distance between the maximum peak (Rp) and the maximum valley (Rv) on the glass surface, and is a method for evaluating surface irregularities. The maximum height difference after polishing was measured in the AFM mode using a scanning probe microscope (SPA-400).
Polishing rate The weight change of the glass substrate before and after polishing was measured with an electronic balance (LE225D manufactured by Sartorius) to determine the polishing amount, and the polishing rate was determined.
Figure 0005531236
Figure 0005531236
Figure 0005531236
From Table 1, it can confirm that the polishing composition of Examples 1-3 improves from Comparative Examples 1-3 in surface roughness (finished surface roughness) and a maximum height difference.
From Table 2, the polishing compositions of Examples 2 and 4 to 6 are improved from the 1H-tetrazole, imidazole, and benzotriazole of Comparative Examples 4 to 6 in terms of surface roughness (finished surface roughness) and maximum height difference. Can be confirmed.
From Table 3, it can be confirmed that the maximum height difference is greatly improved by the addition of the polymeric polysaccharide. Furthermore, it can be confirmed that both the surface roughness (finished surface roughness) and the maximum height difference can be achieved by adding the polymer polysaccharide and the amine.
Examples 9 to 10 and Comparative Example 7
A composition for polishing a glass substrate was prepared by blending the components shown in Table 4 below (numerical values are% by weight). Pure water was used as the water. Comparative Example 7 is only water.
The glass substrate polishing slurry was prepared by diluting 10 g of the polishing composition with 170 g of pure water and then adding 20 g of zirconia (manufactured by Kishida Chemical Co., Ltd .: particle diameter of about 4 μm) to prepare a polishing slurry having a zirconia content of 10 wt%. . Polishing evaluation of the hard disk glass substrate was performed using this polishing slurry. The results are shown in Table 4. The results of surface roughness after polishing (finished surface roughness), maximum height difference, and polishing rate in Table 4 were shown by relative comparison with each performance of Comparative Example 1 being 1.00.
The characteristics of Examples 9 to 10 and Comparative Example 7 were measured by the following method.
Polishing characteristic evaluation Urethane pad (IC1000 manufactured by Nitta Haas Co., Ltd.) is installed in a CMP polishing apparatus (NF-300 manufactured by Nano Factor), platen rotation speed 50 rotations / minute, head rotation speed 50 rotations / minute, polishing pressure 360 g / Polishing evaluation was performed on a hard disk glass substrate having a diameter of 2.5 inches with a polishing time of 2 minutes while supplying the polishing slurry at a rate of 50 ml / min under the condition of cm 2 . Polishing evaluation was performed by evaluating the surface roughness after polishing (finished surface roughness), the maximum height difference, and the polishing rate. In addition, the surface roughness after grinding | polishing, the maximum height difference, and the measuring method of polishing rate were measured with the following method.
Surface Roughness Surface roughness (Ra) after polishing was measured in a DFM mode using a scanning probe microscope (SPM-9700, manufactured by Shimadzu Corporation).
Maximum height difference The maximum height difference is the distance between the maximum peak (Rp) and the maximum valley (Rv) on the glass surface, and is a method for evaluating surface irregularities. The maximum height difference after polishing was measured in a DFM mode using a scanning probe microscope (SPM-9700, manufactured by Shimadzu Corporation).
Polishing rate The weight change of the glass substrate before and after polishing was measured with an electronic balance (LE225D manufactured by Sartorius) to determine the polishing amount, and the polishing rate was determined.
Figure 0005531236
From Table 4, it can be confirmed that the polishing compositions of Examples 9 to 10 are improved from Comparative Example 7 in terms of surface roughness (finished surface roughness), maximum height difference and polishing rate.

本発明によれば、ハードディスク用ガラス基板、光ディスク用ガラス基板、プラズマディスプレイ(PDP)用ガラス基板、液晶ディスプレイ(LCD)用ガラス基板及びフォトマスク用ガラス基板などの各種ガラス基板の研削及び切断等に適用できる。   According to the present invention, the glass substrate for hard disk, the glass substrate for optical disk, the glass substrate for plasma display (PDP), the glass substrate for liquid crystal display (LCD), the glass substrate for photomask, etc. Applicable.

Claims (4)

(A)、(B)、(C)、(D)の成分及びコロイダルシリカを含むガラス基板研磨スラリー。
(A)メルカプト基及びアルキルチオ基から選ばれる少なくとも1つの基を有するテトラゾール誘導体
(B)水
(C)高分子多糖類
(D)アミン
(ただし、ポリウレタン、アミノ酸、4価の金属水酸化物のいずれも含有しない)
A glass substrate polishing slurry containing the components (A), (B), (C), (D) and colloidal silica.
(A) a tetrazole derivative having at least one group selected from a mercapto group and an alkylthio group (B) water (C) a polymeric polysaccharide (D) amine (however, any of polyurethane, amino acid, and tetravalent metal hydroxide) Not contained)
テトラゾール誘導体が、メルカプト基及び炭素数1〜4のアルキルチオ基から選ばれる少なくとも1つの基を有するテトラゾール誘導体である請求項1に記載の研磨スラリー。   The polishing slurry according to claim 1, wherein the tetrazole derivative is a tetrazole derivative having at least one group selected from a mercapto group and an alkylthio group having 1 to 4 carbon atoms. アミンが一般式(R)mN(−R−OH)n(Rは炭素数2〜5の直鎖又は分岐のアルキレン基であり、Rは水素原子又は炭素数1〜3のアルキル基を示す。mは0、1又は2、nは1〜3の整数であり、m+n=3である。)で表わされるアミン、モルホリン、N−(2−アミノエチル)ピペラジンである請求項1〜2のいずれか1項に記載の研磨スラリー。 The amine is represented by the general formula (R 2 ) mN (—R 1 —OH) n (R 1 is a linear or branched alkylene group having 2 to 5 carbon atoms, and R 2 is a hydrogen atom or an alkyl having 1 to 3 carbon atoms. Wherein m is 0, 1 or 2, n is an integer of 1 to 3, and m + n = 3), and is an amine, morpholine, or N- (2-aminoethyl) piperazine. The polishing slurry according to any one of -2. ガラス基板が、ハードディスクガラス基板である請求項1〜のいずれか1項に記載の研磨スラリー。 The polishing slurry according to any one of claims 1 to 3 , wherein the glass substrate is a hard disk glass substrate.
JP2012547881A 2010-12-06 2011-11-30 Glass substrate polishing composition and polishing slurry Expired - Fee Related JP5531236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547881A JP5531236B2 (en) 2010-12-06 2011-11-30 Glass substrate polishing composition and polishing slurry

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010271434 2010-12-06
JP2010271434 2010-12-06
JP2012547881A JP5531236B2 (en) 2010-12-06 2011-11-30 Glass substrate polishing composition and polishing slurry
PCT/JP2011/078231 WO2012077693A1 (en) 2010-12-06 2011-11-30 Composition for polishing glass substrate, and polishing slurry

Publications (2)

Publication Number Publication Date
JPWO2012077693A1 JPWO2012077693A1 (en) 2014-05-19
JP5531236B2 true JP5531236B2 (en) 2014-06-25

Family

ID=46207180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547881A Expired - Fee Related JP5531236B2 (en) 2010-12-06 2011-11-30 Glass substrate polishing composition and polishing slurry

Country Status (5)

Country Link
JP (1) JP5531236B2 (en)
CN (1) CN103249525B (en)
MY (1) MY160307A (en)
SG (1) SG191038A1 (en)
WO (1) WO2012077693A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411759B2 (en) * 2014-03-27 2018-10-24 株式会社フジミインコーポレーテッド Polishing composition, method for using the same, and method for producing a substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031446A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2007095841A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Chemical mechanical polishing method
JP2007227758A (en) * 2006-02-24 2007-09-06 Fujifilm Corp Polishing solution for metal
JP2007311779A (en) * 2006-04-21 2007-11-29 Hitachi Chem Co Ltd Cmp abrasive, and method of polishing substrate
JP2009094430A (en) * 2007-10-12 2009-04-30 Adeka Corp Polishing composition for cmp
JP2009117789A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method
JP2011134388A (en) * 2009-12-24 2011-07-07 Kao Corp Polishing liquid composition for magnetic disk substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273475B2 (en) * 1999-09-21 2009-06-03 株式会社フジミインコーポレーテッド Polishing composition
JP2001269859A (en) * 2000-03-27 2001-10-02 Jsr Corp Aqueous dispersing element for polishing chemical machine
US7553345B2 (en) * 2002-12-26 2009-06-30 Kao Corporation Polishing composition
US7071105B2 (en) * 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031446A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2007095841A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Chemical mechanical polishing method
JP2007227758A (en) * 2006-02-24 2007-09-06 Fujifilm Corp Polishing solution for metal
JP2007311779A (en) * 2006-04-21 2007-11-29 Hitachi Chem Co Ltd Cmp abrasive, and method of polishing substrate
JP2009094430A (en) * 2007-10-12 2009-04-30 Adeka Corp Polishing composition for cmp
JP2009117789A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method
JP2011134388A (en) * 2009-12-24 2011-07-07 Kao Corp Polishing liquid composition for magnetic disk substrate

Also Published As

Publication number Publication date
SG191038A1 (en) 2013-07-31
MY160307A (en) 2017-02-28
JPWO2012077693A1 (en) 2014-05-19
CN103249525A (en) 2013-08-14
CN103249525B (en) 2016-01-06
WO2012077693A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5413456B2 (en) Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP2015004064A (en) Polishing composition, polishing method, and method of manufacturing substrate
JP2015533868A (en) How to polish sapphire surface
JP5516184B2 (en) Method for producing synthetic quartz glass substrate
JP4836441B2 (en) Polishing liquid composition
KR20170099842A (en) Polishing composition, polishing method, and method for manufacturing ceramic component
JP5939578B2 (en) Polishing composition and polishing method using the same
JP5710158B2 (en) Abrasive composition and method for polishing magnetic disk substrate
TWI465556B (en) Polishing composition for primary polishing of wafer
JP2004331887A (en) Abrasive composition
TWI724117B (en) Polishing composition set, pre-polishing composition and silicon wafer polishing method
JP5531236B2 (en) Glass substrate polishing composition and polishing slurry
JP5220428B2 (en) Polishing method using polishing composition
JP5429397B2 (en) Lubricating composition for polishing glass substrate and polishing slurry
KR20090084724A (en) Polishing composition and polishing process using the same
US20140001153A1 (en) Polishing slurry and polishing method thereof
WO2017061109A1 (en) Abrasive agent for magnetic disk and method for producing magnetic disk
JP4949432B2 (en) Manufacturing method of hard disk substrate
JP3606806B2 (en) Polishing liquid composition
JP2017119738A (en) Polishing liquid composition for sapphire plate nonpolar surface
WO2011136106A1 (en) Polishing fluid composition for glass hard disc substrates
JP6955441B2 (en) Abrasive liquid composition for synthetic quartz glass substrate
JP5621157B2 (en) Lubricating liquid composition for polishing hard disk glass substrate and polishing slurry
TW202405106A (en) Grinding liquid composition
JP2023103757A (en) Method for modifying polishing slurry

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5531236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees