JP5413456B2 - Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate - Google Patents

Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate Download PDF

Info

Publication number
JP5413456B2
JP5413456B2 JP2011510316A JP2011510316A JP5413456B2 JP 5413456 B2 JP5413456 B2 JP 5413456B2 JP 2011510316 A JP2011510316 A JP 2011510316A JP 2011510316 A JP2011510316 A JP 2011510316A JP 5413456 B2 JP5413456 B2 JP 5413456B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
mass
polishing liquid
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011510316A
Other languages
Japanese (ja)
Other versions
JPWO2010122985A1 (en
Inventor
豊 野村
茂 野部
仁 天野倉
直之 小山
文子 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011510316A priority Critical patent/JP5413456B2/en
Publication of JPWO2010122985A1 publication Critical patent/JPWO2010122985A1/en
Application granted granted Critical
Publication of JP5413456B2 publication Critical patent/JP5413456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Description

本発明は、半導体基板の表面加工に好適な半導体基板用研磨液、及び半導体基板の研磨方法に関する。   The present invention relates to a semiconductor substrate polishing liquid suitable for semiconductor substrate surface processing, and a semiconductor substrate polishing method.

シリコンに代表される半導体基板の研磨工程には、一般的に、スライシングで発生する表面の凹凸の平滑化及び基板面内の厚みの均一化のためのラッピング工程と、目的とする表面精度に仕上げるためのポリッシング工程(研磨工程)がある。ポリッシング工程は、更に、粗研磨と称される1次ポリッシング工程と、精密研磨と称されるファイナルポリッシング工程に区分けされる。1次ポリッシング工程は、場合によって、1次ポリッシング工程及び2次ポリッシング工程と称される二つの工程に更に分けられる。   In the polishing process of a semiconductor substrate typified by silicon, generally, a lapping process for smoothing unevenness of a surface generated by slicing and a uniform thickness in a substrate surface, and finishing to a desired surface accuracy are performed. There is a polishing process (polishing process). The polishing process is further divided into a primary polishing process called rough polishing and a final polishing process called precision polishing. In some cases, the primary polishing process is further divided into two processes called a primary polishing process and a secondary polishing process.

ポリッシング工程は、通常の半導体基板の製造工程のみならず、使用済みの半導体基板を再生処理にも使用されている。また、近年では、シリコン貫通ビア(TSV)と呼ばれる構造を有する半導体基板の製造においてポリッシング工程を使用することが検討されている。   The polishing process is used not only for the manufacturing process of a normal semiconductor substrate but also for reprocessing a used semiconductor substrate. In recent years, it has been studied to use a polishing process in the manufacture of a semiconductor substrate having a structure called a through silicon via (TSV).

TSVと呼ばれる構造は、半導体基板の表層に形成されたデバイスと半導体基板の裏面とを接続する電極が、半導体基板内部を貫通するように形成されている構造である。従来、複数枚の半導体素子を積層して一つの半導体装置(半導体パッケージ)を形成する場合、上下の半導体素子同士の接続はワイヤボンディングで行なわれている。このワイヤボンディングによる接続の代わりに、上記のTSV構造を採用することにより、上下の半導体素子同士の接続に必要な領域をより小さくすることができるため、TSVを形成する技術は、ワイヤボンディングに代わる新たな技術として期待されている。   The structure called TSV is a structure in which an electrode for connecting a device formed on the surface layer of a semiconductor substrate and the back surface of the semiconductor substrate is formed so as to penetrate the inside of the semiconductor substrate. Conventionally, when a plurality of semiconductor elements are stacked to form one semiconductor device (semiconductor package), the upper and lower semiconductor elements are connected by wire bonding. By adopting the above TSV structure instead of this wire bonding connection, the area required for the connection between the upper and lower semiconductor elements can be made smaller. Therefore, the technique for forming the TSV replaces the wire bonding. It is expected as a new technology.

TSVを形成する工程としては、半導体基板にビアを形成し、ビアを形成した面の裏面を研削(バックグラインド)して、ビアを貫通させる工程が一般的になると考えられている。そして、裏面を研磨する工程でCMP(化学機械研磨)を使用することが検討されている(例えば下記非特許文献1参照)。この裏面のポリッシング工程で使用される研磨液に対しては、製造効率の観点から、高速な研磨速度が求められている。   As a process for forming a TSV, it is considered that a process of forming a via in a semiconductor substrate, grinding a back surface of the surface on which the via is formed (back grinding), and penetrating the via is generally considered. The use of CMP (Chemical Mechanical Polishing) in the step of polishing the back surface has been studied (for example, see Non-Patent Document 1 below). From the viewpoint of manufacturing efficiency, a high polishing rate is required for the polishing liquid used in the polishing process on the back surface.

ところで、従来、半導体基板を形成する代表的な物質であるシリコン(Si)を研磨する為の研磨液として、種々の研磨液が提案されている。例えば、下記特許文献1には、コロイドシリカ及びシリカゲルが、半導体デバイスの製造に最も頻繁に使用される半導体結晶表面の研磨剤として有用であることが示されている。そして、下記特許文献1には、使用されたゾルのコロイドシリカ及びシリカゲルの一次粒子の粒径は4〜200nmであると記載されている。   By the way, conventionally, various polishing liquids have been proposed as polishing liquids for polishing silicon (Si), which is a typical material for forming a semiconductor substrate. For example, Patent Document 1 below shows that colloidal silica and silica gel are useful as a polishing agent for the surface of a semiconductor crystal that is most frequently used in the manufacture of semiconductor devices. Patent Document 1 below describes that the primary particles of colloidal silica and silica gel used have a particle size of 4 to 200 nm.

下記特許文献2には、一次粒子の粒径が4〜200nm、好ましくは4〜100nmのコロイド形態のシリカ又はシリカゲルのいずれかを水溶性アミンと組合せたものを研磨剤として使用することで、半導体基板、特にシリコンの半導体基板表面を効果的に研磨できることが開示されている。シリカゾル又はゲル中に存在するシリカに関するアミンの量は、0.5〜5.0質量%、好ましくは1.0〜5.0質量%、最も好ましくは2.0〜4.0質量%とされている。   In the following Patent Document 2, the use of a combination of either silica or silica gel in a colloidal form with a primary particle size of 4 to 200 nm, preferably 4 to 100 nm, and a water-soluble amine as a polishing agent. It has been disclosed that a substrate, particularly a silicon semiconductor substrate surface, can be effectively polished. The amount of amine with respect to silica present in the silica sol or gel is 0.5-5.0% by weight, preferably 1.0-5.0% by weight, most preferably 2.0-4.0% by weight. ing.

下記特許文献3には、0.1〜5.0質量%(最も好ましくは2.0〜4.0質量%)の水溶性第四アンモニウム塩又は第四アンモニウム塩基を添加した水性シリカ組成物を使用することで、シリコン基板の研磨速度が改良できることが示されている。   Patent Document 3 below discloses an aqueous silica composition to which 0.1 to 5.0% by mass (most preferably 2.0 to 4.0% by mass) of a water-soluble quaternary ammonium salt or quaternary ammonium base is added. It has been shown that the use can improve the polishing rate of the silicon substrate.

下記特許文献4には、シリコン又はゲルマニウム半導体材料を高度の表面仕上がり状態に研磨する方法が開示されている。下記特許文献4に記載の技術では、研磨液として、変性処理されたコロイド状シリカゲルを有し、シリカ濃度が約2〜約50質量%であり、pHが11〜12.5である研磨液を使用する。そして、コロイド状シリカゲルの変成処理では、比表面積が約25〜600m/gであるシリカ粒子の表面を、化学的に結合したアルミニウム原子で、未被覆粒子表面上の珪素原子100個当たりアルミニウム原子約1〜約50個の表面被覆となるように被覆せしめたものである。一般的に、pHが11以上の領域では、研磨粒子であるシリカが解重合してアルカリ珪酸塩となりpHを低下させるのに対して、特許文献4には、解重合を生じることなしに、pHが11以上の領域において、迅速に研磨できることが示されている。The following Patent Document 4 discloses a method of polishing a silicon or germanium semiconductor material to a high surface finish. In the technique described in Patent Document 4 below, a polishing liquid having a modified colloidal silica gel, a silica concentration of about 2 to about 50 mass%, and a pH of 11 to 12.5 is used as a polishing liquid. use. In the modification treatment of colloidal silica gel, the surface of the silica particles having a specific surface area of about 25 to 600 m 2 / g is formed by chemically bonding aluminum atoms with 100 atoms of aluminum atoms per 100 silicon atoms on the surface of the uncoated particles. It is coated so that there are about 1 to about 50 surface coatings. In general, in the region where the pH is 11 or more, the silica as the abrasive particles is depolymerized to become an alkali silicate, and the pH is lowered. However, Patent Document 4 describes that pH does not occur without causing depolymerization. It has been shown that polishing can be rapidly performed in a region of 11 or more.

下記特許文献5には、ピペラジン、又は窒素に低級アルキル置換基がついたピペラジンと、水性コロイドシリカゾル又はゲルを含み、且つピペラジンはゾルのSiO含有量に対して0.1〜5質量%含まれる研磨液が開示されている。また下記特許文献5には、シリコンウエハ及びこれと同様の材料の研磨方法が開示されている。この特許文献5によれば、研磨液にピペラジンを含有させた場合、アミノエチルエタノールアミンを使用する場合と比べて、少量のコロイドシリカで同等の研磨速度が得られるとされている。また、下記特許文献5には、強塩基性のピペラジンの系統は、pHの調整に必要とされる苛性アルカリの添加量を少量にできる、と記載されている。Patent Document 5 listed below includes piperazine or piperazine having a lower alkyl substituent on nitrogen and an aqueous colloidal silica sol or gel, and piperazine is contained in an amount of 0.1 to 5% by mass based on the SiO 2 content of the sol. A polishing liquid is disclosed. Patent Document 5 listed below discloses a silicon wafer and a polishing method for a material similar to the silicon wafer. According to Patent Document 5, it is said that when piperazine is contained in the polishing liquid, an equivalent polishing rate can be obtained with a small amount of colloidal silica as compared with the case where aminoethylethanolamine is used. Patent Document 5 listed below describes that a strongly basic piperazine system can reduce the amount of caustic alkali added to adjust the pH.

下記特許文献6には、研磨材と、アゾール類及びその誘導体の少なくともいずれか一種と、水とを含有することを特徴とする研磨用組成物が開示されている。そして、下記特許文献6には、アゾール類及びその誘導体が研磨用組成物に添加されることによって研磨用組成物の研磨能力が向上する、と記載されている。この理由として、複素五員環の窒素原子の非共有電子対が研磨対象物に直接作用することが指摘され、具体的にはイミダゾールを適用した実施例が開示されている。   Patent Document 6 below discloses a polishing composition comprising an abrasive, at least one of azoles and derivatives thereof, and water. Patent Document 6 below describes that the polishing ability of the polishing composition is improved by adding azoles and derivatives thereof to the polishing composition. For this reason, it is pointed out that the unshared electron pair of the nitrogen atom of the hetero five-membered ring directly acts on the object to be polished, and specifically, an example in which imidazole is applied is disclosed.

下記特許文献7には、半導体基板表面の凹凸を低減する研磨液として、水、コロイダルシリカ、ポリアクリルアミドのような水溶性高分子、及び塩化カルシウムのような水溶性塩類を含有する研磨液が開示されている。しかし、特許文献7に記載の研磨液を用いた場合、水溶性高分子の添加により研磨速度が低下し、加工時間が長くなるという課題が生じる。   Patent Document 7 listed below discloses a polishing liquid containing water, a water-soluble polymer such as colloidal silica and polyacrylamide, and a water-soluble salt such as calcium chloride as a polishing liquid for reducing irregularities on the surface of the semiconductor substrate. Has been. However, when the polishing liquid described in Patent Document 7 is used, there arises a problem that the polishing rate is lowered due to the addition of the water-soluble polymer, and the processing time is increased.

下記特許文献8には、欠陥の一種であるLPD(light point defect)を低減する研磨液として、研磨用組成物中のナトリウムイオン及び酢酸イオンのいずれか一方の濃度が10ppb以下、あるいは、研磨用組成物中のナトリウムイオン及び酢酸イオンの濃度がそれぞれ10ppb以下であり、
研磨用組成物は、ヒドロキシエチルセルロースのような水溶性高分子、アンモニアのようなアルカリ、及びコロイダルシリカのような砥粒を好ましくは含有する研磨液が開示されている。特許文献8に記載の研磨液では、水溶性高分子としてヒドロキシエチルセルロース及びポリビニルアルコールを含有し、ナトリウムイオン及び酢酸イオンの濃度が少ないほど、LPDが改善する結果が示されている。しかしながら実施例に示された水溶性高分子の添加量は0.002質量%以下であるため、特許文献8に記載の研磨液を用いた場合、LPD以外の欠陥(例えば基板表面の凹凸)の低減などの効果は不充分であると考えられる。
In the following Patent Document 8, as a polishing liquid for reducing LPD (light point defect) which is a kind of defect, the concentration of either sodium ion or acetate ion in the polishing composition is 10 ppb or less, or for polishing The concentration of sodium ion and acetate ion in the composition is 10 ppb or less,
The polishing composition discloses a polishing liquid that preferably contains a water-soluble polymer such as hydroxyethyl cellulose, an alkali such as ammonia, and abrasive grains such as colloidal silica. The polishing liquid described in Patent Document 8 contains hydroxyethyl cellulose and polyvinyl alcohol as water-soluble polymers, and shows that LPD improves as the concentration of sodium ions and acetate ions decreases. However, since the addition amount of the water-soluble polymer shown in the examples is 0.002% by mass or less, when the polishing liquid described in Patent Document 8 is used, defects other than LPD (for example, irregularities on the substrate surface) Effects such as reduction are considered to be insufficient.

米国特許第3170273号明細書U.S. Pat. No. 3,170,273 米国特許第4169337号明細書U.S. Pat. No. 4,169,337 米国特許第4462188号明細書U.S. Pat. No. 4,462,188 特公昭57−58775号公報Japanese Patent Publication No.57-58775 特開昭62−30333号公報JP 62-30333 A 特開2006−80302号公報JP 2006-80302 A 特開平02−158684号公報Japanese Patent Laid-Open No. 02-158684 特開2008−53414号公報JP 2008-53414 A

OKIテクニカルレビュー2007年10月/第211号VOL.74 No.3OKI Technical Review October 2007 / No. 211 VOL. 74 No. 3

半導体基板のポリッシング工程は、複数の工程に分けることで、加工時間の短縮化、効率化及び高品質化を達成しており、それぞれのポリッシング工程で目的が異なり、それぞれのポリッシング工程で使用される研磨液の特性も異なったものとなっている。   The polishing process of the semiconductor substrate is divided into a plurality of processes to reduce the processing time, improve the efficiency and improve the quality. The purpose of each polishing process is different, and the polishing process is used in each polishing process. The characteristics of the polishing liquid are also different.

粗研磨の段階では、ラッピング工程などで発生した比較的大きめな凹凸の解消や、ダメージを受けた半導体基板部分の除去を目的としているため、高速な研磨速度が求められる。   At the rough polishing stage, the purpose is to eliminate relatively large irregularities generated in the lapping process or the like, and to remove the damaged semiconductor substrate portion, and therefore, a high polishing rate is required.

一方、仕上げ研磨では、粗研磨で達成できなかった表面の高度な平滑化と半導体基板の欠陥の低減が大きな目的である。   On the other hand, in the final polishing, the major objectives are high-level smoothing of the surface that could not be achieved by rough polishing and reduction of defects in the semiconductor substrate.

上記の特性を満たすべく、先行技術に示されるような、さまざまな研磨液及び研磨方法が発明されているが、上述の特性を充分に満たすには至らず、研磨液及び研磨方法の改良が更に求められている。   In order to satisfy the above-mentioned characteristics, various polishing liquids and polishing methods have been invented as shown in the prior art. However, the above-mentioned characteristics are not sufficiently satisfied, and further improvements in the polishing liquid and the polishing method are further achieved. It has been demanded.

シリコン等の半導体基板を形成する材料を研磨する場合、研磨速度を高速化するためには、研磨液のpHを高くすることが有効である。しかしながら、このような研磨液は、その研磨特性にばらつきがあることが多い。すなわち、同一組成の研磨液でありながら、研磨速度、傷、平坦性、面内均一性等の研磨特性が安定しないことがあった。また、研磨粒子を増量した研磨液を用いた場合、砥粒に起因する傷の発生や、廃棄処理でのコストの増加が問題であった。   When polishing a material for forming a semiconductor substrate such as silicon, it is effective to increase the pH of the polishing liquid in order to increase the polishing rate. However, such polishing liquids often vary in their polishing characteristics. That is, although the polishing liquid has the same composition, polishing characteristics such as polishing rate, scratches, flatness, and in-plane uniformity may not be stable. In addition, when a polishing liquid with an increased amount of abrasive particles is used, there are problems of generation of scratches due to abrasive grains and an increase in cost in disposal processing.

本発明の第一の目的は、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工を可能とする半導体基板研磨液及び当該半導体基板研磨液を用いた半導体基板の研磨方法を提供することである。   A first object of the present invention is to provide a semiconductor substrate polishing liquid and semiconductor capable of reducing the processing time of a semiconductor substrate, facilitating process management, and processing a semiconductor substrate with uniform quality by high-speed and stable polishing. A semiconductor substrate polishing method using a substrate polishing liquid is provided.

本発明の第二の目的は、半導体基板の表面を、凹凸が少なく平滑で、欠陥の少ない表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法を提供することにある。   A second object of the present invention is to provide a polishing liquid for a semiconductor substrate and a polishing method for the polishing liquid for a semiconductor substrate capable of polishing the surface of a semiconductor substrate to a smooth surface with few irregularities and having few defects. There is.

本発明の第三の目的は、実用的な研磨速度、且つ少ない研磨量で半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法を提供することにある。   The third object of the present invention is to provide a polishing liquid for a semiconductor substrate and a polishing liquid for a semiconductor substrate capable of polishing the surface of a semiconductor substrate into a smooth surface with few irregularities with a practical polishing rate and a small polishing amount. A polishing method is provided.

本発明者らは、研磨粒子にシリカ(SiO)を使用する場合において、時間とともに研磨液のpHが低下し、研磨速度が低下しうることを見いだした。更に、本発明者らは、所定の添加剤をシリカと併用することによって、pH及び研磨速度を制御でき、且つ研磨後の基板表面の粗さを低減できることを見いだし、本発明に至った。The present inventors have found that when silica (SiO 2 ) is used for the abrasive particles, the pH of the polishing liquid decreases with time, and the polishing rate can decrease. Furthermore, the present inventors have found that by using a predetermined additive together with silica, the pH and polishing rate can be controlled, and the roughness of the substrate surface after polishing can be reduced, leading to the present invention.

<第一の半導体基板用研磨液(第一発明)>
本発明に係る第一の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である。
<First polishing liquid for semiconductor substrate (first invention)>
The first polishing liquid for a semiconductor substrate according to the present invention contains abrasive particles, 1,2,4-triazole, and a basic compound, and the basic compound is a nitrogen-containing basic compound or an inorganic basic compound. The basic compound content is 0.1% by mass or more, and the pH is 9 or more and 12 or less.

第一発明によれば、シリコン等に代表される材料からなる半導体基板の研磨を高速に行うことができる。また上記第一発明によれば、保存時や使用時における研磨液のpHの低下を抑制できるため、研磨速度の低下及び変動を極めて小さくすることができる。   According to the first invention, a semiconductor substrate made of a material typified by silicon or the like can be polished at high speed. In addition, according to the first aspect of the present invention, since the decrease in pH of the polishing liquid during storage and use can be suppressed, the decrease and fluctuation in the polishing rate can be extremely reduced.

第一発明において、塩基性化合物は、研磨速度を得るための溶解剤として作用する。そして、半導体基板用研磨液中の塩基性化合物の添加量が多いほど研磨速度が高くなる傾向がある。高い研磨速度を得る観点から、塩基性化合物の含有量は、0.15質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。またエッチングの増加による表面粗さの悪化やシリカの解重合を抑制する観点から、塩基性化合物の含有量は、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。   In the first invention, the basic compound acts as a solubilizer for obtaining a polishing rate. And there exists a tendency for polishing rate to become high, so that there is much addition amount of the basic compound in the polishing liquid for semiconductor substrates. From the viewpoint of obtaining a high polishing rate, the content of the basic compound is preferably 0.15% by mass or more, and more preferably 0.2% by mass or more. Further, from the viewpoint of suppressing deterioration in surface roughness due to an increase in etching and depolymerization of silica, the content of the basic compound is preferably 5% by mass or less, and more preferably 2% by mass or less.

第一発明では、含窒素塩基性化合物が水酸化アンモニウム又は水酸化テトラメチルアンモニウムを含有することが好ましい。また、第一発明では、無機塩基性化合物が水酸化カリウム又は水酸化ナトリウムを含有することが好ましい。これらの塩基性化合物は低臭気である点において優れている。   In the first invention, the nitrogen-containing basic compound preferably contains ammonium hydroxide or tetramethylammonium hydroxide. In the first invention, the inorganic basic compound preferably contains potassium hydroxide or sodium hydroxide. These basic compounds are excellent in that they have a low odor.

<第二の半導体基板用研磨液(第二発明)>
本発明に係る第二の半導体基板用研磨液は、表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、変性シリカの含有量が0.01質量%以上1.5質量%以下であり、pHが9以上12以下である。
<Second polishing liquid for semiconductor substrate (second invention)>
The second polishing liquid for a semiconductor substrate according to the present invention contains a modified silica whose surface is modified with aluminate and an inorganic basic compound, and the content of the modified silica is 0.01% by mass or more. 5 mass% or less, and pH is 9 or more and 12 or less.

第二発明によれば、シリコン等に代表される材料からなる半導体基板の研磨を高速で行うことができる。そのため、本発明では半導体基板の加工時間の低減が可能となる。   According to the second invention, a semiconductor substrate made of a material typified by silicon or the like can be polished at a high speed. Therefore, in the present invention, the processing time of the semiconductor substrate can be reduced.

第二発明では、変性シリカの一次粒径が7〜50nmであることが好ましい。   In the second invention, the primary particle diameter of the modified silica is preferably 7 to 50 nm.

変性シリカの一次粒径が7nm以上であることにより、実用的な研磨速度を得やすくなる。また、変性シリカの一次粒径が50nm以下であることにより、傷等の研磨欠陥の発生を抑制しやすくなる。   When the primary particle diameter of the modified silica is 7 nm or more, it becomes easy to obtain a practical polishing rate. Moreover, it becomes easy to suppress generation | occurrence | production of polishing defects, such as a damage | wound, when the primary particle diameter of modified silica is 50 nm or less.

第二発明では、無機塩基性化合物が、水酸化カリウム又は水酸化ナトリウムを含有することが好ましい。   In the second invention, the inorganic basic compound preferably contains potassium hydroxide or sodium hydroxide.

上述の通り、第二発明においても、無機塩基性化合物は、研磨速度を得るための溶解剤として作用する。そして、半導体基板用研磨液中の無機塩基性化合物の添加量が多いほど研磨速度が高くなる傾向がある。また、第二発明では、変性シリカと無機塩基性化合物との組み合わせによって変性シリカ(研磨粒子)の表面電位が最も大きくなるため、研磨速度の高速化が可能となる。無機塩基性化合物の中では、低臭気である点において、水酸化カリウム又は水酸化ナトリウムが優れている。   As described above, also in the second invention, the inorganic basic compound acts as a solubilizer for obtaining a polishing rate. And there exists a tendency for polishing rate to become high, so that there is much addition amount of the inorganic basic compound in the polishing liquid for semiconductor substrates. In the second invention, the surface potential of the modified silica (abrasive particles) is maximized by the combination of the modified silica and the inorganic basic compound, so that the polishing rate can be increased. Among inorganic basic compounds, potassium hydroxide or sodium hydroxide is excellent in terms of low odor.

第二発明は、更に1,2,4−トリアゾールを含有することが好ましい。   The second invention preferably further contains 1,2,4-triazole.

これにより、保存時や使用時における研磨液のpHの低下を抑制でき、研磨液の品質が安定するため、研磨速度の低下及び変動を極めて小さくすることができる。その結果、安定なポリッシング、工程管理の容易化、及び品質の揃った半導体基板の加工が可能となる。   Thereby, since the fall of pH of polishing liquid at the time of a preservation | save or use can be suppressed and the quality of polishing liquid is stabilized, the fall and fluctuation | variation of polishing rate can be made very small. As a result, stable polishing, easy process management, and processing of semiconductor substrates with uniform quality are possible.

更に半導体基板の研磨方法に係る発明として、本発明は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹凸部を形成する工程と、凹凸部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第一又は第二の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法を提供する。   Further, as an invention relating to a method for polishing a semiconductor substrate, the present invention is a method for polishing a semiconductor substrate for forming a through silicon via, the step of forming an uneven portion on one surface of the silicon substrate, A step of embedding metal, a step of back grinding the other surface of the silicon substrate, and a polishing step of polishing the other surface so that the metal is exposed using the first or second polishing liquid for a semiconductor substrate. A method for polishing a semiconductor substrate comprising:

これにより、シリコン貫通ビアを形成する過程で生じる、バックグラインド後のシリコンダメージ層を、良好な研磨速度を保ちつつ、充分に平坦化することができる。   Thereby, the silicon damage layer after back grinding, which is generated in the process of forming the through silicon via, can be sufficiently flattened while maintaining a good polishing rate.

また、半導体基板の研磨方法に係る発明として、本発明は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、シリコンウエハをエッチングし、粗ウエハを準備する工程と、第一又は第二の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。なお、本願において、製品となるシリコンウエハを仕上げるための最終研磨加工を「仕上げ研磨」とし、仕上げ研磨の前段階として行う研磨加工を「粗研磨」とする。   In addition, as an invention related to a method for polishing a semiconductor substrate, the present invention includes a step of lapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot, and then etching the silicon wafer to prepare a rough wafer. And a rough polishing step of polishing a rough wafer using the first or second semiconductor substrate polishing liquid. In the present application, the final polishing process for finishing a silicon wafer as a product is referred to as “finish polishing”, and the polishing process performed as a pre-stage of final polishing is referred to as “rough polishing”.

このような半導体基板の研磨方法であれば、半導体基板の表面を高速で研磨加工することが可能となる。   With such a semiconductor substrate polishing method, the surface of the semiconductor substrate can be polished at high speed.

半導体基板の研磨方法に係る発明として、本発明は、更に、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、第一又は第二の半導体基板用研磨液を用いて、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。   As an invention relating to a semiconductor substrate polishing method, the present invention further relates to a semiconductor substrate polishing method for reuse, the step of performing wet etching on a silicon wafer to which deposits have adhered, and the first or second method. There is provided a method for polishing a semiconductor substrate, comprising: a rough polishing step for polishing a wet-etched silicon wafer using a semiconductor substrate polishing liquid.

このような半導体基板の研磨方法であれば、再利用するために回収された半導体基板(テストウエハ等)の表面から不要な付着物を除去し、且つ凹凸の少ない平滑な表面に高速で研磨加工することが可能となる。   With such a method of polishing a semiconductor substrate, unnecessary deposits are removed from the surface of a semiconductor substrate (such as a test wafer) collected for reuse, and a smooth surface with few irregularities is polished at high speed. It becomes possible to do.

<第三の半導体基板用研磨液(第三発明)>
本発明に係る第三の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下である。
<Third semiconductor substrate polishing liquid (third invention)>
The third polishing liquid for a semiconductor substrate according to the present invention contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound, and has a pH of 9 or more and 12 or less.

第三発明によれば、シリコン等に代表される材料からなる半導体基板の表面を、凹凸の少ない平滑な表面に研磨加工することが可能となる。   According to the third invention, the surface of the semiconductor substrate made of a material typified by silicon or the like can be polished to a smooth surface with few irregularities.

なお、水溶性高分子の含有量は、半導体基板用研磨液の全質量に対して、0.001質量%以上10質量%以下であることが好ましい。また、1,2,4−トリアゾールの含有量は、半導体基板用研磨液の全質量に対して、0.01質量%以上10質量%以下であることが好ましい。   In addition, it is preferable that content of water-soluble polymer is 0.001 mass% or more and 10 mass% or less with respect to the total mass of the polishing liquid for semiconductor substrates. Moreover, it is preferable that content of 1,2,4-triazole is 0.01 mass% or more and 10 mass% or less with respect to the total mass of the polishing liquid for semiconductor substrates.

水溶性高分子及び1,2,4−トリアゾールの含有量を上記範囲とすることで、より確実に半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。   By setting the content of the water-soluble polymer and 1,2,4-triazole in the above range, the surface of the semiconductor substrate can be more reliably polished to a smooth surface with less unevenness.

<第四の半導体基板用研磨液(第四発明)>
本発明に係る第四の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下である。
<Fourth polishing liquid for semiconductor substrate (fourth invention)>
The fourth polishing liquid for a semiconductor substrate according to the present invention contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound, and contains 1,2,4-triazole. The amount is 0.05% by mass or more and 0.5% by mass or less based on the total mass of the polishing liquid for semiconductor substrate, and the content of the water-soluble polymer is based on the total mass of the polishing liquid for semiconductor substrate. 0.001 mass% or more and 0.1 mass% or less, and pH is 9 or more and 12 or less.

これにより、シリコン等に代表される材料からなる半導体基板の表面を凹凸が少なく平滑で、欠陥の少ない表面に研磨加工することが可能となる。   As a result, the surface of the semiconductor substrate made of a material typified by silicon or the like can be polished to a smooth surface with few irregularities and few defects.

更に半導体基板の研磨方法に係る発明として、本発明は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、シリコンウエハをエッチングし、粗ウエハを準備する工程と、粗ウエハを研磨する研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法を提供する。   Further, as an invention relating to a method for polishing a semiconductor substrate, the present invention includes a step of preparing a rough wafer by etching a silicon wafer after wrapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot; A method for polishing a semiconductor substrate, comprising: a polishing step for polishing a rough wafer; and a final polishing step for further polishing the silicon wafer after the rough polishing step using a third or fourth polishing liquid for a semiconductor substrate. .

これにより、シリコンウエハ上に存在する微小な凹凸を充分に解消するとともに欠陥の少ない表面に研磨加工することができる。   As a result, it is possible to sufficiently eliminate the minute irregularities present on the silicon wafer and to polish the surface with few defects.

また半導体基板の研磨方法に係る発明として、本発明は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法を提供する。   Further, as an invention relating to a method for polishing a semiconductor substrate, the present invention relates to a method for polishing a semiconductor substrate for reuse. The method includes wet etching a silicon wafer to which deposits have adhered, and a wet-etched silicon wafer. A method for polishing a semiconductor substrate comprising: a rough polishing step for polishing; and a final polishing step for further polishing a silicon wafer after the rough polishing step using a third or fourth polishing liquid for a semiconductor substrate.

このような半導体基板の研磨方法であれば、再利用するために回収された半導体基板(テストウエハ等)の表面から不要な付着物を除去すると共に、シリコンウエハ上に存在する微小な凹凸が解消され欠陥の少ない再利用可能な半導体基板を提供することが可能となる。   With such a method of polishing a semiconductor substrate, unnecessary deposits are removed from the surface of a semiconductor substrate (such as a test wafer) collected for reuse, and minute irregularities existing on the silicon wafer are eliminated. Therefore, a reusable semiconductor substrate with few defects can be provided.

<第五の半導体基板用研磨液(第五発明)>
本発明に係る第五の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.2質量%以上3.0質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.01質量%以上0.2質量%以下であり、pHが9以上12以下である。
<Fifth semiconductor substrate polishing liquid (fifth invention)>
The fifth polishing liquid for a semiconductor substrate according to the present invention contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound, and contains 1,2,4-triazole. The amount is 0.2% by mass or more and 3.0% by mass or less based on the total mass of the semiconductor substrate polishing liquid, and the content of the water-soluble polymer is based on the total mass of the semiconductor substrate polishing liquid. 0.01 mass% or more and 0.2 mass% or less, and pH is 9 or more and 12 or less.

これにより、半導体基板に対する所定の研磨速度を維持しつつ、基板表面に凹凸がある場合は凸部を優先的に研磨することが可能となる。   Thereby, it is possible to preferentially polish the convex portion when the substrate surface has irregularities while maintaining a predetermined polishing rate for the semiconductor substrate.

更に、半導体基板の研磨方法に係る発明として、本発明は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングした後、シリコンウエハをグラインディングして粗ウエハを準備する工程と、第三又は第五の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。   Furthermore, as an invention related to a method for polishing a semiconductor substrate, the present invention is a method for polishing a semiconductor substrate for reuse. The method includes wet etching a silicon wafer to which deposits adhere, and then grinding the silicon wafer. There is provided a method for polishing a semiconductor substrate, comprising: a step of preparing a rough wafer; and a rough polishing step of polishing the rough wafer using a third or fifth semiconductor substrate polishing liquid.

このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができるため、粗研磨で生じる半導体基板の研磨ロスを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。   With such a method for polishing a semiconductor substrate, it is possible to perform rough polishing, which has been conventionally performed in several steps, in one step, and thus it is possible to reduce polishing loss of the semiconductor substrate caused by rough polishing. Become. Thereby, the effect that the frequency | count of reuse of a silicon wafer can be increased more is also acquired.

更に半導体基板の研磨方法に係る発明として、本発明は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹部を形成する工程と、凹部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第三又は第五の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法を提供する。   Furthermore, as an invention relating to a method for polishing a semiconductor substrate, the present invention is a method for polishing a semiconductor substrate for forming a through silicon via, the step of forming a recess in one surface of the silicon substrate, and a metal in the recess A step of embedding, a step of back grinding the other surface of the silicon substrate, and a polishing step of polishing the other surface using a third or fifth semiconductor substrate polishing liquid so that the metal is exposed. A method for polishing a semiconductor substrate is provided.

これにより、シリコン貫通ビアを形成する過程で生じる、バックグラインド後の研削痕を、少ない研磨量で、充分に平坦化することができる。   Thereby, grinding marks after back grinding, which are generated in the process of forming through silicon vias, can be sufficiently flattened with a small amount of polishing.

なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。In the above rough polishing step, the polishing amount of the rough wafer is L (nm), the initial step of the rough wafer is R t0 (nm), and the step of the rough wafer after the rough polishing is R t1 (nm). When defined, when a rough wafer is polished by L (nm) satisfying R t0 ≦ L ≦ R t0 × 1.3 (that is, polished by a polishing amount not more than 1.3 times the initial step), L / ( R t0 −R t1 ) ≦ 1.3 and R t1 ≦ 100 (nm) are preferably satisfied. Needless to say, the final polishing amount may be more than the above-mentioned range (R t0 ≦ L ≦ R t0 × 1.3).

また、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面を凹凸が少なく平滑で、欠陥の少ない研磨加工することが可能となる。   Further, in the above-described method for polishing a semiconductor substrate, the method may further include a final polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid. It contains 4-triazole, a water-soluble polymer, and a basic compound, and preferably has a pH of 9 or more and 12 or less. As a result, the surface of the semiconductor substrate can be polished with less unevenness and smoothness with fewer defects.

更に、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面をより確実に凹凸が少なく平滑で、欠陥のより少ない表面に仕上げ研磨加工することが可能となる。   Furthermore, in the above-described method for polishing a semiconductor substrate, the semiconductor wafer may further include a final polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid. It contains 4-triazole, a water-soluble polymer, and a basic compound, and the content of 1,2,4-triazole is 0.05% by mass or more and 0% by mass with respect to the total mass of the semiconductor substrate polishing liquid. 0.5 mass% or less, the content of the water-soluble polymer is 0.001 mass% or more and 0.1 mass% or less with respect to the total mass of the polishing liquid for semiconductor substrate, and the pH is 9 or more and 12 or less. It is preferable that As a result, the surface of the semiconductor substrate can be finished and polished more reliably to a smooth surface with less irregularities and less defects.

なお、上記第三、第四及び第五の半導体基板用研磨液においては、水溶性高分子がノニオン性高分子であることが好ましい。ノニオン性高分子を用いることにより、半導体基板表面の凹凸を低減する効果が顕著となる。ノニオン性高分子は、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種であることが好ましい。また、水溶性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種を含む混合物であってもよい。   In the third, fourth and fifth semiconductor substrate polishing liquids, the water-soluble polymer is preferably a nonionic polymer. By using a nonionic polymer, the effect of reducing irregularities on the surface of the semiconductor substrate becomes significant. The nonionic polymer is preferably at least one selected from polyvinylpyrrolidone and polyvinylpyrrolidone copolymers. The water-soluble polymer may be a mixture containing at least one selected from polyvinyl pyrrolidone and a polyvinyl pyrrolidone copolymer.

上記本発明に係る半導体基板用研磨液では、研磨対象である半導体基板が、シリコン、又は基板構成にシリコンを含む基板であることが好ましい。すなわち、本発明は、シリコン、又は基板構成にシリコンを含む基板に対する研磨速度に特に優れている。   In the semiconductor substrate polishing liquid according to the present invention, the semiconductor substrate to be polished is preferably silicon or a substrate containing silicon in the substrate structure. That is, the present invention is particularly excellent in the polishing rate for silicon or a substrate containing silicon in the substrate structure.

本発明に係る半導体基板の研磨方法では、上記本発明に係る半導体基板用研磨液を用いて半導体基板の表面を研磨する。このような研磨方法によれば、半導体基板の表面を平滑で欠陥の少ない表面に高速で研磨加工することが可能となる。   In the method for polishing a semiconductor substrate according to the present invention, the surface of the semiconductor substrate is polished using the polishing liquid for a semiconductor substrate according to the present invention. According to such a polishing method, the surface of the semiconductor substrate can be polished to a smooth surface with few defects at a high speed.

本発明では、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工を可能とする半導体基板用研磨液及び当該半導体基板研磨液を用いた半導体基板の研磨方法を提供することができる。   In the present invention, a polishing solution for a semiconductor substrate and a semiconductor substrate polishing solution that can reduce the processing time of a semiconductor substrate, facilitate process control, and process a semiconductor substrate with uniform quality by high-speed and stable polishing. A method for polishing a used semiconductor substrate can be provided.

また、本発明により、半導体基板の表面を凹凸の少ない平滑で欠陥が少ない表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法が提供される。   In addition, the present invention provides a polishing liquid for a semiconductor substrate and a polishing method for the polishing liquid for a semiconductor substrate, which can polish the surface of a semiconductor substrate to a smooth surface with less unevenness and less defects.

また、本発明により、実用的な研磨速度で半導体基板の表面を少ない研磨量で凹凸の少ない平滑な表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法が提供される。   Further, according to the present invention, there is provided a polishing liquid for a semiconductor substrate and a polishing method for a polishing liquid for a semiconductor substrate capable of polishing the surface of a semiconductor substrate to a smooth surface with a small amount of polishing and less unevenness at a practical polishing rate. Provided.

実施例1〜4及び従来例(比較例1〜11)の各研磨液を調製した時点から24時間後の各研磨液のpHの変化量を示したグラフである。It is the graph which showed the variation | change_quantity of pH of each polishing liquid 24 hours after the time of preparing each polishing liquid of Examples 1-4 and a prior art example (comparative examples 1-11). 実施例1〜4及び従来例(比較例1〜11)の各研磨液の調整直後の研磨速度、及び各研磨液を調製した時点から24時間後の各研磨液の研磨速度を示したグラフである。The graph which showed the polishing rate immediately after adjustment of each polishing liquid of Examples 1-4 and a prior art example (comparative examples 1-11), and the polishing rate of each polishing liquid 24 hours after the time of preparing each polishing liquid. is there. 各研磨液中の砥粒(シリカ)の添加量と、各研磨液を調製した時点から24時間後の各研磨液のpHの変化量の関係を示したグラフである。It is the graph which showed the relationship between the addition amount of the abrasive grain (silica) in each polishing liquid, and the variation | change_quantity of pH of each polishing liquid 24 hours after the time of preparing each polishing liquid. 実施例9の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of Example 9. FIG. 比較例20の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of the comparative example 20. FIG. 実施例11〜14と従来例(比較例21〜24)の研磨液のpHと研磨速度を示したグラフである。It is the graph which showed pH of the polishing liquid of Examples 11-14 and a prior art example (comparative examples 21-24), and polishing rate. 実施例19の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of Example 19. 比較例33の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of the comparative example 33. 比較例34の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of the comparative example 34. 比較例35の段差・表面あらさ・微細形状測定装置による測定結果である。It is a measurement result by the level | step difference, surface roughness, and fine shape measuring apparatus of the comparative example 35. 実施例45の研磨量Lと最大高さRtとの関係を示したグラフである。14 is a graph showing the relationship between the polishing amount L and the maximum height Rt in Example 45. 比較例43の研磨量Lと最大高さRtとの関係を示したグラフである。14 is a graph showing a relationship between a polishing amount L and a maximum height Rt in Comparative Example 43. 本発明の一実施形態に係る半導体基板の研磨方法を示す概略断面図である。It is a schematic sectional drawing which shows the grinding | polishing method of the semiconductor substrate which concerns on one Embodiment of this invention. 一般的なシリコンウエハの加工工程を示したフローチャートである。It is the flowchart which showed the processing process of the general silicon wafer. 一般的なシリコンウエハの研磨工程を示す模式図である。It is a schematic diagram which shows the grinding | polishing process of a general silicon wafer. 図16(a)はシリコンウエハの一般的な再生工程を示したフローチャートであり、図16(b)は本発明の一実施形態に係る半導体基板の研磨方法を用いた場合の、シリコンウエハの再生工程を示したフローチャートである。FIG. 16A is a flowchart showing a general process for reclaiming a silicon wafer, and FIG. 16B is a process for regenerating a silicon wafer when the method for polishing a semiconductor substrate according to an embodiment of the present invention is used. It is the flowchart which showed the process. 第三〜第五の半導体基板用研磨液における、1,2,4−トリアゾール及び水溶性高分子の含有量を示すグラフである。It is a graph which shows content of 1,2,4-triazole and water-soluble polymer in the 3rd-5th polishing liquid for semiconductor substrates.

以下、本発明の一実施形態に係る半導体基板用研磨液及び当該研磨液を用いた半導体基板の研磨方法ついて、必要に応じて図面を参照しながら詳細に説明する。   Hereinafter, a semiconductor substrate polishing liquid and a semiconductor substrate polishing method using the polishing liquid according to an embodiment of the present invention will be described in detail with reference to the drawings as necessary.

<第一の半導体基板用研磨液>
第一発明の実施形態として、研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である、半導体基板用研磨液について説明する。
<First polishing liquid for semiconductor substrate>
As an embodiment of the first invention, it contains abrasive particles, 1,2,4-triazole, and a basic compound, the basic compound is a nitrogen-containing basic compound or an inorganic basic compound, and the basic compound The semiconductor substrate polishing liquid having a content of 0.1% by mass or more and a pH of 9 or more and 12 or less will be described.

第一の実施形態では、研磨液のpHが9以上12以下の高いアルカリ領域においてもpHの低下を抑制できるため、経時による研磨速度の低下及び変動を極めて小さすることが可能となり、且つ高速な半導体基板のポリッシングが可能となる。   In the first embodiment, since the decrease in pH can be suppressed even in a high alkali region where the pH of the polishing liquid is 9 or more and 12 or less, it is possible to extremely reduce the decrease and fluctuation of the polishing rate over time, and at high speed. Polishing of the semiconductor substrate becomes possible.

(pH)
第一の実施形態では、半導体基板に対する充分な研磨速度を得るために、半導体基板用研磨液のpHの下限を9.0以上とする。より優れた研磨速度を得る点では、pHは9.5以上であることが好ましい。更に保存時や使用時に研磨液のpHが低下することを充分に抑制するため、pHの上限は12.0であり、11.5以下であることが好ましく、11.0以下であることがより好ましい。
(PH)
In the first embodiment, in order to obtain a sufficient polishing rate for the semiconductor substrate, the lower limit of the pH of the semiconductor substrate polishing liquid is set to 9.0 or more. In order to obtain a more excellent polishing rate, the pH is preferably 9.5 or more. Furthermore, the upper limit of the pH is 12.0, preferably 11.5 or less, more preferably 11.0 or less in order to sufficiently suppress the pH of the polishing liquid from being lowered during storage or use. preferable.

pHは、例えば、1,2,4−トリアゾール及び/又は塩基性化合物の添加量で調整することができる。なお、半導体基板用研磨液のpHは、pHメータ(例えば、横河電機株式会社製、Model pH81)で測定することができる。   The pH can be adjusted by, for example, the amount of 1,2,4-triazole and / or basic compound added. The pH of the semiconductor substrate polishing liquid can be measured with a pH meter (for example, Model pH81, manufactured by Yokogawa Electric Corporation).

(1,2,4−トリアゾール及び塩基性化合物)
第一の実施形態に係る半導体基板用研磨液の重要な特徴は、1,2,4−トリアゾールと、塩基性化合物とを併用する点にある。1,2,4−トリアゾールと塩基性化合物とを併用することが本発明の効果を得るために重要となる理由は詳しくはわかっていないが、半導体基板用研磨液が1,2,4−トリアゾールと塩基性化合物を両方含有することによって下記の事項1、2が達成されることが本発明の効果を奏するための重要なファクターの一つであると考えられる。
[事項1]塩基性化合物の添加量を多くできること。
[事項2]時間の経過に伴う半導体基板用研磨液のpHの変動を少なくすることができること。
(1,2,4-triazole and basic compounds)
An important feature of the polishing liquid for a semiconductor substrate according to the first embodiment is that 1,2,4-triazole is used in combination with a basic compound. The reason why the combined use of 1,2,4-triazole and a basic compound is important for obtaining the effects of the present invention is not known in detail, but the polishing liquid for semiconductor substrates is 1,2,4-triazole. It can be considered that one of the important factors for achieving the effects of the present invention is that the following items 1 and 2 are achieved by containing both the basic compound and the basic compound.
[Item 1] The amount of basic compound added can be increased.
[Item 2] The fluctuation of the pH of the semiconductor substrate polishing liquid over time can be reduced.

上記事項1について詳しく説明する。塩基性化合物は、半導体基板の溶解剤として作用する。従って、高い研磨速度を得る観点からは塩基性化合物の添加量が多いほど好ましい。しかしながら、例えば、研磨液のpHの目標値を11に設定し、塩基性化合物として水酸化カリウムを添加する場合、半導体基板用研磨液のpHがすぐに上昇してしまう。ところが、半導体基板用研磨液に1,2,4−トリアゾールを添加しておくと、1,2,4−トリアゾールのpKaは2.2と低いため、塩基性化合物の添加に伴う半導体基板用研磨液のpHの上昇を抑えることができる。このような理由から、1,2,4−トリアゾールと塩基性化合物とを併用することにより、塩基性化合物を増量することが可能となる。The above item 1 will be described in detail. The basic compound acts as a solubilizer for the semiconductor substrate. Therefore, from the viewpoint of obtaining a high polishing rate, it is preferable that the addition amount of the basic compound is large. However, for example, when the target value of the pH of the polishing liquid is set to 11 and potassium hydroxide is added as a basic compound, the pH of the polishing liquid for a semiconductor substrate will rise immediately. However, when 1,2,4-triazole is added to the polishing liquid for a semiconductor substrate, the pKa 1 of 1,2,4-triazole is as low as 2.2. An increase in the pH of the polishing liquid can be suppressed. For these reasons, it is possible to increase the amount of the basic compound by using 1,2,4-triazole and the basic compound in combination.

1,2,4−トリアゾールを単独で研磨液に含有させたとしても、研磨速度が向上する効果はほぼない。研磨速度の向上のためには、1,2,4−トリアゾールを、溶解剤として作用する塩基性化合物と併用することが重要である。   Even if 1,2,4-triazole is contained alone in the polishing liquid, there is almost no effect of improving the polishing rate. In order to improve the polishing rate, it is important to use 1,2,4-triazole in combination with a basic compound that acts as a solubilizer.

1,2,4−トリアゾールに替えて、硫酸や塩酸等の酸を添加することでも、塩基性化合物を増量することができるが、このような場合では、シリコンに対する研磨速度が充分得られなかったり、配合後のpHの低下を抑制する効果は小さかったりすることが本発明者らの検討でわかっている。   The basic compound can be increased by adding an acid such as sulfuric acid or hydrochloric acid in place of 1,2,4-triazole, but in such a case, a sufficient polishing rate for silicon may not be obtained. The present inventors have found that the effect of suppressing the decrease in pH after blending is small.

上記事項2について説明する。1,2,4−トリアゾールを含有する研磨液では、その配合から時間が経過してもpHの低下を極めて小さくできる。1,2,4−トリアゾールの代わりに、これに類似する構造を有する1,2,3−トリアゾール(pKa=2.1)や1H−ベンゾトリアゾール(pKa=8.2)を用いた場合、上記事項1で説明したように、研磨液への塩基性化合物の添加量を増量することができるが、配合後のpHの低下を抑制する効果は小さい上、塩基性化合物の添加量に見合う研磨速度向上の効果は得られないことがわかっている。また、1,2,4−トリアゾールの代わりにイミダゾール化合物を用いた場合、イミダゾール化合物のpKaは14.5と高いため、溶解剤として作用する塩基性化合物の添加量を増量することができず、また配合後のpHの低下を抑制する効果も小さい。The above item 2 will be described. In the polishing liquid containing 1,2,4-triazole, the decrease in pH can be made extremely small even if time elapses from the blending. When 1,2,3-triazole (pKa 1 = 2.1) or 1H-benzotriazole (pKa 1 = 8.2) having a similar structure is used instead of 1,2,4-triazole As described in item 1 above, the amount of the basic compound added to the polishing liquid can be increased, but the effect of suppressing the decrease in pH after blending is small, and is commensurate with the amount of basic compound added. It has been found that the effect of improving the polishing rate cannot be obtained. In addition, when an imidazole compound is used instead of 1,2,4-triazole, the pKa 1 of the imidazole compound is as high as 14.5, so the amount of basic compound acting as a solubilizer cannot be increased. Moreover, the effect which suppresses the fall of pH after a mixing | blending is also small.

第一の実施形態に係る半導体基板用研磨液における1,2,4−トリアゾールの添加量は、研磨液のpH低下抑制と研磨速度向上の効果を充分に得ることはできる点で、0.1質量%以上であることが好ましく、0.25質量%以上であることがより好ましい。また、1,2,4−トリアゾールの添加量は、研磨粒子の凝集等の不具合を防止し易い点において、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることが最も好ましい。なお、研磨粒子が凝集は、1,2,4−トリアゾールの添加量だけに起因するとは一概には言えず、研磨粒子の粒径や添加量にも起因する。   The addition amount of 1,2,4-triazole in the polishing liquid for a semiconductor substrate according to the first embodiment is 0.1 in that the effect of suppressing the decrease in pH of the polishing liquid and improving the polishing speed can be sufficiently obtained. The content is preferably at least mass%, more preferably at least 0.25 mass%. Further, the amount of 1,2,4-triazole added is preferably 10% by mass or less, more preferably 7% by mass or less, in terms of easily preventing problems such as aggregation of abrasive particles. Most preferably, it is at most mass%. It should be noted that the aggregation of the abrasive particles cannot be generally attributed only to the addition amount of 1,2,4-triazole, but also to the particle size and addition amount of the abrasive particles.

第一の実施形態に係る半導体基板用研磨液が含有する塩基性化合物としては、低臭気の点で、水酸化アンモニウム及び水酸化テトラメチルアンモニウムから選ばれる1種類以上の含窒素塩基性化合物、又は、水酸化カリウム及び水酸化ナトリウムから選ばれる1種類以上の無機塩基性化合物が好ましい。これらは単独で、もしくは複数で用いることができる。   The basic compound contained in the semiconductor substrate polishing liquid according to the first embodiment is one or more nitrogen-containing basic compounds selected from ammonium hydroxide and tetramethylammonium hydroxide in terms of low odor, or One or more inorganic basic compounds selected from potassium hydroxide and sodium hydroxide are preferred. These can be used alone or in combination.

(研磨粒子)
第一の実施形態では、半導体基板用研磨液に含まれる研磨粒子としてシリカを使用することが好ましい。これにより、高い研磨速度を得やすくなる。使用できるシリカとしては、公知のものを広く使用することができ、具体的には例えば、フュームドシリカ、コロイダルシリカ、沈殿法シリカ等を挙げることができる。中でも高純度なものが得やすい点で、フュームドシリカ又はコロイダルシリカが好ましく、水への分散安定性や傷等の研磨欠陥が発生し難い点でコロイダルシリカがより好ましい。また、シリカは、必要に応じて他の研磨粒子と併用してもよい。シリカと併用できる他の研磨粒子としては、具体的には例えば、アルミナ、セリア、チタニア、ジルコニア、有機ポリマ等を挙げることができる。
(Abrasive particles)
In the first embodiment, it is preferable to use silica as the abrasive particles contained in the semiconductor substrate polishing liquid. This makes it easy to obtain a high polishing rate. As the silica that can be used, known ones can be widely used. Specific examples include fumed silica, colloidal silica, and precipitated silica. Among these, fumed silica or colloidal silica is preferable in that high-purity ones can be easily obtained, and colloidal silica is more preferable in that dispersion defects in water and polishing defects such as scratches are unlikely to occur. Silica may be used in combination with other abrasive particles as necessary. Specific examples of other abrasive particles that can be used in combination with silica include alumina, ceria, titania, zirconia, and organic polymers.

シリカの一次粒子径は、実用的な研磨速度を得ることができる点で、5nm以上であることが好ましく、7nm以上であることがより好ましく、9nm以上であることが特に好ましい。また、シリカの一次粒子径は、傷等の研磨欠陥の発生を抑制しやすい点で、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが特に好ましく、40nm以下であることが極めて好ましい。シリカの一次粒子径を上記の範囲内とした場合、粒径に依存する機械作用による研磨促進効果と、小粒径化に伴う粒子数増加による研磨促進効果との組み合わせにより、最も研磨速度が向上すると考えられる。   The primary particle diameter of silica is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 9 nm or more in that a practical polishing rate can be obtained. Further, the primary particle diameter of silica is preferably 200 nm or less, more preferably 100 nm or less, particularly preferably 50 nm or less, and 40 nm in that it is easy to suppress the occurrence of polishing defects such as scratches. Very preferably, When the primary particle diameter of silica is within the above range, the polishing speed is most improved by the combination of the polishing acceleration effect due to the mechanical action depending on the particle size and the polishing acceleration effect due to the increase in the number of particles accompanying the reduction in particle size. I think that.

第一の実施形態において、シリカの一次粒子径とは、BET比表面積Vから算出できる粒子の平均直径をいい、ガス吸着法による吸着比表面積(BET比表面積という、以下同じ)の測定から、以下の式(1)
D1=6/(ρ×V) ・・・(1)
により算出される。
In the first embodiment, the primary particle diameter of silica refers to the average diameter of particles that can be calculated from the BET specific surface area V. From the measurement of the adsorption specific surface area (hereinafter referred to as the BET specific surface area) by a gas adsorption method, Equation (1)
D1 = 6 / (ρ × V) (1)
Is calculated by

式(1)において、D1は粒子の一時粒子径(単位:m)、ρは粒子の密度(単位:kg/m)、VはBET比表面積(単位:m/g)を示す。In the formula (1), D1 represents a temporary particle diameter (unit: m), ρ represents a particle density (unit: kg / m 3 ), and V represents a BET specific surface area (unit: m 2 / g).

より具体的には、まず砥粒を真空凍結乾燥機で乾燥し、この残分を乳鉢(磁性、100ml)で細かく砕いて測定用試料とし、これをユアサアイオニクス(株)製BET比表面積測定装置(製品名オートソーブ6)を用いてBET比表面積Vを測定し、一次粒子径D1を算出する。なお、粒子がコロイダルシリカの場合には粒子の密度ρは、ρ=2200(kg/m)である。More specifically, the abrasive grains are first dried with a vacuum freeze dryer, and the residue is finely crushed with a mortar (magnetic, 100 ml) to obtain a measurement sample, which is measured by BET specific surface area manufactured by Yuasa Ionics Co., Ltd. The BET specific surface area V is measured using an apparatus (product name: Autosorb 6), and the primary particle diameter D1 is calculated. When the particles are colloidal silica, the density ρ of the particles is ρ = 2200 (kg / m 3 ).

従って、BET比表面積V(m/g)を代入すると、
D1=2.727×10−6/V (m)=2727/V(nm)
として、一次粒子径を求めることができる。
Therefore, when the BET specific surface area V (m 2 / g) is substituted,
D1 = 2.727 × 10 −6 / V (m) = 2727 / V (nm)
As such, the primary particle diameter can be determined.

研磨粒子の添加量は、研磨液全体に対して0.01質量%以上5.0質量%以下であることが好ましく、0.05質量%以上3.0質量%以下であることがより好ましく、0.1質量%以上1.0質量%以下であることが更に好ましい。研磨粒子の添加量を0.01質量%以上とすることにより、充分な研磨速度を得易くなる。また、研磨粒子の添加量を5.0質量%以下とすることにより、研摩傷等の欠陥の発生を抑制しやすくなる。   The addition amount of the abrasive particles is preferably 0.01% by mass or more and 5.0% by mass or less, more preferably 0.05% by mass or more and 3.0% by mass or less, based on the entire polishing liquid. More preferably, it is 0.1 mass% or more and 1.0 mass% or less. By making the addition amount of the abrasive particles 0.01% by mass or more, it becomes easy to obtain a sufficient polishing rate. Moreover, it becomes easy to suppress generation | occurrence | production of defects, such as an abrasion wound, by making the addition amount of an abrasive particle into 5.0 mass% or less.

(その他の成分)
第一の実施形態では、上述した成分の他に、水以外の溶媒、防食剤、酸化剤、水溶性高分子ポリマなど一般に研磨液に添加される成分を、上述した研磨液の作用効果を損なわない範囲で半導体基板用研磨液に添加することができる。
(Other ingredients)
In the first embodiment, in addition to the above-described components, components other than water, anticorrosives, oxidizing agents, water-soluble polymer polymers, and other components that are generally added to the polishing liquid are impaired. To the extent possible, it can be added to the polishing liquid for semiconductor substrates.

(保存形態)
第一の実施形態の半導体基板用研磨液は、その成分濃度を予め高くした濃縮形態として保存できる。研磨液の使用時には、濃縮形態にある研磨液を、水等で本来の成分濃度まで希釈して使用すればよい。更に、半導体基板用研磨液の成分を幾つかに分けた分液形態として保存し、それらを使用時に混合して使用することもできる。
(Storage format)
The semiconductor substrate polishing liquid of the first embodiment can be stored in a concentrated form in which the component concentration is increased in advance. When the polishing liquid is used, the polishing liquid in a concentrated form may be diluted to the original component concentration with water or the like. Furthermore, it is possible to store the components of the polishing liquid for semiconductor substrate in a separated liquid form and mix them at the time of use.

第一の実施形態では、半導体基板用研磨液の配合後のpHの低下を抑制する効果は、シリカの添加量によらず得ることができる。また、第一の実施形態では、半導体基板用研磨液のpHを所定の範囲にしつつ、溶解剤である塩基性化合物の添加量を増量できることから、研磨に寄与する化学作用を強めることができる。この結果、研磨粒子であるシリカの添加量を少なくしても、高い研磨速度を得ることができると考えられる。   In 1st embodiment, the effect which suppresses the fall of the pH after the mixing | blending of the polishing liquid for semiconductor substrates can be acquired irrespective of the addition amount of a silica. Further, in the first embodiment, since the addition amount of the basic compound as the dissolving agent can be increased while keeping the pH of the semiconductor substrate polishing liquid within a predetermined range, the chemical action contributing to polishing can be strengthened. As a result, it is considered that a high polishing rate can be obtained even if the addition amount of silica as abrasive particles is reduced.

<第二の半導体基板用研磨液>
次に、第二発明の実施形態として、第二の半導体基板用研磨液について説明する。なお、第一の半導体基板用研磨液と説明が重複する部分については適宜省略する。
<Second polishing liquid for semiconductor substrate>
Next, a second semiconductor substrate polishing liquid will be described as an embodiment of the second invention. In addition, about the part which overlaps with the 1st polishing liquid for semiconductor substrates, it abbreviate | omits suitably.

前記第一の半導体基板用研磨液において、1,2,4−トリアゾールと、塩基性物質(有機、無機を問わない)とを併用することによってシリコンに対する良好な研磨速度が得られたが、研磨粒子として、表面がアルミネート化により改質された変性シリカを使用し、これと無機の塩基性物質を併用することによっても、シリコンに対する良好な研磨速度を得ることができる。   In the first polishing liquid for a semiconductor substrate, a good polishing rate for silicon was obtained by using 1,2,4-triazole in combination with a basic substance (whether organic or inorganic). A good polishing rate for silicon can also be obtained by using modified silica whose surface is modified by aluminate as particles and using this in combination with an inorganic basic substance.

すなわち、第二の実施形態として、表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、上記変性シリカの含有量が0.01質量%以上1.5質量%以下であり、pHが9以上12以下である、半導体基板用研磨液が提供される。変性シリカと、半導体基板の溶解剤である無機塩基性化合物との組み合わせにおいて変性シリカ(研磨粒子)の表面電位が最も大きくなるため、研磨速度の高速化が可能となる。   That is, as a second embodiment, the modified silica whose surface is modified with aluminate and an inorganic basic compound are contained, and the content of the modified silica is 0.01% by mass or more and 1.5% by mass or less. A polishing liquid for semiconductor substrates having a pH of 9 or more and 12 or less is provided. In the combination of the modified silica and the inorganic basic compound that is a solubilizer for the semiconductor substrate, the surface potential of the modified silica (abrasive particles) becomes the largest, so that the polishing rate can be increased.

(変性シリカ)
アルミネートによるシリカ表面の改質は、例えば、アルミン酸カリウム[(AlO(OH)K]等のアルミニウム化合物を用いて行うことができる。シリカ表面の改質では、例えば、シリカの分散液の中にアルミン酸カリウムを添加し、60℃以上で還流することで、シリカ表面のシラノール基を、よりイオン化しやすい−Si−O−Al(OH)基にする。
(Modified silica)
The modification of the silica surface with aluminate can be performed using, for example, an aluminum compound such as potassium aluminate [(AlO (OH) 2 K]. By adding potassium aluminate therein and refluxing at 60 ° C. or higher, silanol groups on the silica surface are converted into —Si—O—Al (OH) 2 groups that are more easily ionized.

使用できる変性シリカとしては、例えば、フュームドシリカ、コロイダルシリカ、沈殿法シリカ等の表面をアルミネート化により改質されたものを用いることができる。中でも高純度なものが得やすい点で、変性フュームドシリカ又は変性コロイダルシリカが好ましく、水への分散安定性や傷等の研磨欠陥が発生し難い点で変性コロイダルシリカが最も好ましい。変性シリカは、必要に応じて他の研磨粒子と併用してもよい。変性シリカと併用できる他の研磨粒子としては、具体的には例えば、アルミナ、セリア、チタニア、ジルコニア、有機ポリマ等を挙げることができる。   As the modified silica that can be used, for example, fumed silica, colloidal silica, precipitated silica or the like whose surface is modified by aluminate can be used. Among them, modified fumed silica or modified colloidal silica is preferable in that a high-purity product is easily obtained, and modified colloidal silica is most preferable in terms of dispersion stability in water and difficulty in generating polishing defects such as scratches. The modified silica may be used in combination with other abrasive particles as necessary. Specific examples of other abrasive particles that can be used in combination with the modified silica include alumina, ceria, titania, zirconia, and organic polymers.

なお、仮に溶解剤として水酸化テトラメチルアンモニウムなどの有機アミン類を使用した場合、研磨粒子の表面電位が小さくなり、研磨速度向上の効果が得られない恐れがある。また、アルミネート化により改質された変性シリカの代わりに、表面にスルホン酸基やアミノ基などを有する変性シリカを使用した場合、変性シリカ(研磨粒子)の表面電位が小さくなり、研磨速度向上の効果が得られない恐れがある。   If an organic amine such as tetramethylammonium hydroxide is used as a solubilizer, the surface potential of the abrasive particles becomes small, and the effect of improving the polishing rate may not be obtained. In addition, when modified silica having sulfonic acid groups or amino groups on the surface is used in place of modified silica modified by aluminate, the surface potential of modified silica (abrasive particles) is reduced and the polishing rate is improved. There is a risk that the effect of.

第二の実施形態において、変性シリカの表面電位とは、ゼータ電位測定装置で測定した変性シリカのゼータ電位を指す。ゼータ電位の値は、変性シリカの表面状態を反映する。高いアルカリ領域では、変性シリカはマイナスのゼータ電位を示す。ゼータ電位の値が小さい場合には、電位を打ち消すような化合物(例えば、有機アミン類等)と変性シリカが相互作用していると考えることができる。電位を打ち消すような化合物が変性シリカの表面に存在する場合、変性シリカのメカニカルな研磨作用を緩衝し、本来の研磨力が発揮できていないと、本発明者らは考える。   In the second embodiment, the surface potential of the modified silica refers to the zeta potential of the modified silica measured with a zeta potential measuring device. The value of the zeta potential reflects the surface state of the modified silica. In the high alkaline region, the modified silica exhibits a negative zeta potential. When the value of the zeta potential is small, it can be considered that a compound (for example, organic amines) that cancels the potential interacts with the modified silica. The present inventors consider that when a compound that cancels the potential is present on the surface of the modified silica, the mechanical polishing action of the modified silica is buffered and the original polishing power cannot be exhibited.

上記特許文献4に記載の従来技術では、研磨液のpHが10.5以上の領域で生じるシリカの解重合を抑制して研磨速度を得るが、本発明の効果は特許文献4に記載の従来技術とは異なるものである。本発明では、アルミネート化により改質された変性シリカと無機塩基性化合物の併用により、変性シリカ(研磨粒子)が本来有する研磨力が発揮されるため、研磨粒子の添加量が少なくても充分な研磨速度を得ることが可能となる。アルミネート化により改質された変性シリカの添加量は、研磨液全体に対して0.01質量%以上1.5質量%以下であることが好ましく、0.05質量%以上1.0質量%以下であることがより好ましく、0.1質量%以上0.8質量%以下であることが更に好ましい。本発明では、変性シリカの添加量を0.01質量%以上とすることにより、充分な研磨速度を得易くなる。また、本発明では、変性シリカの添加量が少なく、1.5質量%以下であったとしても、充分な研磨速度が得ることができる。   In the prior art described in Patent Document 4, the polishing rate is obtained by suppressing the depolymerization of silica that occurs in the region where the pH of the polishing liquid is 10.5 or higher. It is different from technology. In the present invention, the combined use of the modified silica modified by aluminate and the inorganic basic compound demonstrates the inherent polishing power of the modified silica (abrasive particles). It is possible to obtain a high polishing rate. The addition amount of the modified silica modified by aluminate is preferably 0.01% by mass or more and 1.5% by mass or less, and 0.05% by mass or more and 1.0% by mass with respect to the entire polishing liquid. More preferably, it is more preferably 0.1% by mass or more and 0.8% by mass or less. In the present invention, it is easy to obtain a sufficient polishing rate by setting the amount of the modified silica added to 0.01% by mass or more. Further, in the present invention, a sufficient polishing rate can be obtained even if the amount of the modified silica added is small and 1.5% by mass or less.

変性シリカの一次粒子径は、実用的な研磨速度を得ることができる点で、5nm以上であることが好ましく、7nm以上であることがより好ましく、9nm以上であることが特に好ましい。また、変性シリカの一次粒子径は、傷等の研磨欠陥の発生を抑制しやすい点で、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが特に好ましく、40nm以下であることが極めて好ましい。変性シリカの一次粒子径を上記の範囲内とした場合、粒径に依存する機械作用による研磨促進効果と、小粒径化に伴う粒子数増加による研磨促進効果との組み合わせにより、最も研磨速度が向上すると考えられる。   The primary particle diameter of the modified silica is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 9 nm or more in that a practical polishing rate can be obtained. The primary particle diameter of the modified silica is preferably 200 nm or less, more preferably 100 nm or less, and particularly preferably 50 nm or less, from the viewpoint of easily suppressing the occurrence of polishing defects such as scratches. It is very preferable that it is 40 nm or less. When the primary particle size of the modified silica is within the above range, the polishing rate is the highest due to the combination of the polishing promoting effect due to the mechanical action depending on the particle size and the polishing promoting effect due to the increase in the number of particles accompanying the reduction in the particle size. It is thought to improve.

なお、変性シリカの一次粒子径は、第一の半導体基板用研磨液におけるシリカの一次粒子径と同様に測定することができる。   The primary particle diameter of the modified silica can be measured in the same manner as the primary particle diameter of silica in the first semiconductor substrate polishing liquid.

(無機塩基性化合物)
無機塩基性化合物は、研磨速度を得るための溶解剤として作用するとともに、変性シリカ(研磨粒子)の表面電位を最大化するため、研磨速度の高速化が可能となる。無機塩基性化合物は、低臭気の点で、水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも1種類であることが好ましい。これらは単独で、もしくは複数で用いることができる。高い研磨速度を得る観点からは、無機塩基性化合物の添加量は多いほど好ましいため、0.01質量%以上であることが好ましく、0.05質量%以上がより好ましく、0.07質量%以上が更に好ましい。またエッチングの増加による表面粗さの悪化やシリカの解重合を抑制する観点から、無機塩基性化合物の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。
(Inorganic basic compounds)
The inorganic basic compound acts as a solubilizer for obtaining a polishing rate and maximizes the surface potential of the modified silica (abrasive particles), so that the polishing rate can be increased. The inorganic basic compound is preferably at least one selected from potassium hydroxide and sodium hydroxide in terms of low odor. These can be used alone or in combination. From the viewpoint of obtaining a high polishing rate, the larger the amount of the inorganic basic compound added, the better. Therefore, it is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.07% by mass or more. Is more preferable. Further, from the viewpoint of suppressing deterioration of surface roughness due to an increase in etching and depolymerization of silica, the content of the inorganic basic compound is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 1% by mass or less. Particularly preferred.

第二の実施形態においては、1,2,4−トリアゾールは必須構成ではないが、シリコンに対するより高速な研磨速度を得るためには、1,2,4−トリアゾールを更に含むことが好ましい。   In the second embodiment, 1,2,4-triazole is not an essential component, but it is preferable to further include 1,2,4-triazole in order to obtain a higher polishing rate for silicon.

1,2,4−トリアゾールを用いた場合、研磨速度が向上しやすくなると共に、経時による研磨速度の低下及び変動をより小さすることが可能となる。その結果、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工がより確実に可能となる。   When 1,2,4-triazole is used, the polishing rate can be easily improved, and the decrease and fluctuation of the polishing rate over time can be further reduced. As a result, high-speed and stable polishing makes it possible to reduce the processing time of the semiconductor substrate, facilitate process management, and more reliably process a semiconductor substrate with uniform quality.

この場合、第二の半導体基板用研磨液への1,2,4−トリアゾールの添加量は、前記第一の半導体基板用研磨液における添加量と同様の範囲が好ましい。   In this case, the amount of 1,2,4-triazole added to the second semiconductor substrate polishing liquid is preferably in the same range as the amount added in the first semiconductor substrate polishing liquid.

<第三の半導体基板用研磨液>
次に、第三発明の実施形態として、第三の半導体基板用研磨液について説明する。なお、第一及び第二の半導体基板用研磨液と説明が重複する部分については適宜省略する。
<Third semiconductor substrate polishing liquid>
Next, a third polishing liquid for a semiconductor substrate will be described as an embodiment of the third invention. In addition, about the part which overlaps with 1st and 2nd polishing liquid for semiconductor substrates, it abbreviate | omits suitably.

第三の実施形態の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下である。このような半導体基板用研磨液とすることによって、半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。   The polishing liquid for a semiconductor substrate of the third embodiment contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound, and has a pH of 9 or more and 12 or less. By using such a polishing liquid for a semiconductor substrate, the surface of the semiconductor substrate can be polished to a smooth surface with few irregularities.

より詳細に説明すると、第三の実施形態では、1,2,4−トリアゾールの含有により、研磨液のpHが9以上12以下の高いアルカリ領域においてもpHの低下を抑制できるため、経時による研磨速度の低下及び変動を極めて小さくし、安定した半導体基板のポリッシングが可能となる。そして、第三の実施形態では、安定なポリッシングにより、品質の揃った半導体基板の加工が可能となる。また第三の実施形態では、水溶性高分子及び1,2,4−トリアゾールによる基板表面の凹凸の低減によって、半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。   More specifically, in the third embodiment, since 1,2,4-triazole is contained, it is possible to suppress a decrease in pH even in a high alkaline region where the pH of the polishing liquid is 9 or more and 12 or less. The decrease and fluctuation in speed are extremely reduced, and stable polishing of the semiconductor substrate becomes possible. In the third embodiment, it is possible to process a semiconductor substrate with uniform quality by stable polishing. In the third embodiment, the surface of the semiconductor substrate can be polished to a smooth surface with less unevenness by reducing the unevenness of the substrate surface with the water-soluble polymer and 1,2,4-triazole.

(1,2,4−トリアゾール)
なお、1,2,4−トリアゾールによる上記の効果を得るためにも、1,2,4−トリアゾールの含有量は、半導体基板用研磨液の全質量に対して、0.001質量%以上10質量%以下であることが好ましい。
(1,2,4-triazole)
In order to obtain the above-described effect by 1,2,4-triazole, the content of 1,2,4-triazole is 0.001% by mass or more and 10% by mass with respect to the total mass of the polishing liquid for semiconductor substrate. It is preferable that it is below mass%.

(水溶性高分子)
半導体基板用研磨液が含有する水溶性高分子(水溶性ポリマ)としては、アルギン酸、ペクチン酸、カルボキシメチルセルロ−ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ−ドラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリビニル硫酸、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリエチレンイミン、及びその塩;ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレングリコール−プロピレングリコールブロック共重合体等が挙げられる。その中でも、カルボキシメチルセルロ−ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ−ドラン及びプルラン等の多糖類、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレイン、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレングリコール−プロピレングリコールブロック共重合体等などのノニオン性高分子が好ましく、ポリビニルピロリドン及びその共重合体がより好ましい。なお、上記の水溶性高分子(水溶性ポリマ)は単独でも、複数種を混合しても使用することができる。また、上記の水溶性高分子のうち複数種を混合して使用する場合、その混合物はポリビニルピロリドン及びその共重合体から選ばれる少なくとも一種を含むことが好ましい。
(Water-soluble polymer)
Examples of the water-soluble polymer (water-soluble polymer) contained in the semiconductor substrate polishing liquid include alginic acid, pectic acid, carboxymethyl cellulose, agar, xanthan gum, chitosan, methyl glycol chitosan, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxy Polysaccharides such as propylmethylcellulose, hydroxyethylcellulose, cardran and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, Polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyvinyl sulfate, polyacrylic acid, polyacrylamide, aminopolyacrylamide, polyacryl Ammonium salt, polyacrylic acid sodium salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and the like; polyethylenimine and its salt; polyvinyl alcohol, polyvinyl pyrrolidone and poly Examples thereof include vinyl polymers such as acrolein, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene glycol-propylene glycol block copolymers. Among them, carboxymethyl cellulose, agar, xanthan gum, chitosan, methyl glycol chitosan, methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, cardan and pullulan and other polysaccharides, polyacrylamide, polyethyleneimine, Nonionic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene glycol-propylene glycol block copolymers are preferred, and polyvinyl pyrrolidone and copolymers thereof are more preferred. preferable. In addition, said water-soluble polymer (water-soluble polymer) can be used individually or even if it mixes multiple types. Moreover, when mixing and using multiple types among said water-soluble polymer, it is preferable that the mixture contains at least 1 type chosen from polyvinylpyrrolidone and its copolymer.

本発明における半導体基板表面の凹凸の低減は、半導体基板と水溶性ポリマの疎水部との疎水性相互作用による水溶性ポリマの半導体基板表面への吸着によってもたらされる、と本発明者らは考える。すなわち、半導体基板表面に吸着した水溶性ポリマが、半導体基板表面の凹凸に吸着し、研磨パッドや研摩粒子によって凸部の水溶性ポリマが凹部に比べて除去されやすくなった結果、凸部の研磨が促進されて平滑な表面が形成されると考えている。そのため、水溶性ポリマとして、イオン性基のないノニオン性の水溶性ポリマを用いた場合に、凹凸を低減する効果が顕著となる。   The present inventors consider that the reduction in unevenness on the surface of the semiconductor substrate in the present invention is caused by adsorption of the water-soluble polymer to the surface of the semiconductor substrate due to the hydrophobic interaction between the semiconductor substrate and the hydrophobic portion of the water-soluble polymer. That is, the water-soluble polymer adsorbed on the surface of the semiconductor substrate is adsorbed on the irregularities on the surface of the semiconductor substrate, and the water-soluble polymer on the convex portions is more easily removed than the concave portions by the polishing pad or polishing particles. It is considered that a smooth surface is formed by promoting the above. Therefore, when a nonionic water-soluble polymer having no ionic group is used as the water-soluble polymer, the effect of reducing unevenness becomes remarkable.

水溶性ポリマの添加量は、研磨液に対して、0.001質量%以上10質量%以下であることが好ましく、0.01質量%以上1質量%以下であることがより好ましい。水溶性ポリマの添加量を0.001質量%以上とすることにより、凹凸を低減する効果を大きくなりやすい。また、水溶性ポリマの添加量を10質量%以下とすることにより、水溶性ポリマの添加に伴う研磨液の高粘度化及び高粘度化による流動性の低下を防止しやすくなり、研磨粒子の凝集も防止しやすくなる。   The addition amount of the water-soluble polymer is preferably 0.001% by mass or more and 10% by mass or less, and more preferably 0.01% by mass or more and 1% by mass or less with respect to the polishing liquid. By making the addition amount of the water-soluble polymer 0.001% by mass or more, the effect of reducing the unevenness tends to increase. Moreover, by making the addition amount of the water-soluble polymer 10% by mass or less, it becomes easy to prevent the increase in the viscosity of the polishing liquid and the decrease in fluidity due to the increase in the viscosity due to the addition of the water-soluble polymer. It will be easier to prevent.

一般に、研磨液の溶解作用を高めると、半導体基板表面の凹凸が大きくなる傾向にある。しかし、本発明に係る半導体基板用研磨液が含有する1,2,4−トリアゾールは、水溶性ポリマと比較して劣るが、基板表面の凹凸を低減する効果を有している。そのため、本発明では、1,2,4−トリアゾールと水溶性ポリマの併用により、半導体基板の表面を高い研磨速度で凹凸の少ない平滑面に研磨加工することが可能となる。   Generally, when the dissolving action of the polishing liquid is increased, the irregularities on the surface of the semiconductor substrate tend to increase. However, the 1,2,4-triazole contained in the semiconductor substrate polishing liquid according to the present invention is inferior to a water-soluble polymer, but has an effect of reducing the unevenness of the substrate surface. Therefore, in the present invention, the combined use of 1,2,4-triazole and a water-soluble polymer makes it possible to polish the surface of the semiconductor substrate to a smooth surface with few irregularities at a high polishing rate.

<第四の半導体基板用研磨液>
次に、第四発明の実施形態として、第四の半導体基板用研磨液について説明する。なお、第一、第二及び第三の半導体基板用研磨液と説明が重複する部分については適宜省略する。
<Fourth polishing liquid for semiconductor substrate>
Next, a fourth semiconductor substrate polishing liquid will be described as an embodiment of the fourth invention. In addition, about the part which description overlaps with the 1st, 2nd and 3rd polishing liquid for semiconductor substrates, it abbreviate | omits suitably.

第四の実施形態の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの添加量は0.05質量%以上0.5質量%以下であり、水溶性高分子の添加量は、0.001質量%以上0.1質量%以下であり、pHが9以上12以下である。   The polishing liquid for a semiconductor substrate of the fourth embodiment contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound, and the amount of 1,2,4-triazole added. Is 0.05 mass% or more and 0.5 mass% or less, the addition amount of water-soluble polymer is 0.001 mass% or more and 0.1 mass% or less, and pH is 9 or more and 12 or less.

第四の実施形態は、半導体ウエハの製造工程における仕上げ研磨用途に特に適している。すなわち、シリコン基板に対する研磨速度よりも、シリコン基板上に存在する凹凸を解消すること、シリコン基板上に残存する異物(研磨粒子及び研磨パッドの摩耗により発生する磨耗粉等)の除去及び半導体基板の結晶欠陥を低減することに重点を置いた研磨液である。   The fourth embodiment is particularly suitable for finish polishing in a semiconductor wafer manufacturing process. That is, the unevenness existing on the silicon substrate is eliminated rather than the polishing rate with respect to the silicon substrate, the foreign matters remaining on the silicon substrate (such as abrasive particles and abrasion powder generated by abrasion of the polishing pad), and the semiconductor substrate This polishing liquid focuses on reducing crystal defects.

(pH)
第四の実施形態では、異物がシリコン基板表面に付着すること等に起因する欠陥を減らす観点で、pHは9以上であり、pH9.5以上がより好ましい。また、過度なエッチングに起因する欠陥の発生を抑制する観点から、pHは12以下であり、11以下が好ましく、10.5以下がより好ましい。
(PH)
In the fourth embodiment, the pH is 9 or more, and more preferably 9.5 or more, from the viewpoint of reducing defects caused by foreign matters adhering to the silicon substrate surface. Moreover, from a viewpoint of suppressing generation | occurrence | production of the defect resulting from excessive etching, pH is 12 or less, 11 or less are preferable and 10.5 or less are more preferable.

(1,2,4−トリアゾール)
第四の実施形態では、前記1,2,4−トリアゾールの添加量が0.05質量%以上0.5質量%以下である。1,2,4−トリアゾールが有するpH安定性や、溶解剤である塩基性化合物の増量による研磨速度向上効果が得られやすい点、及びウエハ表面の粗度の指標となるヘーズ(HAZE:濁度)の改善効果が得られる点で、添加量は0.05質量%以上であり、0.1質量%以上が好ましい。一方で、添加量に見合うヘーズの改善効果が得られなくなることを避け、更に研磨粒子の凝集を抑制できる点で、添加量は0.5質量%以下であり、0.4質量%以下がより好ましく、0.3質量%以下が特に好ましい。
(1,2,4-triazole)
In 4th embodiment, the addition amount of the said 1,2,4-triazole is 0.05 mass% or more and 0.5 mass% or less. The pH stability of 1,2,4-triazole, the point at which the effect of improving the polishing rate due to the increase in the amount of the basic compound that is a solubilizing agent is easily obtained, and the haze (HAZE: turbidity) that is an index of the roughness of the wafer surface The addition amount is 0.05% by mass or more, and preferably 0.1% by mass or more. On the other hand, the addition amount is 0.5% by mass or less, and 0.4% by mass or less is more preferable in that haze improvement effect corresponding to the addition amount is not obtained, and aggregation of abrasive particles can be further suppressed. Preferably, 0.3 mass% or less is especially preferable.

(水溶性高分子)
第四の実施形態は、水溶性高分子(水溶性ポリマ)の添加量が、0.001質量%以上0.1質量%以下の範囲である。シリコン基板表面の欠陥を低減する効果が充分に得られる点で、添加量は0.001質量%以上であり、0.003質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることが特に好ましい。また、研磨の阻害、欠陥の増加、ヘーズ改善の阻害といった不具合が生じるのを抑制できる点で、添加量は0.1質量%以下であり、0.08質量%以下が好ましく、0.07質量%以下が更に好ましく、0.05質量%以下が特に好ましく、0.03質量%以下が極めて好ましい。なお、ここでシリコン基板上の欠陥とは、研摩粒子や研磨パッドの摩耗により発生する磨耗粉等の異物や、シリコン基板に発生した結晶欠陥や傷などの総称として用いる。
(Water-soluble polymer)
In the fourth embodiment, the amount of the water-soluble polymer (water-soluble polymer) added is in the range of 0.001% by mass to 0.1% by mass. The addition amount is 0.001% by mass or more, preferably 0.003% by mass or more, and preferably 0.005% by mass or more in that the effect of reducing defects on the surface of the silicon substrate is sufficiently obtained. Is more preferable, and 0.01% by mass or more is particularly preferable. In addition, the addition amount is 0.1% by mass or less, preferably 0.08% by mass or less, preferably 0.07% by mass in terms of suppressing the occurrence of defects such as polishing inhibition, increase in defects, and haze improvement. % Or less is more preferable, 0.05% by mass or less is particularly preferable, and 0.03% by mass or less is extremely preferable. Here, the defect on the silicon substrate is used as a general term for foreign matters such as abrasion particles generated by abrasion of abrasive particles and polishing pads, crystal defects and scratches generated on the silicon substrate, and the like.

水溶性高分子の添加による欠陥の低減は、水溶性高分子が半導体基板表面に吸着することによって、研摩粒子や研磨パッドの摩耗により発生する磨耗粉等の異物が固着するのを防ぐとともに、半導体基板表面のダングリングボンド(未結合肢)やCOP(Cristal Oriented Particle)に起因した特定方向のエッチングの発生を抑制することで得られる、と考える。   The reduction of defects due to the addition of water-soluble polymers prevents foreign particles such as abrasive particles and abrasion powder generated by abrasion of polishing pads from adhering to the surface of the semiconductor substrate. It is considered that it can be obtained by suppressing the occurrence of etching in a specific direction due to dangling bonds (unbonded limbs) or COP (Crystal Oriented Particles) on the substrate surface.

なお、ヘーズ及び欠陥の値は、研磨終了後のシリコン基板表面を洗浄(例えば、水酸化アンモニウム0.06%を含む洗浄液で、一般的な洗浄ブラシを用いて60秒洗浄)したのち、市販の欠陥検査装置を用いて測定することができる。   The values of haze and defects are determined by cleaning the surface of the silicon substrate after polishing (for example, cleaning with a general cleaning brush for 60 seconds with a cleaning solution containing 0.06% ammonium hydroxide), and then commercially available. It can be measured using a defect inspection apparatus.

具体的には、例えば、下記のような条件で測定される値を、ヘーズ及び欠陥として定義することができる。
欠陥検査装置:LS6700(日立電子エンジニアリング製)
工程条件ファイル(測定レシピ):VeM10L
欠陥測定範囲:0.1μm−3.0μm
投光条件:垂直
Specifically, for example, values measured under the following conditions can be defined as haze and defects.
Defect inspection system: LS6700 (manufactured by Hitachi Electronics Engineering)
Process condition file (measurement recipe): VeM10L
Defect measurement range: 0.1 μm-3.0 μm
Projection condition: Vertical

前述の通り、第四の実施形態は、半導体ウエハの製造工程における仕上げ研磨用途のように、シリコン基板に対する研磨速度よりも、シリコン基板上に存在する微小な凹凸を解消及び欠陥の低減に重点を置いている。そのため、研磨粒子の添加量としては、研磨液全体に対して0.05質量%以上0.5質量%以下とすることが好ましい。0.05質量%以上であれば凹凸を解消することができ、0.5質量%以下であれば、シリコン基板が過剰に研磨されるのを抑制することができる。   As described above, the fourth embodiment focuses on eliminating minute irregularities on the silicon substrate and reducing defects rather than the polishing rate for the silicon substrate, as in the case of finish polishing in the manufacturing process of a semiconductor wafer. I put it. Therefore, the addition amount of the abrasive particles is preferably 0.05% by mass or more and 0.5% by mass or less with respect to the entire polishing liquid. If it is 0.05% by mass or more, unevenness can be eliminated, and if it is 0.5% by mass or less, the silicon substrate can be prevented from being excessively polished.

<第五の半導体基板用研磨液>
次に、第五発明の実施形態として、第五の半導体基板用研磨液について説明する。なお、第一、第二及び第三の半導体基板用研磨液と説明が重複する部分については適宜省略する。
<Fifth polishing liquid for semiconductor substrate>
Next, a fifth semiconductor substrate polishing liquid will be described as an embodiment of the fifth invention. In addition, about the part which description overlaps with the 1st, 2nd and 3rd polishing liquid for semiconductor substrates, it abbreviate | omits suitably.

第五の実施形態の半導体基板用研磨液は、研磨粒子、1,2,4−トリアゾール、水溶性高分子及び塩基性化合物を含有し、前記1,2,4−トリアゾールの添加量は0.2質量%以上3.0質量%以下であり、前記水溶性高分子の添加量は、0.01質量%以上0.2質量%以下であり、pHが9以上12以下である、半導体基板用研磨液である。   The polishing liquid for a semiconductor substrate according to the fifth embodiment contains abrasive particles, 1,2,4-triazole, a water-soluble polymer and a basic compound, and the amount of 1,2,4-triazole added is 0.00. 2% by mass or more and 3.0% by mass or less, the addition amount of the water-soluble polymer is 0.01% by mass or more and 0.2% by mass or less, and the pH is 9 or more and 12 or less. A polishing liquid.

(pH)
第五の実施形態は、前記シリコンに対する所定の研磨速度を得る観点で、前記pHは9以上であり、pH9.5以上がより好ましく、pH10.0以上が更に好ましい。また、過度なエッチングに起因する欠陥を抑制する観点から、前記pHは12以下であり、11以下が好ましい。
(PH)
In the fifth embodiment, from the viewpoint of obtaining a predetermined polishing rate for the silicon, the pH is 9 or more, more preferably 9.5 or more, and even more preferably 10.0 or more. Further, from the viewpoint of suppressing defects caused by excessive etching, the pH is 12 or less, and preferably 11 or less.

第五の実施形態は、第四の半導体基板用研磨液と比較して、1,2,4−トリアゾールの添加量が多く、前記水溶性高分子の添加量が多い。このようにすることにより、シリコン基板に対する所定の研磨速度を得つつ、表面に凹凸がある場合は凸部を優先的に研磨する事が可能な半導体基板用研磨液とすることができる。特に、機械的に研削加工(グラインディング等)したシリコン基板のような高い段差を有するシリコン基板において、前記段差の凸部を優先的に研磨し、前記研削加工時に発生した研削痕を除去する事が可能となる。   In the fifth embodiment, the amount of 1,2,4-triazole added is large and the amount of the water-soluble polymer added is large compared to the fourth polishing liquid for a semiconductor substrate. By doing in this way, it can be set as the semiconductor substrate polishing liquid which can preferentially polish a convex part, when a surface has an unevenness | corrugation, obtaining the predetermined | prescribed polishing speed with respect to a silicon substrate. In particular, in a silicon substrate having a high step such as a silicon substrate mechanically ground (grinding or the like), the protrusions of the step are preferentially polished to remove grinding marks generated during the grinding. Is possible.

このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができるため、粗研磨で生じる半導体基板の研磨ロスを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。   With such a method for polishing a semiconductor substrate, it is possible to perform rough polishing, which has been conventionally performed in several steps, in one step, and thus it is possible to reduce polishing loss of the semiconductor substrate caused by rough polishing. Become. Thereby, the effect that the frequency | count of reuse of a silicon wafer can be increased more is also acquired.

なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。In the above rough polishing step, the polishing amount of the rough wafer is L (nm), the initial step of the rough wafer is R t0 (nm), and the step of the rough wafer after the rough polishing is R t1 (nm). When defined, when a rough wafer is polished by L (nm) satisfying R t0 ≦ L ≦ R t0 × 1.3 (that is, polished by a polishing amount not more than 1.3 times the initial step), L / ( R t0 −R t1 ) ≦ 1.3 and R t1 ≦ 100 (nm) are preferably satisfied. Needless to say, the final polishing amount may be more than the above-mentioned range (R t0 ≦ L ≦ R t0 × 1.3).

ここで、研磨量Lとは、研磨によって粗ウエハから除去された部分の厚さを意味する。また、初期段差Rt0とは、粗研磨前の粗ウエハ表面の凸部と凹部の高さの差の最大値である。粗研磨された粗ウエハの段差Rt1とは、粗研磨された粗ウエハ表面の凸部と凹部の高さの差の最大値である。Here, the polishing amount L means the thickness of the portion removed from the rough wafer by polishing. The initial level difference R t0 is the maximum value of the height difference between the convex and concave portions of the rough wafer surface before rough polishing. The level difference R t1 of the roughly polished rough wafer is the maximum value of the height difference between the convex and concave portions of the rough polished rough wafer surface.

なお、図17は、第三〜第五の半導体基板用研磨液における、1,2,4−トリアゾール及び水溶性高分子の含有量を示すグラフである。上述したように、第三の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量は0.01質量%以上10質量%以下であることが好ましく、水溶性高分子の含有量は0.001質量%以上10質量%以下であることが好ましい(図17の第三の半導体基板用研磨液の好ましい範囲)。また、第四の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量は、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量は、0.001質量%以上0.1質量%以下である。さらに、第五の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量が、0.2質量%以上3.0質量%以下であり、水溶性高分子の含有量が、0.01質量%以上0.2質量%以下である。   FIG. 17 is a graph showing the contents of 1,2,4-triazole and water-soluble polymer in the third to fifth semiconductor substrate polishing liquids. As described above, in the third polishing liquid for a semiconductor substrate, the content of 1,2,4-triazole is 0.01% by mass to 10% by mass with respect to the total mass of the polishing liquid for the semiconductor substrate. The content of the water-soluble polymer is preferably 0.001% by mass or more and 10% by mass or less (preferable range of the third polishing liquid for a semiconductor substrate in FIG. 17). In the fourth polishing liquid for semiconductor substrate, the content of 1,2,4-triazole is 0.05% by mass or more and 0.5% by mass or less with respect to the total mass of the polishing liquid for semiconductor substrate. The content of the water-soluble polymer is 0.001% by mass or more and 0.1% by mass or less. Further, in the fifth polishing liquid for semiconductor substrate, the content of 1,2,4-triazole is 0.2% by mass or more and 3.0% by mass or less with respect to the total mass of the polishing liquid for semiconductor substrate. Yes, the content of the water-soluble polymer is 0.01% by mass or more and 0.2% by mass or less.

<半導体基板の研磨方法>
次に、これまで説明した第一〜第五の半導体基板用研磨液を用いて半導体基板の表面を研磨する研磨方法について説明する。研磨方法の一例としては、例えば、研磨定盤の研磨布上に本実施形態の半導体基板用研磨液を供給しながら、被研磨基板(半導体基板)を研磨布に押圧した状態で、研磨定盤と被研磨基板を相対的に動かして半導体基板の表面を研磨する。
<Semiconductor substrate polishing method>
Next, a polishing method for polishing the surface of the semiconductor substrate using the first to fifth semiconductor substrate polishing liquids described so far will be described. As an example of the polishing method, for example, while supplying the polishing liquid for a semiconductor substrate of the present embodiment onto the polishing cloth of the polishing surface plate, the polishing surface plate is pressed against the polishing substrate (semiconductor substrate) against the polishing cloth. The surface of the semiconductor substrate is polished by relatively moving the substrate to be polished.

本実施形態の研磨方法において使用できる研磨装置としては、例えば、被研磨基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で回転数が変更可能なモータなどを取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。研磨定盤上の研磨布としては、特に制限はなく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用できる。半導体基板を研磨布に押圧した状態で研磨布と被研磨基板とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーの回転や揺動によって研磨しても良い。   As a polishing apparatus that can be used in the polishing method of the present embodiment, for example, a polishing platen on which a holder that holds a substrate to be polished and a motor that can attach a polishing cloth (pad) and can change the number of rotations are attached. A general polishing apparatus having the following can be used. There is no restriction | limiting in particular as polishing cloth on a polishing surface plate, A general nonwoven fabric, a foaming polyurethane, a porous fluororesin, etc. can be used. In order to relatively move the polishing cloth and the substrate to be polished while the semiconductor substrate is pressed against the polishing cloth, specifically, at least one of the substrate and the polishing surface plate may be moved. In addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder.

また、研磨方法としては、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは、固定、回転、揺動のいずれの状態にあっても良い。これらの研磨方法は、研磨布と半導体基板とを相対的に動かすのであれば、被研磨基板や研磨装置に応じて適宜選択される。研磨している間、研磨布には半導体基板用研磨液をポンプなどで連続的に供給することが好ましい。   Examples of the polishing method include a polishing method in which a polishing platen is rotated on a planetary surface, a polishing method in which a belt-shaped polishing cloth is moved linearly in one direction in the longitudinal direction, and the like. Note that the holder may be in any state of being fixed, rotating and swinging. These polishing methods are appropriately selected according to the substrate to be polished and the polishing apparatus as long as the polishing cloth and the semiconductor substrate are moved relatively. During polishing, it is preferable to continuously supply a polishing solution for a semiconductor substrate to the polishing cloth with a pump or the like.

<第一又は第二の半導体基板用研磨液を用いた研磨方法>
本実施形態の第一及び第二の半導体基板用研磨液は、上記のような研磨方法を用いて、シリコン又は基板構成にシリコンを含む基板を研磨した場合に、優れた研磨特性を有する。中でもシリコン又は基板構成にシリコンを含む基板に対する研磨速度に優れている。
<Polishing method using first or second semiconductor substrate polishing liquid>
The first and second semiconductor substrate polishing liquids of the present embodiment have excellent polishing characteristics when a silicon or a substrate containing silicon in the substrate structure is polished using the above polishing method. In particular, the polishing rate for silicon or a substrate containing silicon in the substrate structure is excellent.

以下に、第一及び第二の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。   Hereinafter, an embodiment of a semiconductor substrate polishing method using the first and second semiconductor substrate polishing liquids will be described.

(シリコン貫通ビア裏面研磨方法)
第一及び第二の半導体基板用研磨液の研磨特性を活かした研磨プロセスの一例を、図13を用いて説明する。なお、本発明の半導体基板の研磨方法は、この例に限定されないことはいうまでもない。図13は、シリコン貫通ビア形成工程の一例を示す断面模式図である。
(Through silicon via backside polishing method)
An example of a polishing process utilizing the polishing characteristics of the first and second semiconductor substrate polishing liquids will be described with reference to FIG. Needless to say, the method for polishing a semiconductor substrate of the present invention is not limited to this example. FIG. 13 is a schematic cross-sectional view showing an example of the through silicon via forming process.

図13(a)において、シリコン等の半導体基板1には貫通ビア用の凹凸が形成され、その凹凸を埋めるように銅等の配線用金属2が形成されている。次に、半導体基板1の凹凸が形成された面の逆の面(裏面)を、公知方法でバックグラインドする。このとき、バックグラインドの強い機械的作用によって、図13(b)に示すように、機械的損傷を受けたシリコンダメージ層3が半導体基板1の裏面に発生する。最後に本実施形態の半導体基板用研磨液を用いて、上記シリコンダメージ層3及び半導体基板1を研磨し、配線用金属2が裏面に露出するまで研磨することで、図13(c)に示すようなシリコン貫通ビアを形成する。   In FIG. 13A, the semiconductor substrate 1 made of silicon or the like is formed with unevenness for through vias, and a wiring metal 2 such as copper is formed so as to fill the unevenness. Next, the reverse surface (back surface) of the surface on which the unevenness of the semiconductor substrate 1 is formed is back-ground by a known method. At this time, due to the strong mechanical action of the back grind, the silicon damage layer 3 that is mechanically damaged is generated on the back surface of the semiconductor substrate 1 as shown in FIG. Finally, the silicon damage layer 3 and the semiconductor substrate 1 are polished using the semiconductor substrate polishing liquid of this embodiment, and polished until the wiring metal 2 is exposed on the back surface, as shown in FIG. Such a through silicon via is formed.

シリコンダメージ層3の表面には微細な凹凸が存在しうるが、本実施形態の半導体基板用研磨液を用いた半導体基板の研磨方法によれば、表面に凹凸のある半導体基板に対しても良好な研磨速度を得ることができる。そのため、本実施形態の半導体基板用研磨液を用いた半導体基板の研磨方法は、半導体基板を研磨する様々な用途に使用することができる。   Although the surface of the silicon damage layer 3 may have fine irregularities, the method for polishing a semiconductor substrate using the semiconductor substrate polishing liquid of this embodiment is good even for a semiconductor substrate with irregularities on the surface. A high polishing rate. Therefore, the semiconductor substrate polishing method using the semiconductor substrate polishing liquid of this embodiment can be used in various applications for polishing a semiconductor substrate.

すなわち本実施形態は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹部を形成する工程と、凹部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第一又は第二の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法である。   That is, this embodiment is a method of polishing a semiconductor substrate for forming a through silicon via, which includes a step of forming a recess in one surface of the silicon substrate, a step of embedding a metal in the recess, and the other of the silicon substrate. A method for polishing a semiconductor substrate comprising: a step of back grinding a surface; and a polishing step of polishing the other surface using a first or second polishing liquid for a semiconductor substrate so that the metal is exposed.

また、このようなシリコン貫通ビアのバックグラインドにおいて、最終段階に仕上げ研磨を適用する場合にも、第三又は第四の半導体基板用研磨液を適用することができる。   In addition, in such a back grind of through silicon vias, the third or fourth semiconductor substrate polishing liquid can also be applied when final polishing is applied at the final stage.

(シリコンウエハ製造工程に係る研磨方法)
第一及び第二の半導体基板用研磨液の研磨特性を活かした研磨プロセスの他の一例を、図14及び15を用いて説明する。図14は、一般的なシリコンウエハの加工技術のフローである。シリコンウエハは、シリコンの単結晶をスライスする工程(スライシング)と、ラッピング工程又はグラインディング工程と、エッチング工程等とを含む工程を経て、ウエハ形状に加工される。上記ラッピング工程又はグラインディング工程は、機械的に研削するため、シリコン結晶に結晶欠陥等のダメージを与えてしまうことがある。そこで後続のエッチング工程では、このようなダメージを解消すること及び表面の凹凸をある程度解消するのが一般的である。
(Polishing method for silicon wafer manufacturing process)
Another example of the polishing process utilizing the polishing characteristics of the first and second semiconductor substrate polishing liquids will be described with reference to FIGS. FIG. 14 is a flow of a general silicon wafer processing technique. A silicon wafer is processed into a wafer shape through a process including a process of slicing a single crystal of silicon (slicing), a lapping process or a grinding process, and an etching process. Since the lapping process or the grinding process is mechanically ground, the silicon crystal may be damaged such as crystal defects. Therefore, in the subsequent etching process, it is common to eliminate such damage and to some extent unevenness on the surface.

しかしながら、エッチング工程を経た後のシリコンウエハであっても、いわゆる半導体装置を製造するために充分な程度の平坦性と、結晶欠陥等のダメージの解消が図られていない。そこで、図15に示すように、多段階の研磨工程を経て、平坦なシリコンウエハを得るのが一般的である。図15では、(a)から(b)、(b)から(c)の2段階の粗研磨(荒削り)工程と、(c)から(d)の仕上げ研磨(最終研磨)工程を示しているが、この研磨工程は、ウエハメーカやウエハのグレードによって異なり、もっと多段階になる場合もある。   However, even a silicon wafer after undergoing an etching process is not flat enough to produce a so-called semiconductor device, and damage such as crystal defects has not been eliminated. Therefore, as shown in FIG. 15, it is common to obtain a flat silicon wafer through a multi-step polishing process. FIG. 15 shows a two-step rough polishing (rough cutting) process from (a) to (b) and (b) to (c) and a final polishing (final polishing) process from (c) to (d). However, this polishing process varies depending on the wafer manufacturer and the grade of the wafer, and there are cases where the polishing process is more multistage.

前記粗研磨は、使用する研磨布の硬さを硬いものから柔らかいものに順次切り替えつつ研磨を行い、膜厚を減らしつつ、凹凸及びダメージを徐々に解消する。仕上げ研磨工程では、シリコンに対する研磨速度はほとんど必要とはされず、欠陥を新たに発せさせることなく、粗研磨時に付着した研磨粒子を除去したり、微小な凹凸を解消したりして、ウエハの鏡面化することを目的とした研磨工程である。   In the rough polishing, polishing is performed while sequentially changing the hardness of a polishing cloth to be used from a hard one to a soft one, and unevenness and damage are gradually eliminated while the film thickness is reduced. In the final polishing process, the polishing rate for silicon is rarely required, and without causing new defects, the abrasive particles adhering during rough polishing are removed, or minute irregularities are eliminated. This is a polishing process intended to make a mirror surface.

ここで、第一及び第二の半導体基板用研磨液は、上述の粗研磨に適している。すなわち、本実施形態は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、当該シリコンウエハをエッチングし、粗ウエハを準備する工程と、第一又は第二の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。   Here, the first and second semiconductor substrate polishing liquids are suitable for the above-described rough polishing. That is, in the present embodiment, after wrapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot, the silicon wafer is etched to prepare a rough wafer, and the first or second semiconductor And a rough polishing step of polishing a rough wafer using a substrate polishing liquid.

(シリコンウエハの再生に係る研磨方法)
また、前記第一及び第二の半導体基板用研磨液は、シリコンに対する高い研磨速度を活かして、再生ウエハを研磨する方法に好適に使用できる。以下、再生ウエハを研磨する方法について説明する。
(Polishing method for reclaiming silicon wafers)
Further, the first and second semiconductor substrate polishing liquids can be suitably used in a method for polishing a recycled wafer by utilizing a high polishing rate for silicon. Hereinafter, a method for polishing the recycled wafer will be described.

一般に、シリコンウエハから、半導体デバイスを製造する各要素工程において、プロセステストのため、多数のウエハがテストウエハとして使用される。このようなテストウエハとしては、平坦なシリコン基板上に絶縁膜や金属膜等の各種膜を製膜したものが挙げられる。これらのテストウエハを製造する目的は、シリコン基板上に各種の膜を製膜するための最適条件を調べる場合、シリコン基板上にレジスト膜を塗布・露光する際の最適条件を調べる場合、定期的に前記各最適条件についてモニタリングする場合、シリコン基板上に製膜された各種の膜に対する研磨液の研磨特性を評価する場合等、多岐にわたって用いられている。   In general, in each element process for manufacturing a semiconductor device from a silicon wafer, a large number of wafers are used as test wafers for process testing. Examples of such test wafers include those obtained by forming various films such as an insulating film and a metal film on a flat silicon substrate. The purpose of manufacturing these test wafers is to examine the optimum conditions for depositing various films on a silicon substrate, to examine the optimum conditions for applying and exposing a resist film on a silicon substrate, In addition, when monitoring each of the above optimum conditions, it is widely used, for example, when evaluating polishing characteristics of a polishing liquid for various films formed on a silicon substrate.

これらのテストウエハは、再度テストウエハとして利用するために、再生処理が行われる。再生処理としては、一般的に、前記各種膜等の付着物をウエットエッチングにより除去し、粗研磨及び仕上げ研磨工程を経て、再度平坦なウエハを得る。また、前記テストウエハは、再生工程にまわされるまでに大きなキズがついてしまったり、評価の際に凹凸を形成したりする場合がある。この場合には、キズや凹凸を研削加工により除去し、これを粗研磨及び仕上げ研磨することによって、再度平坦なウエハが得られるのが一般的である。   These test wafers are subjected to a regeneration process in order to be used again as test wafers. As the regeneration treatment, generally, deposits such as the above-mentioned various films are removed by wet etching, and a flat wafer is obtained again through rough polishing and finish polishing steps. In addition, the test wafer may have a large scratch before being subjected to the regeneration process, or may form irregularities during evaluation. In this case, it is common that a flat wafer is obtained again by removing scratches and irregularities by grinding and rough polishing and finish polishing.

本発明の半導体基板用研磨液のうち、第一及び第二の半導体基板用研磨液は、このような再生ウエハを粗研磨するのに好適に使用できる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、第一又は第二の半導体基板用研磨液を用いて、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。   Among the semiconductor substrate polishing liquids of the present invention, the first and second semiconductor substrate polishing liquids can be suitably used for rough polishing of such recycled wafers. That is, this embodiment is a method for polishing a semiconductor substrate for reuse, using a step of wet-etching a silicon wafer to which deposits adhere, and a first or second polishing liquid for a semiconductor substrate, And a rough polishing step for polishing a wet-etched silicon wafer.

なお、再利用しようとするシリコン基板の表面に凹凸やキズがある場合は、第一又は第二の半導体基板用研磨液を用いて研磨するステップの前に、機械的な研削工程を有することが好ましい。   If the surface of the silicon substrate to be reused has irregularities and scratches, it may have a mechanical grinding step before the step of polishing using the first or second polishing liquid for a semiconductor substrate. preferable.

<第三又は第四の半導体基板用研磨液を用いた研磨方法>
本実施形態の半導体基板用研磨液のうち、第三の半導体基板用研磨液は、研磨粒子、1,2,4−トリアゾール及び塩基性化合物を含有し、pHが9以上12以下である半導体基板用研磨液に、水溶性高分子を含有させることによって、シリコン表面の凹凸を解消する事ができるものである。
<Polishing method using third or fourth semiconductor substrate polishing liquid>
Of the semiconductor substrate polishing liquid of the present embodiment, the third semiconductor substrate polishing liquid contains abrasive particles, 1,2,4-triazole and a basic compound, and has a pH of 9 or more and 12 or less. By incorporating a water-soluble polymer into the polishing liquid, the irregularities on the silicon surface can be eliminated.

また、第三の半導体基板用研磨液において、研磨速度を調節したり、解消したい凹凸の目標サイズを変えたりするために、1,2,4−トリアゾール、水溶性高分子の添加量を最適化し、必要に応じてpH等を制御することによって、第四の半導体基板用研磨液を得ることが可能となる。   In addition, in the third polishing liquid for semiconductor substrates, the addition amount of 1,2,4-triazole and water-soluble polymer is optimized in order to adjust the polishing rate or change the target size of unevenness to be eliminated. The fourth polishing liquid for a semiconductor substrate can be obtained by controlling the pH and the like as necessary.

以下、第三又は第四の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。   Hereinafter, an embodiment of a semiconductor substrate polishing method using the third or fourth semiconductor substrate polishing liquid will be described.

(シリコンウエハ製造工程に係る研磨方法)
前述の通り、平坦なシリコンウエハを得るためには、図15に示すように、粗研磨(荒削り)工程及び仕上げ研磨(最終研磨)工程を経るのが一般的である。ここで、第三及び四の半導体基板用研磨液は、シリコンに対する研磨速度よりも、シリコン基板上に存在する凹凸を解消すること及びシリコン基板上に残存する異物(研磨粒子及び研磨パッドの摩耗による発生する磨耗粉等)を除去することに重点を置いた研磨液であり、シリコンウエハの製造工程における仕上げ研磨用途に特に適している。すなわち、本実施形態は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、粗ウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法である。なお、粗ウエハを研磨する粗研磨工程において、第一又は第二の半導体基板用研磨液を用いてもよい。
(Polishing method for silicon wafer manufacturing process)
As described above, in order to obtain a flat silicon wafer, a rough polishing (rough cutting) step and a final polishing (final polishing) step are generally performed as shown in FIG. Here, the third and fourth semiconductor substrate polishing liquids eliminate the unevenness existing on the silicon substrate and the foreign matters remaining on the silicon substrate (due to abrasion of polishing particles and polishing pads) rather than the polishing rate for silicon. It is a polishing liquid with an emphasis on removing generated abrasion powder and the like, and is particularly suitable for use in finish polishing in the manufacturing process of silicon wafers. That is, in the present embodiment, after wrapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot, the silicon wafer is etched to prepare a rough wafer, and the rough polishing is performed to polish the rough wafer. A semiconductor substrate polishing method comprising: a step and a final polishing step of further polishing the silicon wafer after the rough polishing step using a third or fourth semiconductor substrate polishing liquid. In the rough polishing step for polishing the rough wafer, the first or second semiconductor substrate polishing liquid may be used.

(シリコンウエハの再生に係る研磨方法)
また、第三及び第四の半導体基板用研磨液は、前述した再生ウエハを得る工程における仕上げ研磨にも適用することができる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法である。なお、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程において、第一又は第二の半導体基板用研磨液を用いてもよい。
(Polishing method for reclaiming silicon wafers)
Further, the third and fourth semiconductor substrate polishing liquids can also be applied to the above-described final polishing in the process of obtaining the recycled wafer. That is, this embodiment is a method of polishing a semiconductor substrate for reuse, and includes a step of wet-etching a silicon wafer to which deposits are attached, a rough polishing step of polishing a wet-etched silicon wafer, And a final polishing step of further polishing the silicon wafer after the rough polishing step using the third or fourth polishing liquid for a semiconductor substrate. In the rough polishing step for polishing the wet-etched silicon wafer, the first or second semiconductor substrate polishing liquid may be used.

なお、再利用しようとするシリコン基板の表面に凹凸やキズがある場合は、第三又は第四の半導体基板用研磨液を用いて研磨するステップの前に、機械的な研削工程を有することが好ましい。   If the surface of the silicon substrate to be reused has irregularities and scratches, it may have a mechanical grinding step before the step of polishing with the third or fourth semiconductor substrate polishing liquid. preferable.

また、シリコンに対する研磨速度よりも、シリコン基板上の欠陥を低減し、表面の微小な凹凸を解消して高度な鏡面を得るために第三又は第四の半導体基板用研磨液を用いる場合は、研磨パッドにはある程度、やわらかいものであることが好ましく、例えばアスカーゴム硬度計C型で測定した硬度(Asker C硬度)が60度より小さいものが好ましい。   In addition, when using the third or fourth semiconductor substrate polishing liquid in order to reduce defects on the silicon substrate rather than the polishing rate for silicon and eliminate the fine irregularities on the surface to obtain a high mirror surface, The polishing pad is preferably soft to some extent. For example, a polishing pad having a hardness (Asker C hardness) measured by an Asker rubber hardness meter C type is preferably less than 60 degrees.

<第三又は第五の半導体基板用研磨液を用いた研磨方法>
本実施形態の半導体基板用研磨液のうち、第五の半導体基板用研磨液は、第四の半導体基板用研磨液と比較して、表面の凹凸を解消しつつ、シリコンに対するある程度の研磨速度が得られるものである。これにより、比較的大きい凹凸を有する半導体基板の凸部を優先して研磨する事が可能となる。なお、後述する研磨方法において、第五の半導体基板用研磨液の代わりに第三の半導体基板用研磨液を用いてもよい。
<Polishing method using third or fifth semiconductor substrate polishing liquid>
Among the semiconductor substrate polishing liquids of the present embodiment, the fifth semiconductor substrate polishing liquid has a certain polishing rate for silicon while eliminating surface irregularities as compared to the fourth semiconductor substrate polishing liquid. It is obtained. This makes it possible to preferentially polish the convex portions of the semiconductor substrate having relatively large irregularities. In the polishing method described later, a third semiconductor substrate polishing liquid may be used instead of the fifth semiconductor substrate polishing liquid.

以下に、第五の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。   Hereinafter, an embodiment of a semiconductor substrate polishing method using a fifth semiconductor substrate polishing liquid will be described.

図16(a)は、シリコンウエハの一般的な再生工程フローである。再利用するために回収されたシリコンウエハは、受入検査をされた後、付着物を除去するためのウエットエッチング工程、比較的大きな凹凸を解消するためのグラインディング工程を経て、粗ウエハとなる。この粗ウエハを所定の方法で洗浄した後、粗研磨工程にて多段階(第一次研磨、第二次研磨・・・)に分けて粗研磨され、更に仕上げ研磨工程、洗浄工程を経て、再生ウエハとして出荷される。   FIG. 16A is a general process flow for recycling a silicon wafer. The silicon wafer collected for reuse is subjected to acceptance inspection, and then becomes a rough wafer through a wet etching process for removing deposits and a grinding process for eliminating relatively large unevenness. After washing this rough wafer by a predetermined method, it is roughly polished in multiple stages (primary polishing, secondary polishing ...) in the rough polishing process, and further through a final polishing process and a cleaning process, Shipped as a recycled wafer.

しかしながら、グラインディング後の多段階の粗研磨により、シリコンウエハが必要以上に削られてしまうのが現状である。従って、このような「研磨しろ」を低減し、より効率的にシリコンウエハを再利用するためには未だ改善が必要である。   However, under the present circumstances, the silicon wafer is scraped more than necessary due to multi-stage rough polishing after grinding. Therefore, in order to reduce such “polishing margin” and reuse the silicon wafer more efficiently, improvement is still necessary.

一方、第五の半導体基板用研磨液を用いることにより、このような改善を可能にする、従来にない新しい研磨方法を提供することができる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングした後、当該シリコンウエハをグラインディングして粗ウエハを準備する工程と、第五の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。   On the other hand, by using the fifth semiconductor substrate polishing liquid, it is possible to provide an unprecedented new polishing method capable of such an improvement. That is, this embodiment is a method for polishing a semiconductor substrate for reuse, and after wet etching a silicon wafer to which deposits are attached, grinding the silicon wafer to prepare a rough wafer; and And a rough polishing step of polishing a rough wafer using a fifth semiconductor substrate polishing liquid.

このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができる(図16(b)参照)ため、粗研磨で生じる半導体基板の研磨しろを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。   With such a method for polishing a semiconductor substrate, the rough polishing that has been conventionally performed in several steps can be performed in one step (see FIG. 16B). The margin can be reduced. Thereby, the effect that the frequency | count of reuse of a silicon wafer can be increased more is also acquired.

なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を全て満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。In the above rough polishing step, the polishing amount of the rough wafer is L (nm), the initial step of the rough wafer is R t0 (nm), and the step of the rough wafer after the rough polishing is R t1 (nm). When defined, when a rough wafer is polished by L (nm) satisfying R t0 ≦ L ≦ R t0 × 1.3 (that is, polished by a polishing amount not more than 1.3 times the initial step), L / ( R t0 −R t1 ) ≦ 1.3 and R t1 ≦ 100 (nm) are preferably satisfied. Needless to say, the final polishing amount may be more than the above-mentioned range (R t0 ≦ L ≦ R t0 × 1.3).

また、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面を凹凸の少ない平滑な表面に高速で仕上げ研磨加工することが可能となる。   Further, in the above-described method for polishing a semiconductor substrate, the method may further include a final polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid. It contains 4-triazole, a water-soluble polymer, and a basic compound, and preferably has a pH of 9 or more and 12 or less. As a result, the surface of the semiconductor substrate can be finished and polished at a high speed to a smooth surface with few irregularities.

更に、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面をより確実に凹凸の少ない平滑な表面に高速で仕上げ研磨加工することが可能となる。   Furthermore, in the above-described method for polishing a semiconductor substrate, the semiconductor wafer may further include a final polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid. It contains 4-triazole, a water-soluble polymer, and a basic compound, and the content of 1,2,4-triazole is 0.05% by mass or more and 0% by mass with respect to the total mass of the semiconductor substrate polishing liquid. 0.5 mass% or less, the content of the water-soluble polymer is 0.001 mass% or more and 0.1 mass% or less with respect to the total mass of the polishing liquid for semiconductor substrate, and the pH is 9 or more and 12 or less. It is preferable that This makes it possible to finish and polish the surface of the semiconductor substrate at a high speed to a smooth surface with less unevenness more reliably.

また、第五の半導体基板用研磨液は、前記のTSV裏面研磨方法においても好適に適用することができる。一般的にTSVの裏面は、回路面(活性面)ほどの平坦性が要求されないため、機械的な研削を一段階実施した後、第五の半導体基板用研磨液を用いてTSV裏面研磨を行うことにより、充分実用に耐えるTSV基板を得ることができる。従来、TSVの裏面研磨は、研磨を行うまでに複数段階の機械的研削工程を経ていたが、本発明の方法によれば、TSVの製造工程を大幅に簡略化することができる。   The fifth semiconductor substrate polishing liquid can also be suitably applied to the TSV back surface polishing method. Generally, the back surface of the TSV is not required to be as flat as the circuit surface (active surface). Therefore, after performing mechanical grinding in one stage, the TSV back surface polishing is performed using the fifth semiconductor substrate polishing liquid. As a result, a TSV substrate that can withstand practical use can be obtained. Conventionally, the backside polishing of TSV has undergone a plurality of stages of mechanical grinding before polishing, but according to the method of the present invention, the TSV manufacturing process can be greatly simplified.

また、第五の半導体基板用研磨液では、グラインディング等で表面に発生したある程度大きな凹凸を解消しつつ、シリコンに対するある程度の研磨速度を得るために、研磨パッドにはある程度の硬度があることが好ましく、例えばアスカーゴム硬度計C型で測定した硬度(Asker C硬度)が60度以上が好ましく、70度以上がより好ましく、80度以上が更に好ましい。これらの硬度を有することにより、良好な研磨速度が得られやすく、凹凸の解消性にも優れる傾向がある。   Further, in the fifth semiconductor substrate polishing liquid, the polishing pad may have a certain degree of hardness in order to obtain a certain polishing rate for silicon while eliminating a certain degree of unevenness generated on the surface by grinding or the like. Preferably, for example, the hardness (Asker C hardness) measured with an Asker rubber hardness tester C type is preferably 60 degrees or more, more preferably 70 degrees or more, and further preferably 80 degrees or more. By having these hardnesses, it is easy to obtain a good polishing rate, and there is a tendency that the unevenness can be easily eliminated.

このような研磨方法によれば、理想的には複数段階の粗研磨が必要なくなるため、一段階の粗研磨からなる半導体ウエハの研磨方法、又は一段階の粗研磨と一段階の仕上げ研磨からなる半導体ウエハの研磨方法が提供される。   According to such a polishing method, ideally, a plurality of steps of rough polishing are not required, and therefore a semiconductor wafer polishing method consisting of one step of rough polishing, or one step of rough polishing and one step of finish polishing. A method for polishing a semiconductor wafer is provided.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

<第一の半導体基板用研磨液>
(実施例1〜8)
[半導体用研磨液の調製]
1,2,4−トリアゾール、塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表1に示す添加量で配合して、実施例1〜8の各半導体用研磨液を調製した。
<First polishing liquid for semiconductor substrate>
(Examples 1-8)
[Preparation of polishing liquid for semiconductor]
According to the following procedure, 1,2,4-triazole, a basic compound, and colloidal silica as abrasive particles are blended in the addition amounts shown in Table 1 to prepare each semiconductor polishing liquid of Examples 1-8. did.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを溶解させ、これに塩基性化合物を添加し、次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole is dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, a basic compound is added thereto, and then a colloidal having a primary particle size of 35 nm. Silica was dispersed, and the remainder was mixed with pure water so that the total amount was 100% by mass.

(実施例9及び10)
[半導体用研磨液の調製]
1,2,4−トリアゾール、塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表2に示す添加量で配合して、実施例9及び10の各半導体用研磨液を調製した。
(Examples 9 and 10)
[Preparation of polishing liquid for semiconductor]
In accordance with the following procedure, 1,2,4-triazole, a basic compound, and colloidal silica as abrasive particles are blended in the addition amounts shown in Table 2 to prepare polishing liquids for semiconductors of Examples 9 and 10. did.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール溶解させ、これに塩基性化合物を添加し、次いで、一次粒径が17nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole is dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, a basic compound is added thereto, and then colloidal silica having a primary particle size of 17 nm. And the remainder was blended with pure water so that the total amount would be 100% by mass.

[pH測定]
実施例1〜10の各半導体用研磨液のpHを以下の方法で測定した。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:配合直後、一日静置後
[PH measurement]
The pH of each semiconductor polishing liquid of Examples 1 to 10 was measured by the following method.
(Measurement method of pH)
pH meter: Model pH81 manufactured by Yokogawa Electric Corporation
Calibration: Two-point calibration with neutral phosphate pH buffer pH 6.86 (25 ° C) and borate pH standard solution (pH 9.18) (25 ° C) Measurement temperature: 25 ° C
Magnetic Stirrer: AS-30 HS-30D
Measurement procedure: Using a stirrer coated with a fluororesin having a major axis of about 4 cm and a minor axis of about 0.5 cm, pH was measured in a state where the polishing liquid was stirred at 500 rpm.
Measurement period: Immediately after compounding, after standing for one day

なお、上記「配合直後」とは、上記の半導体用研磨液の調整(配合)を完了してから1時間未満であることを、「一日静置後」とは、上記の半導体用研磨液の調整(配合)を完了してから24〜25時間静置した後を、それぞれ意味するものとし、以下同様である。   The term “immediately after blending” means that it is less than one hour after the preparation (mixing) of the semiconductor polishing liquid is completed, and the term “after standing for one day” refers to the semiconductor polishing liquid described above. After completion of the adjustment (formulation), after standing for 24 to 25 hours, it means each, and so on.

配合直後の各半導体用研磨液のpHを表1及び表2に示す。また、配合してから一日静置した後の各半導体用研磨液のpHと、配合直後に測定したpHからの変化量を表1に示す。   Tables 1 and 2 show the pH of each semiconductor polishing liquid immediately after compounding. In addition, Table 1 shows the pH of each semiconductor polishing liquid after being allowed to stand for one day after blending, and the amount of change from the pH measured immediately after blending.

[半導体基板の研磨1]
研磨定盤の研磨布上に、配合直後の実施例1の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例1と同様の方法で、配合直後の実施例2〜8の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件1)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[Semiconductor substrate polishing 1]
While supplying the semiconductor substrate polishing liquid of Example 1 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is rotated relative to the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. As a result, the surface of the semiconductor substrate was polished. Moreover, the semiconductor substrate was grind | polished by the method similar to Example 1 using each polishing liquid of Examples 2-8 immediately after mixing | blending. The details of the polishing conditions are as follows.
(Polishing condition 1)
Polishing device: FACT-200 type polishing cloth manufactured by Nano Factor: IC-1010 manufactured by Nitta Haas
Polishing platen rotation speed: 80rpm
Holder rotation speed: No drive (free rotation)
Polishing pressure: 33.83 kPa (345 gf / cm 2 )
Polishing liquid supply amount: 16 ml / min Polishing time: 5 minutes Semiconductor substrate (object to be polished): 2 cm square silicon wafer (P type <100>)

[半導体基板の研磨2]
同様に、研磨定盤の研磨布上に、配合直後の実施例9及び10の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件2)
研磨装置:アプライドマテリアルズ社製MIRRA
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:93rpm
ホルダー回転数:87rpm
研磨圧力:20.7kPa
研磨液供給量:200ml/分
研磨時間:3分
半導体基板(被研磨物):200mmシリコンウエハ(P型<100>)
[Semiconductor substrate polishing 2]
Similarly, while supplying the polishing liquid for semiconductor substrates of Examples 9 and 10 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is pressed against the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. The surface of the semiconductor substrate was polished by relatively rotating. The details of the polishing conditions are as follows.
(Polishing condition 2)
Polishing equipment: MIRRA manufactured by Applied Materials
Polishing cloth: IC-1010 manufactured by Nitta Haas
Polishing platen rotation speed: 93rpm
Holder rotation speed: 87rpm
Polishing pressure: 20.7 kPa
Polishing liquid supply amount: 200 ml / min Polishing time: 3 minutes Semiconductor substrate (object to be polished): 200 mm silicon wafer (P-type <100>)

[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[Washing]
After polishing, the semiconductor substrate was cleaned with a polyvinyl alcohol brush and ultrasonic water. After cleaning, the semiconductor substrate was dried with a spin dryer.

[配合直後の研磨速度の測定]
配合直後の実施例1〜10の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を測定した。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
[Measurement of polishing rate immediately after compounding]
The silicon wafer was polished by the above method using each of the semiconductor polishing liquids of Examples 1 to 10 immediately after blending, and then the amount of decrease in the mass of the silicon wafer accompanying polishing was measured. Then, the polishing rate (unit: nm / min) was measured from the decrease in mass, wafer area, specific gravity of silicon, and polishing time. In addition, the electronic balance for analysis (AB104 made from METTLER) was used for the mass measurement of a silicon wafer. The measurement temperature was 25 ° C., and the measurement humidity was 40% RH or higher. The specific gravity of silicon was 2.33.

[一日静置後の研磨速度の測定]
配合直後の実施例1〜8の各半導体用研磨液を用いた場合と同様の方法で、一日静置後の実施例1〜8の各半導体用研磨液を用いた場合の研磨速度を測定した。
[Measurement of polishing speed after standing for one day]
The polishing rate when each semiconductor polishing liquid of Examples 1 to 8 after standing for one day was measured in the same manner as when each semiconductor polishing liquid of Examples 1 to 8 was used immediately after compounding. did.

[表面粗さ評価]
配合直後の実施例9及び10の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、段差・表面あらさ・微細形状測定装置を使用し、シリコンウエハの研磨面の算術平均粗さを以下の条件で測定した。
段差・表面あらさ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:200μm
測定速度:5μm/秒
測定荷重:1mg
[Surface roughness evaluation]
After polishing the silicon wafer by the above method using each of the semiconductor polishing liquids of Examples 9 and 10 immediately after the compounding, the arithmetic average of the polished surface of the silicon wafer was measured using a step, surface roughness, and fine shape measuring device. The roughness was measured under the following conditions.
Step / surface roughness / fine shape measuring device: P16-OF manufactured by KLA Tencor
Measurement mode: Roughness
Measurement length: 200 μm
Measurement speed: 5 μm / sec Measurement load: 1 mg

実施例1〜8の評価結果を表1に、実施例9及び10の評価結果を表2に、それぞれ示す。   The evaluation results of Examples 1 to 8 are shown in Table 1, and the evaluation results of Examples 9 and 10 are shown in Table 2, respectively.

(比較例1〜14)
下記表3、表4に示す塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表3、表4に示す添加量で配合して、比較例1〜14の各半導体基板用研磨液を調製した。各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に塩基性化合物を添加し、次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例1〜14の各研磨液のいずれにも1,2,4−トリアゾールを含有させなかった。
(Comparative Examples 1-14)
The basic compounds shown in Tables 3 and 4 below and colloidal silica as abrasive particles are blended in the addition amounts shown in Tables 3 and 4 according to the following procedure, and for each semiconductor substrate of Comparative Examples 1-14. A polishing liquid was prepared. In the preparation of each polishing liquid, first, a basic compound is added to pure water corresponding to 50% by mass of the entire polishing liquid, then colloidal silica having a primary particle size of 35 nm is dispersed, and the balance is 100% in total with pure water. %. Note that 1,2,4-triazole was not contained in any of the polishing liquids of Comparative Examples 1-14.

実施例1と同様の方法で、配合直後の比較例1〜14の各半導体用研磨液のpH、一日静置後の各半導体用研磨液のpH、及び配合直後から一日静置後のpHの変化量を測定した。測定結果を表3、4に示す。   In the same manner as in Example 1, the pH of each semiconductor polishing liquid in Comparative Examples 1 to 14 immediately after compounding, the pH of each semiconductor polishing liquid after standing for one day, and the day after standing for one day immediately after compounding The amount of change in pH was measured. The measurement results are shown in Tables 3 and 4.

実施例1と同様の方法で、配合直後の比較例1〜14の各半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例1と同様の方法で、一日静置後の比較例1〜14の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表3、4に示す。   In the same manner as in Example 1, the polishing rate when each of the semiconductor polishing liquids of Comparative Examples 1 to 14 immediately after compounding was used was measured. Moreover, the polishing rate at the time of using each semiconductor polishing liquid of Comparative Examples 1-14 after leaving still for one day was measured by the method similar to Example 1. FIG. The measurement results are shown in Tables 3 and 4.

(比較例15〜18)
下記表5に示すpKa(ここでpKaとはpKaである。以下同じ)を有する化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表5に示す添加量で配合して、比較例15〜18の各半導体基板用研磨液を調製した。各研磨液の調製では、研磨液全体の50質量%に相当する純水にpKaを有する化合物を溶解し、これに塩基性化合物を添加した。次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例15〜18の各研磨液のいずれにも1,2,4−トリアゾールを含有させなかった。
(Comparative Examples 15-18)
A compound having a pKa shown in Table 5 below (here, pKa is pKa 1 ; the same shall apply hereinafter) and colloidal silica as abrasive particles are blended in the addition amounts shown in Table 5 according to the following procedure, and compared. The polishing liquid for each semiconductor substrate of Examples 15-18 was prepared. In the preparation of each polishing liquid, a compound having pKa was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound was added thereto. Next, colloidal silica having a primary particle size of 35 nm was dispersed, and the remainder was blended with pure water so that the total amount was 100% by mass. Note that 1,2,4-triazole was not contained in any of the polishing liquids of Comparative Examples 15 to 18.

(比較例19)
1,2,4−トリアゾール、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表5に示す添加量で配合して、比較例19の半導体基板用研磨液を調製した。研磨液の調製では、研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを1質量%溶解し、これに一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例19の研磨液には塩基性化合物を含有させなかった。
(Comparative Example 19)
1,2,4-triazole and colloidal silica as abrasive particles were blended in the addition amounts shown in Table 5 according to the following procedure to prepare a semiconductor substrate polishing liquid of Comparative Example 19. In preparation of the polishing liquid, 1% by mass of 1,2,4-triazole was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and colloidal silica having a primary particle size of 35 nm was dispersed therein, and the remainder was purified. It mix | blended so that it might become a total of 100 mass% with water. The polishing liquid of Comparative Example 19 did not contain a basic compound.

実施例1と同様の方法で、配合直後の比較例15〜19の各半導体用研磨液のpH、一日静置後の各半導体用研磨液のpH、配合直後から一日静置後のpHの変化量を測定した。測定結果を表5に示す。   In the same manner as in Example 1, the pH of each semiconductor polishing liquid in Comparative Examples 15 to 19 immediately after compounding, the pH of each semiconductor polishing liquid after standing for one day, the pH after standing for one day immediately after compounding The amount of change was measured. Table 5 shows the measurement results.

実施例1と同様の方法で、配合直後の比較例15〜19の各半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例1と同様の方法で、一日静置後の比較例15〜19の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表5に示す。   In the same manner as in Example 1, the polishing rate was measured when each of the semiconductor polishing liquids of Comparative Examples 15 to 19 immediately after compounding was used. Moreover, the polishing rate at the time of using each semiconductor polishing liquid of Comparative Examples 15-19 after standing for one day was measured by the same method as Example 1. Table 5 shows the measurement results.

(比較例20)
下記表6に示す塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表6に示す添加量で配合して、比較例20の半導体基板用研磨液を調製した。研磨液の調製では、まず研磨液全体の50質量%に相当する純水に塩基性化合物を添加し、次いで、一次粒径が17nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例20の研磨液には1,2,4−トリアゾールを含有させなかった。
(Comparative Example 20)
The basic compound shown in Table 6 below and colloidal silica as abrasive particles were blended in the addition amounts shown in Table 6 according to the following procedure to prepare a polishing liquid for semiconductor substrate of Comparative Example 20. In the preparation of the polishing liquid, first, a basic compound is added to pure water corresponding to 50% by mass of the entire polishing liquid, then colloidal silica having a primary particle size of 17 nm is dispersed, and the balance is 100% by mass with pure water. It mix | blended so that it might become. The polishing liquid of Comparative Example 20 did not contain 1,2,4-triazole.

実施例1と同様の方法で、配合直後の比較例20の半導体用研磨液のpH、配合直後の比較例20の半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例9及び10と同様の方法で、比較例20の半導体用研磨液を用いた研磨後のシリコンウエハの研磨面の算術平均粗さを測定した。測定結果及び算術平均粗さを表6に示す。   In the same manner as in Example 1, the pH of the semiconductor polishing liquid of Comparative Example 20 immediately after compounding and the polishing rate when using the semiconductor polishing liquid of Comparative Example 20 immediately after mixing were measured. Further, the arithmetic average roughness of the polished surface of the silicon wafer after polishing using the semiconductor polishing liquid of Comparative Example 20 was measured in the same manner as in Examples 9 and 10. Table 6 shows the measurement results and arithmetic average roughness.

図1に、実施例1〜4及び比較例1〜11の各研磨液の配合直後のpHと、一日静置後の各研磨液のpH変化量を示す。図2に、実施例1〜4及び比較例1〜11の各研磨液の配合直後のpH及び研磨速度、並びに各研磨液の一日静置後のpH及び研磨速度を示す。図3に、実施例及び比較例の各研磨液における砥粒(シリカ)の添加量と、配合直後から一日静置後の各研磨液のpH変化量の関係を示す。なお、図1〜3において、「TA」は1,2,4−トリアゾールを含む実施例であり、それ以外の印は1,2,4−トリアゾールを含まない比較例である。また、「TMAH」は水酸化テトラメチルアンモニウムの含有を意味し、「KOH」は水酸化カリウムの含有を意味する。   In FIG. 1, pH immediately after the mixing | blending of each polishing liquid of Examples 1-4 and Comparative Examples 1-11 and the amount of pH change of each polishing liquid after leaving still for one day are shown. FIG. 2 shows the pH and polishing rate immediately after the mixing of the polishing liquids of Examples 1 to 4 and Comparative Examples 1 to 11, and the pH and polishing speed after each polishing liquid was allowed to stand for one day. In FIG. 3, the relationship between the addition amount of the abrasive grains (silica) in each polishing liquid of an Example and a comparative example, and the pH variation | change_quantity of each polishing liquid after standing for one day immediately after mix | blending is shown. 1 to 3, “TA” is an example including 1,2,4-triazole, and other marks are comparative examples not including 1,2,4-triazole. “TMAH” means containing tetramethylammonium hydroxide, and “KOH” means containing potassium hydroxide.

上述のように、実施例1〜8の半導体基板用研磨液は、シリカ及び1,2,4−トリアゾールを含有すると共に、塩基性化合物(含窒素塩基性化合物として水酸化テトラメチルアンモニウム、又は無機塩基性化合物として水酸化カリウム)を含有する。そして、実施例1〜8の半導体基板用研磨液では、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である。このような実施例1〜8では、配合直後のpHが各実施例と同様の比較例と比べて、研磨液の配合直後の研磨速度と一日静置後の研磨速度に大きな違いはなく、また一日静置後のpH変化量も極めて小さいことがわかった。従って、本発明の半導体基板用研磨液は、シリコンを高速に研磨でき、かつその研磨速度が安定していることがわかった。   As described above, the polishing liquids for semiconductor substrates of Examples 1 to 8 contain silica and 1,2,4-triazole and a basic compound (tetramethylammonium hydroxide as a nitrogen-containing basic compound or inorganic). Potassium hydroxide) as a basic compound. And in the polishing liquid for semiconductor substrates of Examples 1-8, content of a basic compound is 0.1 mass% or more, and pH is 9-12. In such Examples 1-8, compared with the comparative example similar to each example, the pH immediately after compounding is not significantly different between the polishing rate immediately after compounding the polishing liquid and the polishing rate after standing for one day, It was also found that the amount of change in pH after standing for one day was extremely small. Therefore, it was found that the semiconductor substrate polishing liquid of the present invention can polish silicon at a high speed and the polishing speed is stable.

一方、比較例1〜5は、実施例1〜6と同様に溶解剤として水酸化テトラメチルアンモニウムを含有する。しかし、比較例1〜5のpHは、非常に少量の水酸化テトラメチルアンモニウムの添加で実施例とほぼ同一となっている。このような比較例1〜5では、実施例と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。   On the other hand, Comparative Examples 1 to 5 contain tetramethylammonium hydroxide as a solubilizer as in Examples 1 to 6. However, the pH values of Comparative Examples 1 to 5 are almost the same as those of Examples with the addition of a very small amount of tetramethylammonium hydroxide. In such Comparative Examples 1 to 5, the polishing rate is slower than in the Examples, the amount of pH change immediately after blending the polishing liquid and after standing for one day is large, and the polishing rate after standing for one day is also reduced. I understood it.

また、比較例6〜14は、溶解剤として水酸化カリウムを含有する。上述の比較例と同様に、比較例6〜14のpHは、非常に少量の水酸化カリウムの添加で実施例とほぼ同一となっている。このような比較例6〜14では、実施例と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。また、比較例6〜14では、水酸化テトラメチルアンモニウムを溶解剤として使用する研磨液と比較して、一日静置後のpH変化量が大きくなる傾向があった。   Moreover, Comparative Examples 6-14 contain potassium hydroxide as a solubilizer. Similar to the comparative example described above, the pH of Comparative Examples 6 to 14 is almost the same as that of the example with the addition of a very small amount of potassium hydroxide. In Comparative Examples 6 to 14, the polishing rate is slower than in the Examples, the amount of change in pH immediately after blending the polishing liquid and after standing for one day is large, and the polishing rate after standing for one day is also reduced. I understood it. Moreover, in Comparative Examples 6-14, compared with the polishing liquid which uses tetramethylammonium hydroxide as a solubilizer, there was a tendency for the amount of pH change after standing for one day to increase.

また、比較例15は、1,2,4−トリアゾールの代わりに同じアゾール系のイミダゾールを添加した。比較例15では、pKaが14.5と高いことから、非常に少量の水酸化テトラメチルアンモニウムの添加で実施例3と同一のpHとなった。比較例15では、実施例3と比較して研磨速度が遅く、また、1,2,4−トリアゾールと同じアゾール系を用いているが、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。   In Comparative Example 15, the same azole imidazole was added instead of 1,2,4-triazole. In Comparative Example 15, since the pKa was as high as 14.5, the same pH as in Example 3 was obtained with the addition of a very small amount of tetramethylammonium hydroxide. In Comparative Example 15, the polishing rate is slower than in Example 3, and the same azole system as 1,2,4-triazole is used, but the pH change immediately after blending the polishing liquid and after standing for one day. The amount was large, and it was found that the polishing rate after standing for one day also decreased.

比較例16には、1,2,4−トリアゾールの代わりに同じアゾール系の1,2,3−ベンゾトリアゾールを添加した。比較例16では、pKaが8.2であり、1,2,3−ベンゾトリアゾールを添加しない場合よりも、水酸化テトラメチルアンモニウムの添加できる量が多かった。しかし、比較例16では、実施例3と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。   In Comparative Example 16, the same azole-based 1,2,3-benzotriazole was added instead of 1,2,4-triazole. In Comparative Example 16, the pKa was 8.2, and the amount of tetramethylammonium hydroxide that could be added was larger than when no 1,2,3-benzotriazole was added. However, in Comparative Example 16, the polishing rate is slower than in Example 3, the amount of change in pH immediately after blending the polishing liquid and after standing for one day is large, and the polishing rate after standing for one day may also decrease. all right.

比較例17及び18には、1,2,4−トリアゾールの代わりに酸を添加した。りんご酸を添加した比較例17では、りんご酸を添加しない場合よりも水酸化テトラメチルアンモニウムを添加できる量が多く、実施例3よりも添加できる量が多かった。比較例17では、実施例3と研磨速度が同一であったが、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。硫酸を添加した比較例18では、硫酸を添加しない場合よりも水酸化カリウムを添加できる量が多く、実施例7よりも添加できる量が多かった。しかし、比較例18では、実施例7と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。   In Comparative Examples 17 and 18, an acid was added instead of 1,2,4-triazole. In Comparative Example 17 in which malic acid was added, tetramethylammonium hydroxide could be added in a larger amount than in the case where malic acid was not added, and in a larger amount than in Example 3. In Comparative Example 17, the polishing rate was the same as in Example 3, but the amount of change in pH immediately after blending the polishing liquid and after standing for one day was large, and it was found that the polishing rate after standing for one day also decreased. It was. In Comparative Example 18 in which sulfuric acid was added, potassium hydroxide could be added more than in the case where sulfuric acid was not added, and there were more amounts than in Example 7. However, in Comparative Example 18, the polishing rate is slower than in Example 7, the amount of change in pH immediately after blending the polishing liquid and after standing for one day is large, and the polishing rate after standing for one day may also decrease. all right.

比較例19は1,2,4−トリアゾールを単独で含有させた研磨液である。比較例19では、研磨液の配合直後と一日静置後のpH及び研磨速度の変化は認められなかったが、研磨速度は200nm/分未満と低く、1,2,4−トリアゾール単独では研磨速度が向上する効果はほぼないことが分かった。   Comparative Example 19 is a polishing liquid containing 1,2,4-triazole alone. In Comparative Example 19, there was no change in pH and polishing rate immediately after blending the polishing liquid and after standing for one day, but the polishing rate was as low as less than 200 nm / min, and 1,2,4-triazole alone was used for polishing. It was found that there was almost no effect of increasing the speed.

また、実施例9及び10と、比較例20とを比較すると、研磨液が1,2,4−トリアゾールを含むことで、研磨終了後の表面の荒れを抑制できることがわかった。   Moreover, when Example 9 and 10 and Comparative Example 20 were compared, it turned out that the roughness of the surface after completion | finish of grinding | polishing can be suppressed because polishing liquid contains 1,2, 4- triazole.

<第二の半導体基板用研磨液> <Second polishing liquid for semiconductor substrate>

[ゼータ電位測定用研磨液の調製]
半導体用研磨液全体の50質量%に相当する純水に、塩基性化合物(水酸化カリウム)を、pHが9になるまで添加した。次いで、砥粒(研磨粒子)として、表面がアルミネートにより改質された変性コロイダルシリカを0.5質量%添加したのち、純水で計95質量%になるように配合した。pHが11まで塩基性化合物(水酸化カリウム)を添加し、残部を純水で計100質量%になるように配合した。このようにして、ゼータ電位測定用研磨液Cを調製した。
[Preparation of polishing liquid for zeta potential measurement]
A basic compound (potassium hydroxide) was added to pure water corresponding to 50% by mass of the entire semiconductor polishing liquid until the pH reached 9. Next, 0.5% by mass of modified colloidal silica whose surface was modified with aluminate was added as abrasive grains (abrasive particles), and then mixed with pure water to a total of 95% by mass. A basic compound (potassium hydroxide) was added to a pH of 11, and the remainder was blended with pure water so that the total amount was 100% by mass. In this way, a polishing liquid C for zeta potential measurement was prepared.

ゼータ電位測定用研磨液Cに添加した変性コロイダルシリカは、シリカの分散液の中にアルミン酸カリウム[(AlO(OH)K]を添加し、60℃以上で還流することで、シリカ表面のシラノール基を、よりイオン化しやすい−Si−O−Al(OH)基にして得たものである。The modified colloidal silica added to the polishing liquid C for measuring the zeta potential is obtained by adding potassium aluminate [(AlO (OH) 2 K] to the silica dispersion and refluxing at 60 ° C. or higher so that the silica surface The silanol group is obtained by making it a -Si-O-Al (OH) 2 group which is more easily ionized.

表7に示す砥粒及び塩基性化合物を用いたこと以外は、ゼータ電位測定用研磨液Cと同様の方法で、ゼータ電位測定用研磨液A、B、D、E、F、G、Hをそれぞれ調製した。なお、表7に示す砥粒は、いずれも砥粒メーカーより購入したものである。   The zeta potential measurement polishing liquids A, B, D, E, F, G, and H were prepared in the same manner as the zeta potential measurement polishing liquid C except that the abrasive grains and basic compounds shown in Table 7 were used. Each was prepared. In addition, all the abrasive grains shown in Table 7 were purchased from an abrasive manufacturer.

[ゼータ電位の測定]
以下の測定条件の下で、各ゼータ電位測定用研磨液中の砥粒のゼータ電位を測定した。
測定原理:レーザードップラー法
ゼータ電位測定装置:ZETASIZER3000HS(MALVERN製)
測定温度:25℃
分散媒の屈折率:1.331
分散媒の粘度:0.893cP
[Measurement of zeta potential]
Under the following measurement conditions, the zeta potential of the abrasive grains in each polishing liquid for zeta potential measurement was measured.
Measuring principle: Laser Doppler method zeta potential measuring device: ZETASIZER3000HS (manufactured by MALVERN)
Measurement temperature: 25 ° C
Refractive index of dispersion medium: 1.331
Dispersion medium viscosity: 0.893 cP

(実施例11〜16)
[半導体用研磨液の調製]
アルミネートによる改質シリカ及び下記表8に示す無機塩基性化合物を、以下の手順に従って、表8に示す添加量で配合して、実施例11〜16の各半導体用研磨液を調製した。なお、表8に示す「アルミネートによる改質シリカ」とは、アルミネートにより改質した変性コロイダルシリカであり、上記ゼータ電位測定用研磨液Cに添加したものと同じである。
(Examples 11 to 16)
[Preparation of polishing liquid for semiconductor]
Each of the polishing liquids for semiconductors of Examples 11 to 16 was prepared by blending the modified silica with aluminate and the inorganic basic compound shown in Table 8 below in the addition amount shown in Table 8 according to the following procedure. The “modified silica with aluminate” shown in Table 8 is a modified colloidal silica modified with aluminate, and is the same as that added to the polishing liquid C for zeta potential measurement.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、無機塩基性化合物である水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、アルミネートにより改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, potassium hydroxide as an inorganic basic compound was added to pure water corresponding to 50% by mass of the entire polishing liquid until the pH reached 9. Next, modified colloidal silica modified with aluminate was dispersed as abrasive grains, and blended with pure water to a total of 95% by mass. Furthermore, potassium hydroxide was added to a desired pH, and the remainder was blended with pure water so that the total amount was 100% by mass.

(実施例17)
表8に示すように、1質量%の1,2,4−トリアゾールを、研磨液全体の50質量%に相当する純水で溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、アルミネートにより改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。pHが11まで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。このようにして、実施例17の半導体基板用研磨液を調製した。
(Example 17)
As shown in Table 8, 1% by mass of 1,2,4-triazole was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and potassium hydroxide was added thereto until the pH reached 9. . Next, modified colloidal silica modified with aluminate was dispersed as abrasive grains, and blended with pure water to a total of 95% by mass. Potassium hydroxide was added until the pH was 11, and the remainder was mixed with pure water so that the total amount was 100% by mass. Thus, the polishing liquid for semiconductor substrates of Example 17 was prepared.

[pH測定]
実施例11〜17の各半導体用研磨液のpHは、以下の方法で測定した。各半導体用研磨液のpHを表8に示す。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:研磨液の配合直後
[PH measurement]
The pH of each of the semiconductor polishing liquids of Examples 11 to 17 was measured by the following method. Table 8 shows the pH of each semiconductor polishing liquid.
(Measurement method of pH)
pH meter: Model pH81 manufactured by Yokogawa Electric Corporation
Calibration: Two-point calibration with neutral phosphate pH buffer pH 6.86 (25 ° C) and borate pH standard solution (pH 9.18) (25 ° C) Measurement temperature: 25 ° C
Magnetic Stirrer: AS-30 HS-30D
Measurement procedure: Using a stirrer coated with a fluororesin having a major axis of about 4 cm and a minor axis of about 0.5 cm, pH was measured in a state where the polishing liquid was stirred at 500 rpm.
Measurement period: Immediately after blending the polishing liquid

[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例11の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例11と同様の方法で、配合直後の実施例12〜17の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[Semiconductor substrate polishing]
While supplying the semiconductor substrate polishing liquid of Example 11 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is rotated relative to the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. As a result, the surface of the semiconductor substrate was polished. Moreover, the semiconductor substrate was grind | polished by the method similar to Example 11 using each polishing liquid of Examples 12-17 immediately after mix | blending. The details of the polishing conditions are as follows.
(Polishing conditions)
Polishing device: FACT-200 type polishing cloth manufactured by Nano Factor: IC-1010 manufactured by Nitta Haas
Polishing platen rotation speed: 80rpm
Holder rotation speed: No drive (free rotation)
Polishing pressure: 33.83 kPa (345 gf / cm 2 )
Polishing liquid supply amount: 16 ml / min Polishing time: 5 minutes Semiconductor substrate (object to be polished): 2 cm square silicon wafer (P type <100>)

[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[Washing]
After polishing, the semiconductor substrate was cleaned with a polyvinyl alcohol brush and ultrasonic water. After cleaning, the semiconductor substrate was dried with a spin dryer.

[研磨速度の測定]
配合直後の実施例11〜17の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を測定した。測定結果を表2に示す。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
[Measurement of polishing rate]
After polishing the silicon wafer by the above method using each of the semiconductor polishing liquids of Examples 11 to 17 immediately after blending, the amount of decrease in the mass of the silicon wafer accompanying polishing was measured. Then, the polishing rate (unit: nm / min) was measured from the decrease in mass, wafer area, specific gravity of silicon, and polishing time. The measurement results are shown in Table 2. In addition, the electronic balance for analysis (AB104 made from METTLER) was used for the mass measurement of a silicon wafer. The measurement temperature was 25 ° C., and the measurement humidity was 40% RH or higher. The specific gravity of silicon was 2.33.

(比較例21〜27)
表9、10に示す未改質のコロイダルシリカ及び塩基性化合物を、以下の手順に従って、表9、10に示す添加量で配合して、比較例21〜27の各半導体用研磨液を調製した。なお、表9、10に示すシリカは、いずれも砥粒メーカーより購入したものである。
(Comparative Examples 21-27)
Unmodified colloidal silica and basic compounds shown in Tables 9 and 10 were blended in the addition amounts shown in Tables 9 and 10 according to the following procedures to prepare polishing liquids for semiconductors of Comparative Examples 21 to 27. . In addition, all the silica shown in Tables 9 and 10 was purchased from an abrasive manufacturer.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、塩基性化合物をpHが9になるまで添加した。次いで、砥粒として、未改質のコロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、所望のpHまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, a basic compound was added to pure water corresponding to 50% by mass of the entire polishing liquid until the pH reached 9. Next, unmodified colloidal silica was dispersed as abrasive grains and blended with pure water so that the total amount was 95% by mass. Furthermore, the basic compound was added to the desired pH, and the remainder was blended with pure water so that the total amount was 100% by mass.

(比較例28)
表10に示すように、1質量%の1,2,4−トリアゾールを、研磨液全体の50質量%に相当する純水で溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、未改質のコロイダルシリカを分散させ、純水で計95質量%になるように配合した。pHが11まで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。このようにして、比較例28の半導体基板用研磨液を調製した。
(Comparative Example 28)
As shown in Table 10, 1% by mass of 1,2,4-triazole was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and potassium hydroxide was added thereto until the pH reached 9. . Next, unmodified colloidal silica was dispersed as abrasive grains and blended with pure water so that the total amount was 95% by mass. Potassium hydroxide was added until the pH was 11, and the remainder was mixed with pure water so that the total amount was 100% by mass. Thus, the polishing liquid for semiconductor substrates of Comparative Example 28 was prepared.

(比較例29〜32)
表10に示す改質シリカ及び塩基性化合物を、以下の手順に従って、表10に示す添加量で配合して、比較例29〜32の各半導体用研磨液を調製した。
(Comparative Examples 29-32)
The modified silica and basic compound shown in Table 10 were blended in the addition amounts shown in Table 10 according to the following procedure to prepare polishing liquids for semiconductors of Comparative Examples 29-32.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、塩基性化合物をpHが9になるまで添加した。次いで、砥粒として、改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、pHが11まで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, a basic compound was added to pure water corresponding to 50% by mass of the entire polishing liquid until the pH reached 9. Next, the modified modified colloidal silica was dispersed as abrasive grains, and blended with pure water to a total of 95% by mass. Further, a basic compound was added until the pH was 11, and the remainder was blended with pure water so that the total amount was 100% by mass.

実施例11と同様の方法で、配合直後の比較例21〜32の各半導体用研磨液のpHを測定した。測定結果を表9、10に示す。   In the same manner as in Example 11, the pH of each semiconductor polishing liquid in Comparative Examples 21 to 32 immediately after compounding was measured. The measurement results are shown in Tables 9 and 10.

実施例11と同様の方法で、配合直後の比較例21〜32の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表9、10に示す。   In the same manner as in Example 11, the polishing rate when each of the semiconductor polishing liquids of Comparative Examples 21 to 32 immediately after blending was used was measured. The measurement results are shown in Tables 9 and 10.

図6に実施例11〜14及び比較例21〜24の各研磨液のpHと研磨速度を示す。   FIG. 6 shows the pH and polishing rate of each of the polishing liquids of Examples 11-14 and Comparative Examples 21-24.

実施例11〜14、16及び比較例21〜24、26、27、29〜32のうち、砥粒の添加量及びpHが同様である実施例と比較例とを対比した場合、実施例の研磨速度が比較例より常に高いことが確認された。   Of Examples 11 to 14, 16 and Comparative Examples 21 to 24, 26, 27, 29 to 32, when Examples and Comparative Examples having the same abrasive grain addition amount and pH are compared, polishing of Examples It was confirmed that the speed was always higher than that of the comparative example.

実施例17は、砥粒の添加量及びpHが比較例25より小さいにも関わらず、実施例17の研磨速度は比較例25より高いことが確認された。また、実施例17及び比較例28は、共に1,2,4トリアゾールを含有し、両者の砥粒の一次粒径、添加量及びpHは等しいにもかかわらず、実施例17の研磨速度は比較例28より高いことが確認された。   In Example 17, it was confirmed that the polishing rate of Example 17 was higher than that of Comparative Example 25 although the amount of added abrasive grains and pH were smaller than Comparative Example 25. In addition, both Example 17 and Comparative Example 28 contain 1,2,4 triazole, and the polishing rate of Example 17 is comparative even though the primary particle diameter, addition amount and pH of both abrasive grains are equal. It was confirmed to be higher than Example 28.

<第三の半導体基板用研磨液>
(実施例18〜24)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表11に示す添加量で配合して、実施例18〜24の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、K値が異なる三種類のポリビニルピロリドン(PVP_K15、PVP_K30、PVP_K90)のいずれかを用いた。ここで、K15等と表されるK値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
<Third semiconductor substrate polishing liquid>
(Examples 18 to 24)
[Preparation of polishing liquid for semiconductor]
Abrasive particles, water-soluble polymer (water-soluble polymer), 1,2,4-triazole, and basic compound were blended in the addition amounts shown in Table 11 according to the following procedure, and each of Examples 18-24 A semiconductor polishing liquid was prepared. For the preparation of each polishing liquid, one of three types of polyvinylpyrrolidone (PVP_K15, PVP_K30, and PVP_K90) having different K values was used as a water-soluble polymer. Here, the K value expressed as K15 or the like is a viscosity characteristic value correlated with the molecular weight, and is a relative viscosity value at 25 ° C. measured by a capillary viscometer.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole and polyvinylpyrrolidone (PVP) are dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound is added to this until the pH reaches 9. Added. Next, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water.

[pH測定]
実施例18〜24の各半導体用研磨液のpHを以下の方法で測定した。各半導体用研磨液のpHを表11に示す。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:研磨液の配合直後(なお、配合直後とは、半導体用研磨液の調整(配合)を完了してから1時間未満であることを意味し、以下同様である。)
[PH measurement]
The pH of each of the semiconductor polishing liquids of Examples 18 to 24 was measured by the following method. The pH of each semiconductor polishing liquid is shown in Table 11.
(Measurement method of pH)
pH meter: Model pH81 manufactured by Yokogawa Electric Corporation
Calibration: Two-point calibration with neutral phosphate pH buffer pH 6.86 (25 ° C) and borate pH standard solution (pH 9.18) (25 ° C) Measurement temperature: 25 ° C
Magnetic Stirrer: AS-30 HS-30D
Measurement procedure: Using a stirrer coated with a fluororesin having a major axis of about 4 cm and a minor axis of about 0.5 cm, pH was measured in a state where the polishing liquid was stirred at 500 rpm.
Timing of measurement: Immediately after blending the polishing liquid (immediately after blending means less than one hour after completion of adjustment (mixing) of the polishing liquid for semiconductor, and so on).

[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例18の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例18と同様の方法で、配合直後の実施例19〜24の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[Semiconductor substrate polishing]
While supplying the semiconductor substrate polishing liquid of Example 18 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is rotated relative to the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. As a result, the surface of the semiconductor substrate was polished. Moreover, the semiconductor substrate was grind | polished by the method similar to Example 18 using each polishing liquid of Examples 19-24 immediately after mix | blending. The details of the polishing conditions are as follows.
(Polishing conditions)
Polishing device: FACT-200 type polishing cloth manufactured by Nano Factor: IC-1010 manufactured by Nitta Haas
Polishing platen rotation speed: 80rpm
Holder rotation speed: No drive (free rotation)
Polishing pressure: 33.83 kPa (345 gf / cm 2 )
Polishing liquid supply amount: 16 ml / min Polishing time: 5 minutes Semiconductor substrate (object to be polished): 2 cm square silicon wafer (P type <100>)

[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[Washing]
After polishing, the semiconductor substrate was cleaned with a polyvinyl alcohol brush and ultrasonic water. After cleaning, the semiconductor substrate was dried with a spin dryer.

[研磨速度の測定]
配合直後の実施例18〜24の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を算出した。算出結果を表11に示す。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
[Measurement of polishing rate]
The silicon wafer was polished by the above-described method using each of the semiconductor polishing liquids of Examples 18 to 24 immediately after blending, and then the amount of decrease in the mass of the silicon wafer accompanying polishing was measured. Then, the polishing rate (unit: nm / min) was calculated from the decrease in mass, the wafer area, the specific gravity of silicon, and the polishing time. Table 11 shows the calculation results. In addition, the electronic balance for analysis (AB104 made from METTLER) was used for the mass measurement of a silicon wafer. The measurement temperature was 25 ° C., and the measurement humidity was 40% RH or higher. The specific gravity of silicon was 2.33.

[表面粗さ評価]
実施例18〜24の研磨液を用いて上記の方法でシリコンウエハを研磨した後、段差・表面粗さ・微細形状測定装置を使用し、シリコンウエハの研磨面の算術平均粗さを以下の条件で測定した。測定結果を表11に示す。
(測定条件)
段差・表面粗さ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:200μm
測定速度:5μm/秒
測定荷重:1mg
[Surface roughness evaluation]
After polishing the silicon wafer by the above method using the polishing liquids of Examples 18 to 24, the arithmetic average roughness of the polished surface of the silicon wafer was measured using the step, surface roughness, and fine shape measuring device under the following conditions: Measured with Table 11 shows the measurement results.
(Measurement condition)
Step, surface roughness, fine shape measuring device: P16-OF manufactured by KLA Tencor
Measurement mode: Roughness
Measurement length: 200 μm
Measurement speed: 5 μm / sec Measurement load: 1 mg

(比較例33)
下記表12に示す研磨粒子、水溶性高分子(水溶性ポリマ)、及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例33の半導体用研磨液を調製した。なお、比較例33の研磨液には、1,2,4−トリアゾールを添加しなかった。
(Comparative Example 33)
Polishing particles for semiconductors of Comparative Example 33 were prepared by blending the abrasive particles, water-soluble polymer (water-soluble polymer), and inorganic basic compound shown in Table 12 below in the amounts shown in Table 12 according to the following procedure. Prepared. Note that 1,2,4-triazole was not added to the polishing liquid of Comparative Example 33.

比較例33の研磨液の調製では、研磨液全体の50質量%に相当する純水に0.05質量%のポリビニルピロリドン(PVP_K30)を溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。   In the preparation of the polishing liquid of Comparative Example 33, 0.05% by mass of polyvinylpyrrolidone (PVP_K30) was dissolved in pure water corresponding to 50% by mass of the whole polishing liquid, and potassium hydroxide was added to this until the pH reached 9. Added. Next, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And potassium hydroxide was added to desired pH, and the remainder was mix | blended so that it might become a total of 100 mass% with a pure water.

(比較例34)
下記表12に示す研磨粒子、1,2,4−トリアゾール、及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例2の半導体用研磨液を調製した。
なお、比較例34の研磨液には、ポリビニルピロリドンを添加しなかった。
(Comparative Example 34)
Abrasive particles shown in Table 12 below, 1,2,4-triazole, and an inorganic basic compound were blended in the addition amounts shown in Table 12 according to the following procedure to prepare a semiconductor polishing liquid of Comparative Example 2. .
In addition, polyvinyl pyrrolidone was not added to the polishing liquid of Comparative Example 34.

比較例34の研磨液の調製では、研磨液全体の50質量%に相当する純水に0.5質量%の1,2,4−トリアゾールを溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。   In the preparation of the polishing liquid of Comparative Example 34, 0.5% by mass of 1,2,4-triazole was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and potassium hydroxide was adjusted to a pH of 9. Added until. Next, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And potassium hydroxide was added to desired pH, and the remainder was mix | blended so that it might become a total of 100 mass% with a pure water.

(比較例35)
下記表12に示す研磨粒子及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例35の半導体用研磨液を調製した。なお、比較例35の研磨液には、1,2,4−トリアゾール及びポリビニルピロリドンを添加しなかった。
(Comparative Example 35)
Polishing particles and inorganic basic compounds shown in Table 12 below were blended in the addition amounts shown in Table 12 according to the following procedure to prepare a polishing liquid for semiconductor of Comparative Example 35. Note that 1,2,4-triazole and polyvinylpyrrolidone were not added to the polishing liquid of Comparative Example 35.

比較例35の研磨液の調製では、研磨液全体の50質量%に相当する純水に水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。   In the preparation of the polishing liquid of Comparative Example 35, potassium hydroxide was added to pure water corresponding to 50% by mass of the entire polishing liquid until the pH reached 9. Next, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And potassium hydroxide was added to desired pH, and the remainder was mix | blended so that it might become a total of 100 mass% with a pure water.

実施例18と同様の方法で、比較例33〜35の各半導体用研磨液のpH及び研磨速度、並びに比較例33〜35の各研磨液を用いた研磨後の半導体基板表面の算術平均粗さ及び最大高さを測定した。測定結果を表12に示す。   In the same manner as in Example 18, the pH and polishing rate of each of the semiconductor polishing liquids of Comparative Examples 33 to 35 and the arithmetic average roughness of the surface of the semiconductor substrate after polishing using each of the polishing liquids of Comparative Examples 33 to 35 were used. And the maximum height was measured. Table 12 shows the measurement results.

実施例19では、1,2,4トリアゾールを含有しないこと以外は実施例19と同様である比較例33に比べて、研磨速度が高く、算術平均粗さ及び最大高さが小さいことが確認された。比較例34、35では、実施例18〜24に比べて、算術平均粗さ及び最大高さが大きいことが確認された。以上のことから、本発明では、高い研磨速度で半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能であることが確認された。   In Example 19, it was confirmed that the polishing rate was high, and the arithmetic average roughness and the maximum height were small compared to Comparative Example 33 which was the same as Example 19 except that it did not contain 1,2,4 triazole. It was. In Comparative Examples 34 and 35, it was confirmed that the arithmetic average roughness and the maximum height were larger than those in Examples 18 to 24. From the above, in the present invention, it was confirmed that the surface of the semiconductor substrate can be polished to a smooth surface with few irregularities at a high polishing rate.

<第四の半導体基板用研磨液>
(実施例25〜36)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表13に示す添加量で配合して、実施例25〜36の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、ポリビニルピロリドン(PVP_K30)を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
<Fourth polishing liquid for semiconductor substrate>
(Examples 25-36)
[Preparation of polishing liquid for semiconductor]
Abrasive particles, a water-soluble polymer (water-soluble polymer), 1,2,4-triazole, and a basic compound were blended in the addition amounts shown in Table 13 according to the following procedure, and each of Examples 25-36. A semiconductor polishing liquid was prepared. For the preparation of each polishing liquid, polyvinylpyrrolidone (PVP_K30) was used as a water-soluble polymer. The K value is a viscosity characteristic value that correlates with the molecular weight, and is a relative viscosity value at 25 ° C. measured by a capillary viscometer.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.3質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole and polyvinylpyrrolidone (PVP) are dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound is added to this until the pH reaches 9. Added. Next, 0.3% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water.

[pH測定]
実施例25〜36の各半導体用研磨液のpHを、実施例18と同様にして測定した。各半導体用研磨液のpHを表13に示す。
[PH measurement]
The pH of each of the semiconductor polishing liquids of Examples 25 to 36 was measured in the same manner as in Example 18. Table 13 shows the pH of each semiconductor polishing liquid.

[粗研磨半導体基板の調整]
直径300mmのシリコンウエハを下記条件で研磨し、表面が粗研磨されたシリコンウエハを調整した。
[Adjustment of coarsely polished semiconductor substrate]
A silicon wafer having a diameter of 300 mm was polished under the following conditions to prepare a silicon wafer whose surface was roughly polished.

研磨ウエハ:300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:13.7kPa
研磨液供給量:250ml/分
研磨パッド:SUBA600(ニッタ・ハース製)
研磨液:シリカ砥粒(一次粒径17nm)0.5%、水酸化テトラメチルアンモニウム(以下「TMAH」という)、pH10.5
研磨時間:90秒
Polishing wafer: 300 mm silicon wafer polishing machine: Reflexion (manufactured by Applied Materials)
Polishing platen rotation speed: 123rpm
Holder rotation speed: 117rpm
Polishing pressure: 13.7 kPa
Polishing liquid supply amount: 250 ml / min Polishing pad: SUBA600 (manufactured by Nitta Haas)
Polishing liquid: silica abrasive grains (primary particle size 17 nm) 0.5%, tetramethylammonium hydroxide (hereinafter referred to as “TMAH”), pH 10.5
Polishing time: 90 seconds

[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例25の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例25と同様の方法で、配合直後の実施例26〜36の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨ウエハ:前記で作成した粗研磨後の300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:9.7kPa
研磨液供給量:250ml/分
研磨パッド:Supreme RN−H Pad 30.5”D PJ;CX01 (ニッタ・ハース製)
研磨時間:10分
[Semiconductor substrate polishing]
While supplying the semiconductor substrate polishing liquid of Example 25 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is rotated relative to the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. As a result, the surface of the semiconductor substrate was polished. Moreover, the semiconductor substrate was grind | polished by the method similar to Example 25 using each polishing liquid of Examples 26-36 immediately after mixing | blending. The details of the polishing conditions are as follows.
(Polishing conditions)
Polishing wafer: 300 mm silicon wafer polishing machine after rough polishing created above: Reflexion (manufactured by Applied Materials)
Polishing platen rotation speed: 123rpm
Holder rotation speed: 117rpm
Polishing pressure: 9.7 kPa
Polishing liquid supply amount: 250 ml / min Polishing pad: Supreme RN-H Pad 30.5 "D PJ; CX01 (made by Nitta Haas)
Polishing time: 10 minutes

[洗浄]
前記研磨後のウエハを、下記条件で洗浄した。
洗浄機:MESA (アプライドマテリアルズ社製)
洗浄液:水酸化アンモニウム0.06体積%
ブラシ洗浄時間:60秒
[Washing]
The polished wafer was cleaned under the following conditions.
Washing machine: MESA (Applied Materials)
Cleaning solution: ammonium hydroxide 0.06% by volume
Brush cleaning time: 60 seconds

[欠陥数及びHAZE値の測定]
実施例25〜36の研磨液を用いて上記の方法でシリコンウエハを研磨し、洗浄した後、下記の装置を用いて、欠陥数及びHAZE(ヘーズ)値として表示される値を測定した。測定結果を表13に示す。
欠陥検査装置:LS6700(日立電子エンジニアリング製)
工程条件ファイル(測定レシピ):VeM10L
欠陥測定範囲:0.1μm−3.0μm
投光条件:垂直
[Measurement of number of defects and HAZE value]
After polishing and cleaning the silicon wafer by the above method using the polishing liquids of Examples 25 to 36, the values displayed as the number of defects and the HAZE (haze) value were measured using the following apparatus. Table 13 shows the measurement results.
Defect inspection system: LS6700 (manufactured by Hitachi Electronics Engineering)
Process condition file (measurement recipe): VeM10L
Defect measurement range: 0.1 μm-3.0 μm
Projection condition: Vertical

(比較例36〜39)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表14に示す添加量で配合して、比較例36〜39の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、ポリビニルピロリドン(PVP_K30)を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
(Comparative Examples 36-39)
[Preparation of polishing liquid for semiconductor]
Abrasive particles, a water-soluble polymer (water-soluble polymer), 1,2,4-triazole, and a basic compound were blended in the amounts shown in Table 14 according to the following procedure, and each of Comparative Examples 36 to 39 was added. A semiconductor polishing liquid was prepared. For the preparation of each polishing liquid, polyvinylpyrrolidone (PVP_K30) was used as a water-soluble polymer. The K value is a viscosity characteristic value that correlates with the molecular weight, and is a relative viscosity value at 25 ° C. measured by a capillary viscometer.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.3質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole and polyvinylpyrrolidone (PVP) are dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound is added to this until the pH reaches 9. Added. Next, 0.3% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water.

実施例25と同様の方法で、比較例36〜39の各半導体用研磨液のpH、並びに比較例36〜39の各研磨液を用いた研磨後のシリコンウエハ表面の欠陥数及びHAZE値を測定した。測定結果を表14に示す。   In the same manner as in Example 25, the pH of each semiconductor polishing liquid in Comparative Examples 36 to 39, and the number of defects and the HAZE value on the surface of the silicon wafer after polishing using each polishing liquid in Comparative Examples 36 to 39 were measured. did. Table 14 shows the measurement results.

実施例25〜36では、比較例36〜39に比べて、欠陥数が少ない上に、表面の粗さの指標となるHAZEの値も小さく、凹凸を解消することができることが確認された。   In Examples 25 to 36, compared with Comparative Examples 36 to 39, the number of defects was small, and the value of HAZE serving as an index of surface roughness was also small, and it was confirmed that unevenness could be eliminated.

<第五の半導体基板用研磨液>
(実施例37〜44)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表15に示す添加量で配合して、実施例37〜44の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、K値が異なる三種類のポリビニルピロリドン(PVP_K15、PVP_K30、PVP_K90)のいずれかを用いた。を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
<Fifth polishing liquid for semiconductor substrate>
(Examples 37 to 44)
[Preparation of polishing liquid for semiconductor]
Abrasive particles, water-soluble polymer (water-soluble polymer), 1,2,4-triazole, and basic compound were blended in the addition amounts shown in Table 15 according to the following procedure, and each of Examples 37-44 A semiconductor polishing liquid was prepared. For the preparation of each polishing liquid, one of three types of polyvinylpyrrolidone (PVP_K15, PVP_K30, and PVP_K90) having different K values was used as a water-soluble polymer. Was used. The K value is a viscosity characteristic value that correlates with the molecular weight, and is a relative viscosity value at 25 ° C. measured by a capillary viscometer.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。   In the preparation of each polishing liquid, first, 1,2,4-triazole and polyvinylpyrrolidone (PVP) are dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound is added to this until the pH reaches 9. Added. Next, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water.

[pH測定]
実施例37〜44の各半導体用研磨液のpHを、実施例18と同様にして測定した。各半導体用研磨液のpHを表15に示す。
[PH measurement]
The pH of each of the semiconductor polishing liquids of Examples 37 to 44 was measured in the same manner as in Example 18. Table 15 shows the pH of each semiconductor polishing liquid.

[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例37の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例37と同様の方法で、配合直後の実施例38〜44の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨ウエハ:グラインディング後の300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:13.7kPa
研磨液供給量:250ml/分
研磨パッド:MH−S15C (ニッタ・ハース製)
[Semiconductor substrate polishing]
While supplying the semiconductor substrate polishing liquid of Example 37 immediately after blending onto the polishing cloth of the polishing surface plate, the polishing surface plate is rotated relative to the semiconductor substrate while the semiconductor substrate is pressed against the polishing cloth. As a result, the surface of the semiconductor substrate was polished. Further, in the same manner as in Example 37, the semiconductor substrate was polished using the polishing liquids of Examples 38 to 44 immediately after compounding. The details of the polishing conditions are as follows.
(Polishing conditions)
Polishing wafer: 300 mm silicon wafer polishing machine after grinding: Reflexion (manufactured by Applied Materials)
Polishing platen rotation speed: 123rpm
Holder rotation speed: 117rpm
Polishing pressure: 13.7 kPa
Polishing liquid supply amount: 250 ml / min Polishing pad: MH-S15C (manufactured by Nitta Haas)

[洗浄]
前記研磨後のウエハを、下記条件で洗浄した。
洗浄機:MESA (アプライドマテリアルズ社製)
洗浄液:水酸化アンモニウム0.06体積%
ブラシ洗浄時間:60秒
[Washing]
The polished wafer was cleaned under the following conditions.
Washing machine: MESA (Applied Materials)
Cleaning solution: ammonium hydroxide 0.06% by volume
Brush cleaning time: 60 seconds

[研磨速度の測定]
上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積(706.5cm2)、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を算出した。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。測定結果を表15に示す。
[Measurement of polishing rate]
After the silicon wafer was polished by the above method, the amount of decrease in the mass of the silicon wafer accompanying polishing was measured. Then, the polishing rate (unit: nm / min) was calculated from the decrease in mass, the wafer area (706.5 cm 2), the specific gravity of silicon, and the polishing time. In addition, the electronic balance for analysis (AB104 made from METTLER) was used for the mass measurement of a silicon wafer. The measurement temperature was 25 ° C., and the measurement humidity was 40% RH or higher. The specific gravity of silicon was 2.33. Table 15 shows the measurement results.

[表面粗さ評価]
上記の方法でシリコンウエハを研磨した後、段差・表面粗さ・微細形状測定装置を使用し、以下の条件でシリコンウエハの研磨面の欠陥評価を行った。なお、粗ウエハの目標研磨量をL(nm)、粗ウエハの初期段差(最大高さ)Rt0(nm)及び、粗研磨された粗ウエハの段差(最大高さ)Rt1(nm)とした。測定結果を表15に示す。
(測定条件)
段差・表面粗さ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:5mm
測定荷重:1mg
[Surface roughness evaluation]
After the silicon wafer was polished by the above method, a defect evaluation of the polished surface of the silicon wafer was performed under the following conditions using a step / surface roughness / fine shape measuring apparatus. Note that the target polishing amount of the rough wafer is L (nm), the initial step (maximum height) R t0 (nm) of the rough wafer, and the step (maximum height) R t1 (nm) of the rough polished rough wafer. did. Table 15 shows the measurement results.
(Measurement condition)
Step, surface roughness, fine shape measuring device: P16-OF manufactured by KLA Tencor
Measurement mode: Roughness
Measurement length: 5mm
Measurement load: 1mg

(比較例40〜42)
[半導体用研磨液の調製]
研磨粒子、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表16に示す添加量で配合して、比較例40〜42の各半導体用研磨液を調製した。
(Comparative Examples 40-42)
[Preparation of polishing liquid for semiconductor]
Abrasive particles, 1,2,4-triazole, and a basic compound were blended in the addition amounts shown in Table 16 according to the following procedure to prepare polishing liquids for semiconductors of Comparative Examples 40 to 42.

各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、比較例40では一次粒径が36nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。比較例41では一次粒径が7nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。比較例42では一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。なお、比較例比較例42には、1,2,4−トリアゾールを添加しなかった。   In preparation of each polishing liquid, first, 1,2,4-triazole was dissolved in pure water corresponding to 50% by mass of the entire polishing liquid, and a basic compound was added thereto until the pH reached 9. Next, in Comparative Example 40, 0.5% by mass of colloidal silica having a primary particle size of 36 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water. In Comparative Example 41, 0.5% by mass of colloidal silica having a primary particle size of 7 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water. In Comparative Example 42, 0.5% by mass of colloidal silica having a primary particle size of 17 nm was dispersed, and then mixed with pure water so that the total amount became 95% by mass. And a basic compound was added until it became desired pH, and it mix | blended so that the remainder might be 100 mass% in total with a pure water. In Comparative Example 42, 1,2,4-triazole was not added.

実施例37と同様の方法で、比較例40〜42の各半導体用研磨液のpH、並びに比較例40〜42の各研磨液を用いてシリコンウエハを研磨したときの研磨速度測定、及び表面粗さ評価を行った。測定結果を表16に示す。   In the same manner as in Example 37, the pH of each of the semiconductor polishing liquids of Comparative Examples 40 to 42, the polishing rate measurement when the silicon wafer was polished using each of the polishing liquids of Comparative Examples 40 to 42, and surface roughness Evaluation was made. The measurement results are shown in Table 16.

実施例37〜44では、比較例40〜42に比べて、研磨量Lに対する研削痕の解消効率に優れ、且つ研磨後の研削痕深さRt1が小さくなった。すなわち少ない研磨量で凹凸を解消できることが確認された。In Examples 37 to 44, compared with Comparative Examples 40 to 42, the grinding mark removal efficiency with respect to the polishing amount L was excellent, and the grinding mark depth R t1 after polishing was small. That is, it was confirmed that the unevenness can be eliminated with a small polishing amount.

実施例37と比較例40の研磨液について、研磨量Lと研削痕解消性についてより詳細に調べるため、改めて研磨を実施した(それぞれ実施例45、比較例43)。予め1000nm前後深さの研削痕のあるシリコンウエハを7回に分けて研磨し、各研磨量Lにおける、ウエハの中心から0mmの部分(Center)、ウエハの中心から60mmの部分(Middle)、ウエハの中心から120mmの部分(Edge1)及びウエハの中心から140mmの部分(Edge2)の最大高さRtをそれぞれ測定して評価した。評価結果を表17及び表18並びに図11及び図12に示す。   For the polishing liquids of Example 37 and Comparative Example 40, polishing was performed again in order to investigate the polishing amount L and the grinding mark resolvability in more detail (Example 45 and Comparative Example 43, respectively). A silicon wafer having a grinding mark with a depth of around 1000 nm is polished in advance 7 times, and in each polishing amount L, a portion 0 mm from the center of the wafer (Center), a portion 60 mm from the center of the wafer (Middle), the wafer The maximum height Rt of a portion 120 mm from the center of the wafer (Edge 1) and a portion 140 mm from the center of the wafer (Edge 2) were measured and evaluated. The evaluation results are shown in Tables 17 and 18, and FIGS.

実施例45では、比較例43に比べて、研磨量Lに対する最大高さRtが早い段階で低くなっており、研削痕の解消効率に優れることが分かる。   In Example 45, it can be seen that the maximum height Rt with respect to the polishing amount L is lower at an early stage than in Comparative Example 43, and the grinding mark elimination efficiency is excellent.

1・・・半導体基板、2・・・配線用金属、3・・・シリコンダメージ層。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Metal for wiring, 3 ... Silicon damage layer.

Claims (24)

研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、
前記塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、
前記塩基性化合物の含有量が0.1質量%以上であり、
pHが9以上12以下である、シリコン材料用研磨液。
Containing abrasive particles, 1,2,4-triazole, and a basic compound,
The basic compound is a nitrogen-containing basic compound or an inorganic basic compound,
The content of the basic compound is 0.1% by mass or more,
A polishing liquid for silicon material having a pH of 9 or more and 12 or less.
前記含窒素塩基性化合物が水酸化アンモニウム又は水酸化テトラメチルアンモニウムを含有する、請求項1に記載のシリコン材料用研磨液。 The polishing liquid for silicon materials according to claim 1, wherein the nitrogen-containing basic compound contains ammonium hydroxide or tetramethylammonium hydroxide. 前記無機塩基性化合物が水酸化カリウム又は水酸化ナトリウムを含有する、請求項1又は2に記載のシリコン材料用研磨液。 The polishing liquid for silicon material according to claim 1 or 2, wherein the inorganic basic compound contains potassium hydroxide or sodium hydroxide. 表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、
前記変性シリカの含有量が0.01質量%以上1.5質量%以下であり、
pHが9以上12以下である、シリコン材料用研磨液。
It contains a modified silica whose surface is modified with aluminate, and an inorganic basic compound,
The content of the modified silica is 0.01% by mass or more and 1.5% by mass or less,
A polishing liquid for silicon material having a pH of 9 or more and 12 or less.
前記変性シリカの一次粒径が7〜50nmである、請求項4に記載のシリコン材料用研磨液。 The polishing liquid for silicon materials according to claim 4, wherein the primary particle diameter of the modified silica is 7 to 50 nm. 前記無機塩基性化合物が、水酸化カリウム又は水酸化ナトリウムを含有する、請求項4又は5に記載のシリコン材料用研磨液。 The polishing liquid for silicon material according to claim 4 or 5, wherein the inorganic basic compound contains potassium hydroxide or sodium hydroxide. 更に1,2,4−トリアゾールを含有する、請求項4〜6のいずれか一項に記載のシリコン材料用研磨液。 Furthermore, the polishing liquid for silicon materials as described in any one of Claims 4-6 containing a 1,2,4-triazole. シリコン貫通ビアを形成するための半導体基板の研磨方法であって、
シリコン基板の一方の面に凹部を形成する工程と、
前記凹部に金属を埋め込む工程と、
前記シリコン基板の他方の面をバックグラインドする工程と、
請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記他方の面を、前記金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法。
A method for polishing a semiconductor substrate to form a through-silicon via,
Forming a recess on one surface of the silicon substrate;
Embedding a metal in the recess,
Backgrinding the other surface of the silicon substrate;
A method for polishing a semiconductor substrate, comprising: using the polishing liquid for silicon material according to any one of claims 1 to 7 to polish the other surface so that the metal is exposed.
シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、
請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
Wrapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot, and then etching the silicon wafer to prepare a rough wafer;
A method of polishing a semiconductor substrate, comprising: a rough polishing step of polishing the rough wafer using the polishing liquid for silicon material according to claim 1.
再利用するための半導体基板の研磨方法であって、
付着物が付着したシリコンウエハをウエットエッチングする工程と、
請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
A method of polishing a semiconductor substrate for reuse,
A step of wet-etching the silicon wafer to which the deposit has adhered;
A method for polishing a semiconductor substrate, comprising: a rough polishing step of polishing the wet-etched silicon wafer using the silicon material polishing solution according to claim 1.
研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
pHが9以上12以下である、シリコン材料用研磨液。
Containing abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound,
A polishing liquid for silicon material having a pH of 9 or more and 12 or less.
前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.001質量%以上10質量%以下である、請求項11記載のシリコン材料用研磨液。 12. The polishing liquid for silicon material according to claim 11, wherein the content of the water-soluble polymer is 0.001 to 10% by mass with respect to the total mass of the polishing liquid for silicon material . 前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.01質量%以上10質量%以下である、請求項11又は12に記載のシリコン材料用研磨液。 The polishing for silicon material according to claim 11 or 12, wherein the content of 1,2,4-triazole is 0.01 mass% or more and 10 mass% or less with respect to the total mass of the polishing liquid for silicon material . liquid. 研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、
前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、
pHが9以上12以下である、シリコン材料用研磨液。
Containing abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound,
The content of 1,2,4-triazole is 0.05% by mass or more and 0.5% by mass or less with respect to the total mass of the polishing liquid for silicon material ,
The content of the water-soluble polymer is 0.001% by mass to 0.1% by mass with respect to the total mass of the polishing liquid for silicon material ,
A polishing liquid for silicon material having a pH of 9 or more and 12 or less.
シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、
前記粗ウエハを研磨する粗研磨工程と、
請求項11〜14のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法。
Wrapping or grinding a silicon wafer obtained by slicing a silicon single crystal ingot, and then etching the silicon wafer to prepare a rough wafer;
A rough polishing step for polishing the rough wafer;
A polishing method for a semiconductor substrate, comprising: a final polishing step of further polishing the silicon wafer after the rough polishing step using the polishing liquid for silicon material according to any one of claims 11 to 14.
再利用するための半導体基板の研磨方法であって、
付着物が付着したシリコンウエハをウエットエッチングする工程と、
前記ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、
請求項11〜14のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法。
A method of polishing a semiconductor substrate for reuse,
A step of wet-etching the silicon wafer to which the deposit has adhered;
A rough polishing step of polishing the wet-etched silicon wafer;
A polishing method for a semiconductor substrate, comprising: a final polishing step of further polishing the silicon wafer after the rough polishing step using the polishing liquid for silicon material according to any one of claims 11 to 14.
研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.2質量%以上3.0質量%以下であり、
前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.01質量%以上0.2質量%以下であり、
pHが9以上12以下である、シリコン材料用研磨液。
Containing abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound,
The content of 1,2,4-triazole is 0.2% by mass or more and 3.0% by mass or less with respect to the total mass of the polishing liquid for silicon material ,
The content of the water-soluble polymer is 0.01% by mass or more and 0.2% by mass or less with respect to the total mass of the polishing liquid for silicon material ,
A polishing liquid for silicon material having a pH of 9 or more and 12 or less.
再利用するための半導体基板の研磨方法であって、
付着物が付着したシリコンウエハをウエットエッチングした後、該シリコンウエハをグラインディングして粗ウエハを準備する工程と、
請求項11〜13又は17のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
A method of polishing a semiconductor substrate for reuse,
A step of wet-etching the silicon wafer to which deposits have adhered, and then grinding the silicon wafer to prepare a rough wafer;
A method for polishing a semiconductor substrate, comprising: a rough polishing step of polishing the rough wafer using the polishing liquid for silicon material according to claim 11.
前記粗研磨工程において、前記粗ウエハの研磨量をL(nm)、該粗ウエハの初期段差をRt0(nm)及び、粗研磨された該粗ウエハの段差をRt1(nm)とした場合において、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たす、請求項18記載の半導体基板の研磨方法。 In the rough polishing step, when the polishing amount of the rough wafer is L (nm), the initial step of the rough wafer is R t0 (nm), and the step of the rough polished rough wafer is R t1 (nm) In this case, when a rough wafer is polished by L (nm) satisfying R t0 ≦ L ≦ R t0 × 1.3, L / (R t0 −R t1 ) ≦ 1.3 and R t1 ≦ 100 (nm) are satisfied. The method for polishing a semiconductor substrate according to claim 18, wherein both are satisfied. 前記粗研磨工程後の前記粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備え、
前記研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
pHが9以上12以下である、請求項18又は19に記載の半導体基板の研磨方法。
A finish polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid;
The polishing liquid contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound,
The method for polishing a semiconductor substrate according to claim 18 or 19, wherein the pH is 9 or more and 12 or less.
前記粗研磨工程後の前記粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備え、
前記研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
前記1,2,4−トリアゾールの含有量が、研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、
前記水溶性高分子の含有量が、研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、
pHが9以上12以下である、請求項18又は19に記載の半導体基板の研磨方法。
A finish polishing step of polishing the rough wafer after the rough polishing step using a polishing liquid;
The polishing liquid contains abrasive particles, 1,2,4-triazole, a water-soluble polymer, and a basic compound,
The content of the 1,2,4-triazole, based on the total weight of Ken Migakueki, not more than 0.05 mass% to 0.5 mass%,
The content of the water-soluble polymer, relative to the total weight of Ken Migakueki, is 0.1 mass% 0.001 mass% or more,
The method for polishing a semiconductor substrate according to claim 18 or 19, wherein the pH is 9 or more and 12 or less.
前記水溶性高分子がノニオン性高分子である、請求項11〜14又は17のいずれか一項に記載のシリコン材料用研磨液。 The polishing liquid for silicon materials according to claim 11, wherein the water-soluble polymer is a nonionic polymer. 前記ノニオン性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種である、請求項22に記載のシリコン材料用研磨液。 The polishing liquid for silicon material according to claim 22, wherein the nonionic polymer is at least one selected from polyvinylpyrrolidone and a copolymer of polyvinylpyrrolidone. 前記水溶性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種を含む混合物である、請求項11〜14、17、22又は23のいずれか一項に記載のシリコン材料用研磨液。 The polishing for silicon material according to any one of claims 11 to 14, 17, 22, or 23, wherein the water-soluble polymer is a mixture containing at least one selected from polyvinylpyrrolidone and a copolymer of polyvinylpyrrolidone. liquid.
JP2011510316A 2009-04-20 2010-04-19 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate Expired - Fee Related JP5413456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510316A JP5413456B2 (en) 2009-04-20 2010-04-19 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009101920 2009-04-20
JP2009101919 2009-04-20
JP2009101919 2009-04-20
JP2009101920 2009-04-20
JP2009102919 2009-04-21
JP2009102919 2009-04-21
JP2009173334 2009-07-24
JP2009173352 2009-07-24
JP2009173355 2009-07-24
JP2009173334 2009-07-24
JP2009173352 2009-07-24
JP2009173355 2009-07-24
PCT/JP2010/056948 WO2010122985A1 (en) 2009-04-20 2010-04-19 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP2011510316A JP5413456B2 (en) 2009-04-20 2010-04-19 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate

Publications (2)

Publication Number Publication Date
JPWO2010122985A1 JPWO2010122985A1 (en) 2012-10-25
JP5413456B2 true JP5413456B2 (en) 2014-02-12

Family

ID=43011102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510316A Expired - Fee Related JP5413456B2 (en) 2009-04-20 2010-04-19 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate

Country Status (4)

Country Link
JP (1) JP5413456B2 (en)
KR (1) KR101277342B1 (en)
TW (1) TW201042019A (en)
WO (1) WO2010122985A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697576B2 (en) * 2009-09-16 2014-04-15 Cabot Microelectronics Corporation Composition and method for polishing polysilicon
TWI492290B (en) * 2010-12-10 2015-07-11 Shibaura Mechatronics Corp Machining devices and machining methods
JP6014050B2 (en) * 2011-01-21 2016-10-25 キャボット マイクロエレクトロニクス コーポレイション Silicon polishing composition having improved PSD performance
JPWO2012165016A1 (en) * 2011-06-01 2015-02-23 日立化成株式会社 CMP polishing liquid and method for polishing semiconductor substrate
CN102816530B (en) * 2011-06-08 2016-01-27 安集微电子(上海)有限公司 A kind of chemical mechanical polishing liquid
JP2013004910A (en) * 2011-06-21 2013-01-07 Disco Abrasive Syst Ltd Processing method of wafer having embedded copper electrode
CN103890114B (en) * 2011-10-24 2015-08-26 福吉米株式会社 Composition for polishing, employ its Ginding process and the manufacture method of substrate
KR20140098761A (en) * 2011-11-16 2014-08-08 닛산 가가쿠 고교 가부시키 가이샤 Polishing liquid composition for semiconductor wafers
JP6037416B2 (en) 2013-06-07 2016-12-07 株式会社フジミインコーポレーテッド Silicon wafer polishing composition
US9593272B2 (en) 2013-07-24 2017-03-14 Tokuyama Corporation Silica for CMP, aqueous dispersion, and process for producing silica for CMP
WO2016181889A1 (en) * 2015-05-08 2016-11-17 株式会社フジミインコーポレーテッド Polishing composition
EP3296376B1 (en) * 2015-05-08 2023-07-05 Fujimi Incorporated Method of polishing
JP6747376B2 (en) * 2017-05-15 2020-08-26 信越半導体株式会社 Silicon wafer polishing method
IT201900006736A1 (en) 2019-05-10 2020-11-10 Applied Materials Inc PACKAGE MANUFACTURING PROCEDURES
US11931855B2 (en) * 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349266A (en) * 1999-03-26 2000-12-15 Canon Inc Manufacture of semiconductor member, utilization method for semiconductor basic substance, manufacture system for semiconductor member, production control method therefor and utilizing method for forming device for film depositing
WO2005055302A1 (en) * 2003-12-05 2005-06-16 Sumco Corporation Method for manufacturing single-side mirror surface wafer
JP2007214152A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
JP2008277723A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Metal-polishing liquid and polishing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349266A (en) * 1999-03-26 2000-12-15 Canon Inc Manufacture of semiconductor member, utilization method for semiconductor basic substance, manufacture system for semiconductor member, production control method therefor and utilizing method for forming device for film depositing
WO2005055302A1 (en) * 2003-12-05 2005-06-16 Sumco Corporation Method for manufacturing single-side mirror surface wafer
JP2007214152A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
JP2008277723A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Metal-polishing liquid and polishing method

Also Published As

Publication number Publication date
KR101277342B1 (en) 2013-06-20
WO2010122985A1 (en) 2010-10-28
KR20120001766A (en) 2012-01-04
TW201042019A (en) 2010-12-01
JPWO2010122985A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5413456B2 (en) Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP6581198B2 (en) Composite abrasive particles for chemical mechanical planarization compositions and methods of use thereof
JP4983603B2 (en) Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
JP5915843B2 (en) Process for producing aqueous dispersion for chemical mechanical polishing
JP4985409B2 (en) CMP polishing agent for polishing insulating film, polishing method, and semiconductor electronic component polished by the polishing method
TWI650410B (en) 矽 wafer honing composition
JP7148506B2 (en) Polishing composition and polishing method using the same
JP2008512871A (en) Aqueous slurry containing metalate-modified silica particles
WO2011158718A1 (en) Polishing liquid for semiconductor substrate and method for producing semiconductor wafer
TWI814722B (en) Grinding composition and grinding method
TW201615796A (en) Composition for polishing silicon wafer
JP2014154707A (en) Polishing solution, polishing method and method of manufacturing silicon wafer
KR102617007B1 (en) Method of polishing a substrate and a set of polishing compositions
TWI812595B (en) Chemical mechanical polishing slurry for planarization of barrier film
JP6678076B2 (en) Polishing liquid composition for silicon wafer
TW201518488A (en) Polishing composition and method for producing same
JP2018535538A (en) CMP slurry composition and polishing method using the same
JP2013043893A (en) Aqueous dispersion for chemical and mechanical polishing and chemical and mechanical polishing method using the same
JP4346712B2 (en) Wafer edge polishing method
JP2013110253A (en) Semiconductor substrate polishing solution and semiconductor substrate polishing method
TW202038325A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method capable of efficiently polishing a substrate containing tungsten and suppressing corrosion of the tungsten surface after polishing
JP7138432B2 (en) Silicon wafer manufacturing method
JP2024002535A (en) Silica microparticle fluid dispersion, manufacturing method thereof, and abrasive grain fluid dispersion including silica microparticle fluid dispersion
JP2024058695A (en) Silica fine particle dispersion, its manufacturing method, and polishing abrasive dispersion containing silica fine particle dispersion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

LAPS Cancellation because of no payment of annual fees