JP2004331887A - Abrasive composition - Google Patents

Abrasive composition Download PDF

Info

Publication number
JP2004331887A
JP2004331887A JP2003132313A JP2003132313A JP2004331887A JP 2004331887 A JP2004331887 A JP 2004331887A JP 2003132313 A JP2003132313 A JP 2003132313A JP 2003132313 A JP2003132313 A JP 2003132313A JP 2004331887 A JP2004331887 A JP 2004331887A
Authority
JP
Japan
Prior art keywords
acid
polishing
component
polishing composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003132313A
Other languages
Japanese (ja)
Other versions
JP4068499B2 (en
Inventor
Tomoaki Ishibashi
智明 石橋
Hisaki Owaki
寿樹 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2003132313A priority Critical patent/JP4068499B2/en
Priority to MYPI20041723A priority patent/MY139093A/en
Priority to GB0410212A priority patent/GB2401370B/en
Priority to CN200410043511.8A priority patent/CN100547045C/en
Publication of JP2004331887A publication Critical patent/JP2004331887A/en
Application granted granted Critical
Publication of JP4068499B2 publication Critical patent/JP4068499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive composition that can improve the smoothness on the surface to be ground by reducing the minute swells. <P>SOLUTION: The abrasive composition comprises (a) at least one selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide, silicon carbide and silicon nitride, (b) at least one selected from the group consisting of carboxyethyl thiosuccinate and its salts and (c) water. In a preferred embodiment, the abrasive component additionally contains (d) at least one selected from the group consisting of organic acid other than the components of (b) and inorganic acids and the salts of these organic and inorganic acids as an abrasion-promoting agent. The abrasive composition is used for grinding the surface of a substrate to be ground, for example, a substrate plate for magnetic disk and the minute swells on the surface to be ground are reduced with the component (b) whereby the smoothness is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータの記憶装置として用いられる磁気ディスク用の基板等の被研磨物の表面を研磨するために用いられる研磨用組成物に関するものである。より詳しくは、被研磨面の微小うねりを低減して平滑性を向上させることができる研磨用組成物に関するものである。
【0002】
【従来の技術】
近年、コンピュータの記憶装置として用いられるハードディスクの高密度化等の要求に伴い、研磨後のハードディスク用基板の表面品質の向上が求められている。このような要求を満たすために、従来の研磨用組成物は、酸化アルミニウム等の研磨材、コハク酸又はその塩及び水を含有している(例えば、特許文献1参照。)。そして、研磨材により被研磨物の表面(被研磨面)を研磨し、コハク酸又はその塩が研磨促進剤として作用してより大きな研磨速度が得られるとともに、被研磨面に微小突起等の表面欠陥が発生するのを防止するようになっている。
【0003】
【特許文献1】
特開2000−1665号公報(第2〜4頁)
【0004】
【発明が解決しようとする課題】
ところが、この従来の研磨用組成物においては、コハク酸又はその塩は研磨を促進して被研磨面に表面欠陥が発生するのを防止することはできるが、微小うねりを低減する効果が低く被研磨面の平滑性を十分に向上させることができないという問題があった。
【0005】
本発明は、前記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、被研磨面の微小うねりを低減して平滑性を向上させることができる研磨用組成物を提供することにある。
【0006】
【課題を解決するための手段】
前記の目的を達成するために、請求項1に記載の発明の研磨用組成物は、(a)酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化ジルコニウム、酸化チタン、炭化ケイ素及び窒化ケイ素からなる群から選ばれる少なくとも一種の研磨材、(b)カルボキシエチルチオコハク酸及びその塩からなる群から選ばれる少なくとも一種及び(c)水の各成分を含有するものである。
【0007】
請求項2に記載の発明の研磨用組成物は、請求項1に記載の発明において、さらに(d)成分(b)以外の有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤を含有するものである。
【0008】
請求項3に記載の発明の研磨用組成物は、請求項2に記載の発明において、成分(d)が、リンゴ酸、グリコール酸、コハク酸、クエン酸、マレイン酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、グリシン、アラニン、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、チオ酢酸、メルカプトコハク酸、硝酸アルミニウム及び硫酸アルミニウムからなる群から選ばれる少なくとも一種である。
【0009】
【発明の実施の形態】
以下、本発明を具体化した実施形態を詳細に説明する。
本実施形態の研磨用組成物には、(a)酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化ジルコニウム、酸化チタン、炭化ケイ素及び窒化ケイ素からなる群から選ばれる少なくとも一種の研磨材、(b)カルボキシエチルチオコハク酸及びその塩からなる群から選ばれる少なくとも一種及び(c)水の各成分が含有されている。
【0010】
この研磨用組成物は、磁気ディスク用基板等の被研磨物の表面を研磨(一次研磨等)するために用いられる。被研磨物の具体例としては、ブランク材のアルミニウム合金表面にニッケル(Ni)−リン(P)の無電解メッキが施されたNi−Pサブストレートや、Ni−鉄(Fe)サブストレート、ボロンカーバイド(BC)サブストレート、カーボン(C)サブストレート等が挙げられる。
【0011】
成分(a)の酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化ジルコニウム、酸化チタン、炭化ケイ素及び窒化ケイ素からなる群から選ばれる少なくとも一種の研磨材は、その機械的研磨作用により被研磨面を研磨する。これらの中でも、酸化アルミニウム又は二酸化ケイ素が微小うねりを低減する効果が高いために好ましく、酸化アルミニウムが前記効果に加えてより大きな研磨速度を得ることができるためにより好ましい。
【0012】
酸化アルミニウムの具体例としては、α−アルミナ、δ−アルミナ、θ−アルミナ、κ−アルミナ等の結晶形態が異なるものや、フュームドアルミナ等の製造方法が異なる種々のものが挙げられる。二酸化ケイ素の具体例としては、コロイダルシリカ、フュームドシリカ等の製造方法や性状の異なる種々のものが挙げられる。酸化セリウムの具体例としては、二酸化セリウム、三酸化二セリウム等や、六方晶系、等軸晶系、面心立方晶系等の結晶系が異なる種々のものが挙げられる。
【0013】
酸化ジルコニウムの具体例としては、単斜晶系、正方晶系等の結晶系が異なるものや非晶質なもの、フュームドジルコニア等の製造方法が異なる種々のものが挙げられる。酸化チタンの具体例としては、一酸化チタン、三酸化二チタン、二酸化チタン等や、フュームドチタニア等の製造方法が異なる種々のものが挙げられる。炭化ケイ素の具体例としては、α−炭化ケイ素、β−炭化ケイ素、アモルファス炭化ケイ素等の結晶形態が異なる種々のものが挙げられる。窒化ケイ素の具体例としては、α−窒化ケイ素、β−窒化ケイ素、アモルファス窒化ケイ素等の結晶形態が異なる種々のものが挙げられる。
【0014】
成分(a)の粒子径は、成分(a)が酸化アルミニウム、酸化ジルコニウム、酸化チタン、炭化ケイ素又は窒化ケイ素のときには、レーザー回折散乱式粒度測定機(LS−230;Coulter社製)を用いた測定等のレーザー回折散乱法により求められる平均粒子径で好ましくは0.05〜2μm、より好ましくは0.1〜1.5μmである。成分(a)が二酸化ケイ素のときには、気体吸着による粉体の比表面積測定法(BET法)により測定された比表面積から求められる平均粒子径で好ましくは0.005〜0.5μm、より好ましくは0.01〜0.3μmである。
【0015】
一方、成分(a)が酸化セリウムのときには、走査型電子顕微鏡(SEM)により観察される平均粒子径で好ましくは0.01〜0.5μm、より好ましくは0.05〜0.45μmである。成分(a)の粒子径が前記範囲未満では機械的研磨作用が低く十分な研磨速度が得られないおそれがある。一方、前記範囲を超えると、研磨用組成物中で成分(a)の沈殿が発生しやすくなるとともに、被研磨面にスクラッチが発生するおそれがある。ここで、スクラッチとは、一定の幅及び深さを超える引掻き傷のことである。
【0016】
研磨用組成物中の成分(a)の含有量は、好ましくは0.1〜40重量%、より好ましくは1〜25重量%である。成分(a)の含有量が0.1重量%未満では機械的研磨作用が低く十分な研磨速度が得られないおそれがある。一方、40重量%を超えると、成分(a)同士が凝集することにより研磨用組成物の安定性が低下して研磨用組成物に沈殿が発生しやすくなるとともに、研磨用組成物の粘性が高くなるおそれがある。
【0017】
成分(b)のカルボキシエチルチオコハク酸及びその塩からなる群から選ばれる少なくとも一種は、その化学的研磨作用によって被研磨面を研磨して研磨を促進するとともに、被研磨面の微小うねりを低減する。これは、成分(b)が、その化学的研磨作用によって被研磨面の微小うねりを除去するためと推察される。ここで、微小うねりとは、表面粗さ測定機を用いて一定の測定波長で測定された微小な凹凸を高さ(Å)で表したものである。研磨用組成物には研磨促進効果を有するものとして成分(b)以外にも公知の各種研磨促進剤が一般的に用いられるが、その種類及び量によっては被研磨面の微小うねりが悪化(増大)するおそれがある。従って、研磨用組成物は成分(b)を含有する必要がある。
【0018】
カルボキシルエチルチオコハク酸は下記式(1)で示され、塩の具体例としてはカリウム塩等のアルカリ金属塩、アンモニウム塩、モノエタノールアミン塩等のアミン塩等が挙げられる。これらの中でも、カルボキシエチルチオコハク酸、又はそのカリウム塩やモノエタノールアミン塩が、化学的研磨作用によって被研磨面の微小うねりを除去する作用が強く微小うねりを低減する効果が高いために好ましい。
【0019】
【化1】

Figure 2004331887
研磨用組成物中の成分(b)の含有量は、好ましくは0.001〜10重量%、より好ましくは0.003〜5重量%、最も好ましくは0.01〜2重量%である。成分(b)の含有量が0.001重量%未満では、成分(b)による被研磨面の微小うねりの除去の程度が低く微小うねりを十分に低減することができないとともに、十分な研磨速度が得られないおそれがある。一方、10重量%を超えると、被研磨面に微小突起や微細なピット(凹み)等の表面欠陥が発生するおそれがある。
【0020】
成分(c)の水は、他の成分を溶解又は分散させる。成分(c)は他の成分の作用を阻害するのを防止するために不純物をできるだけ含有しないものが好ましく、具体的にはイオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、又は蒸留水等が好ましい。研磨用組成物中の成分(c)の含有量は、研磨用組成物中の他の成分の含有量に対する残量である。
【0021】
研磨用組成物には、前記各成分以外に(d)成分(b)以外の有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤を含有させるのが好ましい。
【0022】
成分(d)は、成分(b)と同様にその化学的研磨作用によって被研磨面を研磨し、研磨を促進する。成分(d)を構成する群の中でも、有機酸及び無機塩からなる群から選ばれる少なくとも一種が、化学的研磨作用が強く研磨促進効果が高いために好ましい。さらに、成分(d)は、研磨促進効果がより高いために、リンゴ酸、グリコール酸、コハク酸、クエン酸、マレイン酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、グリシン、アラニン、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、チオ酢酸、メルカプトコハク酸、硝酸アルミニウム及び硫酸アルミニウムからなる群から選ばれる少なくとも一種がより好ましく、リンゴ酸、グリコール酸、コハク酸、クエン酸又はイミノ二酢酸が最も好ましい。
【0023】
研磨用組成物中の成分(d)の含有量は、好ましくは0.001〜0.5重量%、より好ましくは0.005〜0.3重量%である。成分(d)の含有量が0.001重量%未満では、成分(d)による十分な研磨促進効果を得ることができない。一方、0.5重量%を超えると、成分(d)によって被研磨面が浸食されることにより、被研磨面の微小うねりが悪化したり微細なピット等の表面欠陥が発生するおそれがある。
【0024】
研磨用組成物には、研磨用組成物の安定化や研磨加工上の必要性等に応じ、成分(d)以外のその他の添加成分として、(e)界面活性剤、(f)アルミナゾル、モリブデン酸やそのナトリウム塩、カリウム塩、アンモニウム塩等の塩、アルギン酸ナトリウムや炭酸水素カリウム等の殺菌剤、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)等のキレート剤、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等の水溶性セルロース類、高級脂肪酸アミン、スルホン酸、防錆剤、消泡剤等の加工油類等を含有させてもよい。研磨用組成物中のその他の添加成分の含有量は、研磨用組成物の常法に従って決定される。
【0025】
成分(e)の界面活性剤は一般的に研磨用組成物の分散性の向上や被研磨面の表面欠陥の発生の抑制等の効果を有し、ノニオン系界面活性剤やアニオン系界面活性剤等が挙げられる。これらの中でも、例えば被研磨面としての磁気ディスク用基板の表面を研磨するときに、磁気ディスク用基板表面の外周縁における面ダレを改善して磁気ディスク用基板表面の平坦性を向上させる効果が高いために、ノニオン系界面活性剤においては下記一般式(2)で示されるポリオキシエチレンポリオキシプロピレンアルキルエーテル、下記一般式(3)又は下記一般式(4)で示される構造を持つポリオキシエチレンポリオキシプロピレンコポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、下記一般式(5)で示されるウレタン会合型界面活性剤が好ましい。
【0026】
【化2】
Figure 2004331887
(式中のRはアルキル基を示し、l及びmは整数を示す。)
【0027】
【化3】
Figure 2004331887
(式中のn、o及びpは整数を示す。)
【0028】
【化4】
Figure 2004331887
(式中のq、r及びsは整数を示す。)
【0029】
【化5】
Figure 2004331887
(式中のXは活性水素原子を有する化合物とアルキレンオキシドから誘導されたポリエーテルポリオールの残基(但し、ポリエーテル鎖中にオキシエチレン基を20〜90重量%含む。)、tは2〜8の整数(=前記ポリエーテルポリオール1分子中の水酸基の数)、Yは二価の炭化水素基、Zは活性水素原子を有する一価の化合物の残基、uは3以上の整数を示す。)
一方、アニオン系界面活性剤においては、ポリアクリル酸ナトリウム等のポリカルボン酸塩、イソプレンスルホン酸とアクリル酸との共重合体等のイソプレンスルホン酸又はその塩を必須単量体として得られる重合体等が好ましい。
【0030】
研磨用組成物中の成分(e)の含有量は、好ましくは0.001〜0.5重量%、より好ましくは0.005〜0.3重量%である。界面活性剤の含有量が0.001重量%未満では面ダレを十分に抑制することができない。一方、0.5重量%を超えると、研磨促進効果を妨げて大きな研磨速度が得られず、研磨用組成物中に析出物が析出するとともに発泡するおそれがある。
【0031】
成分(f)のアルミナゾルは、被研磨面に微小突起、微細なピット等の表面欠陥の発生を抑制する。これは、アルミナゾルが成分(a)の研磨材粒子表面に付着し、成分(a)の機械的研磨作用を促進するためと推察される。さらに、アルミナゾルが研磨用組成物中にコロイド状に分散することにより、成分(a)の分散性を向上させて成分(a)が沈殿するのを防止し、被研磨物を研磨するときに研磨パッドに成分(a)を保持しやすくする。
【0032】
成分(f)の具体例としてはアルミナ水和物及び水酸化アルミニウムから選ばれる少なくとも一種を酸性水溶液中にコロイド状に分散させたものが挙げられ、アルミナ水和物としてはベーマイト、擬ベーマイト、ダイアスポア、ジブサイト、バイヤライト等が挙げられる。ここで、酸性水溶液は有機酸、無機酸及びそれらの塩により水のpHを酸性側に調整することにより調製される。アルミナ水和物は単独で含有されてもよいし、二種以上を組み合わせて含有されてもよい。これらの中でも、ベーマイト又は擬ベーマイトを酸性水溶液中に分散させたものが、表面欠陥の発生を抑制する効果が高いとともに被研磨面の表面粗さを低減する効果を有するために好ましい。本実施形態の研磨用組成物を調製するときにおける各成分の混合順序は限定されず、いずれの順序でもよいし同時でもよい。
【0033】
次に、本実施形態の研磨用組成物を用いた研磨方法について説明する。
被研磨面として磁気ディスク用基板表面を研磨するときには、磁気ディスク用基板表面の研磨工程における磁気ディスク用基板の表面品質をより効率的に向上させるため、一般的には研磨工程は二段階に分けて行なわれる。即ち、1段目の研磨工程においては、磁気ディスク用基板表面のうねり、2段目の仕上げ研磨工程では除去できないような磁気ディスク用基板表面の大きなスクラッチや凹凸等の表面欠陥を除去する目的で研磨工程が行なわれる。
【0034】
一方、2段目の研磨工程においては、所望の小さな表面粗さに調整し、かつ1段目の研磨工程で発生した表面欠陥や1段目の研磨工程で完全に除去できなかったような表面欠陥を除去する目的で、仕上げ研磨工程が行なわれる。また、場合によっては、研磨工程を3段以上の工程に細分化して行なわれることもある。本実施形態の研磨用組成物は、これらの研磨工程のいずれにも用いることができるが、磁気ディスク用基板表面の微小うねりを低減することができるために、1段目の研磨工程で用いられるのが好ましい。
【0035】
さて、本実施形態の研磨用組成物を用いて例えばNi−Pサブストレート表面の1段目の研磨(一次研磨)を行なうときには、研磨用組成物をNi−Pサブストレート表面に供給しながら研磨パッドでNi−Pサブストレート表面を研磨する。このとき、研磨用組成物には成分(a)が含有されているために、その機械的研磨作用によって一定の研磨速度でNi−Pサブストレート表面を研磨することができる。さらに、研磨用組成物には成分(b)が含有されているために、その化学的研磨作用によって研磨を促進して大きな研磨速度が得られるとともに、被研磨面の微小うねりを低減して平滑性を向上させることができる。加えて、成分(d)を含有することにより、より大きな研磨速度を得ることができる。
【0036】
以上詳述した本実施形態によれば、次のような効果が発揮される。
・ 本実施形態の研磨用組成物は成分(b)を含有している。成分(b)はコハク酸又はその塩と同様に研磨促進効果を有するとともに、コハク酸又はその塩に比べて微小うねりを除去する効果が高いと推察される。このため、本実施形態の研磨用組成物は、コハク酸又はその塩を含有する従来の研磨用組成物に比べて、被研磨面の微小うねりを低減して平滑性を向上させることができる。
【0037】
・ 研磨用組成物は成分(d)を含有するのが好ましい。この場合には、成分(d)の化学的研磨作用によって大きな研磨速度を得ることができる。
・ 成分(d)はリンゴ酸、グリコール酸、コハク酸、クエン酸、マレイン酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、グリシン、アラニン、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、チオ酢酸、メルカプトコハク酸、硝酸アルミニウム及び硫酸アルミニウムからなる群から選ばれる少なくとも一種が好ましく、リンゴ酸、グリコール酸、コハク酸、クエン酸及びイミノ二酢酸からなる群から選ばれる少なくとも一種がより好ましい。この場合には、より大きな研磨速度を得ることができる。
【0038】
・ 成分(a)は酸化アルミニウムが好ましい。この場合には、被研磨面の平滑性をより向上させることができるとともに、さらに大きな研磨速度を得ることができる。
【0039】
・ 成分(b)はカルボキシエチルチオコハク酸、又はそのカリウム塩やモノエタノールアミン塩が好ましい。この場合には、被研磨面の平滑性をより向上させることができる。
【0040】
なお、前記実施形態を次のように変更して構成することもできる。
・ 研磨用組成物を、調製するときには成分(c)の含有量が研磨工程に用いられるときに比べて少なく設定されることにより成分(c)以外の各成分が濃縮され、研磨工程に用いられるときには成分(c)が加えられて希釈されるように構成してもよい。このように構成した場合は、研磨用組成物の管理を容易に行なうとともに輸送効率を向上させることができる。
【0041】
・ 被研磨面の研磨を1段で行なってもよいし、本実施形態の研磨用組成物を仕上げ研磨に用いてもよい。
・ 被研磨物としては、磁気ディスク以外にも半導体ウエハ等の半導体基板、光学レンズ等が挙げられる。これらの材質としては、タングステン、銅、シリコン、ガラス、セラミック等が挙げられる。
【0042】
【実施例】
次に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
(実施例1〜16及び比較例1〜8)
実施例1においては、まず成分(a)としての酸化アルミニウム、成分(b)としてのカルボキシエチレルチオコハク酸及び成分(c)の水を混合して研磨用組成物を調製した。ここで、酸化アルミニウムの粒子径は、レーザー回折散乱式粒度測定機(LS−230;Coulter社製)により測定された平均粒子径で0.8μmであり、研磨用組成物中の含有量は6重量%であった。成分(b)の含有量を表1に示す。
【0043】
実施例2〜8においては、成分(b)の種類及び含有量を表1に示すように変更した以外は、実施例1と同様にして研磨用組成物を調製した。実施例9〜16及び比較例1〜8においては、成分(b)の種類及び含有量を表1に示すように変更するとともに、成分(d)として表1に示す化合物を混合した以外は、実施例1と同様にして研磨用組成物を調製した。そして、各例の研磨用組成物について、下記(1)及び(2)の項目に関し評価を行なった。それらの結果を表1に示す。尚、表1において、カルボキシエチルチオコハク酸をA1で示すとともに、カルボキシエチルチオコハク酸一カリウムをA2で示し、カルボキシエチルチオコハク酸二カリウムをA3で示すとともにカルボキシエチルチオコハク酸三カリウムをA4で示す。さらに、モノエタノールアミン・カルボキシエチルチオコハク酸塩をA5で示し、各成分の含有量を重量%で示す。
【0044】
(1)微小うねり
各例の研磨用組成物を用い、下記の研磨条件で被研磨物(無電解Ni−Pサブストレート)の表面を研磨した。次いで、非接触式表面粗さ測定器(Micro XAM;PhaseShift社製;対物レンズ:×10倍、フィルター:Gaussian Bandpass 80〜450μmで測定されたRa値)を用い、研磨加工後の無電解Ni−Pサブストレート表面の微小うねりの大きさを測定した。そして、微小うねりについて、Raが4.5Å未満(◎)、Raが4.5Å以上5.0Å未満(○)、Raが5.0Å以上(△)の3段階で評価した。
<研磨条件>
被研磨物:直径3.5インチ(≒95mm)の無電解Ni−Pサブストレート、研磨機:両面研磨機(定盤直径720mm)、研磨パッド:ポリウレタンパッド(BELLATRIX N0048;カネボウ株式会社製)、荷重:100g/cm(≒10kPa)、上定盤回転数:24rpm、下定盤回転数:16rpm、研磨用組成物の供給量:150ml/分、研磨量:両面の取り代にして3μm
(2)研磨速度
各例の研磨用組成物を用い、前記の研磨条件で被研磨物(無電解Ni−Pサブストレート)の表面を研磨した後、下記に示す計算式に基づいて研磨速度を求めた。そして、研磨速度について、研磨速度が0.50μm/分以上(◎)、研磨速度が0.45μm/分以上0.50μm/分未満(○)、研磨速度が0.45μm/分未満(△)の3段階で評価した。
<研磨速度の計算式>
研磨速度[μm/分]=研磨による無電解Ni−Pサブストレートの重量減[g]÷(被研磨面の面積[cm]×Ni−Pメッキの密度[g/cm]×研磨時間[分])×10000
【0045】
【表1】
Figure 2004331887
表1に示すように、実施例1〜16においては、微小うねり及び研磨速度について優れた評価となった。さらに、実施例9〜16においては、成分(d)を含有するために、研磨速度についてさらに優れた結果となった。このため、実施例1〜16の研磨用組成物を用いると微小うねりを低減して平滑性を向上させることができ、実施例9〜16の研磨用組成物を用いるとより大きな研磨速度を得ることができた。一方、比較例1〜8においては、成分(b)を含有しないために、各実施例に比べて微小うねりについて劣る評価となった。
【0046】
次に、前記実施形態から把握できる技術的思想について以下に記載する。
(1)前記成分(a)は酸化アルミニウムである請求項1から3のいずれか一項に記載の研磨用組成物。この構成によれば、被研磨面の微小うねりをより低減することにより平滑性をより向上させることができるとともに、より大きな研磨速度を得ることができる。
【0047】
(2)前記成分(b)はカルボキシエチルチオコハク酸並びにそのカリウム塩及びモノエタノールアミン塩からなる群から選ばれる少なくとも一種である請求項1から3及び上記(1)のいずれか一項に記載の研磨用組成物。この構成によれば、被研磨面の微小うねりをより低減することにより平滑性をより向上させることができる。
【0048】
(3)前記成分(d)はリンゴ酸、グリコール酸、コハク酸、クエン酸及びイミノ二酢酸からなる群から選ばれる少なくとも一種である請求項2、請求項3、上記(1)及び上記(2)のいずれか一項に記載の研磨用組成物。この構成によれば、より大きな研磨速度を得ることができる。
【0049】
【発明の効果】
本発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明の研磨用組成物によれば、被研磨面の微小うねりを低減して平滑性を向上させることができる。
【0050】
請求項2及び3に記載の発明の研磨用組成物によれば、請求項1に記載の発明の効果に加え、より大きな研磨速度を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing composition used for polishing a surface of an object to be polished such as a substrate for a magnetic disk used as a storage device of a computer. More specifically, the present invention relates to a polishing composition capable of reducing fine waviness on a surface to be polished and improving smoothness.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the demand for higher density of a hard disk used as a storage device of a computer, an improvement in the surface quality of a polished hard disk substrate has been demanded. In order to satisfy such requirements, the conventional polishing composition contains an abrasive such as aluminum oxide, succinic acid or a salt thereof, and water (for example, see Patent Document 1). Then, the surface of the object to be polished (the surface to be polished) is polished with an abrasive, and succinic acid or a salt thereof acts as a polishing accelerator to obtain a higher polishing rate. It is designed to prevent defects from occurring.
[0003]
[Patent Document 1]
JP-A-2000-1665 (pages 2 to 4)
[0004]
[Problems to be solved by the invention]
However, in this conventional polishing composition, succinic acid or a salt thereof can promote polishing and prevent the occurrence of surface defects on the surface to be polished, but the effect of reducing minute waviness is low and the succinic acid or salt thereof has a low effect. There is a problem that the smoothness of the polished surface cannot be sufficiently improved.
[0005]
The present invention has been made by focusing on the problems existing in the prior art as described above. An object of the present invention is to provide a polishing composition capable of reducing fine waviness on a surface to be polished and improving smoothness.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the polishing composition according to the first aspect of the present invention includes: (a) a polishing composition selected from the group consisting of (a) aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide, silicon carbide, and silicon nitride. It contains at least one selected abrasive, at least one selected from the group consisting of (b) carboxyethylthiosuccinic acid and salts thereof, and (c) each component of water.
[0007]
The polishing composition according to the second aspect of the present invention is the polishing composition according to the first aspect, further comprising at least one selected from the group consisting of an organic acid, an inorganic acid, and a salt thereof other than the component (d). Containing a polishing accelerator.
[0008]
The polishing composition according to the third aspect of the present invention is the polishing composition according to the second aspect, wherein the component (d) is malic acid, glycolic acid, succinic acid, citric acid, maleic acid, itaconic acid, malonic acid, Iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid, acetic acid, glycine, alanine, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, thioacetic acid, mercaptosuccinic acid, nitric acid It is at least one selected from the group consisting of aluminum and aluminum sulfate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments embodying the present invention will be described in detail.
The polishing composition of the present embodiment includes (a) at least one abrasive selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide, silicon carbide, and silicon nitride; It contains at least one selected from the group consisting of ethylthiosuccinic acid and salts thereof and (c) each component of water.
[0010]
This polishing composition is used to polish (primary polishing, etc.) the surface of a polishing object such as a magnetic disk substrate. Specific examples of the object to be polished include a Ni-P substrate in which nickel (Ni) -phosphorus (P) is electrolessly plated on an aluminum alloy surface of a blank material, a Ni-iron (Fe) substrate, and boron. Carbide (BC) substrates, carbon (C) substrates, and the like.
[0011]
At least one abrasive selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide, silicon carbide and silicon nitride as the component (a) polishes the surface to be polished by its mechanical polishing action. . Among these, aluminum oxide or silicon dioxide is preferable because of its high effect of reducing minute waviness, and aluminum oxide is more preferable because it is possible to obtain a higher polishing rate in addition to the above effects.
[0012]
Specific examples of aluminum oxide include those having different crystal forms such as α-alumina, δ-alumina, θ-alumina, and κ-alumina, and various materials having different production methods such as fumed alumina. Specific examples of silicon dioxide include various production methods and properties of colloidal silica, fumed silica, and the like. Specific examples of cerium oxide include cerium dioxide, cerium trioxide, and the like, and various types having different crystal systems such as a hexagonal system, an equiaxed system, and a face-centered cubic system.
[0013]
Specific examples of zirconium oxide include those having different crystal systems such as monoclinic system and tetragonal system, those having an amorphous structure, and those having different production methods such as fumed zirconia. Specific examples of titanium oxide include titanium monoxide, dititanium trioxide, titanium dioxide and the like, and various types of fumed titania and the like having different production methods. Specific examples of silicon carbide include α-silicon carbide, β-silicon carbide, amorphous silicon carbide, and various other types having different crystal forms. Specific examples of silicon nitride include various silicon nitrides having different crystal forms, such as α-silicon nitride, β-silicon nitride, and amorphous silicon nitride.
[0014]
When the component (a) was aluminum oxide, zirconium oxide, titanium oxide, silicon carbide or silicon nitride, the particle diameter of the component (a) was measured using a laser diffraction / scattering particle size analyzer (LS-230; manufactured by Coulter). The average particle size determined by a laser diffraction scattering method such as measurement is preferably 0.05 to 2 μm, more preferably 0.1 to 1.5 μm. When the component (a) is silicon dioxide, the average particle diameter obtained from the specific surface area measured by the specific surface area measurement method (BET method) by gas adsorption is preferably 0.005 to 0.5 μm, more preferably It is 0.01 to 0.3 μm.
[0015]
On the other hand, when the component (a) is cerium oxide, the average particle diameter observed by a scanning electron microscope (SEM) is preferably 0.01 to 0.5 μm, more preferably 0.05 to 0.45 μm. If the particle diameter of the component (a) is less than the above range, the mechanical polishing action is so low that a sufficient polishing rate may not be obtained. On the other hand, if it exceeds the above range, precipitation of the component (a) is likely to occur in the polishing composition, and scratches may be generated on the surface to be polished. Here, the scratch is a scratch exceeding a certain width and depth.
[0016]
The content of the component (a) in the polishing composition is preferably 0.1 to 40% by weight, and more preferably 1 to 25% by weight. If the content of the component (a) is less than 0.1% by weight, the mechanical polishing action is so low that a sufficient polishing rate may not be obtained. On the other hand, when the content exceeds 40% by weight, the stability of the polishing composition is reduced due to aggregation of the components (a), and the polishing composition is likely to precipitate, and the viscosity of the polishing composition is reduced. May be high.
[0017]
At least one component (b) selected from the group consisting of carboxyethylthiosuccinic acid and a salt thereof is polished on the surface to be polished by its chemical polishing action to promote polishing, and reduces minute waviness on the surface to be polished. I do. This is presumed to be because the component (b) removes minute waviness on the surface to be polished by its chemical polishing action. Here, the minute waviness is the height (Å) of minute unevenness measured at a constant measurement wavelength using a surface roughness measuring device. In the polishing composition, various known polishing accelerators other than the component (b) are generally used as those having a polishing acceleration effect. However, depending on the type and amount thereof, fine waviness of the polished surface is deteriorated (increased). ). Therefore, the polishing composition needs to contain the component (b).
[0018]
Carboxylethylthiosuccinic acid is represented by the following formula (1), and specific examples of the salt include an alkali metal salt such as a potassium salt, an ammonium salt, and an amine salt such as a monoethanolamine salt. Among them, carboxyethylthiosuccinic acid, or a potassium salt or a monoethanolamine salt thereof is preferable because the effect of removing fine waviness on the surface to be polished by chemical polishing is strong and the effect of reducing fine waviness is high.
[0019]
Embedded image
Figure 2004331887
The content of the component (b) in the polishing composition is preferably 0.001 to 10% by weight, more preferably 0.003 to 5% by weight, and most preferably 0.01 to 2% by weight. When the content of the component (b) is less than 0.001% by weight, the degree of removal of the minute undulation on the surface to be polished by the component (b) is low, and the minute undulation cannot be sufficiently reduced, and the sufficient polishing rate is not obtained. May not be obtained. On the other hand, if it exceeds 10% by weight, surface defects such as minute projections and fine pits (dents) may be generated on the surface to be polished.
[0020]
The water of component (c) dissolves or disperses other components. The component (c) preferably does not contain impurities as much as possible in order to prevent the action of the other components from being hindered. More specifically, pure water obtained by removing impurity ions with an ion exchange resin and then removing foreign matter through a filter is preferred. Water, ultrapure water, or distilled water is preferred. The content of the component (c) in the polishing composition is the remaining amount relative to the content of other components in the polishing composition.
[0021]
The polishing composition preferably contains, in addition to the above components, at least one polishing accelerator selected from the group consisting of organic acids, inorganic acids, and salts thereof other than component (b).
[0022]
The component (d) polishes the surface to be polished by the chemical polishing action like the component (b), and promotes the polishing. Among the groups constituting the component (d), at least one selected from the group consisting of organic acids and inorganic salts is preferable because of its strong chemical polishing action and high polishing promoting effect. Further, component (d) has a higher polishing promoting effect, so that malic acid, glycolic acid, succinic acid, citric acid, maleic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, At least one selected from the group consisting of tartaric acid, crotonic acid, nicotinic acid, acetic acid, glycine, alanine, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, thioacetic acid, mercaptosuccinic acid, aluminum nitrate and aluminum sulfate Is more preferable, and malic acid, glycolic acid, succinic acid, citric acid or iminodiacetic acid is most preferable.
[0023]
The content of the component (d) in the polishing composition is preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.3% by weight. If the content of the component (d) is less than 0.001% by weight, a sufficient polishing promoting effect by the component (d) cannot be obtained. On the other hand, when the content exceeds 0.5% by weight, the surface to be polished is eroded by the component (d), which may cause minute undulations on the surface to be polished or surface defects such as fine pits.
[0024]
The polishing composition may further contain (e) a surfactant, (f) alumina sol, molybdenum, etc., in addition to the component (d), in accordance with the stabilization of the polishing composition and necessity for polishing. Acids and salts thereof, such as sodium salts, potassium salts, ammonium salts, etc., fungicides such as sodium alginate and potassium hydrogen carbonate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetramine A chelating agent such as hexaacetic acid (TTHA), water-soluble celluloses such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, etc., and processing oils such as higher fatty acid amines, sulfonic acids, rust inhibitors, defoamers, etc. Is also good. The content of other additional components in the polishing composition is determined according to a conventional method for the polishing composition.
[0025]
The surfactant of component (e) generally has an effect of improving the dispersibility of the polishing composition and suppressing the occurrence of surface defects on the surface to be polished, and is a nonionic surfactant or an anionic surfactant. And the like. Among these, for example, when polishing the surface of the magnetic disk substrate as the surface to be polished, the effect of improving the surface sagging at the outer peripheral edge of the magnetic disk substrate surface and improving the flatness of the magnetic disk substrate surface is improved. Due to its high cost, nonionic surfactants include polyoxyethylene polyoxypropylene alkyl ether represented by the following general formula (2) and polyoxyethylene having a structure represented by the following general formula (3) or (4): Preferred are an ethylene polyoxypropylene copolymer, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene sorbite fatty acid ester, and a urethane-associated surfactant represented by the following general formula (5).
[0026]
Embedded image
Figure 2004331887
(R in the formula represents an alkyl group, and l and m represent integers.)
[0027]
Embedded image
Figure 2004331887
(In the formula, n, o, and p represent integers.)
[0028]
Embedded image
Figure 2004331887
(In the formula, q, r and s represent integers.)
[0029]
Embedded image
Figure 2004331887
(X in the formula is a residue of a polyether polyol derived from a compound having an active hydrogen atom and an alkylene oxide (provided that the polyether chain contains 20 to 90% by weight of oxyethylene groups), and t is 2 to 2. An integer of 8 (= the number of hydroxyl groups in one molecule of the polyether polyol), Y is a divalent hydrocarbon group, Z is a residue of a monovalent compound having an active hydrogen atom, and u is an integer of 3 or more .)
On the other hand, in the case of anionic surfactants, polycarboxylates such as sodium polyacrylate, isoprenesulfonic acid such as a copolymer of isoprenesulfonic acid and acrylic acid or a polymer obtained by using the salt thereof as an essential monomer Are preferred.
[0030]
The content of the component (e) in the polishing composition is preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.3% by weight. If the content of the surfactant is less than 0.001% by weight, surface sagging cannot be sufficiently suppressed. On the other hand, if the content exceeds 0.5% by weight, a high polishing rate cannot be obtained because the polishing promotion effect is hindered, and precipitates may precipitate in the polishing composition and foam.
[0031]
The alumina sol of the component (f) suppresses the occurrence of surface defects such as minute projections and minute pits on the surface to be polished. This is presumably because the alumina sol adheres to the surface of the abrasive particles of the component (a) to promote the mechanical polishing action of the component (a). Furthermore, by dispersing the alumina sol in a colloidal form in the polishing composition, the dispersibility of the component (a) is improved, the component (a) is prevented from settling, and polishing is performed when polishing the object to be polished. The component (a) is easily retained on the pad.
[0032]
Specific examples of the component (f) include those obtained by dispersing at least one selected from alumina hydrate and aluminum hydroxide in an acidic aqueous solution in a colloidal form. Examples of the alumina hydrate include boehmite, pseudo-boehmite, and diaspore. , Gibbsite, bayerite and the like. Here, the acidic aqueous solution is prepared by adjusting the pH of water to an acidic side with an organic acid, an inorganic acid, or a salt thereof. Alumina hydrate may be contained alone or in combination of two or more. Among them, those in which boehmite or pseudo-boehmite is dispersed in an acidic aqueous solution are preferable because they have a high effect of suppressing the occurrence of surface defects and an effect of reducing the surface roughness of the polished surface. The order of mixing the components when preparing the polishing composition of the present embodiment is not limited, and may be any order or may be simultaneous.
[0033]
Next, a polishing method using the polishing composition of the present embodiment will be described.
When polishing the surface of a magnetic disk substrate as a surface to be polished, the polishing process is generally divided into two steps in order to more efficiently improve the surface quality of the magnetic disk substrate in the polishing process of the magnetic disk substrate surface. It is done. That is, in the first polishing step, the surface of the magnetic disk substrate surface is undulated for the purpose of removing surface defects such as large scratches and irregularities on the magnetic disk substrate surface which cannot be removed in the second polishing step. A polishing step is performed.
[0034]
On the other hand, in the second polishing step, the surface is adjusted to a desired small surface roughness, and a surface defect generated in the first polishing step or a surface which cannot be completely removed in the first polishing step. A finish polishing step is performed to remove defects. In some cases, the polishing step may be performed by subdividing the polishing step into three or more steps. The polishing composition of the present embodiment can be used in any of these polishing steps, but is used in the first polishing step because it can reduce minute waviness on the surface of the magnetic disk substrate. Is preferred.
[0035]
Now, for example, when the first-stage polishing (primary polishing) of the Ni-P substrate surface is performed using the polishing composition of the present embodiment, the polishing is performed while supplying the polishing composition to the Ni-P substrate surface. Polish the Ni-P substrate surface with a pad. At this time, since the polishing composition contains the component (a), the Ni-P substrate surface can be polished at a constant polishing rate by the mechanical polishing action. Further, since the polishing composition contains the component (b), the chemical polishing action promotes the polishing, thereby obtaining a large polishing rate, and reducing the minute waviness on the surface to be polished to smooth the surface. Performance can be improved. In addition, by containing the component (d), a higher polishing rate can be obtained.
[0036]
According to the present embodiment described in detail above, the following effects are exhibited.
-The polishing composition of this embodiment contains the component (b). It is presumed that the component (b) has a polishing promoting effect similarly to succinic acid or a salt thereof, and has a higher effect of removing minute undulations than succinic acid or a salt thereof. For this reason, the polishing composition of this embodiment can improve the smoothness by reducing minute waviness on the surface to be polished as compared with the conventional polishing composition containing succinic acid or a salt thereof.
[0037]
-The polishing composition preferably contains the component (d). In this case, a high polishing rate can be obtained by the chemical polishing action of the component (d).
-Component (d) is malic acid, glycolic acid, succinic acid, citric acid, maleic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid, acetic acid, glycine , Alanine, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, thioacetic acid, mercaptosuccinic acid, at least one selected from the group consisting of aluminum nitrate and aluminum sulfate, malic acid, glycolic acid, succinic acid And at least one selected from the group consisting of, citric acid and iminodiacetic acid. In this case, a higher polishing rate can be obtained.
[0038]
-Component (a) is preferably aluminum oxide. In this case, the smoothness of the polished surface can be further improved, and a higher polishing rate can be obtained.
[0039]
Component (b) is preferably carboxyethylthiosuccinic acid, or its potassium salt or monoethanolamine salt. In this case, the smoothness of the polished surface can be further improved.
[0040]
The above-described embodiment can be modified as follows.
When the polishing composition is prepared, the content of the component (c) is set smaller than that used in the polishing step, whereby each component other than the component (c) is concentrated and used in the polishing step. Occasionally, it may be configured such that the component (c) is added and diluted. With such a configuration, the polishing composition can be easily managed and the transport efficiency can be improved.
[0041]
The surface to be polished may be polished in one step, or the polishing composition of the present embodiment may be used for finish polishing.
Examples of the object to be polished include a semiconductor substrate such as a semiconductor wafer and an optical lens in addition to the magnetic disk. These materials include tungsten, copper, silicon, glass, ceramic and the like.
[0042]
【Example】
Next, the embodiment will be described more specifically with reference to examples and comparative examples.
(Examples 1 to 16 and Comparative Examples 1 to 8)
In Example 1, first, aluminum oxide as the component (a), carboxyethyl thiosuccinic acid as the component (b), and water as the component (c) were mixed to prepare a polishing composition. Here, the particle diameter of the aluminum oxide is 0.8 μm as an average particle diameter measured by a laser diffraction / scattering particle size analyzer (LS-230; manufactured by Coulter), and the content in the polishing composition is 6 μm. % By weight. Table 1 shows the content of the component (b).
[0043]
In Examples 2 to 8, a polishing composition was prepared in the same manner as in Example 1 except that the type and content of the component (b) were changed as shown in Table 1. In Examples 9 to 16 and Comparative Examples 1 to 8, the type and content of the component (b) were changed as shown in Table 1, and the compounds shown in Table 1 were mixed as the component (d), except that A polishing composition was prepared in the same manner as in Example 1. The polishing composition of each example was evaluated for the following items (1) and (2). Table 1 shows the results. In Table 1, carboxyethylthiosuccinic acid is indicated by A1, monopotassium carboxyethylthiosuccinate is indicated by A2, dipotassium carboxyethylthiosuccinate is indicated by A3, and tripotassium carboxyethylthiosuccinate is indicated by A4. Indicated by Further, monoethanolamine carboxyethyl thiosuccinate is represented by A5, and the content of each component is represented by% by weight.
[0044]
(1) Microwaviness Using the polishing composition of each example, the surface of the object to be polished (electroless Ni-P substrate) was polished under the following polishing conditions. Next, using a non-contact type surface roughness measuring device (Micro XAM; manufactured by PhaseShift, Inc .; objective lens: × 10, filter: Ra value measured at Gaussian Bandpass 80 to 450 μm), and electroless Ni— after polishing. The magnitude of the undulation on the P substrate surface was measured. Then, the micro waviness was evaluated on a three-point scale: Ra was less than 4.5 ° (、), Ra was 4.5 ° or more and less than 5.0 ° (、), and Ra was 5.0 ° or more (△).
<Polishing conditions>
Object to be polished: Electroless Ni-P substrate having a diameter of 3.5 inches (≒ 95 mm), polishing machine: double-side polishing machine (platen diameter: 720 mm), polishing pad: polyurethane pad (BELLATRIX N0048; manufactured by Kanebo Corporation), Load: 100 g / cm 2 (≒ 10 kPa), upper platen rotation speed: 24 rpm, lower platen rotation speed: 16 rpm, supply amount of polishing composition: 150 ml / min, polishing amount: 3 μm as a margin for both sides
(2) Polishing rate After polishing the surface of the object to be polished (electroless Ni-P substrate) under the above-mentioned polishing conditions using the polishing composition of each example, the polishing rate was calculated based on the following formula. I asked. The polishing rate was 0.50 μm / min or more (m), the polishing rate was 0.45 μm / min or more and less than 0.50 μm / min (0), and the polishing rate was less than 0.45 μm / min (5). Was evaluated in three steps.
<Calculation formula for polishing rate>
Polishing rate [μm / min] = weight loss of electroless Ni-P substrate by polishing [g] ÷ (area of polished surface [cm 2 ] × density of Ni-P plating [g / cm 3 ] × polishing time) [Minute]) × 10000
[0045]
[Table 1]
Figure 2004331887
As shown in Table 1, in Examples 1 to 16, the evaluation was excellent for the fine waviness and the polishing rate. Further, in Examples 9 to 16, since the component (d) was contained, the polishing rate was more excellent. Therefore, when the polishing compositions of Examples 1 to 16 are used, fine waviness can be reduced and smoothness can be improved, and when the polishing compositions of Examples 9 to 16 are used, a higher polishing rate is obtained. I was able to. On the other hand, in Comparative Examples 1 to 8, since the component (b) was not contained, the evaluation was inferior to the fine undulation as compared with each Example.
[0046]
Next, technical ideas that can be grasped from the embodiment will be described below.
(1) The polishing composition according to any one of claims 1 to 3, wherein the component (a) is aluminum oxide. According to this configuration, the smoothness can be further improved by further reducing the minute waviness of the surface to be polished, and a higher polishing rate can be obtained.
[0047]
(2) The component (b) is at least one selected from the group consisting of carboxyethylthiosuccinic acid and potassium salts and monoethanolamine salts thereof, according to any one of claims 1 to 3 and (1). Polishing composition. According to this configuration, the smoothness can be further improved by further reducing the minute waviness of the surface to be polished.
[0048]
(3) The component (d) is at least one selected from the group consisting of malic acid, glycolic acid, succinic acid, citric acid and iminodiacetic acid, wherein the component (d) is at least one selected from the group consisting of: The polishing composition according to any one of (1) to (4). According to this configuration, a higher polishing rate can be obtained.
[0049]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
According to the polishing composition of the first aspect of the present invention, it is possible to reduce fine waviness on the surface to be polished and improve smoothness.
[0050]
According to the polishing composition of the second and third aspects of the invention, in addition to the effect of the first aspect of the invention, a higher polishing rate can be obtained.

Claims (3)

(a)酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化ジルコニウム、酸化チタン、炭化ケイ素及び窒化ケイ素からなる群から選ばれる少なくとも一種の研磨材、(b)カルボキシエチルチオコハク酸及びその塩からなる群から選ばれる少なくとも一種及び(c)水の各成分を含有する研磨用組成物。(A) at least one abrasive selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide, silicon carbide and silicon nitride; (b) from the group consisting of carboxyethylthiosuccinic acid and salts thereof A polishing composition containing at least one selected component and (c) each component of water. さらに(d)成分(b)以外の有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤を含有する請求項1に記載の研磨用組成物。The polishing composition according to claim 1, further comprising (d) at least one polishing accelerator selected from the group consisting of organic acids, inorganic acids, and salts thereof other than the component (b). 成分(d)が、リンゴ酸、グリコール酸、コハク酸、クエン酸、マレイン酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、グリシン、アラニン、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、チオ酢酸、メルカプトコハク酸、硝酸アルミニウム及び硫酸アルミニウムからなる群から選ばれる少なくとも一種である請求項2に記載の研磨用組成物。Component (d) is malic acid, glycolic acid, succinic acid, citric acid, maleic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid, acetic acid, glycine The polishing composition according to claim 2, which is at least one selected from the group consisting of, alanine, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, thioacetic acid, mercaptosuccinic acid, aluminum nitrate and aluminum sulfate. object.
JP2003132313A 2003-05-09 2003-05-09 Polishing composition Expired - Fee Related JP4068499B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003132313A JP4068499B2 (en) 2003-05-09 2003-05-09 Polishing composition
MYPI20041723A MY139093A (en) 2003-05-09 2004-05-07 Polishing composition
GB0410212A GB2401370B (en) 2003-05-09 2004-05-07 Polishing composition
CN200410043511.8A CN100547045C (en) 2003-05-09 2004-05-09 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132313A JP4068499B2 (en) 2003-05-09 2003-05-09 Polishing composition

Publications (2)

Publication Number Publication Date
JP2004331887A true JP2004331887A (en) 2004-11-25
JP4068499B2 JP4068499B2 (en) 2008-03-26

Family

ID=32501272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132313A Expired - Fee Related JP4068499B2 (en) 2003-05-09 2003-05-09 Polishing composition

Country Status (4)

Country Link
JP (1) JP4068499B2 (en)
CN (1) CN100547045C (en)
GB (1) GB2401370B (en)
MY (1) MY139093A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214205A (en) * 2006-02-07 2007-08-23 Fujimi Inc Polishing composition
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2010080030A (en) * 2008-09-29 2010-04-08 Hoya Corp Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2010540265A (en) * 2007-10-05 2010-12-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Polishing sapphire with composite slurry
WO2014013977A1 (en) * 2012-07-17 2014-01-23 株式会社 フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using same
US8815396B2 (en) 2007-10-05 2014-08-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles comprising nano-sized silicon carbide particles surface-coated with silica, and methods using same
CN104017498A (en) * 2014-05-08 2014-09-03 德米特(苏州)电子环保材料有限公司 Preparation method of automobile polishing solution with alumina substrate
CN105018030A (en) * 2014-04-15 2015-11-04 福吉米株式会社 Polishing composition
CN114574105A (en) * 2022-04-06 2022-06-03 江西华丽丰光电有限公司 Glass polishing material and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925170B1 (en) * 2011-11-09 2018-12-04 로디아 오퍼레이션스 Additive mixture and composition and method for polishing glass substrates
CN102990503B (en) * 2012-11-09 2015-07-29 中国电子科技集团公司第四十六研究所 For the finishing method of CdS wafer
CN103059810B (en) * 2012-12-19 2014-07-16 青岛文创科技有限公司 Grinding fluid
JP2016124915A (en) * 2014-12-26 2016-07-11 株式会社フジミインコーポレーテッド Polishing composition, polishing method and method for producing ceramic parts
CN106019418B (en) * 2016-05-13 2019-10-25 郑海东 A kind of processing method of resin eyeglass
CN106366939A (en) * 2016-08-30 2017-02-01 东兴华鸿光学科技有限公司 Polishing solution for optics lens
WO2022212155A1 (en) * 2021-03-29 2022-10-06 Entegris, Inc. Suspension for chemical mechanical planarization (cmp) and method employing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767824B1 (en) * 1997-08-27 1999-10-08 Elf Aquitaine Exploration Prod SYNTHESIS OF CARBOXYALKYLTHIOSUCCINIC ACIDS
JP3998813B2 (en) * 1998-06-15 2007-10-31 株式会社フジミインコーポレーテッド Polishing composition
GB2384003B (en) * 1998-06-15 2003-09-03 Fujimi Inc Polishing composition
JP4003116B2 (en) * 2001-11-28 2007-11-07 株式会社フジミインコーポレーテッド Polishing composition for magnetic disk substrate and polishing method using the same
JP4095833B2 (en) * 2002-05-30 2008-06-04 株式会社フジミインコーポレーテッド Polishing composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214205A (en) * 2006-02-07 2007-08-23 Fujimi Inc Polishing composition
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2010540265A (en) * 2007-10-05 2010-12-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Polishing sapphire with composite slurry
US8721917B2 (en) 2007-10-05 2014-05-13 Saint-Gobain Ceramics & Plastics, Inc. Polishing of sapphire with composite slurries
US8815396B2 (en) 2007-10-05 2014-08-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles comprising nano-sized silicon carbide particles surface-coated with silica, and methods using same
JP2010080030A (en) * 2008-09-29 2010-04-08 Hoya Corp Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
WO2014013977A1 (en) * 2012-07-17 2014-01-23 株式会社 フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using same
CN104471016A (en) * 2012-07-17 2015-03-25 福吉米株式会社 Composition for polishing alloy material and method for producing alloy material using same
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same
CN105018030A (en) * 2014-04-15 2015-11-04 福吉米株式会社 Polishing composition
CN104017498A (en) * 2014-05-08 2014-09-03 德米特(苏州)电子环保材料有限公司 Preparation method of automobile polishing solution with alumina substrate
CN114574105A (en) * 2022-04-06 2022-06-03 江西华丽丰光电有限公司 Glass polishing material and preparation method thereof

Also Published As

Publication number Publication date
CN1550531A (en) 2004-12-01
JP4068499B2 (en) 2008-03-26
GB2401370B (en) 2007-12-05
GB0410212D0 (en) 2004-06-09
GB2401370A (en) 2004-11-10
CN100547045C (en) 2009-10-07
MY139093A (en) 2009-08-28

Similar Documents

Publication Publication Date Title
US6423125B1 (en) Polishing composition
JP4003116B2 (en) Polishing composition for magnetic disk substrate and polishing method using the same
JP4009986B2 (en) Polishing composition and polishing method for polishing memory hard disk using the same
US7220676B2 (en) Roll-off reducing agent
US7955517B2 (en) Polishing fluid composition
JP4068499B2 (en) Polishing composition
JP6017315B2 (en) Abrasive material and polishing composition
US6551175B2 (en) Polishing composition
JP3998813B2 (en) Polishing composition
JP4202183B2 (en) Polishing composition
TW201313849A (en) Abrasive and polishing composition
JP4092011B2 (en) Polishing liquid composition
GB2359558A (en) Polishing Composition for Memory Hard Disk Substrates
JP4021133B2 (en) Polishing liquid composition
JP4092006B2 (en) Polishing liquid composition
JP2003170349A (en) Composition for polishing of substrate for magnetic disc and polishing method using it
JP4092015B2 (en) Polishing liquid composition
JP4093506B2 (en) Polishing liquid composition
JP2002030273A (en) Abrasive fluid composition
JP2000053948A (en) Abrasive solution composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees