JP5769284B2 - Polishing liquid composition for magnetic disk substrate - Google Patents

Polishing liquid composition for magnetic disk substrate Download PDF

Info

Publication number
JP5769284B2
JP5769284B2 JP2009293184A JP2009293184A JP5769284B2 JP 5769284 B2 JP5769284 B2 JP 5769284B2 JP 2009293184 A JP2009293184 A JP 2009293184A JP 2009293184 A JP2009293184 A JP 2009293184A JP 5769284 B2 JP5769284 B2 JP 5769284B2
Authority
JP
Japan
Prior art keywords
polishing
acid
polymer
magnetic disk
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009293184A
Other languages
Japanese (ja)
Other versions
JP2010188514A (en
Inventor
哲史 山口
哲史 山口
剛吏 浜口
剛吏 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009293184A priority Critical patent/JP5769284B2/en
Publication of JP2010188514A publication Critical patent/JP2010188514A/en
Application granted granted Critical
Publication of JP5769284B2 publication Critical patent/JP5769284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法に関する。   The present invention relates to a polishing composition for a magnetic disk substrate and a method for producing a magnetic disk substrate using the same.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化するために、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上するため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性・平坦性の向上(表面粗さ、うねり、端面ダレの低減)と欠陥低減(スクラッチ、突起、ピット等の低減)に対する要求が厳しくなっている。このような要求に対し、スクラッチの低減が可能な研磨液組成物として、ベンゾトリアゾール(BTA)のようなアゾール類を含有する研磨液組成物が提案されている(例えば、特許文献1参照)。   In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. In order to increase the recording density, the unit recording area is reduced, and in order to improve the detection sensitivity of the weakened magnetic signal, technological development for lowering the flying height of the magnetic head has been advanced. Magnetic disk substrates have improved smoothness and flatness (reduced surface roughness, waviness, and edge sagging) and reduced defects (scratches, protrusions, pits) in order to reduce the flying height of the magnetic head and secure a recording area. Etc.) is becoming stricter. In response to such demands, a polishing liquid composition containing an azole such as benzotriazole (BTA) has been proposed as a polishing liquid composition capable of reducing scratches (see, for example, Patent Document 1).

また、一方で、同様にスクラッチの低減が可能な研磨液組成物として、磁気ディクス基板に期待される表面特性を得るために、カルボン酸基やスルホン酸基などの官能基を有する共重合体を含有する研磨液組成物が提案されている(例えば、特許文献2〜5参照)。   On the other hand, a copolymer having a functional group such as a carboxylic acid group or a sulfonic acid group is used as a polishing composition capable of reducing scratches in order to obtain surface characteristics expected for a magnetic disk substrate. The polishing liquid composition to contain is proposed (for example, refer patent documents 2-5).

特開2007−92064号公報JP 2007-92064 A 特開2001−155332号公報JP 2001-155332 A 特開2001−64631号公報JP 2001-64631 A 特開2008−155368号公報JP 2008-155368 A 特開2007−231209号公報JP 2007-231209 A

磁気ディスクドライブのさらなる大容量化を実現するためには、従来の研磨液組成物によるスクラッチの低減だけでは不十分であり、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥をよりいっそう低減する必要がある。   In order to realize a further increase in capacity of a magnetic disk drive, it is not sufficient to reduce scratches with a conventional polishing liquid composition. In addition to scratching on the surface of the substrate after polishing, the nano-surface on the surface of the substrate after polishing is not sufficient. There is a need to further reduce protrusion defects.

また、大容量化に伴い、磁気ディスクにおける記録方式が水平磁気記録方式から垂直磁気記録方式へと移行した。垂直磁気記録方式の磁気ディスクの製造工程では、水平磁気記録方式で磁化方向を揃えるために必要であったテクスチャ工程が不要となり、研磨後の基板表面に直接磁性層が形成されるため、基板表面品質に対する要求特性はさらに厳しくなっている。従来の研磨液組成物では、垂直磁気記録方式の基板表面に求められるナノ突起欠陥及びスクラッチの少なさを十分に満足することができない。   As the capacity has increased, the recording method for magnetic disks has shifted from the horizontal magnetic recording method to the perpendicular magnetic recording method. In the manufacturing process of a perpendicular magnetic recording type magnetic disk, the texture process required for aligning the magnetization direction in the horizontal magnetic recording method is not required, and a magnetic layer is formed directly on the polished substrate surface. The required characteristics for quality are becoming stricter. The conventional polishing liquid composition cannot sufficiently satisfy the small number of nanoprotrusion defects and scratches required for the surface of a perpendicular magnetic recording substrate.

そこで、本発明は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減を実現できる磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法を提供する。   Accordingly, the present invention provides a polishing composition for a magnetic disk substrate that can realize reduction of scratches and nanoprotrusion defects on the surface of the substrate after polishing, and a method for producing a magnetic disk substrate using the same.

本発明は、シリカ粒子と、複素環芳香族化合物と、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体と、酸とを含有し、前記複素環芳香族化合物は、複素環内に窒素原子を2個以上含む、磁気ディスク基板用研磨液組成物に関する。   The present invention contains silica particles, a heterocyclic aromatic compound, a polymer having at least one of a sulfonic acid group and a carboxylic acid group, and an acid, and the heterocyclic aromatic compound contains nitrogen in the heterocyclic ring. The present invention relates to a polishing liquid composition for a magnetic disk substrate containing two or more atoms.

また、本発明の磁気ディスク基板の製造方法は、本発明の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法に関する。   The method for producing a magnetic disk substrate of the present invention also relates to a method for producing a magnetic disk substrate including a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate of the present invention.

本発明の磁気ディスク基板用研磨液組成物によれば、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板を製造できるという効果が好ましくは奏される。   According to the polishing composition for a magnetic disk substrate of the present invention, in addition to scratches on the surface of the substrate after polishing, the magnetic disk substrate in which nano-protrusion defects on the surface of the substrate after polishing are reduced, particularly the magnetic field of the perpendicular magnetic recording system. The effect that a disk substrate can be manufactured is preferably achieved.

[ナノ突起欠陥]
本発明において「ナノ突起欠陥」とは、磁気ディスク基板の製造工程における研磨後の基板表面の欠陥であって、光学的に検出され得る10nm未満程度の大きさの凸欠陥をいう。磁気ディスクの高密度化・大容量化のためには、磁気ヘッドと磁気ディスクとの間隔は10nm未満となる必要があるため、ナノ突起の残存は磁気ヘッドの消耗及び磁気ディスクドライブの記録密度の低下や不安定をもたらし得る。研磨後の基板においてナノ突起欠陥が低減されれば、磁気ヘッドの浮上量が低減でき、磁気ディスク基板の記録密度向上が可能となる。
[Nanoprotrusion defect]
In the present invention, the “nanoprotrusion defect” is a defect on the surface of the substrate after polishing in the manufacturing process of the magnetic disk substrate, and means a convex defect having a size of less than 10 nm that can be detected optically. In order to increase the density and capacity of the magnetic disk, the distance between the magnetic head and the magnetic disk needs to be less than 10 nm. Therefore, the remaining nanoprotrusions are a cause of the consumption of the magnetic head and the recording density of the magnetic disk drive. May cause degradation or instability. If the nanoprojection defects are reduced in the polished substrate, the flying height of the magnetic head can be reduced, and the recording density of the magnetic disk substrate can be improved.

[スクラッチ]
本発明において「スクラッチ」とは、深さが1nm以上、幅が100nm以上、長さが1000nm以上の基板表面の微細な傷で、光学式欠陥検出装置であるKLA Tencor社製のCandela6100シリーズや日立ハイテクノロジ−社製のNS1500シリーズで検出可能であり、スクラッチ数として定量評価できる。さらに、検出したスクラッチは原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)で大きさや形状を解析することができる。
[scratch]
In the present invention, the “scratch” is a fine scratch on the substrate surface having a depth of 1 nm or more, a width of 100 nm or more, and a length of 1000 nm or more. The optical defect detection device Candala 6100 series manufactured by KLA Tencor, Hitachi It can be detected by NS 1500 series manufactured by High Technology, and can be quantitatively evaluated as the number of scratches. Further, the size and shape of the detected scratch can be analyzed with an atomic force microscope (AFM), a scanning electron microscope (SEM), and a transmission electron microscope (TEM).

本発明は、シリカ粒子と、複素環芳香族化合物と、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体と、酸とを含有する磁気ディスク基板用研磨液組成物であって、前記複素環芳香族化合物は、複素環内に窒素原子を2個以上含む、磁気ディスク基板用研磨液組成物(以下、「本発明の研磨液組成物」ともいう)に関する。   The present invention is a polishing composition for a magnetic disk substrate, comprising silica particles, a heterocyclic aromatic compound, a polymer having at least one of a sulfonic acid group and a carboxylic acid group, and an acid. The ring aromatic compound relates to a polishing liquid composition for a magnetic disk substrate (hereinafter, also referred to as “polishing liquid composition of the present invention”) containing two or more nitrogen atoms in a heterocyclic ring.

本発明の研磨液組成物によれば、研磨後の基板において、スクラッチの低減のみならず、研磨後の基板表面のナノ突起欠陥を低減するという効果を奏し得る。   According to the polishing composition of the present invention, not only the scratch can be reduced but also the effect of reducing the nanoprojection defects on the surface of the substrate after polishing can be achieved.

本発明の研磨液組成物がスクラッチのみならず研磨後の基板表面のナノ突起欠陥を低減できるメカニズムの詳細は明らかでないが、研磨時において複素環芳香族化合物が被研磨基板上に保護膜を形成するとともに、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体が研磨パッドと被研磨基板との摩擦を低減して両者間の振動が低減し、その結果両者が単独で機能する場合よりも一層スクラッチを低減し、さらに、ナノ突起欠陥を低減することができると推定される。但し、本発明はこのメカニズムに限定されない。   Although the details of the mechanism by which the polishing composition of the present invention can reduce not only scratches but also nano-protrusion defects on the substrate surface after polishing are not clear, a heterocyclic aromatic compound forms a protective film on the substrate to be polished during polishing In addition, the polymer having at least one of a sulfonic acid group and a carboxylic acid group reduces the friction between the polishing pad and the substrate to be polished, thereby reducing the vibration between the two. It is presumed that scratches can be further reduced, and further, nanoprojection defects can be reduced. However, the present invention is not limited to this mechanism.

[シリカ粒子]
本発明の研磨液組成物は、シリカ粒子を含有する。本発明の研磨液組成物に用いられるシリカ粒子は、例えばコロイダルシリカ、ヒュームドシリカ、表面修飾したシリカ等が挙げられるが、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、コロイダルシリカが好ましい。シリカ粒子は、市販のものでもよいし、ケイ酸水溶液から生成させる公知の製造方法等により得られたものでもよい。シリカ粒子の使用形態としては、操作性の観点からスラリー状であることが好ましい。なお、本発明に用いられるシリカ粒子は、1種類のシリカ粒子からなるものであっても、2種類以上のシリカ粒子を混合したものであってもよい。
[Silica particles]
The polishing liquid composition of the present invention contains silica particles. Examples of the silica particles used in the polishing liquid composition of the present invention include colloidal silica, fumed silica, and surface-modified silica. From the viewpoint of reducing scratches on the substrate surface after polishing and reducing nanoprotrusion defects, colloidal silica is used. Silica is preferred. The silica particles may be commercially available, or may be obtained by a known production method that is generated from an aqueous silicic acid solution. The usage form of the silica particles is preferably a slurry from the viewpoint of operability. In addition, the silica particle used for this invention may consist of 1 type of silica particles, or may mix 2 or more types of silica particles.

本発明に使用されるシリカ粒子は、下記条件(a)及び(b)を満たすことが好ましい。
条件(a):透過型電子顕微鏡観察により測定される平均粒径(S2)が1〜40nm;
条件(b):動的光散乱法により検出角30度で測定される粒径の標準偏差を動的光散乱法により検出角30度で測定される平均粒径で除して100を掛けたCV(変動係数)の値(CV30)と、動的光散乱法により検出角90度で測定される粒径の標準偏差を動的光散乱法により検出角90度で測定される平均粒径で除して100を掛けたCVの値(CV90)との差ΔCV(ΔCV=CV30−CV90)が0〜10%。
The silica particles used in the present invention preferably satisfy the following conditions (a) and (b).
Condition (a): The average particle diameter (S2) measured by transmission electron microscope observation is 1 to 40 nm;
Condition (b): The standard deviation of the particle diameter measured at a detection angle of 30 degrees by the dynamic light scattering method is divided by the average particle diameter measured at the detection angle of 30 degrees by the dynamic light scattering method and multiplied by 100. The CV (coefficient of variation) value (CV30) and the standard deviation of the particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method are the average particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method. The difference ΔCV (ΔCV = CV30−CV90) from the CV value (CV90) multiplied by 100 is 0 to 10%.

〔シリカ粒子の平均粒径〕
シリカ粒子の平均粒径には、2種類の平均粒径、すなわち、透過型電子顕微鏡観察により測定される平均粒径(S2)、及び、動的光散乱法により検出角90度で測定される散乱強度分布に基づく平均粒径が用いられる。これらの平均粒径は、実施例に記載の方法により測定される。
[Average particle diameter of silica particles]
The average particle diameter of the silica particles is measured with two types of average particle diameters, that is, an average particle diameter (S2) measured by transmission electron microscope observation, and a detection angle of 90 degrees by dynamic light scattering. An average particle size based on the scattering intensity distribution is used. These average particle diameters are measured by the method described in the examples.

本発明に使用されるシリカ粒子の透過型電子顕微鏡観察により測定される平均粒径(S2)は、生産性を損なうことなくスクラッチ、表面粗さ及びナノ突起欠陥を低減する観点から、好ましくは1〜40nmであり、より好ましくは5〜37nm、さらに好ましくは10〜35nmである。   The average particle diameter (S2) measured by transmission electron microscope observation of the silica particles used in the present invention is preferably 1 from the viewpoint of reducing scratches, surface roughness and nanoprojection defects without impairing productivity. It is -40nm, More preferably, it is 5-37nm, More preferably, it is 10-35nm.

本発明に使用されるシリカ粒子の動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径は、生産性を損なうことなくスクラッチ、表面粗さ及びナノ突起欠陥を低減する観点から、1〜40nmが好ましく、5〜37nmがより好ましく、10〜35nmがさらに好ましい。 The average particle size based on the scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method of silica particles used in the present invention reduces scratches, surface roughness and nanoprotrusion defects without sacrificing productivity. 1-40 nm is preferable, 5-37 nm is more preferable, and 10-35 nm is further more preferable.

〔シリカ粒子のCV90〕
本発明において、シリカ粒子のCV値とは、動的光散乱法において散乱強度分布に基づく標準偏差を平均粒径で除して100を掛けた変動係数の値であって、上述のとおり、本明細書では特に、検出角90度(側方散乱)で測定されるCV値をCV90、検出角30度(前方散乱)で測定されるCV値をCV30という。シリカ粒子のCV値は、具体的には実施例に記載の方法により測定することができる。シリカ粒子のCV90は、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減する観点から、1〜35%が好ましく、5〜34%がより好ましく、10〜33%がさらに好ましい。
[CV90 of silica particles]
In the present invention, the CV value of the silica particles is a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution by the average particle diameter and multiplying by 100 in the dynamic light scattering method. Particularly in the specification, a CV value measured at a detection angle of 90 degrees (side scatter) is referred to as CV90, and a CV value measured at a detection angle of 30 degrees (forward scatter) is referred to as CV30. Specifically, the CV value of the silica particles can be measured by the method described in Examples. The CV90 of the silica particles is preferably 1 to 35%, more preferably 5 to 34%, and further preferably 10 to 33% from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing.

〔シリカ粒子のΔCV値〕
シリカ粒子のΔCV値とは、上述のとおり、動的光散乱法による検出角30度(前方散乱)の散乱強度分布に基づく測定で得られる、標準偏差を平均粒径で除して100を掛けた変動係数の値(CV30)と、検出角90度(側方散乱)の散乱強度分布に基づく測定で得られる、標準偏差を平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30−CV90)であり、具体的には実施例に記載の方法により測定することができる。シリカ粒子のΔCV値は、研磨後の基板表面のスクラッチ及びナノ突起欠陥を低減する観点から、0〜10%が好ましく、0.01〜10%がさらに好ましく、0.01〜7%がさらにより好ましく、0.01〜5%がさらにより好ましい。
[ΔCV value of silica particles]
As described above, the ΔCV value of silica particles is obtained by dividing the standard deviation obtained by measurement based on the scattering intensity distribution at a detection angle of 30 degrees (forward scattering) by the dynamic light scattering method by the average particle diameter and multiplying by 100. The coefficient of variation (CV90) obtained by dividing the standard deviation by the average particle diameter and multiplying by 100, obtained by the measurement based on the value of the coefficient of variation (CV30) and the scattering intensity distribution at a detection angle of 90 degrees (side scatter). ) (ΔCV = CV30−CV90). Specifically, it can be measured by the method described in Examples. The ΔCV value of the silica particles is preferably 0 to 10%, more preferably 0.01 to 10%, and still more preferably 0.01 to 7% from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. Preferably, 0.01 to 5% is even more preferable.

本発明者らは、研磨材のΔCV値と研磨材凝集体(非球状粒子)の含有量との間に相関関係があること、及びΔCV値が所定範囲の研磨材を用いることにより、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減できることを見出した。係る効果が奏される理由は明らかではないが、ΔCV値を制御することで研磨材の一次粒子が凝集して生じた50〜200nmの研磨材凝集体(非球状粒子)が低減され、かかる凝集体が少ない研磨材を本発明の共重合体と組み合わせることで、研磨中に生じる前記凝集体の生成をより抑制し、かつ研磨時の摩擦振動を低減して研磨パッドの開孔部からの研磨材凝集体の脱落をより防止し、研磨後の基板のスクラッチに加え、研磨後のナノ突起欠陥及び基板表面うねりをより低減していると推定される。但し、本発明はこれらの推定メカニズムに限定されない。   The inventors have found that there is a correlation between the ΔCV value of the abrasive and the content of the abrasive agglomerates (non-spherical particles), and by using an abrasive having a ΔCV value within a predetermined range, It was found that scratches, nanoprotrusion defects, and substrate surface waviness can be reduced. The reason why such an effect is exerted is not clear, but by controlling the ΔCV value, 50 to 200 nm of abrasive aggregates (non-spherical particles) generated by agglomeration of the primary particles of the abrasive are reduced, and such agglomeration is performed. By combining a polishing material with less aggregate with the copolymer of the present invention, the formation of the agglomerates that occur during polishing is further suppressed, and friction vibration during polishing is reduced to polish from the opening of the polishing pad. It is presumed that the material aggregates are further prevented from falling off, and in addition to scratching of the substrate after polishing, nano-projection defects and substrate surface waviness after polishing are further reduced. However, the present invention is not limited to these estimation mechanisms.

すなわち、ΔCV値に着目することで、従来では検出することが困難であった粒子分散液試料中の非球状粒子の存在を容易に検出できるから、そのような非球状粒子を含む研磨液組成物を使用することを回避でき、その結果、スクラッチ及びナノ突起の低減を達成できると考えられる。   That is, by paying attention to the ΔCV value, it is possible to easily detect the presence of non-spherical particles in a particle dispersion sample that has been difficult to detect in the past. Therefore, a polishing liquid composition containing such non-spherical particles Can be avoided, and as a result, it is considered that the reduction of scratches and nanoprotrusions can be achieved.

ここで、粒子分散液試料中の粒子が球状か非球状かは、一般に、動的散乱法により測定される拡散係数(D=Γ/q2)の角度依存性を指標とする方法(例えば、特開平10−195152号公報参照)により判断されている。具体的には散乱ベクトルq2に対するΓ/q2をプロットしたグラフにおいて示される角度依存性が小さいほどその分散液中の粒子の平均的な形状は真球状であると判断し、角度依存性が大きいほどその分散液中の粒子の平均的な形状は非球状であると判断される。すなわち、この、動的散乱法により測定される拡散係数の角度依存性を指標とする従来の方法は、系全体で均一の粒子が分散していると仮定して粒子の形状や粒径等を検出・測定する方法である。それゆえ、球状粒子が大勢を占める分散液試料中の一部に存在する非球状粒子は検出が困難となる。 Here, whether the particles in the particle dispersion sample are spherical or non-spherical is generally determined by a method using the angle dependency of the diffusion coefficient (D = Γ / q 2 ) measured by the dynamic scattering method as an index (for example, Jpn. Pat. Appln. KOKAI Publication No. 10-195152). Specifically, the smaller the angle dependency shown in the graph plotting Γ / q 2 with respect to the scattering vector q 2, the more the average shape of the particles in the dispersion is judged to be spherical, and the angle dependency is The larger the particle size, the more the average shape of the particles in the dispersion is judged to be non-spherical. In other words, the conventional method using the angular dependence of the diffusion coefficient measured by the dynamic scattering method as an index assumes that the uniform shape of particles is dispersed throughout the system, and the particle shape, particle size, etc. It is a method of detecting and measuring. Therefore, it is difficult to detect non-spherical particles present in a part of the dispersion sample in which spherical particles are predominant.

一方、動的光散乱法では、原理的に200nm以下の真球状粒子分散溶液を測定した場合、散乱強度分布は検出角に関係なくほぼ一定の結果が得られるため測定結果は検出角に依存しない。しかし、非球状粒子を含む真球状粒子分散溶液の動的光散乱の散乱強度分布は非球状粒子の存在により検出角によって大きく変化し、低角の検出角ほど散乱強度分布は分布がブロードになる。そのため、動的光散乱の散乱強度分布の測定結果は検出角に依存することとなり、「動的光散乱法により測定される散乱強度分布の角度依存性」の指標の1つであるΔCV値を測定することで、球状粒子分散溶液中に存在するわずかな非球状粒子を測定できると考えられる。なお、本発明はこれらのメカニズムに限定されない。  On the other hand, in the dynamic light scattering method, when measuring a spherical particle dispersion solution of 200 nm or less in principle, the measurement result does not depend on the detection angle because the scattering intensity distribution is almost constant regardless of the detection angle. . However, the scattering intensity distribution of dynamic light scattering of a spherical dispersion containing non-spherical particles varies greatly depending on the detection angle due to the presence of non-spherical particles, and the distribution of the scattering intensity distribution becomes broader at lower detection angles. . Therefore, the measurement result of the scattering intensity distribution of dynamic light scattering depends on the detection angle, and the ΔCV value, which is one of the indicators of “angle dependency of the scattering intensity distribution measured by the dynamic light scattering method”, is It is considered that a few non-spherical particles existing in the spherical particle dispersion solution can be measured by measuring. Note that the present invention is not limited to these mechanisms.

散乱強度分布
本明細書において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒径分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。通常、サブミクロン以下の粒子は溶媒中でブラウン運動をしており、レーザー光を照射すると散乱光強度が時間的に変化する(ゆらぐ)。この散乱光強度のゆらぎを、例えば、光子相関法(JIS Z 8826)を用いて自己相関関数を求め、キュムラント(Cumulant)法解析により、ブラウン運動速度を示す拡散係数(D)を算出して、さらにアインシュタイン・ストークスの式を用い、平均粒径(d:流体力学的径)を求めることができる。また、粒径分布解析は、キュムラント法による多分散性指数(Polydispersity Index, PI)のほかに、ヒストグラム法(Marquardt法)、ラプラス逆変換法(CONTIN法)、非負最小2乗法(NNLS法)等がある。
Scattering intensity distribution In this specification, “scattering intensity distribution” means three sub-micron particles obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It means the particle size distribution of the scattering intensity in the particle size distribution (scattering intensity, volume conversion, number conversion). Usually, the sub-micron particles have Brownian motion in a solvent, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light. For this fluctuation of scattered light intensity, for example, an autocorrelation function is obtained using a photon correlation method (JIS Z 8826), and a diffusion coefficient (D) indicating a Brownian motion velocity is calculated by cumulant method analysis. Furthermore, the average particle diameter (d: hydrodynamic diameter) can be obtained using the Einstein-Stokes equation. In addition to polydispersity index (PI) by cumulant method, particle size distribution analysis includes histogram method (Marquardt method), Laplace inverse transformation method (CONTIN method), non-negative least square method (NNLS method), etc. There is.

動的光散乱法の粒径分布解析では、通常、キュムラント法による多分散性指数(Polydispersity Index, PI)が広く用いられている。しかしながら、粒子分散液中にわずかに存在する非球状粒子の検出を可能とする検出方法においては、ヒストグラム法(Marquardt法)やラプラス逆変換法(CONTIN法)による粒径分布解析から平均粒径(d50)と標準偏差を求め、CV値(Coefficient of variation:標準偏差を平均粒径で割って100をかけた数値)を算出し、その角度依存性(ΔCV値)を用いることが好ましい。
(参考資料)
第12回散乱研究会(2000年11月22日開催)テキスト、1.散乱基礎講座「動的光散乱法」(東京大学 柴山充弘)
第20回散乱研究会(2008年12月4日開催)テキスト、5.動的光散乱によるナノ粒子の粒径分布測定(同志社大学 森康維)
In the particle size distribution analysis of the dynamic light scattering method, the polydispersity index (PI) by the cumulant method is generally widely used. However, in the detection method that enables detection of non-spherical particles that are slightly present in the particle dispersion, the average particle size (from the particle size distribution analysis by the histogram method (Marquardt method) or the Laplace inverse transform method (CONTIN method)) It is preferable to obtain d50) and the standard deviation, calculate a CV value (Coefficient of variation: a value obtained by dividing the standard deviation by the average particle size and multiply by 100), and use the angular dependence (ΔCV value).
(Reference material)
Text of the 12th Scattering Study Group (held on November 22, 2000) Scattering Basic Course "Dynamic Light Scattering Method" (Mitsuhiro Shibayama, University of Tokyo)
Text of the 20th Scattering Study Group (held on December 4, 2008) Measurement of size distribution of nanoparticles by dynamic light scattering (Doshisha University Yasumori Mori)

散乱強度分布の角度依存性
本明細書において「粒子分散液の散乱強度分布の角度依存性」とは、動的光散乱法により異なる検出角で前記粒子分散液の散乱強度分布を測定した場合の、散乱角度に応じた散乱強度分布の変動の大きさをいう。例えば、検出角30度と検出角90度とでの散乱強度分布の差が大きければ、その粒子分散液の散乱強度分布の角度依存性は大きいといえる。よって、本明細書において、散乱強度分布の角度依存性の測定は、異なる2つの検出角で測定した散乱強度分布に基づく測定値の差(ΔCV値)を求めることを含む。
Angular Dependence of Scattering Intensity Distribution In this specification, “angle dependence of scattering intensity distribution of particle dispersion” means that the scattering intensity distribution of the particle dispersion is measured at different detection angles by the dynamic light scattering method. The size of the fluctuation of the scattering intensity distribution according to the scattering angle. For example, if the difference in the scattering intensity distribution between the detection angle of 30 degrees and the detection angle of 90 degrees is large, it can be said that the angle dependence of the scattering intensity distribution of the particle dispersion is large. Therefore, in this specification, the measurement of the angle dependence of the scattered intensity distribution includes obtaining a difference (ΔCV value) between measured values based on the scattered intensity distribution measured at two different detection angles.

散乱強度分布の角度依存性の測定で用いる2つの検出角の組合せとしては、非球状粒子の検出の確度向上の点からは、前方散乱と側方若しくは後方散乱との組合せが好ましい。前記前方散乱の検出角としては、同様の観点から、0〜80度が好ましく、0〜60度がより好ましく、10〜50度がさらに好ましく、20〜40度がさらにより好ましい。前記側方若しくは後方散乱の検出角としては、同様の観点から、80〜180度が好ましく、85〜175度がより好ましい。本発明においては、ΔCV値を求める2つの検出角として30度と90度を使用している。   As a combination of the two detection angles used in the measurement of the angle dependence of the scattering intensity distribution, a combination of forward scattering and side or back scattering is preferable from the viewpoint of improving the accuracy of detection of non-spherical particles. From the same viewpoint, the forward scattering detection angle is preferably 0 to 80 degrees, more preferably 0 to 60 degrees, further preferably 10 to 50 degrees, and still more preferably 20 to 40 degrees. From the same viewpoint, the side or backscattering detection angle is preferably 80 to 180 degrees, and more preferably 85 to 175 degrees. In the present invention, 30 degrees and 90 degrees are used as two detection angles for obtaining the ΔCV value.

シリカ粒子のΔCV値の調整方法としては、研磨液組成物の調製において50〜200nmのシリカ凝集物(非球状シリカ)を生成しないようにする下記の方法が挙げられる。
A)研磨液組成物のろ過による方法
B)シリカ粒子製造時の工程管理による方法
Examples of the method for adjusting the ΔCV value of the silica particles include the following method for preventing generation of 50 to 200 nm silica aggregates (non-spherical silica) in the preparation of the polishing composition.
A) Method by filtration of polishing liquid composition B) Method by process control during production of silica particles

上記A)では、例えば、遠心分離や精密フィルターろ過(特開2006‐102829及び特開2006‐136996)により、50〜200nmのシリカ凝集体を除去することでΔCV値を低減できる。具体的には、シリカ濃度20重量%以下になるように適度に希釈したコロイダルシリカ水溶液を、stokesの式より算出した50nm粒子が除去できる条件(例えば、10,000G以上、遠沈管高さ約10cm、2時間以上)で遠心分離する方法や、孔径が0.05μmまたは0.1μmのメンブランフィルター(例えば、アドバンテック、住友3M、Millipore)を用いて加圧ろ過する方法等によりΔCV値を低減できる。   In the above A), the ΔCV value can be reduced by removing silica aggregates of 50 to 200 nm by, for example, centrifugation or precision filter filtration (Japanese Patent Application Laid-Open No. 2006-102829 and Japanese Patent Application Laid-Open No. 2006-136996). Specifically, a colloidal silica aqueous solution appropriately diluted so as to have a silica concentration of 20% by weight or less can be removed under conditions where 50 nm particles calculated from the Stokes equation can be removed (for example, 10,000 G or more, centrifuge tube height of about 10 cm). The ΔCV value can be reduced by a method of centrifuging for 2 hours or more, a method of pressure filtration using a membrane filter (for example, Advantech, Sumitomo 3M, Millipore) having a pore size of 0.05 μm or 0.1 μm.

また、シリカ粒子は、通常、1)10重量%未満の3号ケイ酸ソーダと種粒子(小粒径シリカ)の混合液(シード液)を反応層に入れ、60℃以上に加熱し、2)そこに3号ケイ酸ソーダを陽イオン交換樹脂に通した酸性の活性ケイ酸水溶液とアルカリ(アルカリ金属又は第4級アンモニウム)とを滴下してpHを一定にして球状の粒子を成長させ、3)熟成後に蒸発法や限外ろ過法で濃縮することで得られる(特開昭47−1964、特公平1−23412、特公平4−55125、特公平4−55127)。しかし、同じ製造プロセスで少し工程を変えると非球状粒子の製造も可能であることが多く報告されている。例えば、活性ケイ酸は非常に不安定なため意図的にCaやMgなどの多価金属イオンを添加すると細長い形状のシリカゾルを製造できる。さらに、反応層の温度(水の沸点を越えると蒸発し気液界面でシリカが乾燥)、反応層のpH(9以下ではシリカ粒子の連結が起きやすい)、反応層のSiO2/M2O(Mはアルカリ金属又は第4級アンモニウム)、及びモル比(30〜60で非球状シリカを選択的に生成)などを変えることで非球状シリカが製造できる(特公平8−5657、特許2803134、特開2006−80406、特開2007−153671)。したがって、上記B)では、公知の球状シリカ製造プロセスにおいて、局部的に非球状シリカが生成する条件にならないように工程管理を行うことでΔCV値を小さく調整することができる。 The silica particles are usually 1) a mixed liquid (seed liquid) of less than 10% by weight of No. 3 sodium silicate and seed particles (small particle silica) is put in the reaction layer, heated to 60 ° C. or higher, and 2 ) Dropping an acidic active silicic acid aqueous solution obtained by passing No. 3 sodium silicate through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) dropwise to grow a spherical particle with a constant pH, 3) Obtained by concentrating by evaporation or ultrafiltration after aging (Japanese Patent Laid-Open No. 47-1964, Japanese Patent Publication No. 1-223412, Japanese Patent Publication No. 4-55125, Japanese Patent Publication No. 4-55127). However, it is often reported that non-spherical particles can be produced by slightly changing the process in the same production process. For example, activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced. Further, the temperature of the reaction layer (evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface), the pH of the reaction layer (silica particles are liable to be linked below 9), the SiO 2 / M 2 O of the reaction layer. (M is an alkali metal or quaternary ammonium), and non-spherical silica can be produced by changing the molar ratio (selectively producing non-spherical silica at 30 to 60) (Japanese Patent Publication No. 8-5657, Patent 2803134, JP, 2006-80406, JP, 2007-153671). Therefore, in the above-mentioned B), the ΔCV value can be adjusted to be small by performing process control so as not to be a condition for generating non-spherical silica locally in a known spherical silica production process.

また、本発明のシリカ粒子は、生産性を損なうことなく(研磨速度低下を引き起こすことなく)、スクラッチ及び表面粗さを低減する観点から、下記条件(c)及び(d)を満たすことが好ましい。
条件(c):透過型電子顕微鏡観察により測定される真球率が0.75〜1;
条件(d):ナトリウム滴定法により測定される比表面積(SA1)と透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)とから算出される表面粗度(SA1/SA2)の値が1.3以上。
In addition, the silica particles of the present invention preferably satisfy the following conditions (c) and (d) from the viewpoint of reducing scratches and surface roughness without impairing productivity (without causing a decrease in the polishing rate). .
Condition (c): The sphericity measured by observation with a transmission electron microscope is 0.75 to 1;
Condition (d): Surface roughness calculated from specific surface area (SA1) measured by sodium titration method and specific surface area (SA2) converted from average particle diameter (S2) measured by transmission electron microscope observation The value of (SA1 / SA2) is 1.3 or more.

〔シリカ粒子の真球率〕
本明細書においてシリカ粒子の透過型電子顕微鏡観察により測定される真球率は、透過型電子顕微鏡により得られるシリカ粒子一個の投影面積(A1)と該粒子の周長を円周とする円の面積(A2)との比、すなわち、「A1/A2」の値であって、好ましくは、本発明の研磨液組成物における任意の50〜100個のコロイダルシリカについての「A1/A2」の値の平均値をいう。シリカ粒子の真球率は、具体的には、実施例に記載の方法により測定されうる。生産性を損なうことなくスクラッチ及び表面粗さを低減する観点から、本発明の研磨液組成物に使用されるシリカ粒子の真球率は、0.75〜1が好ましく、0.75〜0.95がより好ましく、0.75〜0.85がさらに好ましい。
[Sphericality of silica particles]
In this specification, the true sphere ratio measured by observation of a silica particle with a transmission electron microscope is a projected area (A1) of one silica particle obtained by a transmission electron microscope and a circle whose circumference is the circumference of the particle. The ratio to the area (A2), that is, the value of “A1 / A2”, preferably the value of “A1 / A2” for any 50 to 100 colloidal silicas in the polishing composition of the present invention. The average value of Specifically, the sphericity of the silica particles can be measured by the method described in Examples. From the viewpoint of reducing scratches and surface roughness without impairing productivity, the sphericity of the silica particles used in the polishing composition of the present invention is preferably 0.75 to 1, and preferably 0.75 to 0. 95 is more preferable, and 0.75 to 0.85 is more preferable.

〔シリカ粒子の表面粗度〕
本明細書においてシリカ粒子の表面粗度は、ナトリウム滴定法により測定される比表面積(SA1)と、透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)との比である「SA1/SA2」の値をいい、具体的には、実施例に記載の方法により測定される。ここで、ナトリウム滴定法により測定される比表面積(SA1)は、シリカに対して水酸化ナトリウム溶液を滴定したときの水酸化ナトリウム溶液の消費量からシリカの比表面積を求めるものであり、実際の表面積を反映したものと言える。具体的には、シリカ表面に起伏又は疣状突起などに富むものである程、比表面積(SA1)は大きくなる。一方、透過型電子顕微鏡により測定される平均粒径(S2)から算出される比表面積(SA2)はシリカを理想的な球状粒子と仮定し、算出される。具体的には平均粒径(S2)が大きいほど、比表面積(SA2)は小さくなる。比表面積は単位質量あたりの表面積を示すものであって、表面粗度(SA1/SA2)の値については、シリカが球状であって、シリカ表面に多くの疣状突起を有する程、大きい値を示し、シリカ表面の疣状突起が少なく、平滑である程、小さい値を示し、その値は1に近づく。本発明の研磨液組成物に使用されるシリカ粒子の表面粗度は、生産性を損なうことなくスクラッチ及び表面粗さを低減する観点から、1.3以上が好ましく、1.3〜2.5がより好ましく、1.3〜2.2がさらに好ましい。
[Surface roughness of silica particles]
In this specification, the surface roughness of the silica particles is the specific surface area (SA2) converted from the specific surface area (SA1) measured by the sodium titration method and the average particle diameter (S2) measured by transmission electron microscope observation. The value of “SA1 / SA2”, which is a ratio to the above, is specifically measured by the method described in the examples. Here, the specific surface area (SA1) measured by the sodium titration method is to determine the specific surface area of the silica from the consumption of the sodium hydroxide solution when the sodium hydroxide solution is titrated against the silica. It can be said that it reflects the surface area. Specifically, the specific surface area (SA1) increases as the surface of the silica is richer in undulations or ridges. On the other hand, the specific surface area (SA2) calculated from the average particle diameter (S2) measured by a transmission electron microscope is calculated assuming that silica is an ideal spherical particle. Specifically, the specific surface area (SA2) decreases as the average particle size (S2) increases. The specific surface area indicates the surface area per unit mass, and the value of the surface roughness (SA1 / SA2) is larger as the silica is spherical and has more ridge-like projections on the silica surface. As shown in the figure, the smaller and smoother the ridge-like protrusions on the silica surface, the smaller the value and the value approaches 1. The surface roughness of the silica particles used in the polishing composition of the present invention is preferably 1.3 or more, from the viewpoint of reducing scratches and surface roughness without impairing productivity, and is preferably 1.3 to 2.5. Is more preferable, and 1.3 to 2.2 is more preferable.

シリカ粒子の真球率、表面粗度(SA1/SA2)及び平均粒径(S2)は、従来公知のシリカ粒子の製造方法を用いて調整することができる。例えば、特開2008−137822号公報、特開2008−169102号公報に記載の製造方法を例示することができるが、本発明はこれに限定されない。   The sphericity, surface roughness (SA1 / SA2), and average particle size (S2) of the silica particles can be adjusted using a conventionally known method for producing silica particles. For example, the production methods described in JP 2008-137822 A and JP 2008-169102 A can be exemplified, but the present invention is not limited thereto.

なお、シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。   The method of adjusting the particle size distribution of the silica particles is not particularly limited, but a method of giving a desired particle size distribution by adding particles that become new nuclei in the particle growth process in the production stage, Examples include a method of mixing two or more types of silica particles having different particle size distributions so as to have a desired particle size distribution.

研磨液組成物中におけるシリカ粒子の含有量は、研磨速度を向上させる観点から、0.5重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、4重量%以上がさらにより好ましい。また、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点からは、20重量%以下が好ましく、15重量%以下がより好ましく、13重量%以下がさらに好ましく、10重量%以下がさらにより好ましい。すなわち、シリカ粒子の含有量は、0.5〜20重量%が好ましく、1〜15重量%がより好ましく、3〜13重量%がさらに好ましく、4〜10重量%がさらにより好ましい。   The content of the silica particles in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate, and 4% by weight or more. Is even more preferred. In addition, from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and even more preferably 10% by weight or less. preferable. That is, the content of silica particles is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, further preferably 3 to 13% by weight, and still more preferably 4 to 10% by weight.

[複素環芳香族化合物]
本発明の研磨液組成物に含有される複素環芳香族化合物は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、複素環内に窒素原子を2個以上含む複素環芳香族化合物であり、複素環内に窒素原子を3個以上有することが好ましく、3〜9個がより好ましく、3〜5個がさらに好ましく、3又は4個がさらにより好ましい。
[Heterocyclic aromatic compounds]
The heterocyclic aromatic compound contained in the polishing liquid composition of the present invention is a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring from the viewpoint of reducing scratches and nanoprotrusion defects of the substrate after polishing. It is preferable that it has 3 or more nitrogen atoms in the heterocyclic ring, more preferably 3 to 9, more preferably 3 to 5, and still more preferably 3 or 4.

本発明の研磨液組成物に含有される複素環芳香族化合物は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、ピリミジン、ピラジン、ピリダジン、1,2,3−トリアジン、1,2,4−トリアジン、1,2,5−トリアジン、1,3,5−トリアジン、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、3-アミノピラゾール、4−アミノピラゾール、3,5−ジメチルピラゾール、ピラゾール、2−アミノイミダゾール、4−アミノイミダゾール、5−アミノイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、イミダゾール、ベンゾイミダゾール、1,2,3−トリアゾール、4−アミノー1,2,3−トリアゾール、5−アミノー1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノー1,2,4−トリアゾール、5−アミノー1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、1H−テトラゾール、5−アミノテトラゾール、1H−ベンゾトリアゾール、1H−トリルトリアゾール、2−アミノベンゾトリアゾール、3−アミノベンゾトリアゾール、又はこられのアルキル置換体若しくはアミン置換体が好ましく、1H−ベンゾトリアゾール、1H−トリルトリアゾールがより好ましく、1H−ベンゾトリアゾールがさらに好ましい。前記アルキル置換体のアルキル基としては例えば、炭素数1〜4の低級アルキル基が挙げられ、より具体的にはメチル基、エチル基が挙げられる。また、前記アミン置換体としては1−[N,N−ビス(ヒドロキシエチレン)アミノメチル]ベンゾトリアゾール、1−[N,N−ビス(ヒドロキシエチレン)アミノメチル]トリルトリアゾールが挙げられる。   The heterocyclic aromatic compound contained in the polishing liquid composition of the present invention includes pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1, from the viewpoint of reducing scratches on the substrate after polishing and reducing nanoprotrusion defects. 2,4-triazine, 1,2,5-triazine, 1,3,5-triazine, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole Azole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 3-aminopyrazole, 4-aminopyrazole, 3,5-dimethylpyrazole, pyrazole, 2-aminoimidazole, 4-aminoimidazole, 5-amino Imidazole, 2-methylimidazole, 2-ethylimidazole, imidazole, benzimidazole, 1,2,3-triazole, 4-amino-1, 2,3-triazole, 5-amino-1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 5-amino-1,2,4-triazole, 3-mercapto -1,2,4-triazole, 1H-tetrazole, 5-aminotetrazole, 1H-benzotriazole, 1H-tolyltriazole, 2-aminobenzotriazole, 3-aminobenzotriazole, or their alkyl or amine substituents 1H-benzotriazole, 1H-tolyltriazole is more preferable, and 1H-benzotriazole is more preferable. Examples of the alkyl group of the alkyl-substituted product include a lower alkyl group having 1 to 4 carbon atoms, and more specifically, a methyl group and an ethyl group. Examples of the amine-substituted product include 1- [N, N-bis (hydroxyethylene) aminomethyl] benzotriazole and 1- [N, N-bis (hydroxyethylene) aminomethyl] tolyltriazole.

本発明の研磨液組成物における複素環芳香族化合物の含有量は、研磨後の基板のスクラッチ及びナノ突起欠陥の低減の観点から、研磨液組成物全体の重量に対して0.01〜10重量%であることが好ましく、0.05〜5重量%がより好ましく、0.1〜1重量%がさらに好ましい。なお、研磨液組成物中の複素環芳香族化合物は1種類であってもよく、2種類以上であってもよい。   The content of the heterocyclic aromatic compound in the polishing liquid composition of the present invention is 0.01 to 10 wt% with respect to the total weight of the polishing liquid composition from the viewpoint of reducing scratches on the substrate after polishing and reducing nanoprotrusion defects. %, More preferably 0.05 to 5% by weight, still more preferably 0.1 to 1% by weight. In addition, the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.

また、研磨液組成物中における、シリカ粒子と複素環芳香族化合物との濃度比[シリカ粒子の濃度(重量%)/複素環芳香族化合物の濃度(重量%)]は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、2〜100が好ましく、5〜50がより好ましく、10〜25がさらに好ましい。   The concentration ratio of silica particles to heterocyclic aromatic compound [silica particle concentration (% by weight) / heterocyclic aromatic compound concentration (% by weight)] in the polishing liquid composition is the substrate surface after polishing. From the viewpoint of reducing scratches and nanoprotrusion defects, 2 to 100 is preferable, 5 to 50 is more preferable, and 10 to 25 is more preferable.

[スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体]
本発明の研磨液組成物は、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体を含有する。スクラッチ及びナノ突起低減の観点から、該重合体はスルホン酸基を有することが好ましい。該重合体は、研磨パッドに吸着して研磨時の摩擦振動を低減し、研磨パッドの開孔部からのシリカ凝集体の脱落を防止し、前述の複素環芳香族化合物との相乗効果によって、研磨後の基板のスクラッチ及びナノ突起欠陥を顕著に低減するものと推定される。但し、本発明はこれらの推定メカニズムに限定されない。また、該重合体は、主鎖に二重結合を含まない、すなわち、主鎖が飽和炭化水素鎖であることが好ましい。主鎖に二重結合を有する(共)重合体に比べて耐加水分解性に優れ、研磨液組成物としての品質安定性が向上するという利点がある。
[Polymer having at least one of sulfonic acid group and carboxylic acid group]
The polishing liquid composition of the present invention contains a polymer having at least one of a sulfonic acid group and a carboxylic acid group. From the viewpoint of reducing scratches and nanoprotrusions, the polymer preferably has a sulfonic acid group. The polymer adsorbs to the polishing pad to reduce frictional vibration during polishing, prevents the silica aggregate from falling off from the opening of the polishing pad, and synergistic effects with the heterocyclic aromatic compound described above, It is estimated that the scratches and nanoprotrusion defects of the substrate after polishing are remarkably reduced. However, the present invention is not limited to these estimation mechanisms. Moreover, it is preferable that this polymer does not contain a double bond in the main chain, that is, the main chain is a saturated hydrocarbon chain. Compared with a (co) polymer having a double bond in the main chain, it has excellent hydrolysis resistance and has the advantage of improving the quality stability as a polishing composition.

本発明において、「スルホン酸基」とはスルホン酸基及び又はその塩をいい、「カルボン酸基」とはカルボン酸基及び又はその塩をいう。これらの基が塩を形成する場合、その対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属等のイオンが挙げられる。これらの金属の中でも、ナノスクラッチ低減の観点から1A、3B、又は8族に属する金属のイオンが好ましく、1A族に属するナトリウム及びカリウムのイオンがより好ましい。アルキルアンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等のイオンが挙げられる。これらの中では、アンモニウム塩、ナトリウム塩及びカリウム塩がより好ましい。   In the present invention, “sulfonic acid group” refers to a sulfonic acid group and / or a salt thereof, and “carboxylic acid group” refers to a carboxylic acid group and / or a salt thereof. When these groups form a salt, the counter ion is not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium, and the like. Specific examples of the metal include ions of metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these metals, from the viewpoint of reducing nanoscratches, ions of metals belonging to Group 1A, 3B or 8 are preferable, and ions of sodium and potassium belonging to Group 1A are more preferable. Specific examples of alkylammonium include ions such as tetramethylammonium, tetraethylammonium, and tetrabutylammonium. Among these, ammonium salts, sodium salts, and potassium salts are more preferable.

本発明のスルホン酸基及びカルボン酸基の少なくとも一方を有する重合体は、スルホン酸基を有する単量体、カルボン酸基を有する単量体等のイオン性親水基を有する単量体を重合することにより得られたものであることが好ましい。これら単量体の重合は、ランダム、ブロック、又はグラフトのいずれでも良い。   The polymer having at least one of a sulfonic acid group and a carboxylic acid group of the present invention polymerizes a monomer having an ionic hydrophilic group such as a monomer having a sulfonic acid group or a monomer having a carboxylic acid group. It is preferable that it is obtained by this. Polymerization of these monomers may be random, block, or graft.

スルホン酸基を有する単量体としては、例えば、イソプレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、ナフタレンスルホン酸等が挙げられる。カルボン酸基を有する単量体としては、例えば、イタコン酸、(メタ)アクリル酸、マレイン酸等が挙げられる。   Examples of the monomer having a sulfonic acid group include isoprene sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamido Examples thereof include lensulfonic acid and naphthalenesulfonic acid. Examples of the monomer having a carboxylic acid group include itaconic acid, (meth) acrylic acid, maleic acid and the like.

また、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体には、上記以外の単量体を用いることもできる。本発明の重合体に用いることができる他の単量体としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレンなどの芳香族ビニル化合物、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸オクチルなどの(メタ)アクリル酸アルキルエステル類、ブタジエン、イソプレン、2−クロル−1,3−ブタジエン、1−クロル−1,3−ブタジエンなどの脂肪族共役ジエン、(メタ)アクリロニトリルなどのシアン化ビニル化合物、ビニルホスホン酸、メタクロイルオキシメチルリン酸、メタクロリルオキシエチルリン酸、メタクロイルオキシブチルリン酸、メタクロリルオキシヘキシルリン酸、メタクロリルオキシオクチルリン酸、メタクロリルオキシデシルリン酸、メタクロリルオキシラウリルリン酸、メタロイルオキシステアリルリン酸、メタクロイルオキシ1、4−ジメチルシクロヘキシルリン酸などのホスホン酸化合物等が挙げられる。これら単量体は1種又は2種以上使用できる。   Moreover, monomers other than the above can also be used for the polymer having at least one of a sulfonic acid group and a carboxylic acid group. Examples of other monomers that can be used in the polymer of the present invention include aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, and p-methylstyrene, methyl (meth) acrylate, (meth ) Aliphatic conjugates such as (meth) acrylic acid alkyl esters such as ethyl acrylate, octyl (meth) acrylate, butadiene, isoprene, 2-chloro-1,3-butadiene, 1-chloro-1,3-butadiene Diene, vinyl cyanide compounds such as (meth) acrylonitrile, vinylphosphonic acid, methacryloyloxymethyl phosphoric acid, methacryloyloxyethyl phosphoric acid, methacryloyloxybutyl phosphoric acid, methacrylyloxyhexyl phosphoric acid, methacrylyloxyoctyllin Acid, methacryloyloxydecyl phosphate, methacryloyloxy Lauryl phosphate, metallo-yl oxy stearyl phosphoric acid, phosphonic acid compounds such as methacryloyl oxy 1,4-dimethylcyclohexyl phosphate. These monomers can be used alone or in combination of two or more.

スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体の好ましい具体例としては、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、ポリアクリル酸、(メタ)アクリル酸/イソプレンスルホン酸共重合体、(メタ)アクリル酸/2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体、(メタ)アクリル酸/イソプレンスルホン酸/2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体、(メタ)アクリル酸/マレイン酸共重合体、スチレンスルホン酸のホルマリン縮合物、ナフタレンスルホン酸のホルマリン縮合物、スチレン/イソプレンスルホン酸共重合体、並びに、下記一般式(1)及び(2)で表される構成単位のいずれか一種以上と下記一般式(3)で表される構成単位とを有する共重合体が挙げられるが、同様の観点から、ポリアクリル酸、(メタ)アクリル酸/2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体、スチレンスルホン酸のホルマリン縮合物、スチレン/イソプレンスルホン酸共重合体、並びに、下記一般式(1)及び(2)で表される構成単位のいずれか一種以上と下記一般式(3)で表される構成単位とを有する共重合体がさらに好ましく、下記一般式(1)で表される構成単位と下記一般式(3)で表される構成単位とを有する共重合体であることがさらにより好ましい。   Preferable specific examples of the polymer having at least one of a sulfonic acid group and a carboxylic acid group include polyacrylic acid and (meth) acrylic acid / isoprenesulfone from the viewpoint of reducing scratches on the substrate surface after polishing and nanoprotrusion defects. Acid copolymer, (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer, (meth) acrylic acid / isoprenesulfonic acid / 2- (meth) acrylamide-2-methylpropanesulfone Acid copolymer, (meth) acrylic acid / maleic acid copolymer, formalin condensate of styrene sulfonic acid, formalin condensate of naphthalene sulfonic acid, styrene / isoprene sulfonic acid copolymer, and the following general formula (1) And any one or more of the structural units represented by (2) and the structure represented by the following general formula (3) From the same point of view, polyacrylic acid, (meth) acrylic acid / 2- (meth) acrylamido-2-methylpropanesulfonic acid copolymer, formalin condensation of styrenesulfonic acid Product, styrene / isoprene sulfonic acid copolymer, and at least one of the structural units represented by the following general formulas (1) and (2) and the structural unit represented by the following general formula (3) A copolymer is more preferable, and a copolymer having a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (3) is even more preferable.

Figure 0005769284
Figure 0005769284

上記一般式(1)及び(2)のR1は、共重合体の研磨パッドへの吸着量増加及び研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、水素原子又は炭素数1〜4のアルキル基であって、水素原子又は炭素数1〜3のアルキル基が好ましく、水素原子、メチル基、又はエチル基がより好ましく、水素原子又はメチル基がさらに好ましい。上記一般式(1)のR2は、共重合体の研磨パッドへの吸着量増加及び研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、アリール基又は1つ又は複数の炭素数1〜4のアルキル基で置換されてもよいアリール基であり、フェニル基又は1つ又は複数の炭素数1〜4のアルキル基で置換されてもよいフェニル基が好ましく、フェニル基がより好ましい。なお、前記炭素数1〜4のアルキル基は、直鎖構造でも分岐鎖構造でもよい。上記一般式(2)のR3は、共重合体の研磨パッドへの吸着量増加及び研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、水素原子、アルカリ金属原子、アルカリ土類金属原子(1/2原子)、アンモニウム若しくは有機アンモニウム、又は炭素数1〜22の炭化水素鎖であることが好ましく、炭化水素鎖の炭素数は、1〜18が好ましく、1〜12がより好ましく、1〜8がさらに好ましく、1〜4がさらにより好ましい。また、炭化水素鎖としては、直鎖構造でも分岐鎖構造でもよく、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。また、共重合体は、二種類以上の疎水性構成単位を含んでもよい。 R 1 in the above general formulas (1) and (2) is a hydrogen atom or a carbon number of 1 from the viewpoint of increasing the adsorption amount of the copolymer to the polishing pad and reducing scratches and nanoprotrusion defects on the substrate surface after polishing. A hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom, a methyl group, or an ethyl group, and even more preferably a hydrogen atom or a methyl group. R 2 in the general formula (1) is an aryl group or one or more carbon atoms from the viewpoint of increasing the adsorption amount of the copolymer to the polishing pad and reducing scratches and nanoprotrusion defects on the substrate surface after polishing. It is an aryl group which may be substituted with 1 to 4 alkyl groups, and a phenyl group or a phenyl group which may be substituted with one or more alkyl groups having 1 to 4 carbon atoms is preferable, and a phenyl group is more preferable. The alkyl group having 1 to 4 carbon atoms may have a straight chain structure or a branched chain structure. R 3 in the above general formula (2) represents a hydrogen atom, an alkali metal atom, an alkaline earth from the viewpoint of increasing the amount of adsorption of the copolymer to the polishing pad and reducing scratches and nanoprotrusion defects on the substrate surface after polishing. It is preferably a metal atom (1/2 atom), ammonium or organic ammonium, or a hydrocarbon chain having 1 to 22 carbon atoms, and the hydrocarbon chain preferably has 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms. 1-8 are more preferable, and 1-4 are still more preferable. The hydrocarbon chain may be a straight chain structure or a branched chain structure, preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. The copolymer may contain two or more types of hydrophobic structural units.

共重合体を構成する全構成単位中に占める上記一般式(1)及び(2)で表される構成単位の含有率は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、5〜95モル%が好ましく、5〜70モル%がより好ましく、10〜60モル%がさらにより好ましく、15〜50モル%がさらにより好ましく、20〜40モル%がさらにより好ましい。   The content of the structural units represented by the above general formulas (1) and (2) in all the structural units constituting the copolymer is from the viewpoint of reducing scratches on the surface of the substrate after polishing and nanoprojection defects. 5-95 mol% is preferable, 5-70 mol% is more preferable, 10-60 mol% is still more preferable, 15-50 mol% is still more preferable, 20-40 mol% is still more preferable.

Figure 0005769284
Figure 0005769284

上記一般式(3)のR4は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、水素原子又は炭素数1〜4のアルキル基であって、水素原子又は炭素数1〜3のアルキル基が好ましく、水素原子、メチル基、又はエチル基がより好ましく、水素原子又はメチル基がさらに好ましく、メチル基がさらにより好ましい。上記一般式(3)のR5は、重合体の研磨液組成物への溶解性向上及び研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、1又は複数のスルホン酸基を有するアリール基であり、1又は複数のスルホン酸基を有するフェニル基が好ましく、オルト、メタ、パラ位のいずれかで1つのスルホン酸基を有するフェニル基がより好ましく、パラ位でスルホン酸基を有するフェニル基がさらに好ましい。スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体は、スルホン酸基を有する構成単位を二種類以上含んでもよい。 R 4 in the general formula (3) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. 3 is preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, a hydrogen atom or a methyl group is more preferable, and a methyl group is still more preferable. R 5 in the general formula (3) has one or more sulfonic acid groups from the viewpoint of improving the solubility of the polymer in the polishing liquid composition and reducing scratches and nanoprotrusion defects on the substrate surface after polishing. An aryl group, preferably a phenyl group having one or more sulfonic acid groups, more preferably a phenyl group having one sulfonic acid group in any of the ortho, meta, and para positions, and a sulfonic acid group in the para position More preferred is a phenyl group. The polymer having at least one of a sulfonic acid group and a carboxylic acid group may contain two or more kinds of structural units having a sulfonic acid group.

共重合体を構成する全構成単位中に占める上記一般式(3)で表される構成単位の含有率は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、5〜95モル%が好ましく、40〜90モル%がより好ましく、50〜85モル%がさらに好ましく、60〜80モル%がさらにより好ましい。   The content of the structural unit represented by the general formula (3) in all the structural units constituting the copolymer is 5 to 95 mol from the viewpoint of reducing scratches on the surface of the substrate after polishing and reducing nanoprotrusion defects. % Is preferable, 40 to 90 mol% is more preferable, 50 to 85 mol% is more preferable, and 60 to 80 mol% is still more preferable.

スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体を構成する全構成単位中に占める上記一般式(1)及び(2)で表される構成単位と上記一般式(3)で表される構成単位の合計の含有率は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、70〜100モル%が好ましく、80〜100モル%がより好ましく、90〜100モル%がさらに好ましく、95〜100モル%がさらにより好ましい。   The structural unit represented by the above general formulas (1) and (2) in all the structural units constituting the polymer having at least one of a sulfonic acid group and a carboxylic acid group, and the above general formula (3) The total content of the structural units is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, and even more preferably 90 to 100 mol%, from the viewpoint of reducing scratches on the substrate surface after polishing and reducing the nanoprotrusion defects. Preferably, 95-100 mol% is still more preferable.

本発明の共重合体を構成する全構成単位中に占める上記一般式(1)及び(2)で表される構成単位と、上記一般式(3)で表される構成単位とのモル比(一般式(1)及び(2)で表される構成単位のモル%/一般式(3)で表される構成単位のモル%)は、研磨後の基板表面のうねりとナノ突起欠陥の低減の観点から、5/95〜95/5が好ましく、10/90〜60/40がより好ましく、15/85〜50/50がさらに好ましく、20/80〜40/60がさらにより好ましい。   The molar ratio of the structural unit represented by the general formulas (1) and (2) and the structural unit represented by the general formula (3) in all the structural units constituting the copolymer of the present invention ( The mol% of the structural unit represented by the general formulas (1) and (2) / the mol% of the structural unit represented by the general formula (3)) From the viewpoint, 5/95 to 95/5 are preferable, 10/90 to 60/40 are more preferable, 15/85 to 50/50 are further preferable, and 20/80 to 40/60 are even more preferable.

[共重合体の製造方法]
上記一般式(1)及び(2)で表される構成単位のいずれか一種以上と上記一般式(3)で表される構成単位とを有する共重合体の製造方法は、単量体の共重合法、ポリマーにスルホン化剤を用いて得られる方法等が挙げられるが、これらの方法に限定されるものではない。好ましくは、単量体の共重合法である。単量体の共重合法は、公知の塊状重合、溶液重合等の重合法を用いることができる。本発明の共重合体を得るための重合溶媒は、水に対する溶解度(20℃)が10重量%以上であれば何れでもよい。水、アルコール系、ケトン系、エーテル系等が挙げられる。アルコール系溶剤は、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、第2級ブタノール、第3級ブタノール、イソブタノール、ジアセトンアルコール等が挙げられる。ケトン系溶剤は、例えばアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、シクロへキサノン等が挙げられる。エーテル系溶剤は、テトラヒドロフラン、ジオキサン、グライム、セロソルブ類等が挙げられる。これらを1種類以上混合して用いることが出来る。重合開始剤としては、公知のラジカル開始剤が用いられる。例えば、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムに代表される過硫酸化類、t−ブチルヒドロペルオキシドに代表されるヒドロ過酸化物類、過酸化ジt−ブチルに代表される過酸化ジアルキル類、過酸化アセチル、過酸化ベンゾイルに代表される過酸化ジアシル類、メチルエチルケトンペルオキシドに代表されるケトンペルオキシド類、及びアゾ系重合開始剤が挙げられる。これらの重合開始剤は1種類以上を使用することが出来る。開始剤濃度は、スクラッチ及びナノ突起低減の観点から、単量体に対して、1〜100mol%が好ましく、3〜50mol%がより好ましく、5〜30mol%がさらに好ましい。また、必要に応じて連鎖移動剤を使用できる。重合時の単量体濃度は、スクラッチ及びナノ突起低減の観点から、0.5〜90重量%が好ましく、1.0重量%〜50重量%がより好ましく、3.0〜30重量%がさらに好ましい。重合温度は、スクラッチ及びナノ突起低減の観点から、40〜300℃が好ましく、50〜250℃がより好ましく、60〜200℃がさらに好ましい。
[Method for producing copolymer]
A method for producing a copolymer having at least one of the structural units represented by the general formulas (1) and (2) and the structural unit represented by the general formula (3) includes: Examples thereof include a polymerization method and a method obtained by using a sulfonating agent for the polymer, but are not limited to these methods. Preferred is a monomer copolymerization method. As the monomer copolymerization method, a known polymerization method such as bulk polymerization or solution polymerization can be used. The polymerization solvent for obtaining the copolymer of the present invention may be any as long as the solubility in water (20 ° C.) is 10% by weight or more. Examples include water, alcohols, ketones, and ethers. Examples of the alcohol solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, secondary butanol, tertiary butanol, isobutanol, diacetone alcohol and the like. Examples of the ketone solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cyclohexanone. Examples of ether solvents include tetrahydrofuran, dioxane, glyme, cellosolves and the like. One or more of these can be mixed and used. As the polymerization initiator, a known radical initiator is used. For example, persulfates represented by ammonium persulfate, potassium persulfate, sodium persulfate, hydroperoxides represented by t-butyl hydroperoxide, dialkyl peroxides represented by di-t-butyl peroxide Acetyl peroxide, diacyl peroxides represented by benzoyl peroxide, ketone peroxides represented by methyl ethyl ketone peroxide, and azo polymerization initiators. One or more kinds of these polymerization initiators can be used. From the viewpoint of reducing scratches and nanoprotrusions, the initiator concentration is preferably 1 to 100 mol%, more preferably 3 to 50 mol%, and even more preferably 5 to 30 mol% with respect to the monomer. Moreover, a chain transfer agent can be used as needed. The monomer concentration during polymerization is preferably 0.5 to 90% by weight, more preferably 1.0% to 50% by weight, and further preferably 3.0 to 30% by weight from the viewpoint of reducing scratches and nanoprotrusions. preferable. The polymerization temperature is preferably 40 to 300 ° C, more preferably 50 to 250 ° C, and still more preferably 60 to 200 ° C, from the viewpoint of reducing scratches and nanoprotrusions.

スクラッチ及びナノ突起低減の観点から、共重合体を製造する際、重合反応の開始から終了までの単量体の転化率比を0.5〜2.0の範囲で行うことが好ましく、より好ましくは0.7〜1.3の範囲、さらに好ましくは0.8〜1.2の範囲、さらにより好ましくは、0.9〜1.1の範囲である。単量体の転化率を等しくすると、重合体の組成比率に偏りが少なくなるため、スクラッチ及びナノ突起低減がさらに低減できる。このため、滴下重合を行うことが好ましい。滴下速度、滴下時間は、転化率比が上記範囲内となるよう適宜調整して行う。ここで、単量体の転化率とは、単量体が重合体に変化した割合であり、以下の式で表される。
単量体の転化率(%)=((仕込み単量体量)−(未反応の単量体量))/(仕込み単量体量)×100
また、転化率比は、例えば2種類の単量体(単量体AおよびB)を用いて共重合体を製造する場合、下記式を用いて計算される。
転化率比=単量体Aの転化率/単量体Bの転化率
From the viewpoint of reducing scratches and nanoprotrusions, when producing a copolymer, it is preferable to perform the monomer conversion ratio from the start to the end of the polymerization reaction in the range of 0.5 to 2.0, more preferably. Is in the range of 0.7 to 1.3, more preferably in the range of 0.8 to 1.2, and even more preferably in the range of 0.9 to 1.1. When the conversion ratios of the monomers are made equal, there is less bias in the composition ratio of the polymer, so that scratch and nanoprojection reduction can be further reduced. For this reason, it is preferable to perform drop polymerization. The dropping rate and dropping time are adjusted appropriately so that the conversion ratio is within the above range. Here, the conversion ratio of the monomer is a ratio of the monomer changed to a polymer, and is represented by the following formula.
Conversion rate of monomer (%) = ((amount of charged monomer) − (amount of unreacted monomer)) / (amount of charged monomer) × 100
Further, the conversion ratio is calculated using the following formula when a copolymer is produced using, for example, two types of monomers (monomers A and B).
Conversion ratio = conversion ratio of monomer A / conversion ratio of monomer B

[重合体の重量平均分子量]
スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体の重量平均分子量は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、500〜12万であることが好ましく、1000〜10万がより好ましく、1000〜3万がさらに好ましく、1000〜1万がさらにより好ましくは、1500〜8000がさらにより好ましい。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて実施例に記載の方法により測定した値である。
[Weight average molecular weight of polymer]
The weight average molecular weight of the polymer having at least one of a sulfonic acid group and a carboxylic acid group is preferably 500 to 120,000 from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. Is more preferable, 1000 to 30,000 is more preferable, 1000 to 10,000 is still more preferable, 1500 to 8000 is still more preferable. The weight average molecular weight is a value measured by the method described in Examples using gel permeation chromatography (GPC).

スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体が塩を少なくとも部分的に形成している場合、その対イオンとしては、特に限定はなく、上述の親水性構成単位の場合と同様に、金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。   When the polymer having at least one of a sulfonic acid group and a carboxylic acid group forms a salt at least partially, the counter ion is not particularly limited, and as in the case of the hydrophilic structural unit described above, And salts with metals, ammonium, alkylammonium and the like.

研磨液組成物におけるスルホン酸基及びカルボン酸基の少なくとも一方を有する重合体の含有量は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、0.001〜1重量%が好ましく、より好ましくは0.005〜0.5重量%、さらに好ましくは0.01〜0.2重量%、さらにより好ましくは0.01〜0.1重量%、さらにより好ましくは0.01〜0.075重量%である。   The content of the polymer having at least one of a sulfonic acid group and a carboxylic acid group in the polishing liquid composition is preferably 0.001 to 1% by weight from the viewpoint of reducing scratches and nanoprotrusion defects on the substrate surface after polishing. , More preferably 0.005 to 0.5% by weight, still more preferably 0.01 to 0.2% by weight, even more preferably 0.01 to 0.1% by weight, even more preferably 0.01 to 0%. 0.075% by weight.

また、研磨液組成物中における、シリカ粒子と前記重合体との濃度比[シリカ粒子の濃度(重量%)/重合体の濃度(重量%)]は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、5〜5000が好ましく、10〜1000がより好ましく、25〜500がさらに好ましい。   The concentration ratio of silica particles to the polymer in the polishing composition [silica particle concentration (% by weight) / polymer concentration (% by weight)] is determined by the scratches and nanoprotrusions on the substrate surface after polishing. From the viewpoint of reducing defects, 5-5000 is preferable, 10-1000 is more preferable, and 25-500 is more preferable.

さらに、研磨液組成物中における、複素環芳香族化合物と前記重合体との濃度比[複素環芳香族化合物の濃度(重量%)/重合体の濃度(重量%)]は、研磨後の基板表面のスクラッチ及びナノ突起欠陥の低減の観点から、1〜100が好ましく、2〜50がより好ましく、2.5〜25がさらに好ましい。   Furthermore, the concentration ratio [heterocyclic aromatic compound concentration (wt%) / polymer concentration (wt%)] of the heterocyclic aromatic compound and the polymer in the polishing liquid composition is the substrate after polishing. From the viewpoint of reducing surface scratches and nanoprotrusion defects, 1 to 100 is preferable, 2 to 50 is more preferable, and 2.5 to 25 is even more preferable.

[酸]
本発明の研磨液組成物は、酸を含む。本発明において、酸には、酸及び/又はその塩が含まれる。本発明の研磨液組成物に使用される酸としては、研磨速度の向上の観点から、その酸のpK1が2以下の化合物が好ましく、スクラッチを低減する観点から、好ましくはpK1が1.5以下、より好ましくは1以下、さらに好ましくはpK1で表せない程の強い酸性を示す化合物である。その例としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸及びその塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1,−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸及びその塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸及びその塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸及びその塩等が挙げられる。中でも、スクラッチ低減の観点から、無機酸や有機ホスホン酸及びそれらの塩が好ましい。また、無機酸及びその塩の中では、硝酸、硫酸、塩酸、過塩素酸及びそれらの塩がより好ましく、硫酸がさらに好ましい。有機ホスホン酸及びその塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましく、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)がさらに好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物又は無機化合物の第一酸解離定数(25℃)の逆数の対数値である。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。
[acid]
The polishing composition of the present invention contains an acid. In the present invention, the acid includes an acid and / or a salt thereof. The acid used in the polishing composition of the present invention is preferably a compound having a pK1 of 2 or less from the viewpoint of improving the polishing rate, and preferably has a pK1 of 1.5 or less from the viewpoint of reducing scratches. More preferably, it is a compound exhibiting strong acidity that cannot be expressed by pK1, more preferably 1 or less. Examples thereof include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, and salts thereof, 2-aminoethylphosphone. Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1 , 1,2-Triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic Acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane Organic phosphonic acids such as 2,3,4-tricarboxylic acid and α-methylphosphonosuccinic acid and salts thereof, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid and salts thereof, oxalic acid, nitroacetic acid, maleic acid, Examples thereof include carboxylic acids such as oxaloacetic acid and salts thereof. Among these, from the viewpoint of reducing scratches, inorganic acids, organic phosphonic acids, and salts thereof are preferable. Among inorganic acids and salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid and salts thereof are more preferable, and sulfuric acid is more preferable. Among organic phosphonic acids and salts thereof, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and their salts are more preferred. 1-hydroxyethylidene-1,1-diphosphonic acid and aminotri (methylenephosphonic acid) are more preferable. These acids and salts thereof may be used alone or in admixture of two or more. Here, pK1 is a logarithmic value of the reciprocal of the first acid dissociation constant (25 ° C.) of the organic compound or inorganic compound. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan).

これらの酸の塩を用いる場合の対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等のイオンが挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。   There are no particular limitations on the counter ion when these acid salts are used, and specific examples include ions of metals, ammonium, alkylammonium, and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing scratches.

研磨液組成物中における前記酸及びその塩の含有量は、研磨速度向上、表面粗さ及びスクラッチ低減の観点から、0.001〜5重量%が好ましく、より好ましくは0.01〜4重量%であり、さらに好ましくは0.05〜3重量%、さらにより好ましくは0.1〜2.0重量%である。   The content of the acid and its salt in the polishing composition is preferably 0.001 to 5% by weight, more preferably 0.01 to 4% by weight, from the viewpoints of improving the polishing rate, surface roughness, and reducing scratches. More preferably, it is 0.05 to 3% by weight, and still more preferably 0.1 to 2.0% by weight.

[水]
本発明の研磨液組成物は、媒体として水を含むことができ、前記水として蒸留水、イオン交換水、超純水等を使用できる。被研磨基板の表面清浄性の観点からイオン交換水及び超純水が好ましく、超純水がより好ましい。研磨液組成物中の水の含有量は、60〜99.4重量%が好ましく、70〜98.9重量%がより好ましい。また、本発明の効果を阻害しない範囲内でアルコール等の有機溶剤を配合してもよい。
[water]
The polishing composition of the present invention can contain water as a medium, and distilled water, ion exchange water, ultrapure water, or the like can be used as the water. From the viewpoint of the surface cleanliness of the substrate to be polished, ion exchange water and ultrapure water are preferable, and ultrapure water is more preferable. The content of water in the polishing composition is preferably 60 to 99.4% by weight, and more preferably 70 to 98.9% by weight. Moreover, you may mix | blend organic solvents, such as alcohol, in the range which does not inhibit the effect of this invention.

[酸化剤]
本発明の研磨液組成物は、酸化剤を含むことが好ましい。本発明の研磨液組成物に使用できる酸化剤としては、研磨速度を向上させる観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硝酸類、硫酸類等が挙げられる。
[Oxidant]
The polishing composition of the present invention preferably contains an oxidant. As an oxidizing agent that can be used in the polishing liquid composition of the present invention, from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.

前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等が挙げられ、過マンガン酸又はその塩としては、過マンガン酸カリウム等が挙げられ、クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等が挙げられ、ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等が挙げられ、酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられ、金属塩類としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。   Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc., examples of the permanganic acid or salt thereof include potassium permanganate, and examples of the chromic acid or salt thereof include chromium. Acid metal salts, metal dichromates, and the like. Peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, peroxodisulfate metal salts, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, and performic acid. Peroxyacetic acid, perbenzoic acid, perphthalic acid, etc., and oxygen acids or salts thereof include hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, hypochlorous acid. Examples thereof include sodium chlorate and calcium hypochlorite. Examples of metal salts include iron (III) chloride, iron (III) sulfate, iron (III) nitrate, and iron citrate. III), ammonium iron (III), and the like.

好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。より好ましい酸化剤としては、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。   Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. As a more preferable oxidizing agent, hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.

研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上であり、表面粗さ、うねり及びスクラッチ低減の観点から、好ましくは4重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。従って、表面品質を保ちつつ研磨速度を向上させるためには、上記含有量は、好ましくは0.01〜4重量%、より好ましくは0.05〜2重量%、さらに好ましくは0.1〜1重量%である。   The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. In view of surface roughness, waviness and scratch reduction, it is preferably 4% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1. % By weight.

[その他の成分]
本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。研磨液組成物中のこれら他の任意成分の含有量は、0〜10重量%が好ましく、0〜5重量%がより好ましい。但し、本発明の研磨液組成物は、他の成分、とりわけ界面活性剤を含むことなく、研磨後の基板表面のナノ突起欠陥の低減効果を発揮し得る。さらに、本発明の研磨液組成物は、アルミナ砥粒を含ませることができ、最終研磨工程より前の粗研磨工程に使用することもできる。
[Other ingredients]
In the polishing composition of the present invention, other components can be blended as necessary. Examples of other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant. 0-10 weight% is preferable and, as for content of these other arbitrary components in polishing liquid composition, 0-5 weight% is more preferable. However, the polishing liquid composition of the present invention can exhibit the effect of reducing nanoprotrusion defects on the substrate surface after polishing without containing other components, particularly a surfactant. Furthermore, the polishing composition of the present invention can contain alumina abrasive grains and can be used in a rough polishing step prior to the final polishing step.

[研磨液組成物のpH]
本発明の研磨液組成物のpHは、研磨速度向上の観点から3.5以下が好ましく、より好ましくは3.0以下、さらに好ましくは2.5以下、さらにより好ましくは2.0以下である。また、表面粗さ低減の観点から、0.5以上が好ましく、より好ましくは0.8以上、さらに好ましくは1.0以上、さらにより好ましくは1.2以上である。また、研磨液組成物の廃液pHは、研磨速度向上の観点から3以下が好ましく、より好ましくは2.5以下、さらに好ましくは2.2以下、さらにより好ましくは2.0以下である。また、表面粗さ低減の観点から、研磨液組成物の廃液pHは、0.8以上が好ましく、より好ましくは1.0以上、さらに好ましくは1.2以上、さらにより好ましくは1.5以上である。なお、廃液pHとは、研磨液組成物を用いた研磨工程における研磨廃液、即ち、研磨機より排出された直後の研磨液組成物のpHをいう。
[PH of polishing composition]
The pH of the polishing composition of the present invention is preferably 3.5 or less, more preferably 3.0 or less, still more preferably 2.5 or less, and even more preferably 2.0 or less from the viewpoint of improving the polishing rate. . Moreover, 0.5 or more is preferable from a viewpoint of surface roughness reduction, More preferably, it is 0.8 or more, More preferably, it is 1.0 or more, More preferably, it is 1.2 or more. In addition, the waste liquid pH of the polishing composition is preferably 3 or less, more preferably 2.5 or less, still more preferably 2.2 or less, and even more preferably 2.0 or less, from the viewpoint of improving the polishing rate. Further, from the viewpoint of reducing the surface roughness, the waste liquid pH of the polishing composition is preferably 0.8 or more, more preferably 1.0 or more, still more preferably 1.2 or more, and even more preferably 1.5 or more. It is. The waste liquid pH refers to the polishing waste liquid in the polishing step using the polishing liquid composition, that is, the pH of the polishing liquid composition immediately after being discharged from the polishing machine.

[研磨液組成物の調製方法]
本発明の研磨液組成物は、例えば、水と、シリカ粒子と、複素環芳香族化合物と、(共)重合体と、酸と、さらに所望により、他の成分とを公知の方法で混合することにより調製できる。この際、シリカ粒子は、濃縮されたスラリーの状態で混合されてもよいし、水等で希釈してから混合されてもよい。本発明の研磨液組成物中における各成分の含有量や濃度は、上述した範囲であるが、その他の態様として、本発明の研磨液組成物を濃縮物として調製してもよい。
[Method for preparing polishing liquid composition]
In the polishing composition of the present invention, for example, water, silica particles, a heterocyclic aromatic compound, a (co) polymer, an acid, and, if desired, other components are mixed by a known method. Can be prepared. At this time, the silica particles may be mixed in a concentrated slurry state, or may be mixed after being diluted with water or the like. Although content and density | concentration of each component in the polishing liquid composition of this invention are the ranges mentioned above, you may prepare the polishing liquid composition of this invention as a concentrate as another aspect.

[磁気ディスク基板の製造方法]
本発明は、その他の態様として、磁気ディスク基板の製造方法(以下、本発明の製造方法ともいう。)に関する。本発明の製造方法は、上述した本発明の研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう。)を含む磁気ディスク基板の製造方法である。これにより、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板を好ましくは提供できる。本発明の製造方法は、とりわけ、垂直磁気記録方式用磁気ディスク基板の製造方法に適している。よって、本発明の製造方法は、その他の態様として、本発明の研磨液組成物を用いた研磨工程を含む垂直磁気記録方式用磁気ディスク基板の製造方法である。
[Method of manufacturing magnetic disk substrate]
As another aspect, the present invention relates to a method of manufacturing a magnetic disk substrate (hereinafter also referred to as a manufacturing method of the present invention). The manufacturing method of the present invention includes a step of polishing a substrate to be polished using the above-described polishing liquid composition of the present invention (hereinafter, also referred to as “polishing process using the polishing liquid composition of the present invention”). It is a manufacturing method of a disk substrate. Thereby, in addition to scratches on the substrate surface after polishing, a magnetic disk substrate in which nanoprojection defects on the substrate surface after polishing are reduced can be preferably provided. The manufacturing method of the present invention is particularly suitable for a method for manufacturing a magnetic disk substrate for perpendicular magnetic recording. Therefore, as another aspect, the manufacturing method of the present invention is a method of manufacturing a magnetic disk substrate for a perpendicular magnetic recording system including a polishing step using the polishing composition of the present invention.

本発明の研磨液組成物を用いて被研磨基板を研磨する方法の具体例としては、不織布状の有機高分子系研磨布等の研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本発明の研磨液組成物を研磨機に供給しながら、定盤や被研磨基板を動かして被研磨基板を研磨する方法が挙げられる。   As a specific example of a method for polishing a substrate to be polished using the polishing liquid composition of the present invention, the substrate to be polished is sandwiched between a surface plate to which a polishing pad such as a non-woven organic polymer polishing cloth is attached. A method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while supplying the polishing composition of the invention to the polishing machine can be mentioned.

被研磨基板の研磨工程が多段階で行われる場合は、本発明の研磨液組成物を用いた研磨工程は2段階目以降に行われるのが好ましく、最終研磨工程で行われるのがより好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、研磨工程毎に被研磨基板を洗浄することが好ましい。なお、研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。   In the case where the polishing process of the substrate to be polished is performed in multiple stages, the polishing process using the polishing composition of the present invention is preferably performed in the second stage and more preferably in the final polishing process. At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and in the case of using different polishing machines, polishing is performed for each polishing process. It is preferable to clean the substrate. The polishing machine is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.

[研磨パッド]
本発明で使用される研磨パッドとしては、特に制限はなく、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、又はこれらを積層した二層タイプ等の研磨パッドを使用することができるが、研磨速度の観点から、スエードタイプの研磨パッドが好ましい。
[Polishing pad]
The polishing pad used in the present invention is not particularly limited, and a polishing pad of a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used. From the viewpoint, a suede type polishing pad is preferable.

研磨パッドの表面部材の平均気孔径は、スクラッチ低減及びパッド寿命の観点から、50μm以下が好ましく、より好ましくは45μm以下、さらに好ましくは40μm以下、さらにより好ましくは35μm以下である。パッドの研磨液保持性の観点から、気孔で研磨液を保持し液切れを起こさないようにするために、平均気孔径は0.01μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは1μm以上、さらにより好ましくは10μm以上である。また、研磨パッドの気孔径の最大値は、研磨速度維持の観点から、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。   The average pore diameter of the surface member of the polishing pad is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, and even more preferably 35 μm or less, from the viewpoint of scratch reduction and pad life. From the viewpoint of holding the polishing liquid of the pad, the average pore diameter is preferably 0.01 μm or more, more preferably 0.1 μm or more, and still more preferably, in order to keep the polishing liquid in the pores and prevent the liquid from running out. It is 1 μm or more, more preferably 10 μm or more. Further, the maximum value of the pore size of the polishing pad is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 60 μm or less, and particularly preferably 50 μm or less from the viewpoint of maintaining the polishing rate.

[研磨荷重]
本発明の研磨液組成物を用いた研磨工程における研磨荷重は、好ましくは5.9kPa以上、より好ましくは6.9kPa以上、さらに好ましくは7.5kPa以上である。これにより、研磨速度の低下を抑制できるため、生産性の向上が可能となる。なお、本発明の製造方法において研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力をいう。また、本発明の研磨液組成物を用いた研磨工程において、研磨荷重は20kPa以下が好ましく、より好ましくは18kPa以下、さらに好ましくは16kPa以下である。これにより、スクラッチの発生を抑制することができる。したがって、本発明の研磨液組成物を用いた研磨工程において研磨荷重は5.9〜20kPaが好ましく、6.9〜18kPaがより好ましく、7.5〜16kPaがさらに好ましい。研磨荷重の調整は、定盤及び被研磨基板のうち少なくとも一方に空気圧や重りを負荷することにより行うことができる。
[Polishing load]
The polishing load in the polishing step using the polishing liquid composition of the present invention is preferably 5.9 kPa or more, more preferably 6.9 kPa or more, and further preferably 7.5 kPa or more. Thereby, since the fall of a grinding | polishing speed | rate can be suppressed, productivity can be improved. In the production method of the present invention, the polishing load refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing. In the polishing step using the polishing composition of the present invention, the polishing load is preferably 20 kPa or less, more preferably 18 kPa or less, and further preferably 16 kPa or less. Thereby, generation | occurrence | production of a scratch can be suppressed. Therefore, in the polishing step using the polishing liquid composition of the present invention, the polishing load is preferably 5.9 to 20 kPa, more preferably 6.9 to 18 kPa, and further preferably 7.5 to 16 kPa. The polishing load can be adjusted by applying air pressure or weight to at least one of the surface plate and the substrate to be polished.

[研磨液組成物の供給]
本発明の研磨液組成物を用いた研磨工程における本発明の研磨液組成物の供給速度は、スクラッチ低減の観点から、被研磨基板1cm2当たり、好ましくは0.05〜15mL/分であり、より好ましくは0.06〜10mL/分であり、さらに好ましくは0.07〜1mL/分、さらにより好ましくは0.08〜0.5mL/分、さらにより好ましくは0.12〜0.5mL/分である。
[Supply of polishing liquid composition]
From the viewpoint of reducing scratches, the supply rate of the polishing composition of the present invention in the polishing step using the polishing composition of the present invention is preferably 1 to 15 mL / min per 1 cm 2 of the substrate to be polished. More preferably 0.06 to 10 mL / min, still more preferably 0.07 to 1 mL / min, even more preferably 0.08 to 0.5 mL / min, even more preferably 0.12 to 0.5 mL / min. Minutes.

本発明の研磨液組成物を研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本発明の研磨液組成物となる。   As a method for supplying the polishing composition of the present invention to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned. When supplying the polishing composition to the polishing machine, in addition to the method of supplying one component containing all the components, considering the stability of the polishing composition, etc., it is divided into a plurality of compounding component liquids, Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition of the present invention.

[被研磨基板]
本発明において好適に使用される被研磨基板の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金や、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質や、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料や、ポリイミド樹脂等の樹脂等が挙げられる。中でも、アルミニウム、ニッケル、タングステン、銅等の金属や、これらの金属を主成分とする合金を含有する被研磨基板が好適である。特にNi−Pメッキされたアルミニウム合金基板や、結晶化ガラス、強化ガラス等のガラス基板に適しており、中でもNi−Pメッキされたアルミニウム合金基板が適している。
[Polished substrate]
Examples of the material of the substrate to be polished preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, or an alloy containing these metals as a main component is preferable. It is particularly suitable for Ni-P plated aluminum alloy substrates and glass substrates such as crystallized glass and tempered glass, among which Ni-P plated aluminum alloy substrates are suitable.

また、本発明によれば、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板を提供できるため、高度の表面平滑性が要求される垂直磁気記録方式の磁気ディスク基板の研磨に好適に用いることができる。   Further, according to the present invention, in addition to scratching of the substrate surface after polishing, a magnetic disk substrate with reduced nano-projection defects on the substrate surface after polishing can be provided, so that a high degree of surface smoothness is required. It can be suitably used for polishing a magnetic recording type magnetic disk substrate.

上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2〜95mm程度であり、その厚みは例えば0.5〜2mm程度である。   There is no restriction | limiting in particular in the shape of the said to-be-polished substrate, For example, what is necessary is just the shape which has planar parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens. Of these, a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, about 2 to 95 mm, and the thickness is, for example, about 0.5 to 2 mm.

[研磨方法]
本発明は、その他の態様として、上述した研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨することを含む被研磨基板の研磨方法に関する。本発明の研磨方法を使用することにより、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のナノ突起欠陥が低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板が好ましくは提供される。本発明の研磨方法における前記被研磨基板としては、上述のとおり、磁気ディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられ、なかでも、垂直磁気記録方式用磁気ディスク基板の製造に用いる基板が好ましい。なお、具体的な研磨の方法及び条件は、上述のとおりとすることができる。
[Polishing method]
As another aspect, the present invention relates to a method for polishing a substrate to be polished, which comprises polishing the substrate to be polished while bringing the above-mentioned polishing composition into contact with a polishing pad. By using the polishing method of the present invention, in addition to scratches on the polished substrate surface, a magnetic disk substrate with reduced nanoprojection defects on the polished substrate surface, particularly a perpendicular magnetic recording type magnetic disk substrate is preferred. Is provided. Examples of the substrate to be polished in the polishing method of the present invention include those used in the manufacture of a magnetic disk substrate and a magnetic recording medium substrate as described above. A substrate used for production is preferred. The specific polishing method and conditions can be as described above.

<実施例1〜31、比較例1〜6:研磨液組成物の調製及び研磨>
下記のように研磨液組成物を調製して被研磨基板の研磨を行い、研磨後の基板のスクラッチ及びナノ突起欠陥を評価した。評価結果を下記表3に示す。使用した重合体、研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。
<Examples 1-31, Comparative Examples 1-6: Preparation and Polishing of Polishing Liquid Composition>
The polishing liquid composition was prepared as described below to polish the substrate to be polished, and scratches and nanoprotrusion defects of the substrate after polishing were evaluated. The evaluation results are shown in Table 3 below. The polymer used, the method for preparing the polishing composition, the method for measuring each parameter, the polishing conditions (polishing method) and the evaluation method are as follows.

[重合体]
研磨液組成物に使用したスルホン酸基及びカルボン酸基の少なくとも一方を有する重合体は下記の重合体A−重合体F6である。重合体とその重量平均分子量を下記表1に示す。なお、これらの重合体の重量平均分子量は下記の条件で測定した。
重合体A:アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、モル比90/10、東亞合成社製);
重合体B:アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、モル比95/5、東亞合成社製);
重合体C:スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比60/40、下記方法により合成);
重合体D1:スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比50/50、下記方法により合成);
重合体D2:スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比50/50、下記方法により合成);
重合体E:スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比30/70、下記方法により合成);
重合体F1:ポリアクリル酸(PAA、東亞合成社製);
重合体F2:ポリアクリル酸(PAA、東亞合成社製);
重合体F3:ポリアクリル酸(PAA、東亞合成社製);
重合体F4:ポリアクリル酸(PAA、日本触媒社製);
重合体F5:ポリアクリル酸(PAA、花王社製);
重合体F6:ポリアクリル酸(PAA、日本触媒社製)
[Polymer]
The polymer having at least one of a sulfonic acid group and a carboxylic acid group used in the polishing liquid composition is the following polymer A-polymer F6. The polymer and its weight average molecular weight are shown in Table 1 below. In addition, the weight average molecular weight of these polymers was measured on condition of the following.
Polymer A: acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, molar ratio 90/10, manufactured by Toagosei Co., Ltd.);
Polymer B: Acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, molar ratio 95/5, manufactured by Toagosei Co., Ltd.);
Polymer C: Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 60/40, synthesized by the following method);
Polymer D1: Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, synthesized by the following method);
Polymer D2: Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, synthesized by the following method);
Polymer E: Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 30/70, synthesized by the following method);
Polymer F1: polyacrylic acid (PAA, manufactured by Toagosei Co., Ltd.);
Polymer F2: polyacrylic acid (PAA, manufactured by Toagosei Co., Ltd.);
Polymer F3: polyacrylic acid (PAA, manufactured by Toagosei Co., Ltd.);
Polymer F4: polyacrylic acid (PAA, manufactured by Nippon Shokubai Co., Ltd.);
Polymer F5: polyacrylic acid (PAA, manufactured by Kao Corporation);
Polymer F6: polyacrylic acid (PAA, manufactured by Nippon Shokubai Co., Ltd.)

〔スチレン/スチレンスルホン酸共重合体ナトリウム塩の製造方法〕
1Lの四つ口フラスコに、イソプロピルアルコール180g(キシダ化学製)、イオン交換水270g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩7.2g(V−50、和光純薬工業製)を反応開始剤として、83±2℃で2時間かけて滴下重合し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、白色粉の重合体Eを得た。重合体C、D1及びD2は、単量体種及び単量体比率を変更して前記記載の方法にて重合を行った。
[Method for producing sodium salt of styrene / styrene sulfonic acid copolymer]
Into a 1 L four-necked flask, 180 g of isopropyl alcohol (manufactured by Kishida Chemical), 270 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries) were charged. Using 7.2 g of azobis (2-methylpropionamidine) dihydrochloride (V-50, manufactured by Wako Pure Chemical Industries, Ltd.) as a reaction initiator, the polymerization was carried out dropwise at 83 ± 2 ° C. over 2 hours, followed by aging for 2 hours. Thereafter, the solvent was removed under reduced pressure to obtain a white powder polymer E. Polymers C, D1, and D2 were polymerized by the above-described method while changing the monomer species and the monomer ratio.

[重合体の重量平均分子量の測定方法]
上記の重合体の重量平均分子量は、下記測定条件におけるゲルパーミエーションクロマトグラフィー(GPC)法により測定した。なお、各重合体の重量平均分子量は下記表1及び3のとおりである。
[Method for measuring weight average molecular weight of polymer]
The weight average molecular weight of the polymer was measured by a gel permeation chromatography (GPC) method under the following measurement conditions. The weight average molecular weight of each polymer is as shown in Tables 1 and 3 below.

〔St/NaSSのGPC条件〕
カラム :TSKgel α−M+TSKgel α−M(東ソー製)
ガードカラム:TSKguardcolumn α(東ソー製)
溶離液 :60mmol/L リン酸,50mmol/L LiBr/DMF
温度 :40℃
流速 :1.0mL/min
試料サイズ:3mg/mL
検出器 :RI
換算標準 :ポリスチレン(分子量(Mw):590、3600、3万、9.64万、92.9万、842万(東ソー、西尾工業、chemco製))
[GPC conditions for St / NaSS]
Column: TSKgel α-M + TSKgel α-M (manufactured by Tosoh Corporation)
Guard column: TSK guard column α (Tosoh)
Eluent: 60 mmol / L phosphoric acid, 50 mmol / L LiBr / DMF
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 3 mg / mL
Detector: RI
Conversion standard: Polystyrene (Molecular weight (Mw): 590, 3600, 30,000, 96,400, 929,000, 842,000 (Tosoh, Nishio Kogyo, chemco))

〔PAA及びAA/AMPSのGPC条件〕
カラム :TSKgel G4000PWXL+TSKgel G2500PWXL(東ソー製)
ガードカラム:TSKguardcolumn PWXL(東ソー製)
溶離液 :0.2Mリン酸バッファー/CH3CN=9/1(体積比)
温度 :40℃
流速 :1.0mL/min
試料サイズ:5mg/mL
検出器 :RI
換算標準 :ポリアクリル酸Na(分子量(Mp):11.5万、2.8万、4100、1250(創和科学及びAmerican Polymer Standards Corp.製))
[GPC conditions for PAA and AA / AMPS]
Column: TSKgel G4000PWXL + TSKgel G2500PWXL (manufactured by Tosoh Corporation)
Guard column: TSK guard column PWXL (manufactured by Tosoh Corporation)
Eluent: 0.2 M phosphate buffer / CH 3 CN = 9/1 (volume ratio)
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 5 mg / mL
Detector: RI
Conversion standard: Polyacrylic acid Na (Molecular weight (Mp): 115,000, 288,000, 4100, 1250 (manufactured by Soka Kagaku and American Polymer Standards Corp.))

[研磨液組成物の調製方法]
下記に示す組成で、複素環芳香族化合物、上記の重合体、コロイダルシリカ(シリカa〜c、いずれも日揮触媒化成社製、下記表2)、硫酸、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)、過酸化水素水(酸化剤)等をイオン交換水に添加し、これらを混合することにより、実施例1〜31及び比較例1〜6の研磨液組成物を調製した。具体的には、研磨液組成物中の各成分の濃度は、以下のように調製した。
[Method for preparing polishing liquid composition]
In the composition shown below, a heterocyclic aromatic compound, the above-mentioned polymer, colloidal silica (silica ac), all manufactured by JGC Catalysts & Chemicals, Inc., Table 2 below, sulfuric acid, HEDP (1-hydroxyethylidene-1,1 -Diphosphonic acid), hydrogen peroxide water (oxidant), etc. were added to ion-exchanged water, and these were mixed to prepare the polishing liquid compositions of Examples 1-31 and Comparative Examples 1-6. Specifically, the concentration of each component in the polishing composition was prepared as follows.

実施例1〜31:複素環芳香族化合物(表3記載の濃度)、重合体0.05重量%、シリカ粒子5重量%、硫酸0.5重量%、HEDP0.1重量%、過酸化水素0.5重量%(pH1.4〜1.5);
比較例1:複素環芳香族化合物(表3記載の濃度)、シリカ粒子5重量%、オルトリン酸2重量%、K2HPO4 0.8重量%、過酸化水素0.62重量%(pH2);
比較例2:重合体0.05重量%、シリカ粒子10重量%、EDTA−Fe2.5重量%(pH8〜9);
比較例3:重合体0.05重量%、シリカ粒子5重量%、オルトリン酸2重量%、K2HPO4 0.8重量%、過酸化水素0.62重量%(pH2);
比較例4:重合体0.05重量%、シリカ粒子5重量%、硫酸0.5重量%、HEDP0.1重量%、過酸化水素0.5重量%(pH1.4〜1.5);
比較例5:複素環芳香族化合物(表3記載の濃度)、シリカ粒子5重量%、硫酸0.5重量%、HEDP0.1重量%、過酸化水素0.5重量%(pH1.4〜1.5);
比較例6:重合体0.05重量%、シリカ粒子5重量%、硫酸0.5重量%、HEDP0.1重量%、過酸化水素0.5重量%(pH1.4〜1.5)
Examples 1-31: Heterocyclic aromatic compounds (concentrations listed in Table 3), polymer 0.05% by weight, silica particles 5% by weight, sulfuric acid 0.5% by weight, HEDP 0.1% by weight, hydrogen peroxide 0 .5 wt% (pH 1.4-1.5);
Comparative Example 1: Heterocyclic aromatic compound (concentration shown in Table 3), silica particles 5% by weight, orthophosphoric acid 2% by weight, K 2 HPO 4 0.8% by weight, hydrogen peroxide 0.62% by weight (pH 2) ;
Comparative Example 2: 0.05% by weight of polymer, 10% by weight of silica particles, 2.5% by weight of EDTA-Fe (pH 8-9);
Comparative Example 3: 0.05% by weight of polymer, 5% by weight of silica particles, 2% by weight of orthophosphoric acid, 0.8% by weight of K 2 HPO 4 , 0.62% by weight of hydrogen peroxide (pH 2);
Comparative Example 4: 0.05 wt% polymer, 5 wt% silica particles, 0.5 wt% sulfuric acid, 0.1 wt% HEDP, 0.5 wt% hydrogen peroxide (pH 1.4-1.5);
Comparative Example 5: Heterocyclic aromatic compound (concentration shown in Table 3), silica particles 5% by weight, sulfuric acid 0.5% by weight, HEDP 0.1% by weight, hydrogen peroxide 0.5% by weight (pH 1.4-1) .5);
Comparative Example 6: 0.05 wt% polymer, 5 wt% silica particles, 0.5 wt% sulfuric acid, 0.1 wt% HEDP, 0.5 wt% hydrogen peroxide (pH 1.4-1.5)

なお、使用したシリカa〜cの物性値(比表面積SA1及びSA2、平均粒径S2、表面粗度、真球率、並びにΔCV値)は下記方法で測定し、その結果は下記表2に示す。   The physical properties (specific surface areas SA1 and SA2, average particle size S2, surface roughness, sphericity, and ΔCV value) of the silicas a to c used were measured by the following methods, and the results are shown in Table 2 below. .

〔ナトリウム滴定法によりシリカ粒子の比表面積(SA1)を得る方法〕
1)SiO2として1.5gに相当するコロイダルシリカを含む試料をビーカーに採取して恒温反応槽(25℃)に移し、純水を加えて液量を90mLにする。以下の操作は、25℃に保持した恒温反応槽中にて行う。
2)pH3.6〜3.7になるように0.1モル/L塩酸溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mLに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)下記式(1)からSiO21.5g当たりのpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(mL)を求め、次の〔a〕〜〔b〕に従って比表面積SA1[m2/g]を求める。
〔a〕下記式(2)にて、SA1の値を求め、その値が80〜350m2/gの範囲にある場合は、その値をSA1とする。
〔b〕下記式(2)によるSA1の値が350m2/gを超える場合は、改めて下記式(3)にて、SA1を求め、その値をSA1とする。
V=(A×f×100×1.5)/(W×C) ・・・(1)
SA1=29.0V−28 ・・・(2)
SA1=31.8V−28 ・・・(3)
但し、上記式(1)における記号の意味は次の通りである。
A:SiO21.5g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナト
リウム溶液の滴定量(mL)
f:0.1モル/L水酸化ナトリウム溶液の力価
C:試料のSiO2濃度(%)
W:試料採取量(g)
[Method of obtaining specific surface area (SA1) of silica particles by sodium titration method]
1) A sample containing colloidal silica corresponding to 1.5 g as SiO 2 is collected in a beaker and transferred to a constant temperature reaction vessel (25 ° C.), and pure water is added to make the liquid volume 90 mL. The following operation is performed in a constant temperature reaction tank maintained at 25 ° C.
2) A 0.1 mol / L hydrochloric acid solution is added so that the pH is 3.6 to 3.7.
3) Add 30 g of sodium chloride, dilute to 150 mL with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with 0.1 mol / L sodium hydroxide solution, and the titer and pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more. A calibration curve is prepared, where X is the titer of 1 mol / L sodium hydroxide solution and Y is the pH value at that time.
6) The consumption V (mL) of the 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 was determined from the following formula (1), and the following [a] Specific surface area SA1 [m 2 / g] is determined according to ~ [b].
[A] The value of SA1 is calculated by the following formula (2), and when the value is in the range of 80 to 350 m 2 / g, the value is SA1.
[B] When the value of SA1 according to the following formula (2) exceeds 350 m 2 / g, SA1 is obtained again by the following formula (3), and the value is defined as SA1.
V = (A × f × 100 × 1.5) / (W × C) (1)
SA1 = 29.0V−28 (2)
SA1 = 31.8V−28 (3)
However, the meanings of the symbols in the above formula (1) are as follows.
A: Titration of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 (mL)
f: titer of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration of sample (%)
W: Amount of sample collected (g)

〔透過型電子顕微鏡観察によるシリカ粒子の平均粒径(S2)および比表面積(SA2)を求める方法〕
コロイダルシリカを含む試料を、透過型電子顕微鏡(TEM)商品名「JEM−2000FX」(80kV、1〜5万倍、日本電子社製)により当該製造業者が添付した説明書に従って試料を観察し、TEM像を写真撮影する。この写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF ver.3.6」(販売元:三谷商事)を用いて個々のシリカ粒子の円相当径を求め、それを粒子径とする。このようにして、1000個以上のシリカ粒子の粒子径を求めた後、その平均値を算出し、透過型電子顕微鏡観察により測定される平均粒径(S2)とする。次に、上記にて求められた平均粒径(S2)の値を下記式(5)に代入し、比表面積(SA2)を得る。
SA2=6000/(S2×ρ) ・・・(5) (ρ:試料の密度)
ρ:2.2(コロイダルシリカ)
[Method for obtaining average particle diameter (S2) and specific surface area (SA2) of silica particles by transmission electron microscope observation]
A sample containing colloidal silica is observed according to the instructions attached by the manufacturer using a transmission electron microscope (TEM) trade name “JEM-2000FX” (80 kV, 1 to 50,000 times, manufactured by JEOL Ltd.) Take a TEM image. This photograph is taken into a personal computer as image data by a scanner, and an equivalent circle diameter of each silica particle is obtained using analysis software “WinROOF ver. 3.6” (distributor: Mitani Corp.), which is used as the particle diameter. Thus, after calculating | requiring the particle diameter of 1000 or more silica particles, the average value is computed and it is set as the average particle diameter (S2) measured by transmission electron microscope observation. Next, the value of the average particle diameter (S2) obtained above is substituted into the following formula (5) to obtain the specific surface area (SA2).
SA2 = 6000 / (S2 × ρ) (5) (ρ: density of sample)
ρ: 2.2 (Colloidal silica)

〔シリカ粒子の表面粗度の測定方法〕
下記に示すとおり、ナトリウム滴定法により測定される比表面積(SA1)及び透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)を得て、それらの比(SA1/SA2)を算出して表面粗度とした。
[Method for measuring surface roughness of silica particles]
As shown below, specific surface area (SA2) converted from specific surface area (SA1) measured by sodium titration method and average particle diameter (S2) measured by transmission electron microscope observation was obtained, and the ratio ( SA1 / SA2) was calculated as the surface roughness.

〔シリカ粒子の真球率の測定方法〕
コロイダルシリカを含む試料を、透過型電子顕微鏡(TEM)商品名「JEM−2000FX」(80kV、1〜5万倍、日本電子社製)により当該製造業者が添付した説明書に従って試料を観察し、TEM像を写真撮影した。この写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF ver.3.6」(販売元:三谷商事)を用いて粒子一個の投影面積(A1)と該粒子の周長を円周とする円の面積(A2)を計測し、前記粒子の投影面積(A1)と前記粒子の周長から求めた面積(A2)との比(A1/A2)を真球率として算出した。なお、下記表2の数値は、100個のシリカ粒子の真球率を求めた後これらの平均値を算出したものである。
[Method for measuring the sphericity of silica particles]
A sample containing colloidal silica is observed according to the instructions attached by the manufacturer using a transmission electron microscope (TEM) trade name “JEM-2000FX” (80 kV, 1 to 50,000 times, manufactured by JEOL Ltd.) A TEM image was taken. This photograph is taken into a personal computer as image data by a scanner, and the projected area (A1) of one particle and the circumference of the particle are defined as the circumference using analysis software “WinROOF ver. 3.6” (distributor: Mitani Corporation). The area (A2) of the circle to be measured was measured, and the ratio (A1 / A2) between the projected area (A1) of the particles and the area (A2) obtained from the circumference of the particles was calculated as the true sphere ratio. In addition, the numerical value of following Table 2 calculates these average values, after calculating | requiring the sphericity rate of 100 silica particles.

〔動的光散乱法で測定されるシリカ粒子の平均粒径、CV90、ΔCV値の測定方法〕
〔平均粒径及びCV90〕
コロイダルシリカと、硫酸と、HEDPと、過酸化水素水とをイオン交換水に添加し、これらを混合することにより、標準試料を作製した。標準試料中におけるコロイダルシリカ、硫酸、HEDP、過酸化水素の含有量は、それぞれ5.0重量%、0.5重量%、0.1重量%、0.4重量%であった。この標準試料を大塚電子社製動的光散乱装置DLS−6500により、同メーカーが添付した説明書に従って、200回積算した際の検出角90度におけるCumulant法によって得られる散乱強度分布の面積が全体の50%となる粒径を求め、シリカ粒子の平均粒径とした。また、検出角90度におけるコロイダルシリカのCV値(CV90)を、上記測定法に従って測定した散乱強度分布における標準偏差を前記平均粒径で除して100をかけた値として算出した。
〔ΔCV値〕
上記CV90の測定法と同様に、検出角30度におけるコロイダルシリカのCV値(CV30)を測定し、CV30からCV90を引いた値を求め、シリカ粒子のΔCV値とした。
(DLS−6500の測定条件)
検出角:90°
Sampling time : 4(μm)
Correlation Channel : 256(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
検出角:30°
Sampling time : 10(μm)
Correlation Channel : 1024(ch)
Correlation Method : TI
Sampling temperature: 26.0(℃)
[Measuring method of average particle diameter, CV90, and ΔCV value of silica particles measured by dynamic light scattering method]
[Average particle size and CV90]
Colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide water were added to ion exchange water, and these were mixed to prepare a standard sample. The contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the standard sample were 5.0% by weight, 0.5% by weight, 0.1% by weight, and 0.4% by weight, respectively. The area of the scattering intensity distribution obtained by the Cumulant method at a detection angle of 90 degrees when this standard sample is integrated 200 times with the dynamic light scattering device DLS-6500 manufactured by Otsuka Electronics Co., Ltd. according to the instructions attached by the manufacturer. The average particle size of the silica particles was determined. Further, the CV value (CV90) of colloidal silica at a detection angle of 90 degrees was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the average particle diameter and multiplying by 100.
[ΔCV value]
Similar to the CV90 measurement method, the CV value (CV30) of colloidal silica at a detection angle of 30 degrees was measured, and the value obtained by subtracting CV90 from CV30 was determined to be the ΔCV value of the silica particles.
(Measurement conditions for DLS-6500)
Detection angle: 90 °
Sampling time: 4 (μm)
Correlation Channel: 256 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)
Detection angle: 30 °
Sampling time: 10 (μm)
Correlation Channel: 1024 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)

[研磨]
上記のように調製した実施例1〜31及び比較例1〜6の研磨液組成物を用いて、以下に示す研磨条件にて下記被研磨基板を研磨した。次いで、研磨された基板のナノ突起欠陥、及びスクラッチを以下に示す条件に基づいて測定し、評価を行った。結果を下記表3に示す。下記表3に示すデータは、各実施例及び各比較例につき4枚の被研磨基板を研磨した後、各被研磨基板の両面について測定し、4枚(表裏合わせて計8面)のデータの平均とした。
[Polishing]
Using the polishing liquid compositions of Examples 1 to 31 and Comparative Examples 1 to 6 prepared as described above, the following substrate to be polished was polished under the following polishing conditions. Next, the nanoprojection defects and scratches on the polished substrate were measured and evaluated based on the following conditions. The results are shown in Table 3 below. The data shown in the following Table 3 is obtained by polishing each of the substrates to be polished for each example and each comparative example, and measuring both surfaces of each substrate to be polished. Averaged.

[被研磨基板]
被研磨基板としては、Ni−Pメッキされたアルミニウム合金基板を予めアルミナ研磨材を含有する研磨液組成物で粗研磨した基板を用いた。なお、この被研磨基板は、厚さが1.27mm、外径が95mm、内径が25mmであり、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが1nm、長波長うねり(波長0.4〜2mm)の振幅は2nm、短波長うねり(波長50〜400μm)の振幅は2nmであった。
[Polished substrate]
As the substrate to be polished, a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni-P in advance with a polishing composition containing an alumina abrasive was used. The substrate to be polished has a thickness of 1.27 mm, an outer diameter of 95 mm, an inner diameter of 25 mm, a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM), 1 nm, and a long wavelength. The amplitude of the undulation (wavelength 0.4 to 2 mm) was 2 nm, and the amplitude of the short wavelength undulation (wavelength 50 to 400 μm) was 2 nm.

[研磨条件]
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:フジボウ社製スエードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cm2あたりの供給速度:0.072mL/分)
下定盤回転数:32.5rpm
研磨荷重:7.9kPa
研磨時間:8分間
[Polishing conditions]
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: Fujibo's suede type (thickness 0.9mm, average hole diameter 30μm)
Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of polishing substrate: 0.072 mL / min)
Lower platen rotation speed: 32.5 rpm
Polishing load: 7.9 kPa
Polishing time: 8 minutes

[研磨速度の測定方法]
研磨前後の各基板の重さを重量計(Sartorius社製「BP−210S」)を用いて測定し、各基板の重量変化を求め、10枚の平均値を重量減少量とし、それを研磨時間で割った値を重量減少速度とした。この重量減少速度を下記の式に導入し、研磨速度(μm/min)に変換した。
研磨速度(μm/min)=重量減少速度(g/min)/基板片面面積(mm2)/Ni−Pメッキ密度(g/cm3)×106
(基板片面面積:6597mm2、Ni−Pメッキ密度:7.99g/cm3として算出)
[Measurement method of polishing rate]
The weight of each substrate before and after polishing was measured using a weigh scale ("BP-210S" manufactured by Sartorius) to determine the weight change of each substrate, and the average value of 10 substrates was used as the weight reduction amount, which was used as the polishing time. The value obtained by dividing by was used as the weight reduction rate. This weight reduction rate was introduced into the following formula and converted into a polishing rate (μm / min).
Polishing rate (μm / min) = weight reduction rate (g / min) / substrate single-sided area (mm 2 ) / Ni-P plating density (g / cm 3 ) × 10 6
(Substrate single-sided area: 6597 mm 2 , Ni—P plating density: calculated as 7.9 g / cm 3 )

[ナノ突起欠陥及びスクラッチの評価方法]
測定機器:KLA Tencor社製、OSA6100
評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してナノ突起欠陥及びスクラッチを測定した。その4枚の基板の各々両面にあるスクラッチ数(本)の合計を8で除して、基板面当たりのナノ突起欠陥及びスクラッチの数を算出した。その結果を、下記表3に、比較例1を100とした相対値として示す。
[Evaluation method of nanoprotrusion defects and scratches]
Measuring instrument: OSA6100, manufactured by KLA Tencor
Evaluation: Four substrates were randomly selected from the substrates put in the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure nanoprotrusion defects and scratches. The total number of scratches (lines) on each of the four substrates was divided by 8 to calculate the number of nanoprotrusion defects and scratches per substrate surface. The results are shown in Table 3 below as relative values with Comparative Example 1 taken as 100.

Figure 0005769284
Figure 0005769284

Figure 0005769284
Figure 0005769284

Figure 0005769284
Figure 0005769284

上記表3に示すように、実施例1〜31の研磨液組成物を用いると、比較例1〜6に比べ、研磨後の基板のスクラッチに加えて、基板表面のナノ突起を低減できた。   As shown in Table 3 above, when the polishing liquid compositions of Examples 1 to 31 were used, in addition to scratches on the substrate after polishing, nanoprojections on the substrate surface could be reduced as compared with Comparative Examples 1 to 6.

<実施例32〜33、比較例7:保存試験の評価方法>
300cm3のポリ容器に、硫酸3g、過酸化水素3g、共重合体0.5g、イオン交換水93.5gを混合して研磨液組成物を調製し、80℃で1週間保存した。保存前後での重量平均分子量を測定し、及び、被研磨基板の研磨を行った。
<Examples 32-33, Comparative Example 7: Evaluation Method of Storage Test>
A polishing composition was prepared by mixing 3 g of sulfuric acid, 3 g of hydrogen peroxide, 0.5 g of copolymer, and 93.5 g of ion-exchanged water in a 300 cm 3 plastic container, and stored at 80 ° C. for 1 week. The weight average molecular weight before and after storage was measured, and the substrate to be polished was polished.

実施例32としてスチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比33/67)の共重合体を使用し、実施例33としてメタクリル酸メチル/スチレンスルホン酸共重合体ナトリウム塩(MMA/NaSS、モル比43/57)の共重合体を使用し、比較例7として主鎖中に二重結合を有するCS1106(スチレン/イソプレンスルホン酸Na共重合体 JSR社製)を使用した。なお、実施例32及び33の重合体は、単量体種及び単量体比率を変更して前記重合体Eの調製方法と同様に合成した。被研磨基板、研磨条件、分子量の測定方法、並びにスクラッチ及びナノ突起数の測定方法も前述と同様に行った。分子量測定結果、並びに研磨後のスクラッチ及びナノ突起数を下記表4に、各実験例の保存前を100とした相対値で示す。   As Example 32, a copolymer of styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 33/67) was used, and as Example 33, methyl methacrylate / styrene sulfonic acid copolymer sodium salt ( The copolymer of MMA / NaSS (molar ratio 43/57) was used, and CS1106 (styrene / isoprenesulfonic acid Na copolymer JSR) having a double bond in the main chain was used as Comparative Example 7. In addition, the polymers of Examples 32 and 33 were synthesized in the same manner as the preparation method of the polymer E by changing the monomer species and the monomer ratio. The substrate to be polished, the polishing conditions, the molecular weight measurement method, and the scratch and nanoprojection number measurement method were also performed in the same manner as described above. The molecular weight measurement results and the number of scratches and nanoprotrusions after polishing are shown in the following Table 4 as relative values with 100 before storage of each experimental example.

Figure 0005769284
Figure 0005769284

上記表4に示すとおり、実施例32及び33では、保存前後で共重合体の分子量低下はほとんどみられず、研磨結果はいずれも良好であった。一方、主鎖中に二重結合を有する共重合体を用いた比較例7では、保存後に共重合体の分子量低下を生じ、保存後の研磨実験では、スクラッチ数、ナノ突起欠陥数がともに増加した。   As shown in Table 4 above, in Examples 32 and 33, there was almost no decrease in the molecular weight of the copolymer before and after storage, and the polishing results were good. On the other hand, in Comparative Example 7 using a copolymer having a double bond in the main chain, the molecular weight of the copolymer decreased after storage, and in the polishing experiment after storage, both the number of scratches and the number of nanoprotrusion defects increased. did.

<製造例1及び2:単量体の転化率の評価>
各反応時間における、未反応のスチレンもしくは、スチレンスルホン酸Na量を下記条件にて測定した。経時でのスチレンスルホン酸Naの転化率をCss、スチレンの転化率をCstとし、スチレンの転化率(Cst)に対するスチレンスルホン酸Naの転化率の割合(Css/Cst)が1.0であれば、転化率は同じであることを示し、1.0より大きい場合は、スチレンスルホン酸Naの転化率が、スチレンよりも高いことを示す。また、1.0よりも小さい場合は、スチレンの転化率が、スチレンスルホン酸Naよりも転化率が高いことを示す。以下の製造例1、2で製造した共重合体のCss/Cstと、研磨評価結果を下記表5に示す。
<Production Examples 1 and 2: Evaluation of monomer conversion>
The amount of unreacted styrene or Na styrenesulfonate in each reaction time was measured under the following conditions. If the conversion rate of Na styrenesulfonate over time is Css, the conversion rate of styrene is Cst, and the ratio of the conversion rate of Na styrenesulfonate (Css / Cst) to the conversion rate of styrene (Cst) is 1.0 The conversion ratio is the same. When the conversion ratio is larger than 1.0, the conversion ratio of Na styrenesulfonate is higher than that of styrene. Moreover, when it is smaller than 1.0, it indicates that the conversion rate of styrene is higher than that of Na styrenesulfonate. Table 5 below shows the Css / Cst of the copolymers produced in Production Examples 1 and 2 below and the polishing evaluation results.

[未反応スチレンの定量法]
10mlメスフラスコにポリマーを400mgとり、酢酸メチルでメスアップ後、0.45μmPTFEフィルターで濾過後、以下のGC条件にて、未反応のスチレンを算出した。
〔GC条件〕
カラム:HP−FFAP サイズ30m×0.530mm 1.00μm (Agilent Technologies社製)
カラム流量:1.0mL/min
検出器:FID
注入口温度:220℃
試料サイズ:40mg/mL
オーブン温度:35℃(10min)→10℃/min→220℃
[Quantitative determination of unreacted styrene]
400 mg of the polymer was taken in a 10 ml volumetric flask, diluted with methyl acetate, filtered through a 0.45 μm PTFE filter, and unreacted styrene was calculated under the following GC conditions.
[GC condition]
Column: HP-FFAP size 30 m × 0.530 mm 1.00 μm (manufactured by Agilent Technologies)
Column flow rate: 1.0 mL / min
Detector: FID
Inlet temperature: 220 ° C
Sample size: 40 mg / mL
Oven temperature: 35 ° C. (10 min) → 10 ° C./min→220° C.

[未反応スチレンスルホン酸Naの定量法]
10mlメスフラスコにポリマー40mgとり、0.2Mリン酸バッファーでメスアップ後、以下のHPLC条件にて、未反応のスチレンスルホン酸Naを算出した。
〔HPLC条件〕
カラム:Lichro CART 250−4.0 RP−18(5μm) メルク社製
カラム流量:1.0mL/min
検出:UV210nm
試料サイズ:4.0mg/mL
溶離液:0.2Mリン酸バッファー/メタノール=60/40vol%
[Quantification method of unreacted sodium styrenesulfonate]
After taking 40 mg of polymer in a 10 ml volumetric flask and measuring up with 0.2 M phosphate buffer, unreacted sodium styrenesulfonate was calculated under the following HPLC conditions.
[HPLC conditions]
Column: Licro CART 250-4.0 RP-18 (5 μm) Merck column flow rate: 1.0 mL / min
Detection: UV210nm
Sample size: 4.0 mg / mL
Eluent: 0.2 M phosphate buffer / methanol = 60/40 vol%

製造例1
1Lの四つ口フラスコに、イソプロピルアルコール91g(キシダ化学製)、イオン交換水137g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、83℃まで昇温し、過硫酸アンモニウム6.6g(和光純薬工業製)を反応開始剤として投入して2時間重合し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、スチレン/スチレンスルホン酸ナトリウム共重合体(33/67モル%)を得た。この共重合体の重量平均分子量は16000であった。なお、製造例1では、過硫酸アンモニウムを投入した時点から、5分後、20分後、60分後にサンプリングを行い、未反応モノマー量を前述の方法で測定した。
Production Example 1
A 1 L four-necked flask was charged with 91 g of isopropyl alcohol (manufactured by Kishida Chemical), 137 g of ion exchange water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), and the temperature was raised to 83 ° C. Then, 6.6 g of ammonium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a reaction initiator, polymerized for 2 hours, further aged for 2 hours, and then the solvent was removed under reduced pressure to obtain styrene / styrenesulfone. A sodium acid copolymer (33/67 mol%) was obtained. The weight average molecular weight of this copolymer was 16000. In Production Example 1, sampling was performed 5 minutes, 20 minutes, and 60 minutes after the ammonium persulfate was added, and the amount of unreacted monomer was measured by the method described above.

製造例2
1Lの四つ口フラスコに、イソプロピルアルコール230g(キシダ化学製)、イオン交換水345g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、過硫酸アンモニウム6.6g(和光純薬工業製)を反応開始剤として投入し、65±5℃で6時間かけて全反応液の70重量%を滴下重合し、さらに2時間熟成を行い、その後、減圧下で溶剤を除去することで、スチレン/スチレンスルホン酸ナトリウム共重合体(33/67モル%)を得た。この共重合体の重量平均分子量は11000であった。製造例2では、滴下を開始した時点から、5分後、20分後、60分後にサンプリングを行い、未反応モノマー量を前述の方法で測定した。
Production Example 2
A 1 L four-necked flask is charged with 230 g of isopropyl alcohol (manufactured by Kishida Chemical), 345 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), and 6.6 g of ammonium persulfate. (Wako Pure Chemical Industries, Ltd.) was added as a reaction initiator, 70% by weight of the total reaction solution was dropped and polymerized at 65 ± 5 ° C. over 6 hours, and further aged for 2 hours, and then the solvent was removed under reduced pressure. By removing, a styrene / sodium styrenesulfonate copolymer (33/67 mol%) was obtained. The copolymer had a weight average molecular weight of 11,000. In Production Example 2, sampling was performed 5 minutes, 20 minutes, and 60 minutes after the start of dropping, and the amount of unreacted monomer was measured by the method described above.

製造例1及び2の共重合体を用いて研磨実験を行った。研磨液組成は、製造例1及び2の共重合体を用いた以外は前述の実施例3と同様とした。被研磨基板、研磨条件、分子量の測定方法、並びにスクラッチ及びナノ突起数の測定方法も前述と同様に行った。スクラッチ及びナノ突起数の測定結果を、前述の比較例1を100とした相対値で示す。   Polishing experiments were conducted using the copolymers of Production Examples 1 and 2. The polishing composition was the same as in Example 3 except that the copolymers of Production Examples 1 and 2 were used. The substrate to be polished, the polishing conditions, the molecular weight measurement method, and the scratch and nanoprojection number measurement method were also performed in the same manner as described above. The measurement results of the number of scratches and nanoprotrusions are shown as relative values with the above Comparative Example 1 as 100.

Figure 0005769284
Figure 0005769284

上記表5に示すとおり、モノマー転化率比を1.0に調整して製造された共重合体を用いて基板を研磨した場合、スクラッチ及びナノ突起数が更に低減できることが示された。   As shown in Table 5 above, it was shown that the number of scratches and nanoprotrusions could be further reduced when the substrate was polished using a copolymer prepared by adjusting the monomer conversion ratio to 1.0.

本発明によれば、例えば、高記録密度化に適した磁気ディスク基板を提供できる。
According to the present invention, for example, a magnetic disk substrate suitable for increasing the recording density can be provided.

Claims (6)

シリカ粒子と、複素環芳香族化合物と、スルホン酸基及びカルボン酸基の少なくとも一方を有する重合体と、酸とを含有し、
前記複素環芳香族化合物が、ピラジン、ピリダジン、3,5−ジメチルピラゾール、ピラゾール、2−メチルイミダゾール、2−エチルイミダゾール、イミダゾール、ベンゾイミダゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、1H−テトラゾール、1H−ベンゾトリアゾール及び1H−トリルトリアゾールからなる群から選択されるものであり、
前記重合体が、ポリアクリル酸、(メタ)アクリル酸/2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体及びスチレン/スチレンスルホン酸共重合体からなる群から選択される一種以上の重合体であり、
磁気ディスク基板がNi−Pメッキされたアルミニウム合金基板である、磁気ディスク基板用研磨液組成物。
Containing silica particles, a heterocyclic aromatic compound, a polymer having at least one of a sulfonic acid group and a carboxylic acid group, and an acid,
The heterocyclic aromatic compound is pyrazine, pyridazine, 3,5-dimethylpyrazole, pyrazole, 2-methylimidazole, 2-ethylimidazole, imidazole, benzimidazole, 1,2,3-triazole, 1,2,4- Is selected from the group consisting of triazole, 1H-tetrazole, 1H-benzotriazole and 1H-tolyltriazole,
The polymer is one or more selected from the group consisting of polyacrylic acid, (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropane sulfonic acid copolymer and styrene / styrene sulfonic acid copolymer. A polymer,
A polishing composition for a magnetic disk substrate , wherein the magnetic disk substrate is an Ni-P plated aluminum alloy substrate .
前記重合体が、(メタ)アクリル酸/2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体及びスチレン/スチレンスルホン酸共重合体からなる群から選択される一種以上の重合体である、請求項1記載の磁気ディスク基板用研磨液組成物。 The polymer is one or more polymers selected from the group consisting of (meth) acrylic acid / 2- (meth) acrylamide-2-methylpropanesulfonic acid copolymer and styrene / styrenesulfonic acid copolymer. The polishing composition for a magnetic disk substrate according to claim 1. 前記重合体が、アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体及びスチレン/スチレンスルホン酸共重合体からなる群から選択される一種以上の重合体である、請求項1又は2に記載の磁気ディスク基板用研磨液組成物。 The polymer, A acrylic acid / 2 - which is one or more polymers selected from the group consisting of acrylamide-2-methylpropane sulfonic acid copolymer and styrene / styrene sulfonic acid copolymer, according to claim 1 Or 3. a polishing composition for a magnetic disk substrate according to 2; 重合体の重量平均分子量が1000〜100000である、請求項1から3いずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to any one of claims 1 to 3, wherein the polymer has a weight average molecular weight of 1,000 to 100,000. シリカ粒子が下記(a)及び(b)の条件を満たす、請求項1から4のいずれかに記載の磁気ディスク基板用研磨液組成物。
(a)透過型電子顕微鏡観察により測定される平均粒径(S2)が1〜40nm、
(b)動的光散乱法により検出角30度で測定される粒径の標準偏差を動的光散乱法により検出角30度で測定される平均粒径で除して100を掛けたCV(変動係数)の値(CV30)と、動的光散乱法により検出角90度で測定される粒径の標準偏差を動的光散乱法により検出角90度で測定される平均粒径で除して100を掛けたCVの値(CV90)との差ΔCV(ΔCV=CV30−CV90)が0〜10%。
The polishing composition for a magnetic disk substrate according to any one of claims 1 to 4, wherein the silica particles satisfy the following conditions (a) and (b).
(A) The average particle diameter (S2) measured by observation with a transmission electron microscope is 1 to 40 nm,
(B) CV (100) obtained by dividing the standard deviation of the particle diameter measured at a detection angle of 30 degrees by the dynamic light scattering method by the average particle diameter measured at the detection angle of 30 degrees by the dynamic light scattering method. The coefficient of variation) (CV30) and the standard deviation of the particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method are divided by the average particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method. The difference ΔCV (ΔCV = CV30−CV90) from the CV value (CV90) multiplied by 100 is 0 to 10%.
請求項1から5のいずれかに記載の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。   A method for producing a magnetic disk substrate, comprising the step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to claim 1.
JP2009293184A 2009-01-20 2009-12-24 Polishing liquid composition for magnetic disk substrate Active JP5769284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293184A JP5769284B2 (en) 2009-01-20 2009-12-24 Polishing liquid composition for magnetic disk substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009010102 2009-01-20
JP2009010102 2009-01-20
JP2009293184A JP5769284B2 (en) 2009-01-20 2009-12-24 Polishing liquid composition for magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2010188514A JP2010188514A (en) 2010-09-02
JP5769284B2 true JP5769284B2 (en) 2015-08-26

Family

ID=42815129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293184A Active JP5769284B2 (en) 2009-01-20 2009-12-24 Polishing liquid composition for magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP5769284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312776A (en) * 2017-02-17 2019-10-08 福吉米株式会社 Composition for polishing, its manufacturing method and the grinding method using composition for polishing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045938A (en) * 2009-08-25 2011-03-10 Three M Innovative Properties Co Method of manufacturing baked aggregate, baked aggregate, abradant composition, and abradant article
JP5940270B2 (en) * 2010-12-09 2016-06-29 花王株式会社 Polishing liquid composition
JP5979872B2 (en) * 2011-01-31 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP5979871B2 (en) * 2011-03-09 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP2013080530A (en) * 2011-09-30 2013-05-02 Hoya Corp Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP6168657B2 (en) * 2013-11-14 2017-07-26 花王株式会社 Polishing liquid composition
JP6316680B2 (en) * 2014-06-30 2018-04-25 花王株式会社 Polishing liquid composition for magnetic disk substrate
KR102649676B1 (en) 2017-03-14 2024-03-21 가부시키가이샤 후지미인코퍼레이티드 Polishing composition, method for producing the same, polishing method using the same, and method for producing a substrate
JP7034667B2 (en) * 2017-10-24 2022-03-14 山口精研工業株式会社 Abrasive composition for magnetic disk substrates
JP7083680B2 (en) * 2018-04-05 2022-06-13 花王株式会社 Abrasive liquid composition
JP7373285B2 (en) * 2019-02-08 2023-11-02 株式会社フジミインコーポレーテッド Polishing composition and magnetic disk substrate manufacturing method
TW202244210A (en) 2021-03-24 2022-11-16 日商福吉米股份有限公司 Silicon nitride chemical mechanical polishing slurry with silicon nitride removal rate enhancers and methods of use thereof
WO2024172151A1 (en) * 2023-02-16 2024-08-22 花王株式会社 Polishing liquid composition for magnetic disk substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092011B2 (en) * 1998-04-10 2008-05-28 花王株式会社 Polishing liquid composition
JP4171858B2 (en) * 1999-06-23 2008-10-29 Jsr株式会社 Polishing composition and polishing method
TW499471B (en) * 1999-09-01 2002-08-21 Eternal Chemical Co Ltd Chemical mechanical/abrasive composition for semiconductor processing
JP3768401B2 (en) * 2000-11-24 2006-04-19 Necエレクトロニクス株式会社 Chemical mechanical polishing slurry
JP4667025B2 (en) * 2004-12-03 2011-04-06 日本ミクロコーティング株式会社 Polishing slurry and method
EP1899111A2 (en) * 2005-06-06 2008-03-19 Advanced Technology Materials, Inc. Integrated chemical mechanical polishing composition and process for single platen processing
JP4907317B2 (en) * 2006-11-30 2012-03-28 日揮触媒化成株式会社 Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol
JP2008273780A (en) * 2007-04-27 2008-11-13 Jgc Catalysts & Chemicals Ltd Modified silica-based sol and method for preparing the same
US8609541B2 (en) * 2007-07-05 2013-12-17 Hitachi Chemical Co., Ltd. Polishing slurry for metal films and polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312776A (en) * 2017-02-17 2019-10-08 福吉米株式会社 Composition for polishing, its manufacturing method and the grinding method using composition for polishing
CN110312776B (en) * 2017-02-17 2021-11-30 福吉米株式会社 Polishing composition, method for producing same, and polishing method using polishing composition

Also Published As

Publication number Publication date
JP2010188514A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5769284B2 (en) Polishing liquid composition for magnetic disk substrate
JP5657247B2 (en) Polishing liquid composition
US9070399B2 (en) Polishing liquid composition for magnetic-disk substrate
JP5630992B2 (en) Polishing liquid composition for magnetic disk substrate
WO2010053096A1 (en) Polishing liquid composition for magnetic disk substrate
JP5473544B2 (en) Polishing liquid composition for magnetic disk substrate
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
JP6148858B2 (en) Polishing liquid composition for magnetic disk substrate
JP5940270B2 (en) Polishing liquid composition
JP5437571B2 (en) Polishing fluid kit
JP6251033B2 (en) Polishing liquid composition for magnetic disk substrate
JP5394861B2 (en) Polishing liquid composition for magnetic disk substrate
JP2009172709A (en) Polishing liquid composition for magnetic disk substrate
WO2010074002A1 (en) Polishing liquid composition for magnetic-disk substrate
GB2397068A (en) Polishing composition
JP4462599B2 (en) Polishing liquid composition
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP5571915B2 (en) Polishing liquid composition for magnetic disk substrate
JP5376934B2 (en) Rinse agent composition for magnetic disk substrate
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP6243713B2 (en) Polishing liquid composition
JP5571926B2 (en) Polishing liquid composition for magnetic disk substrate
JP2020119619A (en) Polishing agent composition for magnetic disk substrate
JP5155650B2 (en) Polishing liquid composition
JP2009155466A (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R151 Written notification of patent or utility model registration

Ref document number: 5769284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250