JP2007168034A - Polishing liquid composite for hard disc substrate - Google Patents

Polishing liquid composite for hard disc substrate Download PDF

Info

Publication number
JP2007168034A
JP2007168034A JP2005370535A JP2005370535A JP2007168034A JP 2007168034 A JP2007168034 A JP 2007168034A JP 2005370535 A JP2005370535 A JP 2005370535A JP 2005370535 A JP2005370535 A JP 2005370535A JP 2007168034 A JP2007168034 A JP 2007168034A
Authority
JP
Japan
Prior art keywords
polishing
acid
weight
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005370535A
Other languages
Japanese (ja)
Other versions
JP4753710B2 (en
Inventor
Shigeo Fujii
滋夫 藤井
Kenichi Suenaga
憲一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005370535A priority Critical patent/JP4753710B2/en
Priority to CN 200610163754 priority patent/CN1986717B/en
Priority to GB0625233A priority patent/GB2433515B/en
Priority to TW095147490A priority patent/TWI506621B/en
Priority to MYPI20064713A priority patent/MY154309A/en
Priority to US11/642,676 priority patent/US7780751B2/en
Publication of JP2007168034A publication Critical patent/JP2007168034A/en
Application granted granted Critical
Publication of JP4753710B2 publication Critical patent/JP4753710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing liquid composite for a hard disc substrate containing aluminum oxide particles as abrasive grains and capable of reducing piercing of the aluminum oxide particles on a substrate in manufacturing the hard disc substrate. <P>SOLUTION: This polishing liquid composite for the hard disc substrate contains the aluminum oxide particles and water, a volume medium grain diameter of secondary particles of the aluminum oxide particles is 0.1 to 0.7 μm and the content of the particles having the grain diameter of more than 1 μm in the aluminum oxide particles is less than 0.2 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハードディスク基板用研磨液組成物及び該研磨液組成物を用いたハードディスク基板の製造方法に関する。   The present invention relates to a polishing liquid composition for a hard disk substrate and a method for producing a hard disk substrate using the polishing liquid composition.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ、記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねりの低減が求められてきている。かかる要求を満たすために、研磨後の基板のスクラッチを低減し得る研磨剤スラリーが知られている(特許文献1及び特許文献2)。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and it has been required to reduce surface roughness and micro-waviness in response to the low flying height of the head. Yes. In order to satisfy such a requirement, an abrasive slurry that can reduce scratches on the substrate after polishing is known (Patent Document 1 and Patent Document 2).

そして、最近では、より平滑で、傷が少ないといった表面品質向上と生産性向上の両立の観点から、2段階以上の研磨工程を有する多段研磨方式が採用されるようになってきた。多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、傷の低減という要求を満たすために、コロイダルシリカ粒子を使用した仕上げ用研磨液組成物で研磨され得る。一方、仕上げ研磨工程より前の研磨においては、生産性の観点から、高い研磨速度を実現し得る比較的粒子径の大きな砥粒、例えば酸化アルミニウム粒子が使用される傾向にある。
特開2000−15560号公報 特開2000−458号公報
In recent years, a multi-stage polishing method having two or more stages of polishing processes has been adopted from the viewpoint of achieving both surface quality improvement and productivity improvement such as smoother and less scratches. In the final polishing step of the multi-stage polishing method, that is, the final polishing step, polishing can be performed with a polishing composition for finishing using colloidal silica particles in order to satisfy the requirements of reducing surface roughness and reducing scratches. On the other hand, in the polishing before the final polishing step, from the viewpoint of productivity, abrasive grains having a relatively large particle diameter that can realize a high polishing rate, for example, aluminum oxide particles tend to be used.
JP 2000-15560 A JP 2000-458 A

しかしながら、酸化アルミニウム粒子を砥粒として使用した場合、基板へ砥粒が突き刺さりやすく、この突き刺さりが基板品質向上の妨げとなることが明らかとなった。具体的には、この砥粒の突き刺さりは、仕上げ研磨工程でも除去されずに残留した場合、テキスチャースクラッチとしてメディアでの欠陥を引き起こし得ること、さらに、この突き刺さりが強い場合、仕上げ研磨工程で除去されたとしても磁気特性の低下、即ち、シグナルノイズ比(SNR)の低下を引き起こし得ることが明らかとなった。また、テキスチャー処理を施さない垂直記録用の基板においても、前記砥粒の突き刺さりは、記録エラー、磁気特性の低下、SNRの低下等の原因となることがわかった。   However, it has been clarified that when aluminum oxide particles are used as abrasive grains, the abrasive grains easily pierce the substrate, and this piercing hinders the improvement of the substrate quality. Specifically, if the piercing of this abrasive grain remains without being removed even in the final polishing process, it can cause a defect in the media as a texture scratch, and if this piercing is strong, it is removed in the final polishing process. Even if this is the case, it has been found that the magnetic characteristics can be reduced, that is, the signal-to-noise ratio (SNR) can be reduced. In addition, it was found that even in a perpendicular recording substrate that is not subjected to a texture treatment, the piercing of the abrasive grains causes a recording error, a decrease in magnetic characteristics, a decrease in SNR, and the like.

従って、本発明の目的は、酸化アルミニウム粒子を砥粒として含有する研磨液組成物であって、ハードディスク基板の製造において、酸化アルミニウム粒子の基板への突き刺さりを低減し得る研磨液組成物を提供することである。   Accordingly, an object of the present invention is to provide a polishing liquid composition containing aluminum oxide particles as abrasive grains, which can reduce the sticking of aluminum oxide particles to the substrate in the production of a hard disk substrate. That is.

即ち、本発明の要旨は、
[1] 酸化アルミニウム粒子と水とを含有してなるハードディスク基板用研磨液組成物であって、酸化アルミニウム粒子の二次粒子の体積中位粒子径が0.1〜0.7μmであり、酸化アルミニウム粒子中における粒子径が1μm以上の粒子の含有量が0.2重量%以下である、ハードディスク基板用研磨液組成物、及び
[2] 前記[1]記載の研磨液組成物を用いて被研磨基板を研磨する工程を有するハードディスク基板の製造方法
に関する。
That is, the gist of the present invention is as follows.
[1] A polishing liquid composition for a hard disk substrate comprising aluminum oxide particles and water, wherein the secondary particles of the aluminum oxide particles have a volume-median particle diameter of 0.1 to 0.7 μm and are oxidized. A polishing liquid composition for a hard disk substrate, wherein the content of particles having a particle diameter of 1 μm or more in the aluminum particles is 0.2% by weight or less, and [2] a polishing liquid composition according to the above [1]. The present invention relates to a method of manufacturing a hard disk substrate having a step of polishing a polishing substrate.

本発明の研磨液組成物を、例えばハードディスク基板の仕上げ研磨工程前の研磨に使用すると、経済的な研磨速度を有しながら、酸化アルミニウムの突き刺さりが少ない優れた表面品質の基板を製造することができるという効果が奏される。   When the polishing composition of the present invention is used, for example, for polishing before a final polishing step of a hard disk substrate, it is possible to produce a substrate having excellent surface quality with low piercing of aluminum oxide while having an economical polishing rate. The effect that it can be produced.

本発明において、砥粒の「突き刺さり」とは、基板に付着した砥粒とは異なり、基板に押し込まれて残留している状態を指す。この「突き刺さり」は、後述の実施例のように、コロイド粒子を砥粒として含有する研磨液組成物で、基板表面をわずかに研磨して基板に付着した砥粒を除去した後、その基板表面を暗視野顕微鏡観察、又は原子間力顕微鏡若しくは走査式電子顕微鏡(SEM)観察によって調べることができる。   In the present invention, the “piercing” of the abrasive grains refers to a state in which the abrasive grains are pushed into the substrate and remain, unlike the abrasive grains attached to the substrate. This “piercing” is a polishing liquid composition containing colloidal particles as abrasive grains, as will be described later, and after polishing the substrate surface slightly to remove the abrasive grains adhering to the substrate, the substrate surface Can be examined by observation with a dark field microscope, or observation with an atomic force microscope or a scanning electron microscope (SEM).

この突き刺さりがあると、ハードディスク基板のメディア化工程で実施されるテキスチャリングにおいて表面に深いスクラッチが入るなどの欠陥が発生したり、完成したハードディスクにおいて磁気特性の低下、即ち、シグナルノイズ比(SNR)の低下を引き起こしたりすると考えられる。従って、この砥粒の突き刺さりを低減することは、優れたハードディスク基板を得るために重要である。
本発明は、酸化アルミニウム粒子の粒子径を特定のサイズに制御すること、及び砥粒中に存在する特定の大きさの粗大粒子を特定量以下に低減することにより、この突き刺さりの低減が可能になるという知見に基づいてなされたものである。
If there is this piercing, defects such as deep scratches on the surface occur in texturing performed in the media forming process of the hard disk substrate, or the magnetic characteristics of the completed hard disk deteriorate, that is, the signal to noise ratio (SNR). This is thought to cause a decrease in Therefore, reducing the piercing of the abrasive grains is important for obtaining an excellent hard disk substrate.
The present invention makes it possible to reduce this piercing by controlling the particle diameter of aluminum oxide particles to a specific size and reducing coarse particles of a specific size present in the abrasive grains to a specific amount or less. It was made based on the knowledge that

即ち、本発明のハードディスク基板用研磨液組成物は、酸化アルミニウム粒子と水とを含有してなるハードディスク基板用研磨液組成物であって、酸化アルミニウム粒子の二次粒子の体積中位粒子径(D50)が0.1〜0.7μmであり、酸化アルミニウム粒子中における粒子径が1μm以上の粒子の含有量が0.2重量%以下であることを一つの特徴とする。かかる特徴を有する研磨液組成物を用いて研磨することにより、基板への酸化アルミニウム粒子の突き刺さりを顕著に低減することができる。これにより、経済的な研磨速度で、優れた表面品質を有するハードディスク基板を提供することができる。 That is, the hard disk substrate polishing liquid composition of the present invention is a hard disk substrate polishing liquid composition comprising aluminum oxide particles and water, wherein the volume-median particle diameter of secondary particles of aluminum oxide particles ( One feature is that D 50 ) is 0.1 to 0.7 μm, and the content of particles having a particle diameter of 1 μm or more in the aluminum oxide particles is 0.2% by weight or less. By polishing with the polishing composition having such characteristics, the piercing of aluminum oxide particles to the substrate can be significantly reduced. Thereby, a hard disk substrate having excellent surface quality can be provided at an economical polishing rate.

<酸化アルミニウム粒子>
本発明の研磨液組成物は、研磨材として酸化アルミニウム(以下、アルミナと称することがある)粒子を含有する。本発明に用いられる酸化アルミニウム粒子としては、突き刺さり低減の観点、うねり低減、表面粗さ低減、研磨速度向上及び表面欠陥防止の観点から、アルミナとしての純度が95%以上のアルミナが好ましく、より好ましくは97%以上、さらに好ましくは99%以上のアルミナである。また、研磨速度向上の観点からは、α−アルミナが好ましく、表面性状及びうねり低減の観点からは、中間アルミナ及びアモルファスアルミナが好ましい。中間アルミナとは、α−アルミナ粒子以外の結晶性アルミナ粒子の総称であり、具体的にはγ−アルミナ、δ−アルミナ、θ−アルミナ、η−アルミナ、κ−アルミナ、及びこれらの混合物等が挙げられる。その中間アルミナの中でも、研磨速度向上及びうねり低減の観点から、γ−アルミナ、δ−アルミナ、θ−アルミナ及びこれらの混合物が好ましく、より好ましくはγ−アルミナ及びθ−アルミナである。研磨速度向上及びうねり低減の観点からは、α−アルミナと、中間アルミナ及び/又はアモルファスアルミナとを混合して使用することが好ましく、α−アルミナとθ−アルミナとを混合して使用することがより好ましい。また、酸化アルミニウム粒子中のα−アルミナ粒子の含有量は、研磨速度向上及びうねり低減の観点から、20重量%以上が好ましく、30重量%以上がより好ましく、40重量%以上がさらに好ましく、50重量%以上がさらにより好ましい。本発明において、酸化アルミナ粒子中のα−アルミナ粒子の含有量は、WA−1000(昭和電工(株)製)の104面ピーク面積を100%として、X線回折におけるα−アルミナピーク面積を算出することにより求める。
<Aluminum oxide particles>
The polishing composition of the present invention contains aluminum oxide (hereinafter sometimes referred to as alumina) particles as an abrasive. The aluminum oxide particles used in the present invention are preferably alumina having a purity of 95% or more, more preferably from the viewpoint of reducing piercing, waviness reduction, surface roughness reduction, polishing rate improvement and surface defect prevention. Is 97% or more, more preferably 99% or more of alumina. Further, α-alumina is preferable from the viewpoint of improving the polishing rate, and intermediate alumina and amorphous alumina are preferable from the viewpoint of surface properties and undulation reduction. Intermediate alumina is a general term for crystalline alumina particles other than α-alumina particles, and specifically includes γ-alumina, δ-alumina, θ-alumina, η-alumina, κ-alumina, and mixtures thereof. Can be mentioned. Among the intermediate aluminas, γ-alumina, δ-alumina, θ-alumina and mixtures thereof are preferable from the viewpoint of improving the polishing rate and reducing waviness, and more preferably γ-alumina and θ-alumina. From the viewpoint of improving the polishing rate and reducing waviness, it is preferable to use a mixture of α-alumina, intermediate alumina and / or amorphous alumina, and a mixture of α-alumina and θ-alumina. More preferred. Further, the content of α-alumina particles in the aluminum oxide particles is preferably 20% by weight or more, more preferably 30% by weight or more, further preferably 40% by weight or more, from the viewpoint of improving the polishing rate and reducing waviness. Even more preferred is weight percent or more. In the present invention, the content of α-alumina particles in the alumina oxide particles is calculated by calculating the α-alumina peak area in X-ray diffraction with the 104-plane peak area of WA-1000 (manufactured by Showa Denko KK) being 100%. To find out.

酸化アルミニウム粒子の二次粒子の体積中位粒子径は、突き刺さり低減の観点、並びにうねり低減及び表面粗さ低減の観点から、0.7μm以下であり、0.5μm以下が好ましく、0.4μm以下がより好ましく、0.35μm以下がさらに好ましく、0.3μm以下がさらにより好ましく、0.25μm以下がさらにより好ましい。また、該粒子径は、研磨速度向上の観点から、0.1μm以上であり、0.15μm以上が好ましく、0.2μm以上がより好ましい。即ち、該粒子径は、0.1〜0.7μmであり、好ましくは0.1〜0.5μm、より好ましくは0.1〜0.4μm、さらに好ましくは0.15〜0.35μm、さらにより好ましくは0.15〜0.3μm、さらにより好ましくは0.2〜0.25μmである。中でも、α−アルミナ粒子の二次粒子の体積中位粒子径は、突き刺さり低減の観点、うねり低減及び表面粗さ低減の観点、並びに研磨速度向上の観点から、0.1〜0.7μmが好ましく、0.1〜0.5μmがより好ましく、0.1〜0.4μmがさらに好ましく、0.1〜0.35μmがさらにより好ましく、0.15〜0.3μmがさらにより好ましく、0.15〜0.25μmがさらにより好ましい。   The volume median particle diameter of the secondary particles of the aluminum oxide particles is 0.7 μm or less, preferably 0.5 μm or less, and preferably 0.4 μm or less from the viewpoints of piercing reduction, waviness reduction, and surface roughness reduction. Is more preferably 0.35 μm or less, still more preferably 0.3 μm or less, and even more preferably 0.25 μm or less. Further, the particle diameter is 0.1 μm or more, preferably 0.15 μm or more, and more preferably 0.2 μm or more from the viewpoint of improving the polishing rate. That is, the particle diameter is 0.1 to 0.7 μm, preferably 0.1 to 0.5 μm, more preferably 0.1 to 0.4 μm, still more preferably 0.15 to 0.35 μm, More preferably, it is 0.15-0.3 micrometer, More preferably, it is 0.2-0.25 micrometer. Among them, the volume-median particle diameter of the secondary particles of the α-alumina particles is preferably 0.1 to 0.7 μm from the viewpoints of reducing piercing, reducing waviness and surface roughness, and improving the polishing rate. 0.1 to 0.5 μm is more preferable, 0.1 to 0.4 μm is more preferable, 0.1 to 0.35 μm is still more preferable, 0.15 to 0.3 μm is still more preferable, 0.15 Even more preferred is -0.25 [mu] m.

酸化アルミニウム粒子の一次粒子の平均粒子径は、突き刺さり低減及びうねり低減の観点から、0.005〜0.5μmが好ましく、0.01〜0.4μmがより好ましく、0.03〜0.3μmがさらに好ましく、0.05〜0.2μmがさらにより好ましい。中でも、α−アルミナ粒子の一次粒子の平均粒子径としては、研磨速度向上、うねり低減、及び突き刺さり低減の観点から、0.05〜0.5μmが好ましく、0.05〜0.4μmがより好ましく、0.05〜0.3μmがさらに好ましく、0.07〜0.2μmがさらにより好ましい。   The average particle diameter of the primary particles of the aluminum oxide particles is preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.4 μm, and more preferably 0.03 to 0.3 μm, from the viewpoints of reducing sticking and waviness. More preferably, 0.05 to 0.2 μm is even more preferable. Among these, the average particle diameter of the primary particles of α-alumina particles is preferably 0.05 to 0.5 μm, more preferably 0.05 to 0.4 μm, from the viewpoints of improving the polishing rate, reducing waviness, and reducing sticking. 0.05 to 0.3 μm is more preferable, and 0.07 to 0.2 μm is even more preferable.

研磨材の一次粒子の平均粒子径(体積基準)及び0.1μm以下の二次粒子の体積中位粒子径は、操作型電子顕微鏡で観察(好適には3000〜30000倍)又は透過型電子顕微鏡で観察(好適には10000〜300000倍)して画像解析を行い、粒子径を測定することにより求めることができる。具体的には、拡大写真等を用い、個々の一次粒子又は二次粒子の最大長を少なくとも200個の粒子について測定し、該長さを直径とする球の体積を算出し、小粒径側から積算粒径分布(体積基準)が50%となる粒径(D50)をそれぞれ、一次粒子の平均粒子径又は二次粒子の体積中位粒子径とする。また、0.1μmを超える二次粒子の体積中位粒子径は、レーザー光回折法を用いて該粒子径を測定する。 The average particle diameter (volume basis) of the primary particles of the abrasive and the volume-median particle diameter of secondary particles of 0.1 μm or less are observed with a manipulation electron microscope (preferably 3000 to 30000 times) or transmission electron microscope The image can be obtained by observing (preferably 10,000 to 300,000 times), analyzing the image, and measuring the particle diameter. Specifically, using an enlarged photograph or the like, the maximum length of each primary particle or secondary particle is measured for at least 200 particles, and the volume of a sphere having the length as a diameter is calculated. The particle size (D 50 ) at which the cumulative particle size distribution (volume basis) is 50% is defined as the average particle size of primary particles or the volume median particle size of secondary particles, respectively. Further, the volume median particle diameter of the secondary particles exceeding 0.1 μm is measured by using a laser beam diffraction method.

BET法にて測定されたα−アルミナの比表面積は、研磨速度向上及びうねり低減の観点から、0.1〜50m/gが好ましく、より好ましくは1〜40m/g、さらに好ましくは2〜20m/gである。さらに、BET法で測定された中間アルミナ又はアモルファスアルミナの比表面積は、好ましくは30〜300m/g、より好ましくは50〜200m/gである。 The specific surface area of α-alumina measured by the BET method is preferably from 0.1 to 50 m 2 / g, more preferably from 1 to 40 m 2 / g, still more preferably 2 from the viewpoint of improving the polishing rate and reducing waviness. ~ 20 m2 / g. Furthermore, the specific surface area of the intermediate alumina or amorphous alumina measured by the BET method is preferably 30 to 300 m 2 / g, more preferably 50 to 200 m 2 / g.

研磨液組成物中における酸化アルミニウム粒子の含有量は、研磨速度向上及びうねり低減の観点から、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、さらにより好ましくは1重量%以上である。また、該含有量は、表面品質向上及び経済性の観点から、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは15重量%以下、さらにより好ましくは10重量%以下である。即ち、研磨液組成物中における酸化アルミニウム粒子の含有量は好ましくは0.05〜30重量%、より好ましくは0.1〜20重量%、さらに好ましくは0.5〜15重量%、さらにより好ましくは1〜10重量%である。   The content of aluminum oxide particles in the polishing composition is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and still more preferably 0.5% by weight, from the viewpoint of improving the polishing rate and reducing waviness. % Or more, even more preferably 1% by weight or more. The content is preferably 30% by weight or less, more preferably 20% by weight or less, still more preferably 15% by weight or less, and even more preferably 10% by weight or less, from the viewpoint of improving surface quality and economy. . That is, the content of aluminum oxide particles in the polishing composition is preferably 0.05 to 30% by weight, more preferably 0.1 to 20% by weight, still more preferably 0.5 to 15% by weight, and even more preferably. Is 1 to 10% by weight.

酸化アルミニウム粒子中における粒子径が1μm以上の粗大粒子の含有量は、突き刺さり低減の観点から、0.2重量%以下であり、好ましくは0.15重量%以下、より好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下である。また、粒子径が3μm以上の粗大粒子の前記含有量は、同様の観点から、0.05重量%以下が好ましく、より好ましくは0.04重量%以下、さらに好ましくは0.03重量%以下、さらにより好ましくは0.02重量%以下、さらにより好ましくは0.01重量%以下である。なお、前記「粒子径が1μm以上の粗大粒子」又は「粒子径が3μm以上の粗大粒子」は、一次粒子のみならず、一次粒子が凝集した二次粒子をも含むものとする。   The content of coarse particles having a particle diameter of 1 μm or more in the aluminum oxide particles is 0.2% by weight or less, preferably 0.15% by weight or less, more preferably 0.1% by weight, from the viewpoint of reducing sticking. Hereinafter, it is more preferably 0.05% by weight or less. In addition, the content of coarse particles having a particle diameter of 3 μm or more is preferably 0.05% by weight or less, more preferably 0.04% by weight or less, still more preferably 0.03% by weight or less, from the same viewpoint. Even more preferably, it is 0.02% by weight or less, and still more preferably 0.01% by weight or less. The “coarse particles having a particle diameter of 1 μm or more” or “coarse particles having a particle diameter of 3 μm or more” includes not only primary particles but also secondary particles in which primary particles are aggregated.

研磨液組成物中の前記粗大粒子の含有量の測定には、個数カウント方式(Sizing Particle Optical Sensing法)が使用できる。例えば、米国パーティクルサイジングシステムズ(Particle Sizing Systems)社製「アキュサイザー(Accusizer)780」及びコールター(Coulter)社製「コールターカウンター」等によって研磨粒子径を測定することにより、該含有量を求めることができる。   For the measurement of the content of the coarse particles in the polishing liquid composition, a number counting system (Sizing Particle Optical Sensing method) can be used. For example, the content can be determined by measuring the abrasive particle diameter using “Accusizer 780” manufactured by Particle Sizing Systems, USA, and “Coulter Counter” manufactured by Coulter, etc. it can.

酸化アルミニウム粒子中における粒子径が1μm以上の粗大粒子の含有量を制御する方法としては、特に限定はなく、研磨液組成物の製造の際あるいは製造後に、一般的な分散あるいは粒子除去方法を用いることができる。例えば、特定の平均粒子径とすべく、湿式の循環式ビーズミルにより均一に解砕した酸化アルミニウム粒子スラリーを、更に、静置沈殿法や遠心分離装置等による沈降法、又は濾過材による精密濾過等により粗大粒子を除去する方法に供することによって製造することができる。粗大粒子の除去方法については、それぞれ単独の方法で処理しても2種以上の方法を組み合わせて処理しても良く、組み合わせの処理順序についても何ら制限はない。また、その処理条件や処理回数についても、適宜選択して使用することができる。   The method for controlling the content of coarse particles having a particle diameter of 1 μm or more in the aluminum oxide particles is not particularly limited, and a general dispersion or particle removal method is used during or after the production of the polishing composition. be able to. For example, in order to obtain a specific average particle size, the aluminum oxide particle slurry uniformly crushed by a wet circulating bead mill is further subjected to a sedimentation method using a stationary sedimentation method or a centrifugal separator, or a microfiltration using a filtering material. Can be produced by subjecting to a method of removing coarse particles. About the removal method of a coarse particle, you may process by a single method each, or may combine and process 2 or more types, and there is no restriction | limiting also about the process order of a combination. Further, the processing conditions and the number of processing times can be appropriately selected and used.

<水>
本発明の研磨液組成物中の水は、媒体として使用されるものであり、イオン交換水、純水、超純水等を使用することができる。研磨液組成物中における水の含有量は、被研磨物を効率良く研磨する観点から、好ましくは55〜99重量%、より好ましくは60〜97重量%、さらに好ましくは70〜95重量%である。
<Water>
The water in the polishing composition of the present invention is used as a medium, and ion exchange water, pure water, ultrapure water, or the like can be used. The content of water in the polishing composition is preferably 55 to 99% by weight, more preferably 60 to 97% by weight, and still more preferably 70 to 95% by weight, from the viewpoint of efficiently polishing an object to be polished. .

<酸> 本発明の研磨液組成物は、研磨速度向上及びうねり低減の観点から、さらに酸を含有することが好ましい。
本発明に用いられ得る酸は、研磨速度向上及びうねり低減の観点から、そのpK1が好ましくは7以下、より好ましくは5以下、さらに好ましくは3以下、さらにより好ましくは2以下の酸である。ここで、pK1とは、酸解離定数(25℃)の逆数の対数値をpKaと表したとき、その内の第1酸解離定数の逆数の対数値である。各化合物のpK1は例えば化学便覧改訂4版(基礎編)II、pp316〜325(日本化学会編)等に記載されている。
<Acid> The polishing composition of the present invention preferably further contains an acid from the viewpoint of improving the polishing rate and reducing waviness.
The acid that can be used in the present invention is an acid having a pK1 of preferably 7 or less, more preferably 5 or less, still more preferably 3 or less, and even more preferably 2 or less, from the viewpoint of improving the polishing rate and reducing waviness. Here, pK1 is the logarithm of the reciprocal of the first acid dissociation constant, when the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) is expressed as pKa. The pK1 of each compound is described, for example, in Chemical Handbook 4th edition (basic edition) II, pp316 to 325 (edited by the Chemical Society of Japan).

本発明に用いられ得る酸の具体例を以下に示す。無機酸としては硝酸、塩酸、過塩素酸、アミド硫酸等の一価の鉱酸類と、硫酸、亜硫酸、リン酸、ピロリン酸、ポリリン酸、ホスホン酸、ホスフィン酸等の多価鉱酸類が挙げられる。また、有機酸としてはギ酸、酢酸、グリコール酸、乳酸、プロパン酸、ヒドロキシプロパン酸、酪酸、安息香酸、グリシン等のモノカルボン酸類、シュウ酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、イタコン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、フタル酸、ニトロトリ酢酸、エチレンジアミン四酢酸等の多価カルボン酸類、メタンスルホン酸、パラトルエンスルホン酸等のアルキルスルホン酸類、エチルリン酸、ブチルリン酸等のアルキルリン酸類、ホスホノヒドロキシ酢酸、ヒドロキリエチリデンジホスホン酸、ホスホノブタントリカルボン酸、エチレンジアミンテトラメチレンホスホン酸等のホスホン酸類等が挙げられる。これらの内、研磨速度向上、及びうねり低減の観点から、多価酸が好ましく、より好ましくは多価鉱酸、多価有機カルボン酸及び多価有機ホスホン酸、さらに好ましくは多価鉱酸及び多価有機カルボン酸である。ここで多価酸とは分子内に2つ以上の、水素イオンを発生させ得る水素を持つ酸をあらわす。また、被研磨物の表面汚れ防止の観点からは、硝酸、硫酸、スルホン酸及びカルボン酸が好ましい。   Specific examples of acids that can be used in the present invention are shown below. Examples of inorganic acids include monovalent mineral acids such as nitric acid, hydrochloric acid, perchloric acid, and amidosulfuric acid, and polyvalent mineral acids such as sulfuric acid, sulfurous acid, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphonic acid, and phosphinic acid. . Organic acids include formic acid, acetic acid, glycolic acid, lactic acid, propanoic acid, hydroxypropanoic acid, butyric acid, benzoic acid, glycine and other monocarboxylic acids, oxalic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid Acids, itaconic acid, malic acid, tartaric acid, citric acid, isocitric acid, phthalic acid, polyvalent carboxylic acids such as nitrotriacetic acid, ethylenediaminetetraacetic acid, alkylsulfonic acids such as methanesulfonic acid and paratoluenesulfonic acid, ethylphosphoric acid, butylphosphorus Examples thereof include alkylphosphoric acids such as acids, phosphonohydroxyacetic acid, hydroxytylidenediphosphonic acid, phosphonobutanetricarboxylic acid, and phosphonic acids such as ethylenediaminetetramethylenephosphonic acid. Among these, from the viewpoint of improving the polishing rate and reducing waviness, polyvalent acids are preferred, more preferred are polyvalent mineral acids, polyvalent organic carboxylic acids and polyvalent organic phosphonic acids, and even more preferred are polyvalent mineral acids and polyvalent acids. Divalent organic carboxylic acid. Here, the polyvalent acid represents an acid having two or more hydrogen atoms capable of generating hydrogen ions in the molecule. Further, nitric acid, sulfuric acid, sulfonic acid and carboxylic acid are preferable from the viewpoint of preventing surface contamination of the object to be polished.

前記酸は単独で用いても良いが、2種以上を混合して使用することが好ましい。特に、Ni−Pメッキ基板のような金属表面を研磨する場合で、研磨中に被研磨物の金属イオンが溶出して研磨液組成物のpHが上昇し、高い研磨速度が得られないとき、pH変化を小さくするためにpK1が2.5未満の酸とpK1が2.5以上の酸とを組み合わせて使用することが好ましく、pK1が1.5以下の酸とpK1が2.5以上の酸との組み合わせがより好ましい。このような2種以上の酸を含有する場合、研磨速度向上及びうねり低減、かつ入手性を考慮すると、pK1が2.5未満の酸としては、硝酸、硫酸、リン酸、ポリリン酸等の鉱酸や有機ホスホン酸を用いることが好ましい。一方、pK1が2.5以上の酸としては、同様な観点から、酢酸、コハク酸、リンゴ酸、酒石酸、クエン酸、イタコン酸等の有機カルボン酸が好ましく、中でも、コハク酸、リンゴ酸、酒石酸、クエン酸、イタコン酸が好ましく、クエン酸がより好ましい。また、研磨速度向上及びうねり低減の観点から、pK1が2.5以上の有機カルボン酸を使用する場合は、オキシカルボン酸と2価以上の多価カルボン酸とを組み合わせて使用することがより好ましい。例えば、オキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸等が挙げられ、多価カルボン酸としては、コハク酸、マレイン酸、イタコン酸等が挙げられる。従って、これらをそれぞれ1種以上組み合わせて使用することが好ましく、中でも、クエン酸と多価カルボン酸を組み合わせることが好ましい。   Although the said acid may be used independently, it is preferable to mix and use 2 or more types. In particular, when polishing a metal surface such as a Ni-P plated substrate, the metal ions of the object to be polished are eluted during polishing, the pH of the polishing composition increases, and a high polishing rate cannot be obtained. In order to reduce the pH change, it is preferable to use a combination of an acid having a pK1 of less than 2.5 and an acid having a pK1 of 2.5 or more, and an acid having a pK1 of 1.5 or less and a pK1 of 2.5 or more. A combination with an acid is more preferred. In the case where such two or more acids are contained, considering the improvement in polishing rate, reduction in waviness, and availability, the acids having a pK1 of less than 2.5 include minerals such as nitric acid, sulfuric acid, phosphoric acid, and polyphosphoric acid. It is preferable to use an acid or an organic phosphonic acid. On the other hand, as the acid having a pK1 of 2.5 or more, from the same viewpoint, organic carboxylic acids such as acetic acid, succinic acid, malic acid, tartaric acid, citric acid, and itaconic acid are preferable. Among them, succinic acid, malic acid, tartaric acid Citric acid and itaconic acid are preferable, and citric acid is more preferable. From the viewpoint of improving the polishing rate and reducing waviness, when using an organic carboxylic acid having a pK1 of 2.5 or more, it is more preferable to use a combination of an oxycarboxylic acid and a divalent or higher polyvalent carboxylic acid. . For example, examples of the oxycarboxylic acid include citric acid, malic acid, and tartaric acid, and examples of the polyvalent carboxylic acid include succinic acid, maleic acid, and itaconic acid. Accordingly, it is preferable to use one or more of these in combination, and among them, it is preferable to combine citric acid and polyvalent carboxylic acid.

研磨液組成物中における前記酸の含有量は、研磨速度向上及びうねり低減の観点から、好ましくは0.002重量%以上、より好ましくは0.005重量%以上、さらに好ましくは0.007重量%以上、さらにより好ましくは0.01重量%以上である。また、該含有量は、表面品質及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、さらにより好ましくは5重量%以下である。即ち、研磨液組成物中における酸の含有量は、好ましくは0.002〜20重量%、より好ましくは0.005〜15重量%、さらに好ましくは0.007〜10重量%、さらにより好ましくは0.01〜5重量%である。また、研磨速度向上の観点から、pK1が2.5未満の酸とpK1が2.5以上の酸との重量比〔(pK1が2.5未満の酸)/(pK1が2.5以上の酸)〕は、9/1〜1/9が好ましく、7/1〜1/7がより好ましく、5/1〜1/5がさらに好ましい。   The content of the acid in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, and still more preferably 0.007% by weight from the viewpoint of improving the polishing rate and reducing waviness. As mentioned above, it is still more preferably 0.01% by weight or more. The content is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less, and still more preferably 5% by weight or less, from the viewpoint of surface quality and economy. That is, the acid content in the polishing composition is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and still more preferably. 0.01 to 5% by weight. From the viewpoint of improving the polishing rate, the weight ratio of the acid having a pK1 of less than 2.5 and the acid having a pK1 of 2.5 or more [(acid having a pK1 of less than 2.5) / (pK1 of 2.5 or more). The acid)] is preferably 9/1 to 1/9, more preferably 7/1 to 1/7, and still more preferably 5/1 to 1/5.

<酸化剤>
本発明の研磨液組成物は、研磨速度向上及びうねり低減の観点から、酸化剤を含有することが好ましい。研磨の機構については不明であるが、酸化剤が被研磨物に作用することにより、アルミナの研磨効力が十分に発揮される状態に変化していると推測される。本発明で使用され得る酸化剤としては、過酸化物、金属のペルオキソ酸又はその塩、酸素酸又はその塩、硝酸塩、硫酸塩、酸の金属塩等が挙げられる。酸化剤は、その構造から無機酸化剤と有機酸化剤に大別される。それら酸化剤の具体例を以下に示す。無機酸化剤としては、過酸化水素、更には過酸化ナトリウム、過酸化カリウム、過酸化カルシウム、過酸化バリウム、過酸化マグネシウムのようなアルカリ金属、又はアルカリ土類金属の過酸化物類、ペルオキソ炭酸ナトリウム、ペルオキソ炭酸カリウム等のペルオキソ炭酸塩類、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ一硫酸等のペルオキソ硫酸又はその塩類、ペルオキソ硝酸、ペルオキソ硝酸ナトリウム、ペルオキソ硝酸カリウム等のペルオキソ硝酸又はその塩類、ペルオキソリン酸ナトリウム、ペルオキソリン酸カリウム、ペルオキソリン酸アンモニウム等のペルオキソリン酸又はその塩類、ペルオキソホウ酸ナトリウム、ペルオキソホウ酸カリウム等のペルオキソホウ酸塩類、ペルオキソクロム酸カリウム、ペルオキソクロム酸ナトリウム等のペルオキソクロム酸塩類、過マンガン酸カリウム、過マンガン酸ナトリウム等の過マンガン酸塩類、過塩素酸ナトリウム、過塩素酸カリウム、塩素酸、次亜塩素酸ナトリウム、過沃素酸ナトリウム、過沃素酸カリウム、沃素酸、沃素酸ナトリウム等のハロゲン酸又はその誘導体類、塩化鉄(III)、硫酸鉄(III)等の無機酸金属塩が用いることができる。有機酸化剤としては、過酢酸、過ギ酸、過安息香酸等の過カルボン酸類、t−ブチルパーオキサイド、クメンパーオキサイド等のパーオキサイド類、クエン酸鉄(III)を用いることができる。これらの内、研磨速度向上性や入手性、水溶性等の取り扱い性を比較した場合、無機酸化剤の方が好ましい。さらに、環境問題の点を考慮すると重金属を含まない無機過酸化物が好ましい。また、被研磨基板の表面汚れ防止の観点からは、より好ましくは過酸化水素、ペルオキソ硫酸塩類、ハロゲン酸又はその誘導体であり、さらに好ましくは過酸化水素である。また、これらの過酸化物は単独で用いてもよいが、2種以上を混合して用いても良い。
<Oxidizing agent>
The polishing composition of the present invention preferably contains an oxidizing agent from the viewpoint of improving the polishing rate and reducing waviness. Although the polishing mechanism is unclear, it is presumed that the oxidizing agent has acted on the object to be polished so that the polishing effect of alumina has been sufficiently exerted. Examples of the oxidizing agent that can be used in the present invention include peroxides, metal peroxo acids or salts thereof, oxygen acids or salts thereof, nitrates, sulfates, metal salts of acids, and the like. Oxidizing agents are roughly classified into inorganic oxidizing agents and organic oxidizing agents according to their structures. Specific examples of these oxidizing agents are shown below. Examples of inorganic oxidizing agents include hydrogen peroxide, and also alkali metals such as sodium peroxide, potassium peroxide, calcium peroxide, barium peroxide, magnesium peroxide, or alkaline earth metal peroxides, peroxocarbonic acid. Peroxo carbonates such as sodium and potassium peroxocarbonate, peroxosulfuric acid such as ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, and peroxomonosulfuric acid, peroxonitric acid such as peroxonitric acid, sodium peroxonitrate, potassium peroxonitrate, or Peroxophosphates such as salts thereof, sodium peroxophosphate, potassium peroxophosphate, ammonium peroxophosphate or salts thereof, peroxoborates such as sodium peroxoborate, potassium peroxoborate, etc. Salts, peroxochromates such as potassium peroxochromate and sodium peroxochromate, permanganates such as potassium permanganate and sodium permanganate, sodium perchlorate, potassium perchlorate, chloric acid, hypochlorite Halogenic acid such as sodium acid, sodium periodate, potassium periodate, iodic acid, sodium iodate or derivatives thereof, and inorganic acid metal salts such as iron (III) chloride and iron (III) sulfate can be used. . As the organic oxidizing agent, percarboxylic acids such as peracetic acid, performic acid and perbenzoic acid, peroxides such as t-butyl peroxide and cumene peroxide, and iron (III) citrate can be used. Among these, inorganic oxidizers are preferred when the handling properties such as polishing rate improvement, availability, and water solubility are compared. Furthermore, in view of environmental problems, an inorganic peroxide containing no heavy metal is preferable. Further, from the viewpoint of preventing surface contamination of the substrate to be polished, hydrogen peroxide, peroxosulfates, halogen acids or derivatives thereof are more preferable, and hydrogen peroxide is more preferable. These peroxides may be used alone or in combination of two or more.

研磨液組成物中における酸化剤の含有量は、研磨速度向上及びうねり低減の観点から、好ましくは0.002重量%以上、より好ましくは0.005重量%以上、さらに好ましくは0.007重量%以上、さらにより好ましくは0.01重量%以上である。また、該含有量は、表面品質及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、さらにより好ましくは5重量%以下である。即ち、研磨液組成物中における酸化剤の含有量は、好ましくは0.002〜20重量%、より好ましくは0.005〜15重量%、さらに好ましくは0.007〜10重量%、さらにより好ましくは0.01〜5重量%である。   The content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, and still more preferably 0.007% by weight, from the viewpoint of improving the polishing rate and reducing waviness. As mentioned above, it is still more preferably 0.01% by weight or more. The content is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less, and still more preferably 5% by weight or less, from the viewpoint of surface quality and economy. That is, the content of the oxidizing agent in the polishing composition is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and still more preferably. Is 0.01 to 5% by weight.

また、本発明の研磨液組成物には、さらに研磨速度向上やうねり低減、その他の目的に応じて他の成分を配合することができる。他の成分としては、例えば、コロイダルシリカ、フュームドシリカ、コロイダル酸化チタン等の金属酸化物砥粒、無機塩、増粘剤、防錆剤、塩基性物質等が挙げられる。無機塩の例としては、硝酸アンモニウム、硫酸アンモニウム、硫酸カリウム、硫酸ニッケル、硝酸アルミニウム、硫酸アルミニウム、スルファミン酸アンモニウム等が挙げられる。無機塩は、研磨速度の向上、ロールオフの改良、研磨液組成物のケーキング防止等の目的で使用され得る。前記他の成分は単独で用いても良いし、2種類以上混合して用いても良い。研磨液組成物中における前記の他の成分の含有量は、経済性の観点から、好ましくは0.05〜20重量%、より好ましくは0.05〜10重量%、さらに好ましくは0.05〜5重量%である。   Further, the polishing liquid composition of the present invention may further contain other components depending on the purpose of improving the polishing rate, reducing the waviness, and other purposes. Examples of other components include metal oxide abrasive grains such as colloidal silica, fumed silica, and colloidal titanium oxide, inorganic salts, thickeners, rust preventives, and basic substances. Examples of inorganic salts include ammonium nitrate, ammonium sulfate, potassium sulfate, nickel sulfate, aluminum nitrate, aluminum sulfate, and ammonium sulfamate. The inorganic salt can be used for the purpose of improving the polishing rate, improving the roll-off, and preventing caking of the polishing composition. The other components may be used alone or in combination of two or more. The content of the other components in the polishing composition is preferably from 0.05 to 20% by weight, more preferably from 0.05 to 10% by weight, still more preferably from 0.05 to 5%, from the viewpoint of economy. 5% by weight.

さらに、他の成分として必要に応じて殺菌剤や抗菌剤等を配合することができる。研磨液組成物中におけるこれらの殺菌剤及び抗菌剤等の含有量は、機能を発揮する観点、並びに研磨性能への影響及び経済性の観点から、好ましくは0.0001〜0.1重量%、より好ましくは0.001〜0.05重量%、さらに好ましくは0.002〜0.02重量%である。   Furthermore, a disinfectant, an antibacterial agent, etc. can be mix | blended as another component as needed. The content of these bactericides and antibacterial agents in the polishing liquid composition is preferably 0.0001 to 0.1% by weight from the viewpoint of exerting the function, and from the viewpoint of influence on polishing performance and economy. More preferably, it is 0.001-0.05 weight%, More preferably, it is 0.002-0.02 weight%.

なお、本発明の研磨液組成物中における前記の各成分濃度は、研磨する際の好ましい濃度であるが、該組成物の製造時の濃度であって良い。通常、研磨液組成物は濃縮液として製造され、これを使用前あるいは使用時に希釈して用いる場合が多い。
また、研磨液組成物は目的成分を任意の方法で添加、混合して製造することができる。
In addition, although each said component density | concentration in the polishing liquid composition of this invention is a preferable density | concentration at the time of grinding | polishing, it may be a density | concentration at the time of manufacture of this composition. Usually, the polishing composition is produced as a concentrated solution, which is often diluted before use or during use.
The polishing composition can be produced by adding and mixing the target components by any method.

研磨液組成物のpHは、被研磨物の種類や要求品質等に応じて適宜決定することが好ましい。例えば、研磨液組成物のpHは、研磨速度向上及びうねり低減の観点と、加工機械の腐食防止性及び作業者の安全性の観点とから7未満が好ましく、0.1〜6がより好ましく、さらに好ましくは0.5〜5であり、さらにより好ましくは1〜5、さらにより好ましくは1〜4、さらにより好ましくは1〜3である。該pHは、必要により、硝酸、硫酸等の無機酸、オキシカルボン酸、多価カルボン酸やアミノポリカルボン酸、アミノ酸等の有機酸、及びその金属塩やアンモニウム塩、アンモニア、水酸化ナトリウム、水酸化カリウム、アミン等の塩基性物質を適宜、所望量で配合することで調整することができる。   The pH of the polishing composition is preferably determined as appropriate according to the type of the object to be polished and the required quality. For example, the pH of the polishing composition is preferably less than 7 from the viewpoint of improving the polishing rate and reducing waviness, and from the viewpoint of corrosion prevention of the processing machine and the safety of the worker, more preferably 0.1 to 6, More preferably, it is 0.5-5, Still more preferably, it is 1-5, More preferably, it is 1-4, More preferably, it is 1-3. If necessary, the pH may be adjusted with inorganic acids such as nitric acid and sulfuric acid, oxycarboxylic acids, polyvalent carboxylic acids, aminopolycarboxylic acids, organic acids such as amino acids, and metal salts and ammonium salts thereof, ammonia, sodium hydroxide, water It can adjust by mix | blending basic substances, such as a potassium oxide and an amine, with a desired quantity suitably.

本発明の研磨液組成物を用いることにより、基板への砥粒の突き刺さりが顕著に低減されるため、高記録密度化に適したハードディスク基板を提供することができる。   By using the polishing composition of the present invention, since the piercing of abrasive grains to the substrate is remarkably reduced, a hard disk substrate suitable for increasing the recording density can be provided.

<基板の製造方法>
本発明のハードディスク基板の製造方法は前記研磨液組成物を用いて被研磨基板を研磨する工程(以下、「研磨する工程」と称することがある。)を有する。
本発明が対象とする被研磨基板であるハードディスク基板とは、磁気記録用媒体の基板として使用されるものである。磁気ディスク基板の具体例としては、アルミニウム合金にNi−P合金をメッキした基板が代表的であるが、アルミニウム合金の代わりにガラスやグラッシュカーボンを使用し、これにNi−Pメッキを施した基板、あるいはNi−Pメッキの代わりに、各種金属化合物をメッキや蒸着により被覆した基板を挙げることができる。
<Substrate manufacturing method>
The method for producing a hard disk substrate of the present invention includes a step of polishing the substrate to be polished using the polishing composition (hereinafter sometimes referred to as “polishing step”).
The hard disk substrate that is the substrate to be polished according to the present invention is used as a substrate for a magnetic recording medium. As a specific example of the magnetic disk substrate, a substrate obtained by plating a Ni—P alloy on an aluminum alloy is typical. However, a glass or glassy carbon is used instead of the aluminum alloy, and a substrate obtained by applying Ni—P plating to the glass or glass. Alternatively, instead of Ni-P plating, a substrate in which various metal compounds are coated by plating or vapor deposition can be used.

前記の「研磨する工程」においては、多孔質の有機高分子系の研磨布等を貼り付けた研磨盤で被研磨基板を挟み込み、本発明の研磨液組成物を研磨面に供給し、圧力を加えながら研磨盤や被研磨基板を動かすことにより、被研磨基板を研磨することができる。したがって、本発明は、前記研磨液組成物を用いて、被研磨基板を研磨する方法に関する。研磨を行なう際の研磨荷重としては、酸化アルミニウム粒子の基板への突き刺さり低減の観点、及び生産性(研磨速度)の観点から、1〜20kPaが好ましく、2〜15kPaがより好ましく、3〜10kPaがさらに好ましく、4〜8kPaがさらにより好ましい。その他の研磨条件(研磨機の種類、研磨温度、研磨速度、研磨液組成物の供給量等)については特に限定はない。   In the “polishing step”, the substrate to be polished is sandwiched by a polishing disk with a porous organic polymer polishing cloth or the like attached thereto, the polishing composition of the present invention is supplied to the polishing surface, and the pressure is applied. The substrate to be polished can be polished by moving the polishing disk and the substrate to be polished while adding. Therefore, the present invention relates to a method for polishing a substrate to be polished using the polishing composition. The polishing load for polishing is preferably 1 to 20 kPa, more preferably 2 to 15 kPa, and more preferably 3 to 10 kPa from the viewpoint of reducing the piercing of the aluminum oxide particles to the substrate and the productivity (polishing rate). More preferably, 4 to 8 kPa is even more preferable. Other polishing conditions (type of polishing machine, polishing temperature, polishing rate, supply amount of polishing liquid composition, etc.) are not particularly limited.

また、本発明の基板の製造方法は、2段階以上の研磨工程を有する多段研磨方式であることが好ましく、最終工程である仕上げ研磨工程よりも前の工程で、前記の「研磨する工程」を行うことが好ましい。仕上げ研磨工程で使用する研磨液組成物において、ハードディスク基板の表面品質の観点、例えば、うねりの低減、表面粗さの低減、スクラッチ等の表面欠陥の低減の観点から、研磨粒子の一次粒子の平均粒子径が0.1μm以下であることが好ましく、0.08μm以下であることがより好ましく、0.05μm以下であることがさらに好ましく、0.03μm以下であることがさらにより好ましい。また、研磨速度向上の観点から、該平均粒子径が0.005μm以上であることが好ましく、0.01μm以上であることがより好ましい。   Further, the substrate manufacturing method of the present invention is preferably a multistage polishing method having two or more stages of polishing processes, and the above-mentioned “polishing process” is performed in a process prior to the final polishing process which is the final process. Preferably it is done. In the polishing composition used in the final polishing step, the average primary particle size of the abrasive particles from the viewpoint of the surface quality of the hard disk substrate, for example, from the viewpoint of reducing waviness, reducing the surface roughness, and reducing surface defects such as scratches. The particle diameter is preferably 0.1 μm or less, more preferably 0.08 μm or less, further preferably 0.05 μm or less, and even more preferably 0.03 μm or less. Further, from the viewpoint of improving the polishing rate, the average particle diameter is preferably 0.005 μm or more, and more preferably 0.01 μm or more.

仕上げ研磨工程で使用される研磨液組成物中の研磨粒子としては、フュームドシリカ砥粒、コロイダルシリカ砥粒等が挙げられ、表面粗さの低減、及びスクラッチ等表面欠陥の低減の観点から、コロイダルシリカ砥粒が好ましい。コロイダルシリカ砥粒の一次粒子の平均粒子径としては、0.005〜0.08μmが好ましく、0.005〜0.05μmがより好ましく、0.01〜0.03μmがさらに好ましい。   As abrasive particles in the polishing liquid composition used in the final polishing step, fumed silica abrasive grains, colloidal silica abrasive grains and the like can be mentioned, from the viewpoint of reducing surface roughness and reducing surface defects such as scratches. Colloidal silica abrasive is preferred. The average particle diameter of primary particles of colloidal silica abrasive grains is preferably 0.005 to 0.08 μm, more preferably 0.005 to 0.05 μm, and still more preferably 0.01 to 0.03 μm.

仕上げ研磨工程において、一次粒子の平均粒子径が0.005〜0.1μmの研磨粒子を使用する場合、表面粗さの低減、酸化アルミニウムの突き刺さりの低減の観点、及び生産性(研磨時間)の観点から、研磨量は、0.05〜0.5μmが好ましく、0.1〜0.4μmがより好ましく、0.2〜0.4μmがさらに好ましい。仕上げ研磨を行なう際の他の条件(研磨機の種類、研磨温度、研磨速度、研磨液の供給量等)については特に限定はなく、研磨荷重としては、前記の「研磨する工程」において例示される研磨荷重と同様であればよい。なお、研磨量は、後述の実施例のようにして求めることができる。   In the final polishing step, when using abrasive particles having an average primary particle size of 0.005 to 0.1 μm, the surface roughness is reduced, the aluminum oxide sticking is reduced, and the productivity (polishing time) is reduced. From the viewpoint, the polishing amount is preferably 0.05 to 0.5 μm, more preferably 0.1 to 0.4 μm, and further preferably 0.2 to 0.4 μm. There are no particular limitations on the other conditions (type of polishing machine, polishing temperature, polishing rate, supply amount of polishing liquid, etc.) when performing final polishing, and the polishing load is exemplified in the above-mentioned “polishing step”. It may be the same as the polishing load. The polishing amount can be determined as in the examples described later.

本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。   The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.

本発明の基板の製造方法を用いて得られたハードディスク基板は、アルミニウム粒子の突き刺さりが顕著に低減されていることから、高記録密度化に適したものである。   The hard disk substrate obtained by using the substrate manufacturing method of the present invention is suitable for increasing the recording density because the piercing of aluminum particles is remarkably reduced.

1.研磨液組成物の調製
以下の通りにして、実施例1〜7及び比較例1〜4の研磨液組成物を調製した。
(1)表1に示す純度99.9%の酸化アルミニウム粒子を10重量%含有する酸化アルミニウムスラリー 50kgに硝酸を添加し、pH3に調整した。
(2)(1)で得られた酸化アルミニウムスラリーを直径40cm、高さ50cmの円柱容器に移した。
(3)容器内の酸化アルミニウムスラリーを均一になるよう攪拌した。
(4)撹拌後の酸化アルミニウムスラリーを3〜10時間静置した。
(5)静置後の酸化アルミニウムスラリーの下層部約5cmを残し、上層部をもう1つの同形状の容器に移した。
(6)上記操作(3)〜(5)をさらに2〜4回繰り返し、種々の粗大粒子を除去した酸化アルミニウムスラリーを得た。
(7)(6)で得られた酸化アルミニウムスラリーに表2記載の組成となるように種々の添加剤を加え、残分をイオン交換水として配合、攪拌した。
(8)(7)で得られたスラリーをバックフィルター(ヘイワードジャパン株式会社製、型番:PE1−P03H−403)で濾過し、研磨液組成物を得た。
1. Preparation of Polishing Liquid Composition The polishing liquid compositions of Examples 1 to 7 and Comparative Examples 1 to 4 were prepared as follows.
(1) Nitric acid was added to 50 kg of an aluminum oxide slurry containing 10% by weight of aluminum oxide particles having a purity of 99.9% shown in Table 1, and the pH was adjusted to 3.
(2) The aluminum oxide slurry obtained in (1) was transferred to a cylindrical container having a diameter of 40 cm and a height of 50 cm.
(3) The aluminum oxide slurry in the container was stirred to be uniform.
(4) The aluminum oxide slurry after stirring was allowed to stand for 3 to 10 hours.
(5) The lower layer portion of the aluminum oxide slurry after standing was left about 5 cm, and the upper layer portion was transferred to another container having the same shape.
(6) The above operations (3) to (5) were further repeated 2 to 4 times to obtain an aluminum oxide slurry from which various coarse particles were removed.
(7) Various additives were added to the aluminum oxide slurry obtained in (6) so as to have the composition shown in Table 2, and the remainder was blended as ion-exchanged water and stirred.
(8) The slurry obtained in (7) was filtered with a back filter (manufactured by Hayward Japan Co., Ltd., model number: PE1-P03H-403) to obtain a polishing composition.

2.研磨方法
厚さ1.27mm、直径3.5インチのNi−Pメッキされたアルミニウム合金からなる基板(「Zygo NewView5032」を用いた測定における短波長うねり3.8nm、長波長うねり1.6nm)の表面を両面加工機により、以下の両面加工機の設定条件でポリッシングし、磁気記録媒体用基板として用いられるNi−Pメッキされたアルミニウム合金基板の研磨物を得た。
2. Polishing Method 1. Thickness 1.27 mm, diameter 3.5 inch Ni-P plated aluminum alloy substrate (short wavelength undulation 3.8 nm, long wavelength undulation 1.6 nm in measurement using “Zygo NewView 5032”) The surface was polished by a double-sided processing machine under the following setting conditions of the double-sided processing machine to obtain a polished article of a Ni—P plated aluminum alloy substrate used as a substrate for a magnetic recording medium.

両面加工機の設定条件を下記に示す。
<両面加工機の設定条件>
両面加工機:スピードファーム(株)製、9B型両面加工機
研磨荷重:9.8kPa
研磨パッド:フジボウ(株)製 1P用研磨パッド 平均気孔径45μm
定盤回転数:50r/min
研磨液組成物供給流量:100ml/min
研磨時間:4min
投入した基板の枚数:10枚
The setting conditions for the double-sided machine are shown below.
<Setting conditions of double-sided machine>
Double-sided processing machine: 9B type double-sided processing machine manufactured by Speed Farm Co., Ltd. Polishing load: 9.8kPa
Polishing pad: 1P polishing pad manufactured by Fujibow Co., Ltd. Average pore diameter 45 μm
Surface plate rotation speed: 50r / min
Polishing liquid composition supply flow rate: 100ml / min
Polishing time: 4min
Number of substrates loaded: 10

3.評価方法
(1)研磨速度
研磨前後の各基板の重さを計り(Sartorius社製「BP−210S」)を用いて測定し、各基板の重量変化を求め、10枚の平均値を減少量とし、それを研磨時間で割った値を重量減少速度とした。重量の減少速度を下記の式に導入し、研磨速度(μm/min)に変換した。比較例1の研磨速度を基準値100として各実験例の研磨速度の相対値(相対速度)を求めた。結果を表3に示す。
重量減少速度(g/min)={研磨前の重量(g)−研磨後の重量(g)}/研磨時間(min)
研磨速度(μm/min)=重量減少速度(g/min)/基板片面面積(mm2)
/Ni-Pメッキ密度(g/cm3)×106
3. Evaluation method (1) Polishing speed Each substrate before and after polishing is weighed (measured by “BP-210S” manufactured by Sartorius), and the weight change of each substrate is obtained. The value obtained by dividing the result by the polishing time was defined as the weight reduction rate. The weight reduction rate was introduced into the following formula and converted to a polishing rate (μm / min). Using the polishing rate of Comparative Example 1 as the reference value 100, the relative value (relative rate) of the polishing rate of each experimental example was determined. The results are shown in Table 3.
Weight reduction rate (g / min) = {weight before polishing (g) −weight after polishing (g)} / polishing time (min)
Polishing rate (μm / min) = Weight reduction rate (g / min) / Substrate single side area (mm 2 )
/ Ni-P plating density (g / cm 3 ) × 10 6

(2)うねり
研磨後の10枚の基板から任意に2枚を選択し、選択した各基板の両面を180°おきに2点(計8点)について、下記の条件で測定した。その8点の測定値の平均値を基板の短波長うねり又は長波長うねりとして算出した。比較例1の基板のうねりを基準値100として各実験例の基板のうねりの相対値を求めた。結果を表3に示す。
機器 :Zygo NewView5032
レンズ :2.5倍 Michelson
ズーム比 :0.5
リムーブ :Cylinder
フィルター:FFT Fixed Band Pass
短波長うねり:50〜500μm
長波長うねり:0.5〜5mm
エリア :4.33mm×5.77mm
(2) Swelling Two were arbitrarily selected from the 10 substrates after polishing, and the two surfaces of each selected substrate were measured at 2 points (total 8 points) at 180 ° under the following conditions. The average value of the eight measured values was calculated as the short wavelength waviness or long wavelength waviness of the substrate. The relative value of the waviness of the substrate of each experimental example was determined with the waviness of the substrate of Comparative Example 1 as the reference value 100. The results are shown in Table 3.
Equipment: Zygo NewView5032
Lens: 2.5x Michelson
Zoom ratio: 0.5
Remove: Cylinder
Filter: FFT Fixed Band Pass
Short wavelength swell: 50-500μm
Long wavelength swell: 0.5-5mm
Area: 4.33mm x 5.77mm

(3)粗大粒子含有量の測定
以下の測定条件で粗大粒子の含有量を測定した。結果を表3に示す。

・測定機器:PSS社製 「アキュサイザー780APS」
・Injection Loop Volume:1mL
・Flow Rate:60mL/min
・Data Collection Time:60sec
・Number Channels:128
(3) Measurement of coarse particle content The content of coarse particles was measured under the following measurement conditions. The results are shown in Table 3.

・ Measuring equipment: “Accuriser 780APS” manufactured by PSS
・ Injection Loop Volume: 1mL
・ Flow Rate: 60mL / min
・ Data Collection Time: 60sec
・ Number Channels: 128

(4)二次粒子の体積中位粒子径の測定
以下の測定条件で二次粒子の体積中位粒子径(D50)、D10及びD90を測定した。結果を表1及び3に示す。
・測定機器:堀場製作所製 レーザー回折/散乱式粒度分布測定装置LA920
・循環強度:4
・超音波強度:4
(4) Measurement of volume median particle diameter of secondary particles The volume median particle diameter (D 50 ), D 10 and D 90 of the secondary particles were measured under the following measurement conditions. The results are shown in Tables 1 and 3.
Measuring instrument: Laser diffraction / scattering type particle size distribution analyzer LA920 manufactured by Horiba, Ltd.
・ Circulation strength: 4
・ Ultrasonic intensity: 4

(5)α−アルミナ粒子の含有量
前記1.で調製した研磨液組成物20gを105℃、5時間乾燥させ、粉末とした後、X線回折装置(型番:RINT2500VPC、理学電機製)を使用し、管電圧40kW、管電流120mAで、104面のピーク面積を測定し、同様に測定した昭和電工製WA-1000のピーク面積を相対比較することによって求めた。結果を表3に示す。
α−アルミナ含量(重量%)=(試験試料ピーク面積)÷(WA-1000のピーク面積)×100
(5) Content of α-alumina particles After drying 20 g of the polishing composition prepared in step 5 at 105 ° C. for 5 hours to form a powder, an X-ray diffractometer (model number: RINT2500VPC, manufactured by Rigaku Corporation) was used, with a tube voltage of 40 kW and a tube current of 120 mA. The peak area was measured and the peak area of Showa Denko WA-1000 measured in the same way was determined by relative comparison. The results are shown in Table 3.
α-alumina content (% by weight) = (peak area of test sample) ÷ (peak area of WA-1000) × 100

(6)砥粒の突き刺さりの評価
上記2.の研磨により得られた研磨基板を、以下の研磨液組成物を用いて研磨量が0.05μm±0.005μmとなるように研磨した後の基板表面を観察することにより、砥粒の突き刺さりを評価した。研磨液組成物の組成、研磨条件、研磨量の測定方法、及び突き刺さりの観察方法を以下に示す。
(6) Evaluation of abrasive sticking 2. By observing the surface of the substrate after polishing the polishing substrate obtained by polishing so that the polishing amount becomes 0.05 μm ± 0.005 μm using the following polishing liquid composition, evaluated. The composition of the polishing composition, the polishing conditions, the method for measuring the polishing amount, and the method for observing the sticking are shown below.

<研磨液組成物>
コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒子径0.02μm)をシリカ粒子濃度として7重量%、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸、ソルーシアジャパン製)を有効分として2重量%、過酸化水素(旭電化製)を有効分として0.6重量%、イオン交換水を残分として含有する研磨液組成物を用いた。
<Polishing liquid composition>
Colloidal silica slurry (manufactured by DuPont, average particle diameter of primary particles 0.02 μm) is 7% by weight as silica particle concentration, and HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, manufactured by Solusia Japan) is an effective component. A polishing liquid composition containing 2% by weight, hydrogen peroxide (manufactured by Asahi Denka) as an effective component, 0.6% by weight, and ion-exchanged water as a residue was used.


<研磨条件>
・研磨試験機:スピードファム(株)製、両面9B研磨機
・研磨パッド:フジボウ(株)製、ウレタン製仕上げ研磨用パッド
・上定盤回転数:32.5r/min
・研磨液組成物供給量:100mL/min
・研磨時間:0.5〜2min(研磨量が0.05μm±0.005μmとなるように調整)
・研磨荷重:7.8kPa・ 投入した基板の枚数:10枚

<Polishing conditions>
・ Polishing test machine: Speed Fam Co., Ltd., double-sided 9B polishing machine ・ Polishing pad: Fujibow Co., Ltd. urethane polishing pad
Polishing liquid composition supply amount: 100 mL / min
Polishing time: 0.5 to 2 min (adjusted so that the polishing amount becomes 0.05 μm ± 0.005 μm)
-Polishing load: 7.8 kPa-Number of substrates loaded: 10

<研磨量>
研磨前後の各基板の重さを計り(Sartorius社製、「BP-210S」)を用いて測定し、下記式に導入することにより、研磨量を求めた。
重量減少量(g)={研磨前の重量(g)−研磨後の重量(g)}
研磨量(μm)=重量減少量(g)/基板片面面積(mm2)/2
/Ni-Pメッキ密度(g/cm3)×106
(基板片面面積は、6597mm、Ni-Pメッキ密度8.4g/cmとして算出)
<Polishing amount>
Each substrate before and after polishing was weighed (Sartorius, “BP-210S”) and measured to determine the amount of polishing.
Weight reduction (g) = {weight before polishing (g) −weight after polishing (g)}
Polishing amount (μm) = weight reduction amount (g) / substrate one side area (mm 2 ) / 2
/ Ni-P plating density (g / cm 3 ) × 10 6
(The area on one side of the substrate is calculated as 6597 mm 2 and Ni-P plating density 8.4 g / cm 3 )

<突き刺さり観察>
オリンパス光学製顕微鏡(本体BX60M、デジタルカメラDP70、対物レンズ100倍、中間レンズ2.5倍)を使用し、暗視野観察(視野100×75μm)し、輝点数を測定した。
上記観察は、研磨後の10枚の基板から任意に2枚を選択し、基板の両面について中心から30mm位置を90°ごとの各4点、計16点観察し、観察された輝点数の平均値を砥粒の突き刺さり数とした。
<Pricking observation>
Using an Olympus optical microscope (main body BX60M, digital camera DP70, objective lens 100 ×, intermediate lens 2.5 ×), dark field observation (field of view 100 × 75 μm) was performed, and the number of bright spots was measured.
In the above observation, two arbitrarily selected from the 10 substrates after polishing were observed, and a total of 16 points were observed at 4 points every 90 ° at a position of 30 mm from the center on both sides of the substrate, and the average number of observed bright spots The value was defined as the number of abrasive piercings.

上記の突き刺さり観察で観察された砥粒の突き刺さり数、及び以下の評価基準に基づいて、砥粒の突き刺さりを評価した。結果を表3に示す。
<突き刺さり評価基準>
5:100個以上
4:30〜99個
3:10〜29個
2:5〜9個
1:0〜4個
Based on the number of abrasive piercings observed in the piercing observation and the following evaluation criteria, the piercing of abrasive grains was evaluated. The results are shown in Table 3.
<Evaluation criteria for piercing>
5: 100 or more 4: 30-99 3: 10-29 2: 5-9 1: 0-4

Figure 2007168034
Figure 2007168034

Figure 2007168034
Figure 2007168034

Figure 2007168034
Figure 2007168034

表3より、実施例1〜7で得られた基板は、比較例1〜4で得られた基板に比べ、基板への砥粒の突き刺さりが顕著に低減されたものであることが分かる。   From Table 3, it turns out that the board | substrate obtained in Examples 1-7 is what the piercing of the abrasive grain to a board | substrate was reduced significantly compared with the board | substrate obtained in Comparative Examples 1-4.

本発明の研磨液組成物を用いることにより、高記録密度化に適したハードディスク基板を提供することができる。   By using the polishing composition of the present invention, a hard disk substrate suitable for increasing the recording density can be provided.

Claims (6)

酸化アルミニウム粒子と水とを含有してなるハードディスク基板用研磨液組成物であって、酸化アルミニウム粒子の二次粒子の体積中位粒子径が0.1〜0.7μmであり、酸化アルミニウム粒子中における粒子径が1μm以上の粒子の含有量が0.2重量%以下である、ハードディスク基板用研磨液組成物。   A polishing liquid composition for a hard disk substrate comprising aluminum oxide particles and water, wherein the volume median particle diameter of secondary particles of the aluminum oxide particles is 0.1 to 0.7 μm, and the aluminum oxide particles A polishing composition for a hard disk substrate, wherein the content of particles having a particle diameter of 1 μm or more is 0.2% by weight or less. 酸化アルミニウム粒子がα−アルミナ粒子を20重量%以上含有することを特徴とする請求項1記載のハードディスク基板用研磨液組成物。   2. The polishing composition for a hard disk substrate according to claim 1, wherein the aluminum oxide particles contain 20% by weight or more of α-alumina particles. α−アルミナ粒子の一次粒子の平均粒子径が0.05〜0.5μmである請求項2記載のハードディスク基板用研磨液組成物。   The polishing composition for a hard disk substrate according to claim 2, wherein the average particle diameter of primary particles of the α-alumina particles is 0.05 to 0.5 µm. 研磨液組成物のpHが0.1〜6である請求項1〜3いずれか記載のハードディスク基板用研磨液組成物。   The polishing composition for a hard disk substrate according to any one of claims 1 to 3, wherein the polishing composition has a pH of 0.1 to 6. 請求項1〜4いずれか記載の研磨液組成物を用いて被研磨基板を研磨する工程を有するハードディスク基板の製造方法。   A method for manufacturing a hard disk substrate, comprising a step of polishing a substrate to be polished using the polishing composition according to claim 1. 前記の研磨する工程で得られた基板を一次粒子の平均粒子径が0.005〜0.1μmの研磨粒子を含有する研磨液組成物を用いて研磨する工程をさらに有する請求項5記載のハードディスク基板の製造方法。
6. The hard disk according to claim 5, further comprising a step of polishing the substrate obtained in the polishing step using a polishing liquid composition containing abrasive particles having an average primary particle diameter of 0.005 to 0.1 [mu] m. A method for manufacturing a substrate.
JP2005370535A 2005-12-22 2005-12-22 Polishing liquid composition for hard disk substrate Active JP4753710B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005370535A JP4753710B2 (en) 2005-12-22 2005-12-22 Polishing liquid composition for hard disk substrate
CN 200610163754 CN1986717B (en) 2005-12-22 2006-12-04 Polishing composition for hard disk substrate
GB0625233A GB2433515B (en) 2005-12-22 2006-12-18 Polishing composition for hard disk substrate
TW095147490A TWI506621B (en) 2005-12-22 2006-12-18 Polishing composition for hard disk substrate
MYPI20064713A MY154309A (en) 2005-12-22 2006-12-19 Polishing composition for hard disk substrate
US11/642,676 US7780751B2 (en) 2005-12-22 2006-12-21 Polishing composition for hard disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370535A JP4753710B2 (en) 2005-12-22 2005-12-22 Polishing liquid composition for hard disk substrate

Publications (2)

Publication Number Publication Date
JP2007168034A true JP2007168034A (en) 2007-07-05
JP4753710B2 JP4753710B2 (en) 2011-08-24

Family

ID=38183659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370535A Active JP4753710B2 (en) 2005-12-22 2005-12-22 Polishing liquid composition for hard disk substrate

Country Status (2)

Country Link
JP (1) JP4753710B2 (en)
CN (1) CN1986717B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142839A (en) * 2006-12-11 2008-06-26 Kao Corp Method of manufacturing magnetic disk substrate
JP2009160676A (en) * 2007-12-28 2009-07-23 Kao Corp Composition of polishing liquid for hard disk substrate
JP2009163808A (en) * 2007-12-28 2009-07-23 Kao Corp Polishing liquid composition for hard disk substrate
JP2009176397A (en) * 2007-10-29 2009-08-06 Kao Corp Polishing liquid composition for hard disk substrate
JP2012000700A (en) * 2010-06-15 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
WO2012105322A1 (en) * 2011-01-31 2012-08-09 花王株式会社 Method for manufacturing magnetic disc substrate
WO2012120923A1 (en) * 2011-03-09 2012-09-13 花王株式会社 Manufacturing method of magnetic disk substrate
WO2016051659A1 (en) * 2014-09-29 2016-04-07 株式会社フジミインコーポレーテッド Polishing composition and polishing method
CN106244023A (en) * 2016-08-23 2016-12-21 广安恒昌源电子科技有限公司 A kind of rare earth polishing and preparation method thereof
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831244A (en) * 2010-05-10 2010-09-15 上海高纳粉体技术有限公司 High-precision alumina polishing solution and preparation method thereof
EP3081377A4 (en) * 2013-12-13 2016-12-07 Fujimi Inc Article with metal oxide film
JP6734018B2 (en) * 2014-09-17 2020-08-05 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
JP6611485B2 (en) * 2014-11-07 2019-11-27 株式会社フジミインコーポレーテッド Polishing method and polishing composition
CN106281221B (en) * 2016-04-26 2017-11-03 福吉米株式会社 Grinding-material, composition for polishing and Ginding process
EP3516002B1 (en) * 2016-09-23 2022-01-05 Saint-Gobain Ceramics & Plastics, Inc. Chemical mechanical planarization slurry and method for forming same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316430A (en) * 1996-03-29 1997-12-09 Showa Denko Kk Composition for polishing magnetic disk substrate
JP2000015560A (en) * 1998-06-30 2000-01-18 Okamoto Machine Tool Works Ltd Abrasive powder slurry and its manufacture
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2005023266A (en) * 2003-07-01 2005-01-27 Kao Corp Polishing liquid composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527423A (en) * 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
PL347394A1 (en) * 1998-10-21 2002-04-08 Grace W R & Co Slurries of abrasive inorganic oxide particles and method for adjusting the abrasiveness of the particles
TWI268286B (en) * 2000-04-28 2006-12-11 Kao Corp Roll-off reducing agent
AU2003261966A1 (en) * 2002-09-06 2004-03-29 Asahi Glass Company, Limited Polishing agent composition for insulating film for semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit
US20080219130A1 (en) * 2003-08-14 2008-09-11 Mempile Inc. C/O Phs Corporate Services, Inc. Methods and Apparatus for Formatting and Tracking Information for Three-Dimensional Storage Medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316430A (en) * 1996-03-29 1997-12-09 Showa Denko Kk Composition for polishing magnetic disk substrate
JP2000015560A (en) * 1998-06-30 2000-01-18 Okamoto Machine Tool Works Ltd Abrasive powder slurry and its manufacture
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2005023266A (en) * 2003-07-01 2005-01-27 Kao Corp Polishing liquid composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142839A (en) * 2006-12-11 2008-06-26 Kao Corp Method of manufacturing magnetic disk substrate
JP2009176397A (en) * 2007-10-29 2009-08-06 Kao Corp Polishing liquid composition for hard disk substrate
JP2009160676A (en) * 2007-12-28 2009-07-23 Kao Corp Composition of polishing liquid for hard disk substrate
JP2009163808A (en) * 2007-12-28 2009-07-23 Kao Corp Polishing liquid composition for hard disk substrate
JP2012000700A (en) * 2010-06-15 2012-01-05 Yamaguchi Seiken Kogyo Kk Abrasive composition and method for polishing magnetic disk substrate
WO2012105322A1 (en) * 2011-01-31 2012-08-09 花王株式会社 Method for manufacturing magnetic disc substrate
WO2012120923A1 (en) * 2011-03-09 2012-09-13 花王株式会社 Manufacturing method of magnetic disk substrate
WO2016051659A1 (en) * 2014-09-29 2016-04-07 株式会社フジミインコーポレーテッド Polishing composition and polishing method
JP2016069438A (en) * 2014-09-29 2016-05-09 株式会社フジミインコーポレーテッド Polishing composition and polishing method
US10093834B2 (en) 2014-09-29 2018-10-09 Fujimi Incorporated Polishing composition and polishing method
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
JP2017197707A (en) * 2016-04-26 2017-11-02 株式会社フジミインコーポレーテッド Polishing material, polishing composition, and polishing method
CN106244023A (en) * 2016-08-23 2016-12-21 广安恒昌源电子科技有限公司 A kind of rare earth polishing and preparation method thereof

Also Published As

Publication number Publication date
CN1986717A (en) 2007-06-27
CN1986717B (en) 2011-04-06
JP4753710B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4753710B2 (en) Polishing liquid composition for hard disk substrate
TWI506621B (en) Polishing composition for hard disk substrate
JP4273475B2 (en) Polishing composition
JP4707311B2 (en) Magnetic disk substrate
JP4981750B2 (en) Polishing liquid composition for hard disk substrate
JP2009120850A (en) Polishing liquid composition
JP5063339B2 (en) Polishing liquid composition for hard disk substrate, polishing method using the same, and manufacturing method of hard disk substrate
JP4651532B2 (en) Manufacturing method of magnetic disk substrate
JP4836441B2 (en) Polishing liquid composition
JP2009163810A (en) Method of manufacturing hard disk substrate
JP2004263074A (en) Polishing composition
JP4462599B2 (en) Polishing liquid composition
JP4822348B2 (en) Manufacturing method of magnetic disk substrate
JP2008307676A (en) Polishing liquid composition for hard disk substrate
JP5236283B2 (en) Polishing liquid composition for hard disk substrate
JP5570685B2 (en) Polishing liquid composition for hard disk substrate
JP4373776B2 (en) Polishing liquid composition
JP5536433B2 (en) Polishing liquid composition for hard disk substrate
JP3997154B2 (en) Polishing liquid composition
JP4206313B2 (en) Polishing liquid composition for magnetic disk
JP5283249B2 (en) Method for producing polishing composition
JP3997153B2 (en) Polishing liquid composition
JP5142594B2 (en) Manufacturing method of hard disk substrate
JP4949432B2 (en) Manufacturing method of hard disk substrate
JP5258287B2 (en) Polishing liquid composition for hard disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4753710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250