JP4214107B2 - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP4214107B2
JP4214107B2 JP2004336601A JP2004336601A JP4214107B2 JP 4214107 B2 JP4214107 B2 JP 4214107B2 JP 2004336601 A JP2004336601 A JP 2004336601A JP 2004336601 A JP2004336601 A JP 2004336601A JP 4214107 B2 JP4214107 B2 JP 4214107B2
Authority
JP
Japan
Prior art keywords
polishing
weight
abrasive
less
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004336601A
Other languages
Japanese (ja)
Other versions
JP2006075975A (en
Inventor
和彦 西本
幸治 平
憲一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004336601A priority Critical patent/JP4214107B2/en
Priority to TW094123663A priority patent/TWI364450B/en
Priority to GB0514473A priority patent/GB2417034B/en
Priority to US11/184,960 priority patent/US20060030243A1/en
Priority to MYPI20053553A priority patent/MY142247A/en
Publication of JP2006075975A publication Critical patent/JP2006075975A/en
Application granted granted Critical
Publication of JP4214107B2 publication Critical patent/JP4214107B2/en
Priority to US12/754,385 priority patent/US20100190413A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨液組成物、該研磨液組成物を調製するのに使用される研磨粒子調製液及び該研磨液組成物を用いる基板の製造方法に関する。   The present invention relates to a polishing liquid composition, an abrasive particle preparation liquid used for preparing the polishing liquid composition, and a method for producing a substrate using the polishing liquid composition.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきている。即ち、ヘッドの低浮上化に応じて、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に応じて、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Along with this, the surface quality required after polishing in the manufacturing process of the magnetic disk substrate is becoming stricter year by year. That is, it is necessary to reduce the surface roughness, micro waviness, roll-off and protrusions according to the low flying height of the head, and the allowable number of scratches per substrate surface is small according to the decrease in the unit recording area, Its size and depth are getting smaller and smaller.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストに露光する際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。
このような要求に対して、表面平滑性の向上を目的に、被研磨物の表面に生じる傷(スクラッチ等)の低減を図るべく、粗大粒子数を低減した研磨液スラリーが提案されている(特許文献1〜3)。
特開2000―15560号公報 特開2001−271058号公報 特開2003―188122号公報
Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus when exposing to a photoresist becomes shallow, and further surface smoothness is desired.
In response to such demands, for the purpose of improving the surface smoothness, a polishing slurry having a reduced number of coarse particles has been proposed in order to reduce scratches (such as scratches) generated on the surface of the object to be polished ( Patent Documents 1 to 3).
Japanese Unexamined Patent Publication No. 2000-15560 JP 2001-271058 A Japanese Patent Laid-Open No. 2003-188122

本発明の目的は、研磨後の被研磨物の表面粗さが小さく、且つ高密度化において重要となるナノスクラッチを顕著に低減し、しかも経済的に研磨をすることが可能である研磨液組成物、該研磨液組成物を調製するのに使用される研磨粒子調製液並びに該研磨液組成物を用いる工程を有する基板の製造方法を提供することにある。   An object of the present invention is to provide a polishing composition that has a small surface roughness of an object to be polished after polishing, significantly reduces nanoscratches that are important in densification, and can be polished economically. And a method for producing a substrate having a step of using a polishing particle preparation liquid used to prepare the polishing liquid composition, and the polishing liquid composition.

即ち、本発明の要旨は、
〔1〕 以下の条件を満たす、一次粒子の平均粒径が1〜50nmのコロイダルシリカと水とを含有し、pHが0.1〜である研磨液組成物:
(1)0.56μm以上1μm未満のコロイダルシリカが研磨液組成物1cm当り00,000個以下、及び
(2)1μm以上のコロイダルシリカが研磨液組成物中の全コロイダルシリカに対して0.001重量%以下、
〔2〕 以下の条件を満たす、一次粒子の平均粒径が1〜50nmのコロイダルシリカと水とを含有する研磨粒子調製液であって、pHが0.1〜の研磨液組成物の調製に用いられる研磨粒子調製液:
(i)0.56μm以上1μm未満のコロイダルシリカが研磨粒子調製液1cm当り00,000個以下、及び
(ii)1μm以上のコロイダルシリカが研磨粒子調製液中の全コロイダルシリカに対して0.001重量%以下、
〔3〕 前記〔1〕記載の研磨液組成物を用いて基板を研磨する工程を有する、基板の製造方法
に関する。
That is, the gist of the present invention is as follows.
[1] A polishing composition that contains colloidal silica having an average primary particle diameter of 1 to 50 nm and water, satisfying the following conditions, and having a pH of 0.1 to 4 :
(1) Colloidal silica of 0.56 μm or more and less than 1 μm is less than 100,000 per 1 cm 3 of the polishing composition, and (2) 1 μm or more of colloidal silica is 0 with respect to all the colloidal silica in the polishing composition. 0.001% by weight or less,
[2] A polishing particle preparation liquid containing colloidal silica having an average primary particle diameter of 1 to 50 nm and water satisfying the following conditions, and having a pH of 0.1 to 4 : Abrasive particle preparation solution used for:
(I) Colloidal silica of 0.56 μm or more and less than 1 μm is not more than 100000 per 1 cm 3 of the abrasive particle preparation liquid, and (ii) 0 μm or more of colloidal silica is 0 with respect to all the colloidal silica in the abrasive particle preparation liquid. 0.001% by weight or less,
[3] The present invention relates to a method for producing a substrate, comprising a step of polishing the substrate using the polishing composition according to [1].

本発明の研磨液組成物を、例えば、高密度化又は高集積化用の精密部品用基板の研磨工程で用いることにより、経済的な研磨速度を実現し、研磨後基板の表面平滑性が優れ、且つ微細なナノスクラッチを顕著に低減できるため、表面性状に優れた高品質の磁気ディスク基板、半導体素子用基板等の精密部品用基板を製造することができるという効果が奏される。   The polishing liquid composition of the present invention is used, for example, in a polishing process for a substrate for precision parts for high density or high integration, thereby realizing an economical polishing rate and excellent surface smoothness of the substrate after polishing. In addition, since fine nano scratches can be remarkably reduced, it is possible to produce high-quality magnetic disk substrates having excellent surface properties and substrates for precision components such as semiconductor element substrates.

本発明の研磨液組成物は、研磨材と水とを含有し、0.1〜7のpHであり、(1)0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り500,000個以下、及び(2)1μm以上の研磨粒子が研磨液組成物中の全研磨粒子に対して0.001重量%以下であることを特徴とし、欠陥の原因となるナノスクラッチを顕著に低減でき、経済的な研磨速度で、優れた表面平滑性を有する基板を提供することができる。このナノスクラッチは、特に、磁気ディスク基板又は半導体素子用基板において、高密度化又は高集積化に重要となる物性である。従って、本発明の研磨液組成物を用いることで、表面性状に優れた高品質の磁気ディスク基板又は半導体素子用基板を製造することができる。 The polishing liquid composition of the present invention contains an abrasive and water, has a pH of 0.1 to 7, and (1) abrasive particles of 0.56 μm or more and less than 1 μm are 500,000 per 1 cm 3 of the polishing liquid composition. 000 particles or less, and (2) 1 μm or more of abrasive particles are 0.001% by weight or less based on the total abrasive particles in the polishing composition, and significantly reduce nano scratches that cause defects It is possible to provide a substrate having excellent surface smoothness at an economical polishing rate. This nano-scratch is a physical property that is important for high density or high integration particularly in a magnetic disk substrate or a semiconductor element substrate. Therefore, by using the polishing composition of the present invention, a high-quality magnetic disk substrate or semiconductor element substrate having excellent surface properties can be produced.

本発明におけるナノスクラッチとは、深さが10nm以上、100nm未満、幅が5nm以上、500nm未満、長さが100μm以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置であるVISION PSYTEC社製「MicroMax」による測定でナノスクラッチの本数により定量評価できる。   The nano-scratch in the present invention is a fine flaw on the substrate surface having a depth of 10 nm or more and less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more, and is detected by an atomic force microscope (AFM). It can be quantitatively evaluated by the number of nano scratches by measurement with “MicroMax” manufactured by VISION PSYTEC, which is a visual inspection apparatus described in the examples described later.

前記ナノスクラッチは、従来では検出されなかった表面欠陥である。即ち、従来公知の方法を用いる場合、より高容量、高集積といった高密度化に対して、基板の品質が不十分であった。その原因について、本件発明者らが、鋭意研究をした結果、これまで検出できなかった「ナノスクラッチ」の低減が不十分なことにあることを初めて見出した。   The nano scratch is a surface defect that has not been detected conventionally. That is, when a conventionally known method is used, the quality of the substrate is insufficient for higher density such as higher capacity and higher integration. As a result of intensive studies by the inventors of the present invention, it has been found for the first time that the reduction of “nano scratches” that could not be detected has been insufficient.

本発明におけるナノスクラッチの低減機構は明らかでないが、研磨液組成物中に含有される研磨一次粒子の凝集物あるいは粗大研磨一次粒子が研磨圧力下で局部荷重を受けて被研磨物表面に接触し、深いナノスクラッチが生じていると考えられる。サブミクロンオーダーの粒子は単一又は凝集物でスクラッチを生じることから粒子数が影響し、ミクロンオーダーの粒子では大きい程スクラッチを生じやすくなるため重量が影響していることが明らかになった。本明細書中、研磨液組成物中の研磨粒子とは、一次粒子のみならず、一次粒子が凝集した凝集粒子をも含むものとする。   Although the mechanism for reducing nanoscratches in the present invention is not clear, aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing liquid composition are subjected to a local load under the polishing pressure and contact the surface of the object to be polished. It is thought that deep nanoscratches are occurring. It has been clarified that the number of particles affects the submicron-order particles because they are scratched by single particles or aggregates, and the larger the size of the micron-order particles, the more easily the scratches are generated. In the present specification, the abrasive particles in the polishing liquid composition include not only primary particles but also aggregated particles obtained by aggregating primary particles.

研磨液組成物中の0.56μm以上1μm未満の研磨粒子は、研磨液組成物1cm当り500,000個以下であり、ナノスクラッチ低減の観点から、好ましくは400,000個以下、より好ましくは300,000個以下、さらに好ましくは200,000個以下、さらに好ましくは100,000個以下である。 The number of abrasive particles of 0.56 μm or more and less than 1 μm in the polishing liquid composition is 500,000 or less per 1 cm 3 of the polishing liquid composition, and from the viewpoint of reducing nanoscratches, preferably 400,000 or less, more preferably 300,000 or less, more preferably 200,000 or less, more preferably 100,000 or less.

また、研磨液組成物中の全研磨粒子に対して1μm以上の研磨粒子は、0.001重量%以下であり、ナノスクラッチ低減の観点から、好ましくは0.0008重量%以下、より好ましくは0.0007重量%以下、さらに好ましくは0.0006重量%以下、さらに好ましくは0.0005重量%以下である。   Further, the amount of abrasive particles of 1 μm or more with respect to all abrasive particles in the polishing composition is 0.001% by weight or less, and from the viewpoint of reducing nanoscratches, preferably 0.0008% by weight or less, more preferably 0. .0007% by weight or less, more preferably 0.0006% by weight or less, and still more preferably 0.0005% by weight or less.

また、研磨液組成物中の全研磨粒子に対して3μm以上の研磨粒子は、ナノスクラッチ低減の観点から、たとえば0.0008重量%以下、好ましくは0.0007重量%以下、より好ましくは0.0006重量%以下、さらに好ましくは0.0005重量%以下、さらに好ましくは0.0004重量%以下である。   Further, the abrasive particles having a size of 3 μm or more with respect to all the abrasive particles in the polishing composition are, for example, 0.0008% by weight or less, preferably 0.0007% by weight or less, more preferably 0.000% by weight or less from the viewpoint of reducing nanoscratches. It is 0006% by weight or less, more preferably 0.0005% by weight or less, and further preferably 0.0004% by weight or less.

研磨液組成物中の研磨粒子径は、個数カウント方式(Sizing Particle Optical Sensing法)が使用でき、例えば、米国パーティクルサイジングシステムズ(Particle Sizing Systems)社製「アキュサイザー(Accusizer)780」及びコールター(Coulter)社製「コールターカウンター」等によって測定できる。   The polishing particle diameter in the polishing composition can be determined by a number counting system (Sizing Particle Optical Sensing method), for example, “Accumizer 780” and Coulter (Culter) manufactured by Particle Sizing Systems, USA. ) It can be measured by “Coulter Counter” manufactured by the company.

0.56μm以上1μm未満の研磨粒子数、及び1μm以上さらには3μm以上の研磨粒子含有量を制御する方法に限定はないが、研磨液組成物の製造の際あるいは製造後に、一般的な分散あるいは粒子除去方法を用いることができる。例えば、高速分散装置や高圧ホモジナイザー等の高圧分散装置を用いた分散法や、遠心分離装置等による沈降法、並びに濾過材による精密濾過及び限外濾過等の濾過法が利用できる。これらを用いて処理する場合、それぞれ単独で処理しても2種以上を組み合わせて処理しても良く、組み合わせの処理順序についても何ら制限はない。また、その処理条件や処理回数についても、適宜選択して使用することができる。   There is no limitation on the method of controlling the number of abrasive particles of 0.56 μm or more and less than 1 μm, and the content of abrasive particles of 1 μm or more, and even 3 μm or more, but the general dispersion or A particle removal method can be used. For example, a dispersion method using a high-pressure dispersion device such as a high-speed dispersion device or a high-pressure homogenizer, a sedimentation method using a centrifugal separator or the like, and a filtration method such as microfiltration or ultrafiltration using a filter medium can be used. When processing using these, each may be processed independently or may be processed in combination of two or more, and there is no limitation on the processing order of the combination. Further, the processing conditions and the number of processing times can be appropriately selected and used.

これらの中でも、研磨液組成物中に含有する研磨一次粒子の凝集物あるいは粗大研磨一次粒子を効率的且つ経済的に除去する方法として、フィルターによる精密濾過が好適に用いられる。   Among these, as a method for efficiently and economically removing the aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing composition, microfiltration with a filter is preferably used.

精密濾過用の濾過材としては、デプス型フィルターやプリーツ型フィルターを用いることができる。デプス型フィルターとしては、バッグ式(住友スリーエム社製等)の他、カートリッジ式(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社製等)のフィルターを用いることができる。   A depth type filter or a pleat type filter can be used as a filtering material for microfiltration. As the depth type filter, a filter of a bag type (manufactured by Sumitomo 3M Co., Ltd.) or a cartridge type (manufactured by Advantech Toyo Co., Ltd., Nippon Pole Co., CUNO Co., Ltd., Daiwabo Co., Ltd.) can be used.

デプス型のフィルターとは、濾過材の孔構造が入口で粗く、出口側で細かく、且つ入口側から出口側へ向かうにつれて連続的に又は段階的に細かくなる特徴を持つ。即ち、粗大粒子の中でも大きな粒子は入口側付近で捕集され、小さな粒子は出口側付近で捕集される。また、粗大粒子程フィルターの厚み方向に多段で捕集されるため除去されやすい。デプス型フィルターの形状は、袋状のバッグタイプでもよく、また、中空円筒形状のカートリッジタイプでもよい。   The depth type filter is characterized in that the pore structure of the filter medium is rough at the inlet, finer at the outlet side, and finer continuously or stepwise from the inlet side toward the outlet side. That is, among coarse particles, large particles are collected near the inlet side, and small particles are collected near the outlet side. Further, coarse particles are easily removed because they are collected in multiple stages in the thickness direction of the filter. The shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type.

プリーツ型のフィルターとは、濾過材をヒダ状(プリーツ状)に成形加工して、中空円筒形状のカートリッジタイプにしたものである。厚み方向の各部分で捕集するデプス型フィルターと異なり、プリーツ型フィルターは、濾過材の厚みが薄く、フィルター表面での捕集が主体と言われており、一般的に濾過精度が高いことが特徴である。
濾過材としては、デプス型とプリーツ型の中間構造を有するフィルターを使用することもできる。
A pleated filter is a hollow cylindrical cartridge type formed by filtering a filtering material into a pleat shape. Unlike depth-type filters that collect in each part in the thickness direction, pleated filters are said to be mainly collected on the filter surface because the filter material is thin and generally has high filtration accuracy. It is a feature.
As the filter medium, a filter having an intermediate structure between a depth type and a pleat type can also be used.

濾過方法は、繰り返し濾過する循環式でもよく、一パス方式でもよい。また、一パス方式を繰り返すバッチ式を用いてもよい。通液方法は、加圧するために、循環式では好ましくはポンプが用いられ、一パス方式ではポンプを用いる他に、タンクに空気圧等を導入する加圧濾過法を用いることが出来る。   The filtration method may be a circulation type that repeatedly filters or a one-pass method. Alternatively, a batch method that repeats the one-pass method may be used. As the liquid passing method, a pump is preferably used in the circulation type in order to pressurize, and in addition to using the pump in the one-pass method, a pressure filtration method in which air pressure or the like is introduced into the tank can be used.

フィルターの孔構造を適切に選択することで、除去する粗大粒子の粒径を制御することができる。
フィルターシステムは、一段濾過でもよく、組合せによる多段濾過でもよい。多段濾過については、フィルターの孔径と濾過材の構造を適切に選択し、さらに該フィルターの処理順序を適切に選択することで、除去する粗大粒子の粒径制御(濾過精度)と経済性を向上できる効果がある。即ち、孔構造が大きいフィルターを前段に用い、細かいフィルターを後段に用いると、フィルターの寿命を全体として長くできる効果がある。濾過材の構造では、前段にデプス型を用い、後段にプリーツ型を用いると、フィルターの寿命を全体として長くできる効果がある。
By appropriately selecting the pore structure of the filter, the particle size of the coarse particles to be removed can be controlled.
The filter system may be single-stage filtration or multistage filtration by combination. For multi-stage filtration, the filter pore size and filter material structure are selected appropriately, and the filter processing order is selected appropriately to improve the particle size control (filtration accuracy) and economic efficiency of the coarse particles to be removed. There is an effect that can be done. That is, when a filter having a large pore structure is used in the former stage and a fine filter is used in the latter stage, there is an effect that the lifetime of the filter can be extended as a whole. In the structure of the filter medium, if the depth type is used at the front stage and the pleat type is used at the rear stage, there is an effect that the life of the filter can be extended as a whole.

本発明に使用される研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例としては、酸化珪素(以下、シリカという)、酸化アルミニウム(以下、アルミナという)、炭化珪素、ダイヤモンド、酸化マンガン、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム(以下、セリアという)、酸化ジルコニウム等が挙げられ、これらの1種以上を使用することは研磨速度を向上させる観点から好ましい。中でも、シリカ、アルミナ、酸化チタン、セリア、酸化ジルコニウム等が、半導体素子用基板や磁気ディスク基板等の精密部品用基板の研磨に適している。   As the abrasive used in the present invention, abrasives generally used for polishing can be used, including metal, metal or metalloid carbide, nitride, oxide, boride, diamond. Etc. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include silicon oxide (hereinafter referred to as silica), aluminum oxide (hereinafter referred to as alumina), silicon carbide, diamond, manganese oxide, magnesium oxide, zinc oxide, titanium oxide, cerium oxide (hereinafter referred to as ceria). ), Zirconium oxide and the like, and the use of one or more of these is preferable from the viewpoint of improving the polishing rate. Among them, silica, alumina, titanium oxide, ceria, zirconium oxide, and the like are suitable for polishing precision component substrates such as semiconductor element substrates and magnetic disk substrates.

研磨粒子は、表面欠陥となるナノスクラッチを低減する観点から、コロイダル粒子やヒュームド粒子が好ましく、中でもコロイダル粒子が好ましく、例えばコロイダルシリカ粒子、コロイダルセリア粒子、コロイダルアルミナ粒子が挙げられ、コロイダルシリカ粒子がより適している。コロイダルシリカ粒子は、例えば珪酸水溶液から生成させる製法によって得ることができる。また、これら研磨粒子を官能基で表面修飾あるいは表面改質したもの、界面活性剤や他の研磨材で複合粒子化したもの等も用いることができる。   Abrasive particles are preferably colloidal particles and fumed particles from the viewpoint of reducing nano-scratches that cause surface defects, among which colloidal particles are preferable, and examples thereof include colloidal silica particles, colloidal ceria particles, and colloidal alumina particles. More suitable. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution. In addition, those obtained by surface modification or surface modification of these abrasive particles with functional groups, those obtained by compounding with surfactants or other abrasives, and the like can also be used.

研磨材の一次粒子の平均粒径は、ナノスクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、1〜50nmが好ましい。同時に研磨速度を向上させる観点から、より好ましくは3〜50nm、さらに好ましくは5〜40nm、さらに好ましくは5〜30nmである。   The average particle size of the primary particles of the abrasive is preferably 1 to 50 nm from the viewpoint of reducing nanoscratches and the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax). From the viewpoint of simultaneously improving the polishing rate, the thickness is more preferably 3 to 50 nm, further preferably 5 to 40 nm, and further preferably 5 to 30 nm.

研磨材の一次粒子の平均粒径は、透過型電子顕微鏡(TEM)での観察画像から求める方法や、滴定法、BET法によって、それぞれの方法で測定した時の平均粒径として求めることができる。   The average particle size of the primary particles of the abrasive can be obtained as an average particle size when measured by each method by a method obtained from an observation image with a transmission electron microscope (TEM), a titration method, or a BET method. .

使用時における研磨液組成物中の研磨材の含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらに好ましくは5重量%以上であり、また、経済的に表面品質を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、13重量%以下、さらに好ましくは10重量%以下である。従って、研磨速度を向上させ、且つ経済的に表面品質を向上させる観点から該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらに好ましくは5〜10重量%である。研磨材の該含有量は、研磨液組成物製造時における含有量あるいは使用時における含有量のいずれであってもよく、通常、濃縮液として製造され、これを使用時に希釈して用いる場合が多い。   The content of the abrasive in the polishing composition at the time of use is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate. From the viewpoint of economically improving the surface quality, it is preferably 20% by weight or less, more preferably 15% by weight or less, 13% by weight or less, and further preferably 10% by weight or less. is there. Therefore, from the viewpoint of improving the polishing rate and economically improving the surface quality, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, and further preferably 3 to 13% by weight. %, More preferably 5 to 10% by weight. The content of the abrasive may be either the content at the time of producing the polishing liquid composition or the content at the time of use. Usually, it is produced as a concentrated solution, and this is often used after being diluted. .

本発明に使用される水としては、イオン交換水、蒸留水、超純水等が挙げられる。水の含有量は、100重量%から研磨材及び他の成分を除いた残部に相当し、60〜99重量%が好ましく、80〜97重量%がより好ましい。   Examples of water used in the present invention include ion exchange water, distilled water, and ultrapure water. The water content corresponds to the balance obtained by removing the abrasive and other components from 100% by weight, preferably 60 to 99% by weight, and more preferably 80 to 97% by weight.

本発明の研磨液組成物のpHは、0.1〜7である。アルカリ性においては、酸性に比べてナノスクラッチの発生が著しい。その発生機構は明らかではないが、研磨粒子同士が表面電荷によって強く反発し合うアルカリ性雰囲気下では、研磨液組成物中に含有される研磨一次粒子の凝集物あるいは粗大研磨一次粒子が研磨部において密な充填ができずに、研磨圧力下で局部荷重を受けやすくなるためと推定している。pHは、被研磨物の種類や要求特性に応じて決定することが好ましく、被研磨物の材質が金属材料では、研磨速度を向上させる観点から、pHは、好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下である。また、人体への影響や研磨装置の腐食防止の観点から、pHは、好ましくは0.5以上、より好ましくは1以上、さらに好ましくは1.4以上である。特に、ニッケル−リン(Ni−P)メッキされたアルミニウム合金基板のように被研磨物の材質が金属材料の精密部品用基板においては、前記観点を考慮してpHは、0.5〜6が好ましく、より好ましくは1.0〜5、さらに好ましくは1.4〜4である。   The pH of the polishing composition of the present invention is 0.1-7. In the alkalinity, the generation of nanoscratches is remarkable compared to the acidity. The generation mechanism is not clear, but in an alkaline atmosphere in which abrasive particles repel each other due to surface charges, aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing composition are dense in the polishing part. It is presumed that it is not possible to perform proper filling and is likely to receive a local load under the polishing pressure. The pH is preferably determined according to the type of the object to be polished and the required characteristics. When the material of the object to be polished is a metal material, the pH is preferably 6 or less, more preferably 5 from the viewpoint of improving the polishing rate. Hereinafter, it is more preferably 4 or less. Further, from the viewpoint of the influence on the human body and the prevention of corrosion of the polishing apparatus, the pH is preferably 0.5 or more, more preferably 1 or more, and further preferably 1.4 or more. In particular, in the case of a precision component substrate whose material to be polished is a metal material, such as a nickel-phosphorus (Ni-P) plated aluminum alloy substrate, the pH is 0.5 to 6 in consideration of the above viewpoint. More preferably, it is 1.0-5, More preferably, it is 1.4-4.

pHは、以下の酸や塩によって調整することができる。具体的には、硝酸、硫酸、亜硝酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸又はそれらの塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸又はそれらの塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸又はそれらの塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸又はそれらの塩、などが挙げられる。中でもナノスクラッチを低減する観点から、無機酸又は有機ホスホン酸及びそれらの塩が好ましい。   The pH can be adjusted with the following acids and salts. Specifically, inorganic acids such as nitric acid, sulfuric acid, nitrous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, or salts thereof, 2-amino Ethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane- 1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2- Diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane- , 3,4-tricarboxylic acid, organic phosphonic acids such as α-methylphosphonosuccinic acid or their salts, aminocarboxylic acids such as glutamic acid, picolinic acid, aspartic acid or their salts, oxalic acid, nitroacetic acid, maleic acid And carboxylic acids such as oxaloacetic acid or salts thereof. Of these, inorganic acids or organic phosphonic acids and their salts are preferred from the viewpoint of reducing nanoscratches.

また、無機酸又はそれらの塩の中では、硝酸、硫酸、塩酸、過塩素酸又はそれらの塩がより好ましく、有機ホスホン酸又はそれらの塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)又はそれらの塩がより好ましい。これらの酸又はそれらの塩は、単独で又は2種類以上を混合して用いてもよい。   Among inorganic acids or salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or salts thereof are more preferable. Among organic phosphonic acids or salts thereof, 1-hydroxyethylidene-1,1-diphosphone is preferred. More preferred are acids, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) or salts thereof. These acids or their salts may be used alone or in admixture of two or more.

これらの塩の対イオン(陽イオン)としては、特に限定はなく、具体的には、金属イオン、アンモニウムイオン、アルキルアンモニウムイオンとの塩が挙げられる。金属の具体的な例としては、周期律表(長周期型)の1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。ナノスクラッチを低減する観点から、アンモニウムイオン又は1A族に属する金属イオンが好ましい。   The counter ion (cation) of these salts is not particularly limited, and specific examples include salts with metal ions, ammonium ions, and alkylammonium ions. Specific examples of the metal include metals belonging to 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8 of the periodic table (long period type). From the viewpoint of reducing nanoscratches, ammonium ions or metal ions belonging to Group 1A are preferred.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。例えば、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。また、被研磨物の材質により一概に限定は出来ないが、一般に金属材料では研磨速度を向上させる観点から、酸化剤を添加することができる。酸化剤としては、過酸化水素、過マンガン酸、クロム酸、硝酸、ペルオキソ酸、酸素酸又はこれらの塩及び酸化性金属塩などが挙げられる。   Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. For example, a thickener, a dispersant, a rust inhibitor, a basic substance, a surfactant, and the like can be given. Moreover, although it cannot generally limit by the material of to-be-polished material, generally an oxidizing agent can be added with a metal material from a viewpoint of improving a grinding | polishing rate. Examples of the oxidizing agent include hydrogen peroxide, permanganic acid, chromic acid, nitric acid, peroxo acid, oxyacid, or salts thereof and oxidizing metal salts.

前記のような構成を有する本発明の研磨液組成物は、前記各成分を公知の方法で混合することにより、調製することができる。   The polishing composition of the present invention having the above-described configuration can be prepared by mixing the above-described components by a known method.

研磨液組成物の調製方法としては、たとえば以下の二通りが挙げられる。
(1)研磨粒子調製液と水とを混合したものに他の成分を加える方法、及び
(2)他の成分と水とを混合したものに研磨粒子調製液を加える方法。
Examples of the method for preparing the polishing composition include the following two methods.
(1) A method of adding other components to a mixture of an abrasive particle preparation solution and water, and (2) a method of adding an abrasive particle preparation solution to a mixture of other components and water.

中でも、経済性の観点から、濃縮液として、以下の条件:
(i)0.56μm以上1μm未満の研磨粒子が研磨粒子調製液1cm当り500,000個以下、及び
(ii)1μm以上の研磨粒子が研磨粒子調製液中の全研磨粒子に対して0.001重量%以下
を満たす研磨材と水とを含有する研磨粒子調製液(態様A−1)を調製し、次いで、該研磨粒子調製液に前記したような他の成分を配合して本発明の研磨液組成物を調製することが好ましい。
また、研磨材の分散安定性の観点から、他の成分と水とを混合したものに研磨粒子調製液(態様A−1)を加える(2)の方法が好ましい。
なお、(1)の方法において、他の成分は必要に応じて適当な量の水で希釈して用いることができる。
したがって、本発明は、研磨粒子調製液にも関する。
Among these, from the economical point of view, the following conditions are used as a concentrate:
(I) 0.56 μm or more and less than 1 μm of abrasive particles are 500,000 or less per 1 cm 3 of the abrasive particle preparation liquid, and (ii) 1 μm or more of abrasive particles are 0.1% relative to all abrasive particles in the abrasive particle preparation liquid. An abrasive particle preparation liquid (Aspect A-1) containing an abrasive satisfying 001% by weight or less and water is prepared, and then, the abrasive particle preparation liquid is blended with other components as described above. It is preferable to prepare a polishing liquid composition.
Further, from the viewpoint of the dispersion stability of the abrasive, the method (2) in which the abrasive particle preparation liquid (Aspect A-1) is added to a mixture of other components and water is preferable.
In the method (1), other components can be diluted with an appropriate amount of water as necessary.
Accordingly, the present invention also relates to an abrasive particle preparation solution.

研磨粒子調製液としては、前記の研磨液組成物の調製方法(1)又は(2)に使用されるものであればよく、たとえば、前記態様A−1以外には以下の態様のものが挙げられる。
(態様A−2)さらに、以下の条件を満たす態様A−1の研磨粒子調製液:
(iii)3μm以上の研磨粒子が研磨粒子調製液中の全研磨粒子に対して0.0008重量%以下;
(態様A−3)研磨材の一次粒子の平均粒径が1〜50nmである態様A−1又はA−2の研磨粒子調製液;
(態様A−4)研磨粒子調製液中の研磨材の含有量が1〜60重量%である態様A−1〜A−3の研磨粒子調製液;
(態様A−5)研磨材がコロイダルシリカである態様A−1〜A−4の研磨粒子調製液;
(態様A−6)磁気ディスク基板用の研磨液組成物を調製するのに用いられる態様A−1〜A−5の研磨粒子調製液。
The abrasive particle preparation liquid may be any liquid used in the above-described method (1) or (2) for preparing the polishing liquid composition. Examples of the abrasive particle preparation liquid include the following aspects other than the aspect A-1. It is done.
(Aspect A-2) Furthermore, the abrasive particle preparation liquid of aspect A-1 that satisfies the following conditions:
(Iii) The abrasive particles of 3 μm or more are 0.0008% by weight or less based on the total abrasive particles in the abrasive particle preparation liquid;
(Aspect A-3) Abrasive particle preparation liquid according to aspect A-1 or A-2, in which the average primary particle diameter of the abrasive is 1 to 50 nm;
(Aspect A-4) Abrasive particle preparation liquid according to aspects A-1 to A-3, in which the content of the abrasive in the abrasive particle preparation liquid is 1 to 60% by weight;
(Aspect A-5) Abrasive particle preparation liquid according to Aspects A-1 to A-4, in which the abrasive is colloidal silica;
(Aspect A-6) The abrasive particle preparation liquid according to aspects A-1 to A-5, which is used to prepare a polishing liquid composition for a magnetic disk substrate.

研磨粒子調製液中における研磨材の含有量としては、研磨速度を向上させる観点から、好ましくは1重量%以上、より好ましくは5重量%以上、さらに好ましくは10重量%以上であり、また、経済的に表面品質を向上させる観点から、好ましくは60重量%以下、より好ましくは50重量%以下である。従って、該含有量は、好ましくは1〜60重量%、より好ましくは5〜50重量%、さらに好ましくは10〜50重量%である。
また、研磨粒子調製液中における水の含有量としては、研磨粒子調製液の流動性の観点から、好ましくは40重量%以上、より好ましくは50重量%以上であり、また、研磨速度を向上させる観点から、好ましくは99重量%以下、より好ましくは95重量%以下、さらに好ましくは90重量%以下である。従って、該含有量は、好ましくは40〜99重量%、より好ましくは50〜95重量%、さらに好ましくは50〜90重量%である。
The content of the abrasive in the abrasive particle preparation liquid is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably 10% by weight or more from the viewpoint of improving the polishing rate. From the viewpoint of improving surface quality, it is preferably 60% by weight or less, more preferably 50% by weight or less. Accordingly, the content is preferably 1 to 60% by weight, more preferably 5 to 50% by weight, and still more preferably 10 to 50% by weight.
Further, the water content in the abrasive particle preparation liquid is preferably 40% by weight or more, more preferably 50% by weight or more from the viewpoint of fluidity of the abrasive particle preparation liquid, and also improves the polishing rate. From the viewpoint, it is preferably 99% by weight or less, more preferably 95% by weight or less, and still more preferably 90% by weight or less. Therefore, the content is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, and still more preferably 50 to 90% by weight.

前記研磨粒子調製液は、例えば、以下の態様1〜6の研磨液組成物の調製に好適に使用することができる。
(態様1)以下の条件を満たす、研磨材と水とを含有し、pHが0.1〜7である研磨液組成物:
(1)0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り500,000個以下、及び
(2)1μm以上の研磨粒子が研磨液組成物中の全研磨粒子に対して0.001重量%以下;
(態様2)さらに、以下の条件を満たす態様1の研磨液組成物:
(3)3μm以上の研磨粒子が研磨液組成物中の全研磨粒子に対して0.0008重量%以下;
(態様3)研磨材の一次粒子の平均粒径が1〜50nmである態様1又は2の研磨液組成物;
(態様4)研磨液組成物中の研磨材の含有量が0.5〜20重量%である態様1〜3の研磨液組成物;
(態様5)研磨材がコロイダルシリカである態様1〜4の研磨液組成物;
(態様6)磁気ディスク基板に用いる態様1〜5の研磨液組成物。
The abrasive particle preparation liquid can be suitably used, for example, for preparing the polishing liquid compositions of the following embodiments 1 to 6.
(Aspect 1) A polishing composition that contains an abrasive and water and satisfies the following conditions and has a pH of 0.1 to 7:
(1) 500,000 or less of abrasive particles of 0.56 μm or more and less than 1 μm per 1 cm 3 of the polishing liquid composition, and (2) 0. 1 μm or more of polishing particles with respect to all polishing particles in the polishing liquid composition. 001 wt% or less;
(Aspect 2) Furthermore, the polishing composition of aspect 1 satisfying the following conditions:
(3) The abrasive particles of 3 μm or more are 0.0008% by weight or less based on the total abrasive particles in the polishing liquid composition;
(Aspect 3) The polishing composition according to aspect 1 or 2, wherein the average primary particle diameter of the abrasive is 1 to 50 nm;
(Aspect 4) The polishing liquid composition according to aspects 1 to 3, wherein the content of the abrasive in the polishing liquid composition is 0.5 to 20% by weight;
(Aspect 5) The polishing composition according to aspects 1 to 4, wherein the abrasive is colloidal silica;
(Aspect 6) The polishing liquid composition according to aspects 1 to 5 used for a magnetic disk substrate.

本発明の研磨液組成物は、例えば、不織布の有機高分子系研磨布等(研磨パッド)と被研磨基板との間に供給され、即ち、研磨液組成物が研磨パッドを貼り付けた研磨盤で挟み込まれた基板研磨面に供給され、所定の圧力の下で研磨盤及び/又は基板を動かすことにより、基板に接触しながら研磨工程に用いられる。この研磨によりナノスクラッチの発生を顕著に抑えることができる。   The polishing liquid composition of the present invention is supplied, for example, between a non-woven organic polymer polishing cloth or the like (polishing pad) and a substrate to be polished, that is, a polishing disk in which the polishing liquid composition is attached to the polishing pad. Is supplied to the polishing surface of the substrate sandwiched in step, and is used for the polishing step while contacting the substrate by moving the polishing disk and / or the substrate under a predetermined pressure. This polishing can remarkably suppress the generation of nanoscratches.

効果的にナノスクラッチを低減するためには、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製し、被研磨基板を研磨する。これにより、被研磨基板の表面欠陥、特にナノスクラッチを顕著に低減でき、さらに表面粗さの低い表面品質に優れた基板を製造することができる。   In order to effectively reduce nano scratches, a polishing liquid composition is prepared by using the polishing liquid composition of the present invention or by mixing each component so as to be the composition of the polishing liquid composition of the present invention. The substrate to be polished is polished. Thereby, the surface defect of a to-be-polished substrate, especially nano scratch can be remarkably reduced, and a substrate excellent in surface quality with low surface roughness can be manufactured.

特に精密部品用基板の製造に好適である。例えば磁気ディスク、光磁気ディスク、光ディスク等の磁気ディスク基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板などの精密部品用基板の研磨に適している。半導体基板の製造においては、シリコンウエハ(ベアウエハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において本発明の研磨液組成物を用いることができる。   It is particularly suitable for manufacturing precision component substrates. For example, it is suitable for polishing precision component substrates such as magnetic disk substrates such as magnetic disks, magneto-optical disks, and optical disks, photomask substrates, optical lenses, optical mirrors, optical prisms, and semiconductor substrates. In the manufacture of a semiconductor substrate, the polishing liquid of the present invention is used in a polishing process of a silicon wafer (bare wafer), a formation process of an embedded element isolation film, a planarization process of an interlayer insulating film, a formation process of an embedded metal wiring, a formation process of an embedded capacitor, etc. Compositions can be used.

本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えばラッピング工程等にも同様に適用することができる。   The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.

本発明の研磨液組成物が好適な被研磨物の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨物に好適である。例えば、Ni−Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni−Pメッキされたアルミニウム合金基板がさらに適している。   The material of the object to be polished is preferably a polishing liquid composition of the present invention, for example, metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, or alloys thereof, glass, glassy carbon, Examples thereof include glassy substances such as amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, it is suitable for an object to be polished containing a metal such as aluminum, nickel, tungsten, or copper and an alloy containing these metals as a main component. For example, a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni—P plated aluminum alloy substrate is more suitable.

被研磨物の形状には特に制限は無く、例えばディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状のものに本発明の研磨液組成物は用いられる。中でも、ディスク状の被研磨物の研磨に優れている。   There is no particular limitation on the shape of the object to be polished. For example, the polishing liquid composition of the present invention has a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens. Things are used. Among them, it is excellent for polishing a disk-shaped workpiece.

表面平滑性の尺度である表面粗さについては、その評価方法は限られないが、例えば原子間力顕微鏡(AFM)における波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さRaとして表すことができる(AFM−Ra)。本発明の研磨液組成物は、磁気ディスク基板の研磨工程、さらには研磨後の基板の表面粗さ(AFM−Ra)を2.0Å以下にする研磨工程に適している。   The surface roughness, which is a measure of surface smoothness, is not limited in its evaluation method, but for example, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in an atomic force microscope (AFM), and the center line average It can be expressed as roughness Ra (AFM-Ra). The polishing composition of the present invention is suitable for a polishing process for a magnetic disk substrate, and further for a polishing process for reducing the surface roughness (AFM-Ra) of the substrate after polishing to 2.0 mm or less.

基板の製造工程において、複数の研磨工程がある場合、2工程目以降に本発明の研磨液組成物が用いられるのが好ましく、ナノスクラッチ及び表面粗さを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられるのが特に好ましい。仕上げ研磨工程とは、複数の研磨工程がある場合、少なくとも一つの最後の研磨工程を指す。   In the substrate manufacturing process, when there are a plurality of polishing processes, it is preferable that the polishing composition of the present invention is used in the second and subsequent processes, which significantly reduces nanoscratches and surface roughness, and has excellent surface smoothness. From the viewpoint of obtaining the above, it is particularly preferred to be used in the finish polishing step. The finish polishing process refers to at least one final polishing process when there are a plurality of polishing processes.

その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、各工程毎に基板を洗浄することが好ましい。なお、研磨機としては、特に限定されない。このようにして製造された基板は、ナノスクラッチが顕著に低減されており、且つ表面平滑性に優れたものである。即ち、研磨後の表面粗さ(AFM−Ra)は、例えば2.0Å以下、好ましくは1.8Å以下、より好ましくは1.5Å以下である。   At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and when different polishing machines are used, a substrate is provided for each process. It is preferable to wash. The polishing machine is not particularly limited. The substrate manufactured in this way has nano scratches remarkably reduced and is excellent in surface smoothness. That is, the surface roughness after polishing (AFM-Ra) is, for example, 2.0 mm or less, preferably 1.8 mm or less, more preferably 1.5 mm or less.

尚、本発明の研磨液組成物を用いた研磨工程に供する前の基板の表面性状は特に限定しないが、例えば、AFM−Raが10Å以下の表面性状を有する基板が適する。   The surface properties of the substrate before being subjected to the polishing step using the polishing liquid composition of the present invention are not particularly limited. For example, a substrate having a surface property with an AFM-Ra of 10 mm or less is suitable.

本発明の基板の製造方法において使用される研磨材としては、前記の本発明の研磨液組成物に使用されるものと同一のものであればよい。前記研磨工程は、複数研磨工程の中でも2工程目以降に行われるのが好ましく、仕上げ研磨工程に行われるのが特に好ましい。   The abrasive used in the method for producing a substrate of the present invention may be the same as that used in the polishing composition of the present invention. The polishing step is preferably performed after the second step among the plurality of polishing steps, and particularly preferably performed in the finish polishing step.

以上のようにして、本発明の研磨液組成物又は本発明の基板の製造方法を用いて製造された基板は、表面平滑性に優れ、表面粗さ(AFM−Ra)が例えば2.0Å以下、好ましくは1.8Å以下、より好ましくは1.5Å以下のものが得られる。   As described above, the substrate manufactured using the polishing composition of the present invention or the substrate manufacturing method of the present invention is excellent in surface smoothness and has a surface roughness (AFM-Ra) of, for example, 2.0 mm or less. Preferably, it is 1.8 mm or less, more preferably 1.5 cm or less.

また、製造された基板はナノスクラッチが極めて少ないものである。従って、該基板が、例えば、メモリーハードディスク基板である場合には、記録密度120G bits/inch、さらには160G bits/inchのものにも対応することができ、半導体基板である場合には、配線幅65nm、さらには45nmのものにも対応することができる。 Further, the manufactured substrate has very few nano scratches. Therefore, when the substrate is, for example, a memory hard disk substrate, it is possible to cope with a recording density of 120 G bits / inch 2 and further 160 G bits / inch 2 , and when it is a semiconductor substrate, A wiring width of 65 nm or even 45 nm can be handled.

被研磨基板として、アルミナ研磨材を含有する研磨液であらかじめ粗研磨し、AFM−Ra10Åとした、厚さ1.27mmの外径95mmφで内径25mmφのNi−Pメッキされたアルミニウム合金基板を用いて研磨評価を行った。   As a substrate to be polished, an aluminum alloy substrate plated with Ni-P having an outer diameter of 95 mmφ and an inner diameter of 25 mmφ having a thickness of 1.27 mm, which was coarsely polished in advance with a polishing liquid containing an alumina abrasive, was used. Polishing evaluation was performed.

実施例1
研磨材として、コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径22nm、シリカ粒子濃度40重量%品)25Lを、バッグ式デプス型フィルター(住友スリーエム社製、リキッドフィルター522)で濾過し、次いでプリーツ型フィルター(アドバンテック東洋社製、TCS−E045−S1FE)で濾過し、表1の研磨粒子調製液aを得た(調製例1)。表2の濃度になるように、イオン交換水に所定量の、35重量%の過酸化水素水(旭電化工業社製)、60重量%のHEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)水溶液(ソルーシア・ジャパン製)、及び95重量%の硫酸(和光純薬工業社製)を添加、混合した水溶液の撹拌下に、前記研磨粒子調製液aを添加して研磨液組成物Aを得た。
Example 1
As an abrasive, 25 L of colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 22 nm, silica particle concentration 40% by weight) is filtered with a bag-type depth filter (manufactured by Sumitomo 3M, liquid filter 522). Next, the mixture was filtered through a pleated filter (Advantech Toyo Co., Ltd., TCS-E045-S1FE) to obtain an abrasive particle preparation liquid a in Table 1 (Preparation Example 1). A predetermined amount of 35% by weight of hydrogen peroxide water (manufactured by Asahi Denka Kogyo Co., Ltd.) and 60% by weight of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) in ion-exchanged water so as to have the concentrations shown in Table 2 ) Aqueous solution (manufactured by Solusia Japan) and 95% by weight sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added. Obtained.

実施例2
プリーツ型フィルターに日本ポール社製HDCII(MCY1001J012H13)を用いた以外は実施例1と同様に行い、表1の研磨粒子調製液b(調製例2)及び研磨液組成物Bを得た。
Example 2
Abrasive particle preparation liquid b (Preparation Example 2) and a polishing liquid composition B shown in Table 1 were obtained in the same manner as in Example 1 except that HDCII (MCY1001J012H13) manufactured by Nippon Pole Co., Ltd. was used for the pleated filter.

実施例3
プリーツ型フィルターにCUNO社製ゼータポア(70006−01N−120PG)を用いた以外は実施例1と同様に行い、表1の研磨粒子調製液c(調製例3)及び研磨液組成物Cを得た。
Example 3
Abrasive particle preparation liquid c (Preparation Example 3) and a polishing liquid composition C shown in Table 1 were obtained in the same manner as in Example 1 except that ZENOpore (70006-01N-120PG) manufactured by CUNO was used for the pleated filter. .

実施例4
プリーツ型フィルターをアドバンテック東洋社製(TCPD−05A−S1FE)に替えた以外は実施例1と同様に行い、表1の研磨粒子調製液d(調製例4)及び研磨液組成物Dを得た。
Example 4
The same procedure as in Example 1 was conducted except that the pleated filter was changed to Advantech Toyo Co., Ltd. (TCPD-05A-S1FE), and abrasive particle preparation liquid d (Preparation Example 4) and polishing liquid composition D in Table 1 were obtained. .

実施例5
イオン交換水に所定量の、60重量%のHEDP水溶液と95重量%の硫酸を添加、混合した水溶液の撹拌下に、調製例1の研磨粒子調製液aを加えて、研磨液組成物Eを得た。
Example 5
A predetermined amount of a 60% by weight HEDP aqueous solution and 95% by weight sulfuric acid were added to ion-exchanged water. While stirring the mixed aqueous solution, the abrasive particle preparation liquid a of Preparation Example 1 was added to prepare a polishing liquid composition E. Obtained.

実施例6
プリーツ型フィルターを日本ポール社製で中間構造のウルチプリーツプロファイル(PUY1UY020H13)に替えた以外は実施例1と同様に行い、表1の研磨粒子調製液g(調製例5)及び研磨液組成物Gを得た。
Example 6
Abrasive particle preparation liquid g (Preparation Example 5) and polishing liquid composition G shown in Table 1 were carried out in the same manner as in Example 1 except that the pleated filter was changed to an intermediate structure Ultipleat profile (PUY1UY020H13) manufactured by Nippon Pole. Got.

実施例7(参考例)
イオン交換水に所定量の35重量%過酸化水素水と60重量%のHEDP水溶液および95重量%の硫酸を添加、混合した水溶液の攪拌下に、調製例1の研磨粒子調製液aを加えて、研磨液組成物Iを得た。
Example 7 (Reference Example)
A predetermined amount of 35% by weight hydrogen peroxide solution, 60% by weight HEDP aqueous solution and 95% by weight sulfuric acid were added to ion-exchanged water, and the abrasive particle preparation solution a of Preparation Example 1 was added while stirring the mixed aqueous solution. A polishing liquid composition I was obtained.

実施例8
調製例1の研磨粒子調製液aに、表2の濃度に必要なイオン交換水の86%を加え、希釈スラリーを調製した。別途、前記イオン交換水の残り14%に、所定量の、35重量%の過酸化水素水(旭電化工業社製)と60重量%のHEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)水溶液(ソルーシア・ジャパン製)と95重量%の硫酸(和光純薬工業社製)とを混合した酸水溶液を調製した。この酸水溶液を前記希釈スラリーに攪拌しながら加え、研磨液組成物Kを得た。
Example 8
A diluted slurry was prepared by adding 86% of ion-exchanged water necessary for the concentrations shown in Table 2 to the abrasive particle preparation liquid a of Preparation Example 1. Separately, in the remaining 14% of the ion-exchanged water, a predetermined amount of 35% by weight of hydrogen peroxide (Asahi Denka Kogyo Co., Ltd.) and 60% by weight of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) An acid aqueous solution in which an aqueous solution (manufactured by Solusia Japan) and 95% by weight sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed was prepared. This aqueous acid solution was added to the diluted slurry with stirring to obtain a polishing composition K.

比較例1
プリーツ型フィルターにダイワボウ社製ウェーブスター(W−004−S−DO−E)を用いた以外は実施例1と同様に行い、表1の研磨粒子調製液f(調製例6)及び研磨液組成物Fを得た。
Comparative Example 1
Abrasive particle preparation liquid f (Preparation Example 6) and a polishing liquid composition shown in Table 1 except that Daiwabo's Wave Star (W-004-S-DO-E) was used for the pleated filter. Product F was obtained.

比較例2
イオン交換水の撹拌下に、表2の濃度になるように調製例1の研磨粒子調製液aを加えて、研磨液組成物Hを得た。
Comparative Example 2
Under stirring of ion-exchanged water, the abrasive particle preparation liquid a of Preparation Example 1 was added so as to have the concentration shown in Table 2, and a polishing liquid composition H was obtained.

比較例3
イオン交換水の撹拌下に、表2の濃度になるように、研磨材としてコロイダルシリカスラリー(日産化学工業社製、スノーテックスST−50、平均粒径30nm、シリカ粒子濃度48重量%品)を添加し、さらに、0.45μmセルロースアセテート製メンブランフィルター(直径90mm)で吸引濾過し研磨液組成物Jを得た。
実施例1〜8及び比較例1〜3で得られた研磨粒子調製液及び研磨液組成物について、粗大粒子及びナノスクラッチを以下の方法に基づいて測定・評価した。得られた結果を表2に示す。
Comparative Example 3
Under stirring of ion exchange water, colloidal silica slurry (manufactured by Nissan Chemical Industries, Snowtex ST-50, average particle size 30 nm, silica particle concentration 48% by weight) is used as an abrasive so as to have the concentration shown in Table 2. Further, the mixture was suction filtered through a membrane filter (diameter 90 mm) made of 0.45 μm cellulose acetate to obtain a polishing composition J.
About the polishing particle preparation liquid and polishing liquid composition obtained in Examples 1-8 and Comparative Examples 1-3, coarse particles and nanoscratches were measured and evaluated based on the following methods. The obtained results are shown in Table 2.

1.研磨条件
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨パッド:フジボウ社製、ウレタン製仕上げ研磨用パッド
・上定盤回転数:32.5r/min
・研磨液組成物供給量:100mL/min
・本研磨時間:4min
・本研磨荷重:7.8kPa
・投入した基板の枚数:10枚
1. Polishing conditions / polishing tester: Speedfam, double-sided 9B polisher / polishing pad: Fujibow, urethane finish polishing pad / upper plate rotation speed: 32.5 r / min
Polishing liquid composition supply amount: 100 mL / min
・ Main polishing time: 4 min
-Final polishing load: 7.8 kPa
・ Number of loaded substrates: 10

2.研磨粒子の測定条件
・測定機器:PSS社製 「アキュサイザー780APS」
・Injection Loop Volume:1ml
・Flow Rate:60mL/min
・Data Collection Time:60sec
・Number Channels:128
2. Measuring conditions and measuring equipment for abrasive particles: “Accurizer 780APS” manufactured by PSS
・ Injection Loop Volume: 1ml
・ Flow Rate: 60mL / min
・ Data Collection Time: 60sec
・ Number Channels: 128

3.ナノスクラッチの測定条件
・測定機器:VISION PSYTEC社製、「MicroMax VMX−2100CSP」
・光源:2Sλ(250W)及び3Pλ(250W)共に100%
・チルト角:−6°
・倍率:最大(視野範囲:全面積の120分の1)
・観察領域:全面積(外径95mmφで内径25mmφの基板)
・アイリス:notch
・評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数を算出した。また、表2に記載したナノスクラッチの評価は比較例1のナノスクラッチ数(本/面)に対する相対評価で行った。
3. Nano scratch measurement conditions / measurement equipment: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
-Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
-Tilt angle: -6 °
・ Magnification: Maximum (Field range: 1/120 of the total area)
・ Observation area: total area (substrate with outer diameter 95mmφ and inner diameter 25mmφ)
・ Iris: notch
・ Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of nano scratches (on each side) of each of the 4 substrates by 8 to get The number of nano scratches was calculated. Moreover, the evaluation of the nanoscratches described in Table 2 was performed by relative evaluation with respect to the number of nanoscratches (lines / surface) of Comparative Example 1.

[研磨速度の測定条件]
研磨前後の被研磨物の重量差(g)を被研磨物の密度(8.4g/cm)、被研磨物の表面積(65.97cm)、及び研磨時間(min)で除し、単位時間当たりの研磨量を研磨速度(μm/min)として計算した。
[Polishing speed measurement conditions]
Dividing the weight difference (g) of the object before and after polishing by the density (8.4 g / cm 3 ) of the object to be polished, the surface area (65.97 cm 2 ) of the object to be polished, and the polishing time (min), unit The polishing amount per hour was calculated as the polishing rate (μm / min).

[表面粗さ(AFM−Ra)の評価方法]
・測定機器:Veeco社製、「TM−M5E」
・Mode:non−contact
・Scanrate:1.0Hz
・Scanarea:10×10μm
・評価:内周と外周間の中心を120°毎に3点測定し、これを基板の両面について行い、計6点の平均値を求めた。
[Evaluation method of surface roughness (AFM-Ra)]
Measuring instrument: “TM-M5E” manufactured by Veeco
・ Mode: non-contact
・ Scanrate: 1.0 Hz
・ Scanarea: 10 × 10 μm
Evaluation: The center between the inner periphery and the outer periphery was measured at 120 points every 120 °, and this was performed on both sides of the substrate to obtain an average value of a total of 6 points.

Figure 0004214107
Figure 0004214107

Figure 0004214107
Figure 0004214107

表2に示した結果から、実施例1〜8の研磨液組成物を用いて得られた基板は、比較例1のそれに比べ、ナノスクラッチの発生が抑制されたものであり、比較例2又は3のそれらに比べ、研磨速度に優れナノスクラッチの発生が抑制されたものであることがわかる。
また、実施例1〜8で得られた基板は、いずれも表面粗さの極めて小さいものであった。
From the results shown in Table 2, the substrates obtained using the polishing liquid compositions of Examples 1 to 8 were those in which the generation of nanoscratches was suppressed as compared with that of Comparative Example 1, and Comparative Example 2 or Compared with those of No. 3, it was found that the polishing rate was excellent and the generation of nano scratches was suppressed.
Moreover, all the substrates obtained in Examples 1 to 8 had extremely small surface roughness.

本発明の研磨液組成物は、例えば、磁気ディスク、光ディスク、光磁気ディスク、等のディスク基板の研磨あるいはフォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨等に好適に使用することができる。   The polishing composition of the present invention is, for example, polishing of a disk substrate such as a magnetic disk, an optical disk, or a magneto-optical disk, or polishing of a precision component substrate such as a photomask substrate, an optical lens, an optical mirror, an optical prism, or a semiconductor substrate. Can be suitably used.

Claims (4)

以下の条件を満たす、一次粒子の平均粒径が1〜50nmのコロイダルシリカと水とを含有し、pHが0.1〜4である磁気ディスク基板用研磨液組成物:
(1)0.56μm以上1μm未満のコロイダルシリカが研磨液組成物1cm当り100,000個以下、及び
(2)1μm以上のコロイダルシリカが研磨液組成物中の全コロイダルシリカに対して0.001重量%以下。
A polishing composition for a magnetic disk substrate , which contains colloidal silica having an average primary particle diameter of 1 to 50 nm and water and having a pH of 0.1 to 4 that satisfies the following conditions:
(1) The colloidal silica of 0.56 μm or more and less than 1 μm is 100,000 or less per 1 cm 3 of the polishing composition, and (2) the colloidal silica of 1 μm or more is 0.2% relative to the total colloidal silica in the polishing composition. 001% by weight or less.
さらに、以下の条件を満たす請求項1記載の研磨液組成物:
(3)3μm以上のコロイダルシリカが研磨液組成物中の全コロイダルシリカに対して0.0008重量%以下。
Furthermore, the polishing liquid composition of Claim 1 which satisfy | fills the following conditions:
(3) The colloidal silica of 3 μm or more is 0.0008% by weight or less based on the total colloidal silica in the polishing composition.
研磨液組成物中のコロイダルシリカの含有量が0.5〜20重量%である請求項1又は2記載の研磨液組成物。   The polishing composition according to claim 1 or 2, wherein the content of colloidal silica in the polishing composition is 0.5 to 20% by weight. 請求項1〜いずれか記載の研磨液組成物を用いて磁気ディスク基板を研磨する工程を有する、基板の製造方法。 A method for manufacturing a substrate, comprising a step of polishing a magnetic disk substrate using the polishing composition according to any one of claims 1 to 3 .
JP2004336601A 2004-08-09 2004-11-19 Polishing liquid composition Active JP4214107B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004336601A JP4214107B2 (en) 2004-08-09 2004-11-19 Polishing liquid composition
TW094123663A TWI364450B (en) 2004-08-09 2005-07-13 Polishing composition
GB0514473A GB2417034B (en) 2004-08-09 2005-07-14 Polishing composition
US11/184,960 US20060030243A1 (en) 2004-08-09 2005-07-20 Polishing composition
MYPI20053553A MY142247A (en) 2004-08-09 2005-08-01 Polishing composition
US12/754,385 US20100190413A1 (en) 2004-08-09 2010-04-05 Polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004232378 2004-08-09
JP2004336601A JP4214107B2 (en) 2004-08-09 2004-11-19 Polishing liquid composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007192493A Division JP4648367B2 (en) 2004-08-09 2007-07-24 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2006075975A JP2006075975A (en) 2006-03-23
JP4214107B2 true JP4214107B2 (en) 2009-01-28

Family

ID=36155856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336601A Active JP4214107B2 (en) 2004-08-09 2004-11-19 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4214107B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411667B (en) 2006-04-28 2013-10-11 Kao Corp Polishing composition for magnetic disk substrate
JP5844135B2 (en) 2010-12-24 2016-01-13 花王株式会社 Method for producing polishing composition
JP6680652B2 (en) * 2016-09-08 2020-04-15 株式会社フジミインコーポレーテッド Abrasive dispersion, polishing composition kit containing the same, and method for producing polishing composition, polishing composition, polishing method, and method for producing magnetic disk substrate using the same

Also Published As

Publication number Publication date
JP2006075975A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2006136996A (en) Polishing composition manufacturing method
US20060030243A1 (en) Polishing composition
JP4231632B2 (en) Polishing liquid composition
JP4451347B2 (en) Polishing liquid composition
JP5437571B2 (en) Polishing fluid kit
JP5844135B2 (en) Method for producing polishing composition
US20070167116A1 (en) Polishing composition
JP4836441B2 (en) Polishing liquid composition
JP2007320031A (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP5019429B2 (en) Dispersion in container
JP4648367B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP4214107B2 (en) Polishing liquid composition
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP2007260906A (en) Manufacturing method of substrate
JP2007301721A (en) Polishing liquid composition
US6918938B2 (en) Polishing composition
JP2003211351A (en) Method of reducing micro projections
JP4267546B2 (en) Substrate manufacturing method
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4125706B2 (en) Substrate manufacturing method
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP4640981B2 (en) Substrate manufacturing method
JP4949432B2 (en) Manufacturing method of hard disk substrate

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4214107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250