JP2003197573A - Colloidal silica for polishing surface wherein metal film and insulation film coexist - Google Patents

Colloidal silica for polishing surface wherein metal film and insulation film coexist

Info

Publication number
JP2003197573A
JP2003197573A JP2001394414A JP2001394414A JP2003197573A JP 2003197573 A JP2003197573 A JP 2003197573A JP 2001394414 A JP2001394414 A JP 2001394414A JP 2001394414 A JP2001394414 A JP 2001394414A JP 2003197573 A JP2003197573 A JP 2003197573A
Authority
JP
Japan
Prior art keywords
colloidal silica
polishing
silica
sio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001394414A
Other languages
Japanese (ja)
Inventor
Haruki Nojo
治輝 能條
Akitoshi Yoshida
明利 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKC Technology KK
Original Assignee
EKC Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKC Technology KK filed Critical EKC Technology KK
Priority to JP2001394414A priority Critical patent/JP2003197573A/en
Publication of JP2003197573A publication Critical patent/JP2003197573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a colloidal silica abrasive to be used for polishing and flattening a surface wherein a metal film and an insulation film coexist which can reduce the generation of scratches and has a long shelf life. <P>SOLUTION: The colloidal silica abrasive is formed of an acid colloidal silica which comprises silica grains having a prescribed grain size produced by removing a prescribed amount of alkali from a silicate alkali aqueous solution, an oxidant, and an acid, and has a pH value of 1.5 to 6. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造工程である化学的機械研磨(Chemical Mechanical
Polishing:以降CMPと呼ぶ)による平坦化技術につ
かわれる研磨剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to chemical mechanical polishing (Chemical Mechanical Polishing) which is a manufacturing process of semiconductor devices.
Polishing: hereinafter referred to as CMP) for a polishing agent used in a planarization technique.

【0002】[0002]

【従来の技術】半導体デバイスの製造工程において、一
般的に、基板上には絶縁膜や金属膜等の層を多層積層し
た多層積層構造が形成される。多層積層化の際には、一
般的には、基板に層間絶縁膜や金属膜を堆積後、生じた
凹凸をCMPによって平坦化処理を行い、平坦となった
面の上に新たな配線を積み重ねていく工程が必須であ
る。
2. Description of the Related Art In the process of manufacturing a semiconductor device, generally, a multilayer laminated structure in which layers such as insulating films and metal films are laminated is formed on a substrate. In the case of multi-layer stacking, generally, after depositing an interlayer insulating film or a metal film on a substrate, the resulting unevenness is flattened by CMP, and new wiring is stacked on the flattened surface. The process of moving is essential.

【0003】近年、半導体デバイスは微細化が進むにつ
れて、基板の各層において、ますます精度の高い平坦性
が必要となっている。そのため、CMP工程に期待する
ところが大きく、半導体デバイス製造過程におけるCM
Pによる平坦化工程の割合が増大している。
In recent years, as semiconductor devices have been miniaturized, the flatness of each layer of the substrate has become more and more highly precise. Therefore, there are great expectations for the CMP process, and CM in the semiconductor device manufacturing process
The rate of the planarization process using P is increasing.

【0004】従来、このCMP工程には、煙霧状シリカ
粉末を水に分散させたシリカスラリーが使われていた。
このシリカスラリーは、四塩化珪素に水素ガス及び酸素
ガスを加え、高温で分解して生成させた煙霧状シリカの
超微粒子粉末を水にスラリー化させて製造する。しかし
ながら、噴霧状シリカ粉末はチクソトロピー性が高く、
凝集状態になりやすいという性質がある。このため、噴
霧状シリカ粉末を単分散化させたスラリーを生成するこ
とは極めて困難であった。また、凝集体となったシリカ
粉末によって研磨表面にスクラッチが発生するという問
題があった。
Conventionally, a silica slurry in which fumed silica powder is dispersed in water has been used in the CMP process.
This silica slurry is produced by adding hydrogen gas and oxygen gas to silicon tetrachloride, and decomposing at a high temperature to produce ultrafine particles of fumed silica, which are slurried in water. However, the atomized silica powder has a high thixotropic property,
It has the property of easily becoming an agglomerated state. Therefore, it is extremely difficult to produce a slurry in which the atomized silica powder is monodispersed. In addition, there is a problem that scratches are generated on the polishing surface due to the silica powder that has become an aggregate.

【0005】このため、上記シリカスラリーに替わっ
て、近年コロイダルシリカも使われ始めてきた。本明細
書において、コロイダルシリカとは、コロイドサイズの
シリカ粒子が水または有機溶媒等中に分散している分散
液のことを指す。コロイダルシリカは一般に粒子が単分
散の状態で存在するので、上記の煙霧状シリカ超微粒子
粉末をスラリー化したシリカスラリーと異なり、極めて
凝集粒子が少なく、スクラッチの発生をかなり減少でき
る。
For this reason, colloidal silica has recently begun to be used in place of the silica slurry. In the present specification, colloidal silica refers to a dispersion liquid in which colloidal-sized silica particles are dispersed in water or an organic solvent. Since the particles of colloidal silica generally exist in a monodispersed state, unlike the above-mentioned silica slurry in which the fumed silica ultrafine particles are slurried, the number of agglomerated particles is extremely small, and the occurrence of scratches can be considerably reduced.

【0006】このコロイダルシリカを製造する原料とし
て、ケイ酸アルカリ水溶液や有機アルコキシド溶液が用
いられる。有機アルコキシド溶液を用いる場合は、エチ
ルシリケートやメチルシリケートなど有機アルコキシド
溶液を加水分解してコロイダルシリカを製造するが、得
られたコロイダルシリカは研磨レート遅く、経済的にも
高価で好ましくない。
As a raw material for producing this colloidal silica, an aqueous solution of alkali silicate or an organic alkoxide solution is used. When an organic alkoxide solution is used, an organic alkoxide solution such as ethyl silicate or methyl silicate is hydrolyzed to produce colloidal silica, but the obtained colloidal silica is not preferable because it has a slow polishing rate and is economically expensive.

【0007】一方、ケイ酸アルカリ水溶液を用いる場合
は、通常、ケイ酸ナトリウム水溶液からナトリウムをイ
オン交換樹脂などで除去してシリカ粒子を生成成長させ
て製造する。しかしながら、不純物としてシリカ粒子中
にナトリウムが残存するという問題があった。このよう
な金属不純物は、研磨を介して研磨基板に残留し、基板
回路の絶縁性を損なうという問題を引き起こす恐れがあ
る。
On the other hand, when an alkali silicate aqueous solution is used, sodium is usually removed from the sodium silicate aqueous solution by an ion exchange resin or the like to produce and grow silica particles for production. However, there is a problem that sodium remains in the silica particles as an impurity. Such metal impurities may remain on the polishing substrate through polishing and cause a problem of impairing the insulating property of the substrate circuit.

【0008】また、従来、酸化膜等の絶縁膜とメタル膜
が共存する半導体基板表面を平坦化するに際し、共存膜
表面にガラス質膜を被覆し加熱溶融させ平面を出し、平
坦化させる方法、一般のアルカリを多く含むコロイダル
シリカに添加剤と酸を添加した研磨剤で研磨する方法等
を取っていた。しかしながら、このような従来の方法で
得られる平坦性には限界があり、近年益々厳しく要求さ
れる平坦性の精度を満たすものではなかった。このた
め、このような共存膜を平坦性よく研磨する研磨剤が望
まれていた。
Further, conventionally, in flattening the surface of a semiconductor substrate in which an insulating film such as an oxide film and a metal film coexist, a glassy film is coated on the surface of the coexisting film, heated and melted to form a flat surface, A method of polishing with a polishing agent in which an additive and an acid are added to general colloidal silica containing a large amount of alkali has been used. However, the flatness obtained by such a conventional method has a limit, and the precision of the flatness which has been required more and more severely in recent years has not been satisfied. Therefore, an abrasive that polishes such a coexisting film with good flatness has been desired.

【0009】このような共存膜用の研磨剤には、通常、
研磨レートの向上や平坦性などの制御のために、過酸化
水素やヨウ素酸カリウムなど酸化剤;塩酸、硝酸など酸
及びその塩;アンモニア及びその塩;アミン及びその
塩;並びに水酸化カリウム、水酸化ナトリウム及びその
塩等が使われてきた。
The polishing agent for such a coexisting film usually contains
Oxidizing agents such as hydrogen peroxide and potassium iodate; acids and salts thereof such as hydrochloric acid and nitric acid; ammonia and salts thereof; amines and salts thereof; and potassium hydroxide and water for improving the polishing rate and controlling flatness. Sodium oxide and its salts have been used.

【0010】しかしながら、共存膜研磨用の研磨剤とし
てコロイダルシリカを用いた場合、シリカ粒子中にナト
リウム等のアルカリ金属不純物が残存するため、粒子が
アルカリ性を帯びており、これに酸や酸化剤等を添加す
ることによって、シリカ粒子が凝集状態になりやすく、
シェルフライフが短くなるという問題があった。
However, when colloidal silica is used as a polishing agent for polishing a coexisting film, since alkali metal impurities such as sodium remain in the silica particles, the particles are alkaline, and the particles have an acid or oxidizing agent. By adding, silica particles are likely to be in an aggregated state,
There was a problem that the shelf life was shortened.

【0011】例えば、特開2001−20087号公開
公報には、酸化膜のP−TEOSとCu膜を研磨する研
磨剤として、シリカ粒子、炭酸水素イオン等、過酸化水
素等を含有する、pHが3〜10である化学機械研磨用
水系分散体が開示されている。同公報には、このような
シリカ粒子の例として、ヒュームド法シリカ粒子、精製
によりナトリウムイオンなどの金属不純物が除去された
コロイダルシリカ等が挙げられている。しかしながら、
このようなコロイダルシリカであっても金属不純物の除
去の程度が未だ低く、無機酸等で酸性として使用する場
合に、コロイダルシリカのシリカ粒子が酸により凝集状
態になり易く、また研磨剤としてのシェルフライフが短
い欠点があった。また酸化剤を併用すると更にシェルフ
ライフが短くなる問題があった。
For example, Japanese Patent Laid-Open No. 2001-20087 discloses that an abrasive containing P-TEOS of an oxide film and a Cu film contains silica particles, hydrogen carbonate ions, hydrogen peroxide, etc. A chemical mechanical polishing aqueous dispersion of 3 to 10 is disclosed. In this publication, examples of such silica particles include fumed silica particles, colloidal silica from which metallic impurities such as sodium ions have been removed by purification, and the like. However,
Even with such colloidal silica, the degree of removal of metal impurities is still low, and when used as acidic with an inorganic acid, silica particles of the colloidal silica tend to be in an agglomerated state due to the acid, and also as a shelf as an abrasive. There was a short life. Further, there is a problem that the shelf life is further shortened by using an oxidizing agent together.

【0012】[0012]

【発明が解決しようとする課題】そこで、メタル膜と絶
縁膜が共存する表面の平坦化研磨を行う際、多く発生す
るスクラッチをできるだけ低減し、研磨剤としてシェル
フライフを長くした研磨剤の提供が望まれていた。
SUMMARY OF THE INVENTION Therefore, it is possible to provide an abrasive having a long shelf life as an abrasive, in which scratches that often occur when flattening a surface on which a metal film and an insulating film coexist are reduced. Was wanted.

【0013】[0013]

【課題を解決するための手段】本発明者は、上記課題に
ついて検討した結果、ケイ酸アルカリ水溶液からコロイ
ダルシリカを生成するに際し、シリカ粒子中のアルカリ
含有量が所定量以下になるように生成し、更に、酸化剤
及び酸を含ませ、pHを1.5〜6とすることで、メタ
ル膜絶縁膜が共存する表面の平坦化研磨の際にスクラッ
チを低減し、研磨剤としてシェルフライフのながい研磨
剤を提供できることを見出し、本発明を完成した。
Means for Solving the Problems As a result of studying the above problems, the present inventors have found that when colloidal silica is produced from an aqueous solution of alkali silicate, it is produced so that the alkali content in silica particles is not more than a predetermined amount. By further adding an oxidant and an acid and adjusting the pH to 1.5 to 6, scratches are reduced during flattening polishing of the surface where the metal film insulating film coexists, and shelf life as an abrasive is improved. The present invention has been completed by finding that an abrasive can be provided.

【0014】即ち、本発明では、メタル膜及び絶縁膜が
共存する半導体基板表面を研磨するためのコロイダルシ
リカにおいて、ケイ酸アルカリ水溶液からアルカリを除
去して生成させたシリカ粒子であって、平均一次粒子径
が5nm〜300nmであり、前記アルカリを、モル比
SiO2/Me2O(MeはNa、K、Li、NH4又は
(CH34Nを表す)でM=2P+180(式中、Mは
モル比、Pは前記シリカの一次粒子径nmを表す)以上
の範囲で含有するシリカ粒子と、水及び/又は水溶性有
機溶媒と、酸化剤と酸とを含み、pHが1.5〜6であ
るメタル膜絶縁膜共存表面研磨用コロイダルシリカが提
供される。
That is, according to the present invention, in colloidal silica for polishing the surface of a semiconductor substrate on which a metal film and an insulating film coexist, silica particles produced by removing alkali from an aqueous solution of alkali silicate and having an average primary The particle size is 5 nm to 300 nm, and the alkali is used in a molar ratio of SiO 2 / Me 2 O (Me represents Na, K, Li, NH 4 or (CH 3 ) 4 N) to obtain M = 2P + 180 (in the formula, (M represents a molar ratio, P represents a primary particle diameter nm of the silica), silica particles contained in the above range, water and / or a water-soluble organic solvent, an oxidizing agent and an acid, and a pH of 1.5. The colloidal silica for surface polishing coexisting with a metal film and an insulating film is provided.

【0015】本発明において、前記シリカ粒子の表面の
一部又は全部がアルミニウム被覆されていてもよい。
In the present invention, a part or all of the surface of the silica particles may be coated with aluminum.

【0016】また、本発明において、前記酸化剤が、ハ
イドロキシアミン及び/又はその塩であってもよい。ま
た、前記酸化剤が、過酸化水素であってもよい。
In the present invention, the oxidizing agent may be hydroxyamine and / or its salt. Further, the oxidizing agent may be hydrogen peroxide.

【0017】また、本発明において、前記メタル膜が、
Cu及び/又はその合金からなることが好ましい。
Further, in the present invention, the metal film is
It is preferably made of Cu and / or its alloy.

【0018】[0018]

【発明の実施の形態】以下、本発明のメタル膜絶縁膜共
存表面研磨用コロイダルシリカについて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The colloidal silica for surface polishing coexisting with a metal film and an insulating film of the present invention will be described below.

【0019】本発明のコロイダルシリカで用いられるシ
リカ粒子は、ケイ酸アルカリ水溶液からアルカリを除去
して形成されたコロイド状のシリカである。ケイ酸アル
カリ水溶液としては、一般に水ガラスとして知られてい
るケイ酸ナトリウム水溶液、ケイ酸アンモニウム水溶
液、ケイ酸リチウム水溶液、ケイ酸カリウム水溶液を挙
げることができる。経済的な観点から、ケイ酸アルカリ
水溶液として、ケイ酸ナトリウム水溶液を使用すること
が好ましい。このようなケイ酸ナトリウム水溶液として
は、例えば、SiO2を20重量%〜38重量%含み、
SiO2/Na2Oのモル比が2.0〜3.8からなる水溶
液を挙げることができる。また、ケイ酸アンモニウムと
しては、水酸化アンモニウム、テトラメチルアンモニウ
ム水酸化物からなるケイ酸塩を挙げることができる。
The silica particles used in the colloidal silica of the present invention are colloidal silica formed by removing alkali from an aqueous solution of alkali silicate. Examples of the alkali silicate aqueous solution include sodium silicate aqueous solution, ammonium silicate aqueous solution, lithium silicate aqueous solution, and potassium silicate aqueous solution, which are generally known as water glass. From an economical point of view, it is preferable to use a sodium silicate aqueous solution as the alkali silicate aqueous solution. Such an aqueous sodium silicate solution contains, for example, SiO 2 in an amount of 20% by weight to 38% by weight,
An aqueous solution having a SiO 2 / Na 2 O molar ratio of 2.0 to 3.8 can be mentioned. Examples of ammonium silicates include silicates composed of ammonium hydroxide and tetramethylammonium hydroxide.

【0020】本発明のコロイダルシリカで用いられるシ
リカ粒子の一次粒子径は、透過型電子顕微鏡で確認でき
る大きさであり、平均で5nm〜300nmである。好
ましくは7nm〜250nmであり、更に好ましくは、
12nm〜200nmである。シリカ粒子の平均一次粒
子径が5nm未満であると、コロイダルシリカのシェル
フライフが短く、また研磨レートも遅くなり好ましくな
い。また、300nmを越えるとスクラッチの発生や研
磨剤の物性の変動が大きくなり好ましくない。
The primary particle diameter of the silica particles used in the colloidal silica of the present invention is a size that can be confirmed by a transmission electron microscope, and is 5 nm to 300 nm on average. It is preferably 7 nm to 250 nm, and more preferably
It is 12 nm to 200 nm. When the average primary particle diameter of the silica particles is less than 5 nm, the shelf life of the colloidal silica is short and the polishing rate is also slow, which is not preferable. On the other hand, if it exceeds 300 nm, scratches are generated and the physical properties of the abrasive are greatly changed, which is not preferable.

【0021】本発明のコロイダルシリカで用いられるシ
リカ粒子は、アルカリを、モル比SiO2/Me2O(M
eはNa、K、Li、NH4又は(CH34Nを表す)
でM=2P+180(式中、Mはモル比、Pは前記シリ
カの一次粒子径nmを表す)以上の範囲で含有する。こ
のような範囲であると、コロイダルシリカのpHが中性
から酸性領域になるため、このようなシリカ粒子を分散
させた溶液に酸や酸化剤等を添加しても、シリカ粒子が
凝集することがなく、安定したコロイダルシリカを得る
ことができる。
The silica particles used in the colloidal silica of the present invention contain alkali in a molar ratio of SiO 2 / Me 2 O (M
e represents Na, K, Li, NH 4 or (CH 3 ) 4 N)
And M = 2P + 180 (in the formula, M represents a molar ratio and P represents a primary particle diameter nm of the silica). Within such a range, the pH of the colloidal silica is in the neutral to acidic region, and thus the silica particles may aggregate even if an acid or an oxidizing agent is added to the solution in which the silica particles are dispersed. And stable colloidal silica can be obtained.

【0022】本発明のコロイダルシリカで用いられるシ
リカ粒子は、例えば、以下のように製造される。以下の
例はケイ酸ナトリウム水溶液から製造する例であるが、
他の前記ケイ酸アルカリ水溶液から場合も同様に製造す
ることができる。
The silica particles used in the colloidal silica of the present invention are manufactured, for example, as follows. The following example is an example prepared from an aqueous solution of sodium silicate,
It can be similarly produced from the other aqueous solution of alkali silicate.

【0023】例えば、まず、SiO2を20重量%〜3
8重量%含み、SiO2/Na2Oのモル比が2.0〜3.
8であるケイ酸ナトリウム水溶液を水で希釈し、SiO
2濃度が2重量%〜5重量%の希釈ケイ酸ナトリウム水
溶液とする。続いて、希釈ケイ酸ナトリウム水溶液を水
素型陽イオン交換樹脂層に通過せしめ、Naイオンの大
部分を除去した活性ケイ酸水溶液を生成させる。この活
性ケイ酸水溶液を攪拌下、pHを通常7〜9にアルカリ
で調整しながら熱熟成し、目標とするシリカ粒子径に成
長させ、コロイド状のシリカ粒子を生成する。この熱熟
成中、新たに活性ケイ酸水溶液や小さい粒子のコロイダ
ルシリカを少量づつ添加することにより、例えば平均一
次粒子径が5nm〜300nmの範囲で希望する粒子径
のシリカ粒子を調製する。こうして調製したシリカ粒子
分散液を濃縮してSiO2濃度を20重量%〜30重量
%へ上げ、続いて、再度水素型陽イオン交換樹脂層に通
過せしめ、Naイオンのほとんどを除去して、ナトリウ
ムをSiO2/Na2Oのモル比がM=2P+180(式
中、Mはモル比、Pは前記シリカの一次粒子径nmを表
す)以上の範囲で含有するシリカ粒子を生成させる。
For example, first, SiO 2 is added in an amount of 20% by weight to 3%.
It contains 8 wt% and has a SiO 2 / Na 2 O molar ratio of 2.0 to 3.
The sodium silicate aqueous solution of No. 8 is diluted with water to form SiO 2.
2 Dilute sodium silicate aqueous solution with a concentration of 2% by weight to 5% by weight. Then, the diluted sodium silicate aqueous solution is passed through the hydrogen type cation exchange resin layer to generate an active silicic acid aqueous solution in which most of the Na ions are removed. This active silicic acid aqueous solution is thermally aged under stirring while adjusting the pH to usually 7 to 9 with an alkali, and is grown to a target silica particle size to produce colloidal silica particles. During the thermal aging, an active silicic acid aqueous solution and colloidal silica having small particles are newly added little by little to prepare silica particles having a desired particle diameter in the range of, for example, an average primary particle diameter of 5 nm to 300 nm. The silica particle dispersion thus prepared was concentrated to raise the SiO 2 concentration to 20% by weight to 30% by weight, and then passed through the hydrogen type cation exchange resin layer again to remove most of the Na ions and remove sodium. To produce silica particles containing SiO 2 / Na 2 O in a molar ratio of M = 2P + 180 (in the formula, M is a molar ratio and P is the primary particle diameter nm of the silica).

【0024】上記コロイダルシリカのSiO2濃度を2
重量%〜5重量%から20重量%〜30重量%へ上げる
ためには、限外ろ過膜でできた管内を循環させる水を分
離する濃縮法や一般の減圧状態で水の蒸発による濃縮法
を使用することができる。
The SiO 2 concentration of the colloidal silica is set to 2
In order to increase from 5% by weight to 5% by weight to 20% by weight to 30% by weight, a concentration method for separating water circulating in a tube made of an ultrafiltration membrane or a concentration method by evaporation of water under a general reduced pressure condition is used. Can be used.

【0025】本発明において、シリカ粒子の表面の一部
又は全部がアルミニウム被覆されていてもよい。シリカ
粒子をアルミニウム被覆すると、より研磨速度早く、シ
ェルフライフが長いコロイダルシリカを得ることができ
る。
In the present invention, a part or all of the surface of the silica particles may be coated with aluminum. By coating the silica particles with aluminum, it is possible to obtain colloidal silica having a faster polishing rate and a longer shelf life.

【0026】シリカ粒子の表面をアルミニウムで被覆す
る方法としては、例えば以下の方法を挙げることができ
る。即ち、上記のようにでき上がったコロイダルシリカ
を、もう一度、水素型陽イオン交換樹脂層を通過せし
め、アルカリイオンの大部分を除去し、酸性のコロイダ
ルシリカを生成する。次いで、酸性のコロイダルシリカ
に、アルミン酸ナトリウム水溶液を攪拌下添加混合し昇
温し、100℃前後の沸騰状態で数時間熟成し冷却する
ことによって、シリカ粒子表面をアルミニウム被覆する
ことができる。このようにして調製されたアルミニウム
被覆されたシリカ粒子は、一般にアルカリをSiO2
Me2O(MeはNa、K、Li、NH4又は(CH34
Nを表す)モル比換算で30〜150前後と多く含有し
ている。このため、アルミニウム被覆後、更に、コロイ
ダルシリカを水素型陽イオン交換樹脂層を通過せしめ、
アルカリイオンの大部分を除去した酸性のコロイダルシ
リカにする必要がある。このようにすると、シリカ粒子
の平均一次粒子径が例えば20nmのコロイダルシリカ
で、SiO2/Me2O(MeはNa、K、Li、NH 4
又は(CH34Nを表す)モル比換算が200以上、最
高2000前後までなり、このため酸性域で薬品との混
合を行ってもシリカ粒子が凝集せず安定なコロイダルシ
リカになる。
The surface of silica particles is coated with aluminum
Examples of the method include
It That is, the colloidal silica produced as described above
Again through the hydrogen cation exchange resin layer
Therefore, most of the alkali ions are removed, and the acid colloider
This produces rusilica. Then acidic colloidal silica
Then, add an aqueous solution of sodium aluminate with stirring and mix.
Warm up, aged for several hours in a boiling state around 100 ° C, and cool.
By coating the surface of the silica particles with aluminum
be able to. Aluminum prepared in this way
The coated silica particles generally contain alkali as SiO 2.2/
Me2O (Me is Na, K, Li, NHFourOr (CH3)Four
(Representing N), which is contained in a large amount of around 30 to 150 in terms of molar ratio
ing. Therefore, after aluminum coating,
Let the dull silica pass through the hydrogen type cation exchange resin layer,
Acidic colloidal citric acid with most of the alkali ions removed
Need to be Rica. In this way, silica particles
Colloidal silica having an average primary particle size of, for example, 20 nm
And SiO2/ Me2O (Me is Na, K, Li, NH Four
Or (CH3)Four(Representing N) molar ratio conversion of 200 or more, maximum
Higher up to around 2000, which causes mixing with chemicals in the acidic range.
Even if they are combined, the silica particles do not aggregate and are stable colloidal
Become a Rica.

【0027】アルミン酸ナトリウムのコロイダルシリカ
への添加量は、シリカ粒子径により適宜設定することが
できる。例えば、シリカ粒子の平均一次粒子径が約20
nmの場合は、SiO21モル当たりアルミナ換算1/
100モル前後のアルミン酸ナトリウムを添加すること
が好ましい。
The amount of sodium aluminate added to the colloidal silica can be appropriately set depending on the silica particle size. For example, the average primary particle diameter of silica particles is about 20.
In the case of nm, 1 mol of SiO 2 converted to alumina is 1 / mol
It is preferable to add about 100 mol of sodium aluminate.

【0028】本発明のコロイダルシリカは、研磨レート
制御のため、酸化剤を含む。本発明において、使用する
ことができる酸化剤としては、すでにCMP用研磨剤に
おいて広く使われているものを使用することができる。
例えば、過酸化水素、ヨウ素酸カリウム、ヨウ素酸、ハ
イドロキシアミン、またはその塩、硝酸アルミニウム等
を挙げることができ、これらは単独で使用しても、併用
してもよい。中でも、シェルフライフを長くする観点か
ら、過酸化水素、ハイドロキシアミン、その塩を使用す
ることが好ましい。
The colloidal silica of the present invention contains an oxidizing agent for controlling the polishing rate. In the present invention, as the oxidizer that can be used, those widely used in the polishing agent for CMP can be used.
Examples thereof include hydrogen peroxide, potassium iodate, iodic acid, hydroxyamine, or salts thereof, aluminum nitrate and the like, and these may be used alone or in combination. Of these, hydrogen peroxide, hydroxyamine, and salts thereof are preferably used from the viewpoint of extending shelf life.

【0029】本発明において、酸化剤の添加量は、コロ
イダルシリカ中に0.1重量%〜20重量%であること
が好ましく、0.5重量%〜10重量%であることが更
に好ましい。
In the present invention, the addition amount of the oxidizing agent is preferably 0.1% by weight to 20% by weight, more preferably 0.5% by weight to 10% by weight in the colloidal silica.

【0030】本発明のコロイダルシリカは、スクラッチ
発生の防止、研磨レートの制御、シェルフライフの向上
等の研磨特性発現の理由から、酸を含む。本発明におい
て、使用することができる酸としては、無機酸や有機酸
があり、その塩基性塩も使用することができる。例え
ば、塩酸、硝酸、硫酸、シュウ酸、クエン酸、乳酸、酢
酸、酸性硫酸ナトリウム、塩基性硝酸アルミニウム、塩
基性酢酸アルミニウム、酸性を呈する酸化剤等を挙げる
ことができ、これらは単独で使用しても、併用してもよ
い。中でも、シリカ粒子を凝集させにくいという理由か
ら、硝酸、シュウ酸等の一価の酸を使用することが好ま
しい。
The colloidal silica of the present invention contains an acid for the purpose of exhibiting polishing characteristics such as prevention of scratch generation, control of polishing rate and improvement of shelf life. In the present invention, the acids that can be used include inorganic acids and organic acids, and basic salts thereof can also be used. For example, hydrochloric acid, nitric acid, sulfuric acid, oxalic acid, citric acid, lactic acid, acetic acid, sodium acid sulfate, basic aluminum nitrate, basic aluminum acetate, oxidizing agents exhibiting acidity, etc. can be mentioned, and these are used alone. Alternatively, they may be used in combination. Above all, it is preferable to use a monovalent acid such as nitric acid or oxalic acid because it is difficult to aggregate the silica particles.

【0031】本発明のコロイダルシリカは、pHが1.
5〜6であり、好ましくは、2.0〜5.5であり、更
に好ましくは2.5〜5.3である。pH1.5未満で
は主にメタル膜の研磨レートの制御が難しいため好まし
くない。また、pH6を越えるとコロイダルシリカのシ
リカ粒子の凝集が多くなり、スクラッチも増加し、ま
た、シェルフライフが短くなりすぎるため好ましくな
い。
The colloidal silica of the present invention has a pH of 1.
It is 5 to 6, preferably 2.0 to 5.5, and more preferably 2.5 to 5.3. If the pH is less than 1.5, it is not preferable because it is difficult to control the polishing rate of the metal film. On the other hand, if the pH exceeds 6, the silica particles of the colloidal silica will agglomerate more, scratches will increase, and the shelf life will be too short, which is not preferable.

【0032】本発明において、シリカ粒子を分散してい
る分散媒として、水、水溶性有機溶媒、その混合物等を
挙げることができる。水溶性有機溶媒としては、アルコ
ール、多価アルコールを挙げることができる。
In the present invention, examples of the dispersion medium in which silica particles are dispersed include water, a water-soluble organic solvent and a mixture thereof. Examples of the water-soluble organic solvent include alcohol and polyhydric alcohol.

【0033】本発明にかかるコロイダルシリカは、本発
明の効果を妨げない範囲内での、各種添加剤を使用する
ことができる。添加剤としては、研磨レートを制御し、
Cu膜、TaN、Taなどバリア膜、SiO2や有機l
ow−kなどILD膜の選択比を変え調整する添加剤と
しての有機または無機の酸、アルカリ及びその塩、防食
剤、腐食剤、キレート化剤、有機無機の分散剤や沈降防
止剤、界面活性剤を挙げることができる。
Various additives can be used for the colloidal silica according to the present invention within a range that does not impair the effects of the present invention. As an additive, control the polishing rate,
Cu film, barrier film such as TaN and Ta, SiO 2 and organic film
ow-k or other organic or inorganic acid, alkali and salt thereof as an additive for adjusting the selection ratio of the ILD film, an anticorrosive, a corrosive, a chelating agent, an organic-inorganic dispersant or an antisettling agent, and a surface active agent. An agent can be mentioned.

【0034】本発明にかかるコロイダルシリカは、メタ
ル膜絶縁膜の共存するデバイス基板を良好に研磨するこ
とができる。また、同一工程中、TaNやTaその他バ
リア膜が共存する場合があっても、メタル膜や絶縁膜が
単独の状態で存在する場合があっても、本発明にかかる
コロイダルシリカを用いて研磨を行うことができる。
The colloidal silica according to the present invention can satisfactorily polish a device substrate on which a metal film insulating film coexists. Further, even if TaN, Ta or other barrier film may coexist in the same process, or if the metal film or the insulating film may exist alone, polishing may be performed using the colloidal silica according to the present invention. It can be carried out.

【0035】本発明にかかるコロイダルシリカの研磨対
象となる基板の一つの例として、シリコン基板上に絶縁
膜としてHDPSiO2膜、オゾンTEOSーSiO2
や有機Low−k膜を8000Å〜12000Åの厚さ
で形成し、その面の50%が凸部として残るように50
00Å位の深さにパターニングされた絶縁膜上に、バリ
ア膜としてタンタルやチタンまたはその窒化膜を約10
0Åの厚さに形成し、更にその上にCu膜を1μm〜
1.5μmの厚さに形成された多層積層構造の基板をあ
げることができる。
As one example of the substrate to be polished by the colloidal silica according to the present invention, a HDPSiO 2 film, an ozone TEOS-SiO 2 film or an organic Low-k film as an insulating film on a silicon substrate having a thickness of 8000Å to 12000Å. 50% so that 50% of the surface remains as a protrusion.
Approximately 10 tantalum or titanium or its nitride film is used as a barrier film on the insulating film patterned to the depth of 00Å.
It is formed to a thickness of 0Å, and a Cu film is further formed on it 1 μm to
An example of the substrate is a multilayer laminated structure formed to a thickness of 1.5 μm.

【0036】例えば、上記のような基板を研磨するため
には、本発明にかかる研磨用コロイダルシリカをCMP
装置の研磨布に担持させて、基板上に形成された膜を研
磨する。本発明にかかる研磨用コロイダルシリカを使用
する工程は、常法に従って行うことができる。研磨布と
しては一般的な不織布、発砲ポリウレタン、多孔質フッ
ソ樹脂などを使用することができ、特に制限がない。ま
た研磨布には研磨剤が溜まるような溝加工を施すことが
好ましい。
For example, in order to polish the above-mentioned substrate, the colloidal silica for polishing according to the present invention is subjected to CMP.
The film formed on the substrate is polished by supporting it on the polishing cloth of the apparatus. The step of using the colloidal silica for polishing according to the present invention can be performed according to a conventional method. As the polishing cloth, general non-woven fabric, foamed polyurethane, porous fluorine resin and the like can be used without any particular limitation. Further, it is preferable that the polishing cloth is grooved so that the polishing agent is accumulated.

【0037】例えば、上部に基板を保持しながら回転を
与える駆動装置を備えたトップリングと、これに対向す
る下部のポリッシングパッド(研磨布)が貼付されてい
る回転し得る研磨定盤からなるCMP装置を使用し、当
該研磨布に本発明にかかる研磨用コロイダルシリカを担
持させ、これを研磨布の上に供給しながら、回転してい
る基板と接触させ、研磨圧力50gf/cm2〜500
gf/cm2程度で、基板上に形成された上記膜を研磨
して、その平坦化を行う。上記トップリングや研磨定盤
の回転数には制限はなく、通常採用し得る回転数を挙げ
ることができる。例えばトップリングで40rpm〜1
00rpm程度、研磨定盤で40rpm〜100rpm
程度など採用することができる。
For example, a CMP comprising a top ring provided with a driving device for rotating while holding the substrate on the upper part, and a rotatable polishing platen to which a lower polishing pad (polishing cloth) facing the top ring is attached. Using an apparatus, the polishing cloth is loaded with the colloidal silica for polishing according to the present invention, and while being supplied onto the polishing cloth, the polishing cloth is brought into contact with a rotating substrate, and the polishing pressure is 50 gf / cm 2 to 500.
The film formed on the substrate is polished at about gf / cm 2 to planarize the film. The number of revolutions of the top ring and the polishing platen is not limited, and the number of revolutions that can be usually adopted can be mentioned. For example, 40 rpm to 1 for top ring
About 00 rpm, 40 rpm to 100 rpm on the polishing platen
The degree can be adopted.

【0038】研磨終了後の基板は、流水中で良く洗浄
後、スピンドライヤ等を用いて基板上に付着した水滴を
払い落としてから乾燥させることが好ましい。
It is preferable that the substrate after polishing is thoroughly washed in running water, and then water droplets adhering to the substrate are removed by using a spin dryer or the like and then dried.

【0039】シリコン基板上に形成された前記メタル膜
やバリア膜、絶縁膜は、先ず最上部のCu膜を常法のC
u用スラリーで平坦化しながら順次研磨で除く。TaN
膜などバリア膜が出た所から本発明にかかるコロイダル
シリカを使用し、本発明のコロイダルシリカによってこ
のバリア膜を完全に除去するところまで研磨する。この
バリア膜を除去する際、必然的にメタル膜のCuと絶縁
膜のSiO2などを同時に磨いて行く。本発明によれ
ば、スクラッチの発生が少なく、平坦性のよい研磨表面
が得られる。また、本発明のコロイダルシリカは、シェ
ルフライフが長い。
The metal film, the barrier film, and the insulating film formed on the silicon substrate are formed by first forming the uppermost Cu film by the conventional C method.
It is removed by polishing while flattening with the u slurry. TaN
The colloidal silica according to the present invention is used from the place where the barrier film such as a film comes out, and the colloidal silica of the present invention is used to polish until the barrier film is completely removed. When the barrier film is removed, Cu of the metal film and SiO 2 of the insulating film are necessarily polished at the same time. According to the present invention, it is possible to obtain a polished surface with less scratches and good flatness. Further, the colloidal silica of the present invention has a long shelf life.

【0040】[0040]

【実施例】以下に本発明の実施例を説明するが、本発明
の技術的範囲がこれに限定されるものでない。
EXAMPLES Examples of the present invention will be described below, but the technical scope of the present invention is not limited thereto.

【0041】実施例1 コロイダルシリカを以下のように製造した。まず、Si
232重量%を含み、SiO2/Na2Oのモル比が2.
8であるケイ酸ナトリウム水溶液を水で希釈し、SiO
2濃度3.0重量%の希釈ケイ酸ナトリウム水溶液とし
た。この水溶液を、水素型陽イオン交換樹脂層を通過せ
しめ、Naイオンの大部分を除去したpH3.4の活性
ケイ酸水溶液を生成させた。すぐに攪拌下、10重量%
NaOH水溶液を加えてpHを7.2に調整し、更に続
けて加熱し、沸騰下3時間熱熟成した。得られた水溶液
に、先に7.2にpH調整した活性ケイ酸水溶液の10
倍量を6時間かけ少量ずつ添加し、コロイダルシリカの
シリカ粒子の平均一次粒子径を26nmに成長させた。
更にこの希釈コロイダルシリカを沸点78℃での減圧濃
縮し、SiO2濃度が28.0重量%であり、シリカ粒子
の平均一次粒子径が26nm、SiO2/Na2Oのモル
比が102であり、pHが9.8であるコロイダルシリ
カを得た。このコロイダルシリカを、再度水素型陽イオ
ン交換樹脂層を通過せしめ、Naイオンの更に大部分を
除去し、pHが3.4であり、SiO2濃度が24.0重
量%であり、SiO2/Na2Oのモル比が480である
酸性コロイダルシリカを得た。次いで、このコロイダル
シリカ1kgを攪拌機付容器にいれ攪拌下、ハイドロキ
シアミン25gを添加し、10重量%の希硝酸水溶液を
徐々に加えて、pHを3.1に調整した。以上の操作に
より、SiO2濃度が24.0重量%、SiO2/Na2
のモル比が480、pHが3.1、シリカ粒子の平均一
次粒子径が26nmのメタル膜絶縁膜共存表面研磨用コ
ロイダルシリカが調製された。
Example 1 Colloidal silica was prepared as follows. First, Si
It contains 32% by weight of O 2 and has a SiO 2 / Na 2 O molar ratio of 2.
The sodium silicate aqueous solution of No. 8 is diluted with water to form SiO 2.
2 A diluted sodium silicate aqueous solution having a concentration of 3.0% by weight was prepared. This aqueous solution was passed through a hydrogen-type cation exchange resin layer to form an active silicic acid aqueous solution having a pH of 3.4 from which most of Na ions were removed. 10% by weight with immediate stirring
The pH was adjusted to 7.2 by adding an aqueous solution of NaOH, and the mixture was further heated and aged under boiling for 3 hours. To the resulting aqueous solution, 10 parts of the active silicic acid aqueous solution whose pH was previously adjusted to 7.2 was added.
Double amount was added little by little over 6 hours to grow the average primary particle diameter of the silica particles of colloidal silica to 26 nm.
Further, this diluted colloidal silica was concentrated under reduced pressure at a boiling point of 78 ° C., the SiO 2 concentration was 28.0% by weight, the average primary particle diameter of silica particles was 26 nm, and the SiO 2 / Na 2 O molar ratio was 102. , Colloidal silica having a pH of 9.8 was obtained. The colloidal silica was passed through the hydrogen type cation exchange resin layer again to remove most of the Na ions, and the pH was 3.4, the SiO 2 concentration was 24.0% by weight, and the SiO 2 / An acidic colloidal silica having a Na 2 O molar ratio of 480 was obtained. Next, 1 kg of this colloidal silica was placed in a vessel equipped with a stirrer, 25 g of hydroxyamine was added under stirring, and a 10 wt% dilute aqueous nitric acid solution was gradually added to adjust the pH to 3.1. By the above operation, the SiO 2 concentration was 24.0% by weight, and the SiO 2 / Na 2 O
A colloidal silica for surface polishing coexisting with a metal film insulating film having a molar ratio of 480, a pH of 3.1, and an average primary particle diameter of silica particles of 26 nm was prepared.

【0042】こうして得られたコロイダルシリカの調製
直後の粘度を測定したところ、3.1cPであった。更
に、コロイダルシリカの保存安定性を調査するために、
上記のように調製したコロイダルシリカを密閉容器に充
填し、50℃で15日間保存し放冷後のコロイダルシリ
カの粘度を測定したところ、3.8cPであった。これ
から、粘度が調製直後から殆ど上昇せず、安定したコロ
イダルシリカであることがわかった。なお、50℃で1
5日間保存するということは、常温保存で約3ケ月保存
することに相当するものである。
The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 3.1 cP. Furthermore, in order to investigate the storage stability of colloidal silica,
The colloidal silica prepared as described above was filled in a closed container, stored at 50 ° C. for 15 days, and the viscosity of the colloidal silica after allowing to cool was measured and found to be 3.8 cP. From this, it was found that the viscosity of the colloidal silica was stable since the viscosity hardly increased immediately after the preparation. In addition, 1 at 50 ℃
Storage for 5 days is equivalent to storage at room temperature for about 3 months.

【0043】比較例1 一方比較例1として、実施例1の製造工程中に希釈コロ
イダルシリカを沸点78℃での減圧濃縮することによっ
て得られる、SiO2が28.0重量%であり、シリカ粒
子の平均一次粒子径が26nmで、SiO2/Na2Oの
モル比が102であり、pHが9.8であるアルカリ性
のコロイダルシリカを、SiO2が26.0重量%となる
ように水で希釈した。続いて、実施例1と同じ方法で、
ハイドロキシアミン及び希硝酸水溶液を加えて、SiO
2濃度を24.0重量%、pHを3.2に調整した。以
上の操作により、SiO2濃度が24.0重量%、SiO
2/Na2Oのモル比が102、pHが3.2、シリカ粒
子の平均一次粒子径が26nmのメタル膜絶縁膜共存表
面研磨用コロイダルシリカが調製された。
Comparative Example 1 On the other hand, as Comparative Example 1, SiO 2 was 28.0% by weight and silica particles were obtained by concentrating the diluted colloidal silica under reduced pressure at a boiling point of 78 ° C. during the production process of Example 1. Alkaline colloidal silica having an average primary particle diameter of 26 nm, a SiO 2 / Na 2 O molar ratio of 102 and a pH of 9.8 is treated with water so that SiO 2 becomes 26.0% by weight. Diluted. Then, in the same manner as in Example 1,
Hydroxylamine and dilute nitric acid aqueous solution are added, and SiO
2 The concentration was adjusted to 24.0% by weight and the pH was adjusted to 3.2. As a result of the above operation, the SiO 2 concentration was 24.0% by weight,
A colloidal silica for surface polishing coexisting with a metal film and an insulating film having a molar ratio of 2 / Na 2 O of 102, a pH of 3.2, and an average primary particle diameter of silica particles of 26 nm was prepared.

【0044】こうして得られたコロイダルシリカの調製
直後の粘度を測定したところ、4.9cPであった。更
に、コロイダルシリカの保存安定性を調査するために、
上記のように調製したコロイダルシリカを密閉容器に充
填し、50℃で15日間保存し放冷後のコロイダルシリ
カの粘度を測定したところ、23.4cPであり、粘度
上昇してしまった。これから、比較例1のコロイダルシ
リカ調合品は保存安定性が悪いことがわかった。
The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 4.9 cP. Furthermore, in order to investigate the storage stability of colloidal silica,
The colloidal silica prepared as described above was filled in a closed container, stored at 50 ° C. for 15 days, and the viscosity of the colloidal silica after cooling was measured. As a result, the viscosity was 23.4 cP, and the viscosity increased. From this, it was found that the colloidal silica preparation of Comparative Example 1 had poor storage stability.

【0045】実施例2 コロイダルシリカを以下のように製造した。まず、実施
例1と同じケイ酸ナトリウム水溶液を水で希釈しSiO
2濃度2.8重量%の希釈ケイ酸ナトリウム水溶液とし
た。この水溶液を、水素型陽イオン交換樹脂層を通過せ
しめ、Naイオンの大部分を除去したpH3.1の活性
ケイ酸水溶液を得た。すぐに攪拌下、10重量%NaO
H水溶液を加えてpHを7.5に調整し、更に続けて加
温し沸騰下2.5時間熱熟成した。得られた水溶液に、
先に7.5にpH調整した活性ケイ酸水溶液の16倍量
を4時間かけ少量づつ添加し、コロイダルシリカのシリ
カ粒子の平均一次粒子径を35nmに成長させた。更に
この希薄コロイダルシリカを沸点78℃での減圧濃縮
し、SiO2濃度が34.0重量%であり、シリカ粒子の
平均一次粒子径が35nmであり、SiO2/Na2Oの
モル比が115であり、pHが9.4であるコロイダル
シリカを得た。
Example 2 Colloidal silica was prepared as follows. First, the same sodium silicate aqueous solution as in Example 1 was diluted with water to form SiO 2.
2 A diluted sodium silicate aqueous solution having a concentration of 2.8% by weight was prepared. This aqueous solution was passed through a hydrogen type cation exchange resin layer to obtain an active silicic acid aqueous solution having a pH of 3.1 from which most of Na ions were removed. Immediately with stirring, 10% by weight NaO
Aqueous H solution was added to adjust the pH to 7.5, followed by heating and aging under boiling for 2.5 hours. In the obtained aqueous solution,
A 16-fold amount of the active silicic acid aqueous solution previously adjusted to pH 7.5 was added little by little over 4 hours to grow the average primary particle diameter of the silica particles of colloidal silica to 35 nm. Further, this diluted colloidal silica was concentrated under reduced pressure at a boiling point of 78 ° C., the SiO 2 concentration was 34.0% by weight, the average primary particle diameter of the silica particles was 35 nm, and the SiO 2 / Na 2 O molar ratio was 115. And colloidal silica having a pH of 9.4 was obtained.

【0046】このコロイダルシリカを、再度水素型陽イ
オン交換樹脂層を通過せしめ、Naイオンの更に大部分
を除去し、pHが2.8であり、SiO2濃度が29.0
重量%であり、SiO2/Na2Oのモル比が520であ
る酸性のコロイダルシリカを調製した。次に、このコロ
イダルシリカ1kgを攪拌機付容器にいれ、攪拌下、前
記コロイダルシリカに、10重量%アルミナ含有アルミ
ン酸ナトリウム水溶液をSiO21モル当たりアルミナ
換算1/87モル相当を添加混合した。更に沸騰下3時
間熱熟成を行い、シリカ粒子の表面の一部をアルミニウ
ム被覆したpHが10.4であり、SiO2濃度が28.
0重量%でありSiO2/Na2Oのモル比が88である
アルカリ性のコロイダルシリカを得た。
The colloidal silica was passed through the hydrogen type cation exchange resin layer again to remove most of the Na ions, and the pH was 2.8 and the SiO 2 concentration was 29.0.
An acidic colloidal silica having a weight percentage of SiO 2 / Na 2 O of 520 was prepared. Next, 1 kg of this colloidal silica was placed in a container equipped with a stirrer, and with stirring, an aqueous sodium aluminate solution containing 10 wt% alumina was added and mixed in an amount of 1/87 mol of alumina per 1 mol of SiO 2 . Furthermore, it was heat-aged for 3 hours under boiling, and a part of the surface of the silica particles was coated with aluminum. The pH was 10.4, and the SiO 2 concentration was 28.
An alkaline colloidal silica having a SiO 2 / Na 2 O molar ratio of 0% by weight of 88 was obtained.

【0047】得られたコロイダルシリカを放冷後、水素
型陽イオン交換樹脂層を通過せしめ、Naイオンの更に
大部分を除去し、SiO2濃度が26.0重量%でありS
iO 2/Na2Oのモル比が620であり、pHが3.6
である、シリカ粒子の表面の一部をアルミニウム被覆し
た、酸性のコロイダルシリカを得た。次いで、このコロ
イダルシリカ1kgを攪拌機付容器にいれ攪拌下、30
重量%の過酸化水素水溶液を150g添加し、次いで、
10重量%の希硫酸水溶液を徐々に添加し、SiO2
度を21.0重量%、pHを2.7に調整した。以上の操
作により、SiO2濃度が21.0重量%、SiO2/N
2Oのモル比が620、pHが2.7、シリカ粒子の
平均一次粒子径が35nmのメタル膜絶縁膜共存表面研
磨用コロイダルシリカが調製された。
The colloidal silica thus obtained was allowed to cool and then hydrogenated.
-Type cation exchange resin layer
Mostly removed, SiO2The concentration is 26.0% by weight and S
iO 2/ Na2The molar ratio of O is 620 and the pH is 3.6.
A part of the surface of the silica particles is coated with aluminum.
In addition, acidic colloidal silica was obtained. Then this roller
1kg of Idal silica is put in a container with a stirrer and stirred for 30
Add 150 g of wt% hydrogen peroxide solution, then
Slowly add a 10 wt% dilute sulfuric acid aqueous solution,2Dark
The degree was adjusted to 21.0% by weight and the pH was adjusted to 2.7. The above
Depending on the product, SiO2Concentration is 21.0% by weight, SiO2/ N
a2O molar ratio of 620, pH of 2.7, silica particles
Metal film insulation film coexisting surface polishing with average primary particle diameter of 35 nm
A colloidal silica for polishing was prepared.

【0048】こうして得られたコロイダルシリカの調製
直後の粘度を測定したところ、2.3cPであった。更
に、コロイダルシリカの保存安定性を調査するために、
上記のように調製したコロイダルシリカを密閉容器に充
填し、38℃で30日間保存し放冷後粘度を測定したと
ころ、3.4cPであった。このように粘度が調製直後
から殆ど上昇せず、安定したコロイダルシリカであるこ
とがわかった。
The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 2.3 cP. Furthermore, in order to investigate the storage stability of colloidal silica,
The colloidal silica prepared as described above was filled in a closed container, stored at 38 ° C. for 30 days, allowed to cool, and then the viscosity was measured to be 3.4 cP. Thus, it was found that the viscosity hardly increased immediately after the preparation and that it was stable colloidal silica.

【0049】比較例2 一方比較例2として、実施例2の製造工程中に得られ
る、シリカ粒子の表面の一部をアルミニウム被覆した、
SiO2が28.0重量%であり、シリカ粒子の平均一次
粒子径が35nmであり、pHが10.4であり、Si
2/Na2Oのモル比が88のコロイダルシリカに、実
施例2と全く同じ方法で過酸化水素水及び希硫酸を添加
混合し、SiO2濃度21.0重量%、pH2.7に調整
した。以上の操作により、SiO2濃度が21.0重量
%、SiO2/Na2Oのモル比が88、pHが2.7、
シリカ粒子の平均一次粒子径が35nmのメタル膜絶縁
膜共存表面研磨用コロイダルシリカが調製された。
Comparative Example 2 On the other hand, as Comparative Example 2, a part of the surface of silica particles obtained during the manufacturing process of Example 2 was coated with aluminum.
SiO 2 is 28.0% by weight, silica particles have an average primary particle diameter of 35 nm, pH is 10.4, Si
To the colloidal silica having an O 2 / Na 2 O molar ratio of 88, hydrogen peroxide solution and dilute sulfuric acid were added and mixed in the same manner as in Example 2 to adjust the SiO 2 concentration to 21.0% by weight and pH to 2.7. did. By the above operation, the SiO 2 concentration was 21.0% by weight, the SiO 2 / Na 2 O molar ratio was 88, and the pH was 2.7,
A colloidal silica for polishing a surface coexisting with a metal film and an insulating film having an average primary particle diameter of silica particles of 35 nm was prepared.

【0050】こうして得られたコロイダルシリカの調製
直後の粘度を測定したところ、3.6cPであった。更
に、コロイダルシリカの保存安定性を調査するために、
上記のように調製したコロイダルシリカを密閉容器に充
填し、38℃で30日間保存し放冷後粘度を測定したと
ころ16.8cPであった。このように、調製直後と比
較して粘度が上昇し、このコロイダルシリカ調合品は保
存安定性が悪いことがわかった。
The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 3.6 cP. Furthermore, in order to investigate the storage stability of colloidal silica,
The colloidal silica prepared as described above was filled in a closed container, stored at 38 ° C. for 30 days, allowed to cool, and the viscosity was measured to be 16.8 cP. Thus, it was found that the viscosity increased as compared to immediately after the preparation, and that this colloidal silica preparation had poor storage stability.

【0051】実施例3 実施例3として、実施例1の製造工程中で得られる、N
aイオンの更に大部分を除去したpHが3.4でありS
iO2濃度が24.0重量%でありSiO2/Na 2Oのモ
ル比が480であり平均一次粒子径が26nmである酸
性コロイダルシリカを水希釈し、SiO2濃度を18.
0重量%、pHと3.6とした。この際、他のシリカ粒
子径やSiO2/Na2Oのモル比は変わらなかった。次
いで、このSiO218.0重量%のコロイダルシリカ1
kgを攪拌機付容器にいれ攪拌下、10重量%の希硝酸
水溶液とハイドロキシアミン20gを徐々に添加し、S
iO2濃度を5.0重量%、pHを3.1に調整した。以
上の操作により、SiO2濃度が5.0重量%、SiO2
/Na2Oのモル比が480、pHが3.1、シリカ粒
子の平均一次粒子径が26nmのメタル膜絶縁膜共存表
面研磨用コロイダルシリカが調製された。こうして得ら
れたコロイダルシリカの調製直後の粘度を測定したとこ
ろ、2.5cPであった。
Example 3 As Example 3, N obtained in the manufacturing process of Example 1,
The pH after removing most of the a-ions is 3.4
iO2SiO 2 with a concentration of 24.0% by weight2/ Na 2O's model
Acid having an average primary particle size of 26 nm
Colloidal silica diluted with water, SiO2Increase the concentration to 18.
It was 0% by weight and had a pH of 3.6. At this time, other silica particles
Diameter and SiO2/ Na2The molar ratio of O did not change. Next
Then, this SiO218.0% by weight of colloidal silica 1
10 kg by weight of dilute nitric acid is placed in a container equipped with a stirrer while stirring.
Slowly add the aqueous solution and 20 g of hydroxyamine, and add S
iO2The concentration was adjusted to 5.0% by weight and the pH was adjusted to 3.1. Since
By the above operation, SiO2Concentration 5.0% by weight, SiO2
/ Na2O molar ratio is 480, pH is 3.1, silica particles
Metal film insulation film coexistence table with average primary particle size of 26 nm
A colloidal silica for surface polishing was prepared. Thus obtained
The viscosity of the prepared colloidal silica immediately after its preparation was measured.
It was 2.5 cP.

【0052】比較例3 一方比較例3として、実施例1の製造工程中に希釈コロ
イダルシリカを沸点78℃での減圧濃縮することによっ
て得られる、SiO2が28.0重量%であり、シリカ粒
子の平均一次粒子径が26nmで、SiO2/Na2Oの
モル比が102でありpHが9.8であるアルカリ性の
コロイダルシリカを、SiO2が18.0重量%、pHが
9.6となるように水で希釈し、続いて、ハイドロキシ
アミン20gを添加し、次いで10重量%の希硝酸水溶
液の徐々に添加して、SiO2を5.0重量%、pHを
3.1に調整した。以上の操作により、SiO2濃度が
5.0重量%、SiO2/Na2Oのモル比が102、p
Hが3.1、シリカ粒子の平均一次粒子径が26nmの
メタル膜絶縁膜共存表面研磨用コロイダルシリカが調製
された。こうして得られたコロイダルシリカの調製直後
の粘度を測定したところ、4.9cPであった。
Comparative Example 3 On the other hand, as Comparative Example 3, SiO 2 was 28.0% by weight and silica particles were obtained by concentrating the diluted colloidal silica under reduced pressure at a boiling point of 78 ° C. during the production process of Example 1. Alkaline colloidal silica having an average primary particle diameter of 26 nm, a SiO 2 / Na 2 O molar ratio of 102 and a pH of 9.8 is SiO 2 of 18.0 wt% and a pH of 9.6. Diluted with water so that 20 g of hydroxyamine was added, and then 10 wt% of dilute nitric acid aqueous solution was gradually added to adjust SiO 2 to 5.0 wt% and pH to 3.1. . By the above operation, the SiO 2 concentration was 5.0% by weight, the SiO 2 / Na 2 O molar ratio was 102, p
A colloidal silica for polishing a surface coexisting with a metal film and an insulating film having H of 3.1 and an average primary particle diameter of silica particles of 26 nm was prepared. The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 4.9 cP.

【0053】実施例4 実施例2で得られたコロイダルシリカを水で希釈し、次
いで、得られたコロイダルシリカ1kgを攪拌機付容器
にいれ攪拌下、過酸化水素水溶液を添加して過酸化水素
換算3.7重量%になるようにして、さらに10重量%
の希硫酸水溶液を徐々に添加して、SiO2濃度を7.
0重量%、pHを2.7に調整した。以上の操作によ
り、SiO2濃度が7.0重量%、SiO2/Na2Oのモ
ル比が620、pHが2.7、シリカ粒子の平均一次粒
子径が35nmのメタル膜絶縁膜共存表面研磨用コロイ
ダルシリカが調製された。こうして得られたコロイダル
シリカの調製直後の粘度を測定したところ、2.3cP
であった。
Example 4 The colloidal silica obtained in Example 2 was diluted with water, and 1 kg of the colloidal silica obtained was placed in a vessel equipped with a stirrer and stirred to add an aqueous hydrogen peroxide solution to convert it to hydrogen peroxide. Add 10% by weight to 3.7% by weight
The diluted sulfuric acid aqueous solution of 7. was gradually added to adjust the SiO 2 concentration to 7.
The pH was adjusted to 0 wt% and 2.7. By the above operation, the SiO 2 concentration is 7.0% by weight, the SiO 2 / Na 2 O molar ratio is 620, the pH is 2.7, and the average primary particle diameter of the silica particles is 35 nm. Colloidal silica for use was prepared. The viscosity of the colloidal silica thus obtained was measured immediately after its preparation and found to be 2.3 cP.
Met.

【0054】比較例4 一方比較例4として、実施例2の製造工程中に得られ
る、シリカ粒子の表面の一部をアルミニウム被覆した、
SiO2が28.0重量%であり、シリカ粒子の平均一次
粒子径が35nmであり、pHが10.4であり、Si
2/Na2Oのモル比が88のコロイダルシリカに、実
施例4と全く同じ方法で過酸化水素及び希硫酸を添加混
合し、更に、SiO2濃度を7.0重量%になるように
水で希釈して、pH2.7に調整した。以上の操作によ
り、SiO2濃度が7.0重量%、SiO2/Na2Oのモ
ル比が88、pHが2.7、シリカ粒子の平均一次粒子
径が35nmのメタル膜絶縁膜共存表面研磨用コロイダ
ルシリカが調製された。こうして得られたコロイダルシ
リカの調製直後の粘度を測定したところ、3.6cPで
あった。
Comparative Example 4 On the other hand, as Comparative Example 4, a part of the surface of silica particles obtained during the manufacturing process of Example 2 was coated with aluminum.
SiO 2 is 28.0% by weight, silica particles have an average primary particle diameter of 35 nm, pH is 10.4, Si
Hydrogen peroxide and dilute sulfuric acid were added to and mixed with colloidal silica having an O 2 / Na 2 O molar ratio of 88 in the same manner as in Example 4, and the SiO 2 concentration was adjusted to 7.0% by weight. It was diluted with water and adjusted to pH 2.7. By the above operation, the SiO 2 concentration is 7.0% by weight, the SiO 2 / Na 2 O molar ratio is 88, the pH is 2.7, and the average primary particle diameter of the silica particles is 35 nm. Colloidal silica for use was prepared. The viscosity of the thus obtained colloidal silica immediately after its preparation was measured and found to be 3.6 cP.

【0055】(1) 平坦性試験 次に、実施例3、実施例4、比較例3及び比較例4で得
られたコロイダルシリカを用いて、研磨表面の平坦性を
調べる平坦性試験を行った。研磨する基板としては、シ
リコン基板上に絶縁膜としてHDPSiO2膜を800
0Åの厚さで形成し、その面の50%が凸部として残る
ように約5000Åの深さにパターニングし、この絶縁
膜上にバリア膜としてTaN膜を約100Åの厚さに形
成し、更にその上にCu膜を1.2μmの厚さに形成し
た基板(以下、「研磨試験用基板」という)を用いた。
(1) Flatness Test Next, using the colloidal silica obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4, a flatness test for examining the flatness of the polished surface was conducted. . As a substrate to be polished, an HDPSiO 2 film as an insulating film is formed on a silicon substrate by 800
It is formed with a thickness of 0 Å, patterned to a depth of about 5000 Å so that 50% of the surface remains as a convex portion, and a TaN film is formed as a barrier film on this insulating film with a thickness of about 100 Å. A substrate having a Cu film formed thereon with a thickness of 1.2 μm (hereinafter referred to as “polishing test substrate”) was used.

【0056】実施例3、実施例4、比較例3及び比較例
4で得られたコロイダルシリカを使用するに先立って、
上記基板の最上部のCu膜を常法に従い、Cu用スラリ
ーを用いて平坦化しながら順次研磨で除き、バリア膜で
あるTaN膜が露出した所で止めた。なお、Cu用スラ
リーとして、シリカ一次粒子径が46nmであり、Si
2濃度が4.3重量%であり、SiO2/Na2Oモル
比が260であり、pHが7.3であり、過酸化水素を
0.8重量%含有し、ベンゾトリアゾールを0.01重
量%含有し、クエン酸を0.5重量%含有するスラリー
を使用した。
Prior to using the colloidal silica obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4,
The Cu film on the uppermost part of the substrate was sequentially removed by polishing according to a conventional method while being planarized with a slurry for Cu, and stopped when the TaN film as the barrier film was exposed. In addition, as the slurry for Cu, the primary particle diameter of silica is 46 nm,
O 2 concentration was 4.3% by weight, SiO 2 / Na 2 O molar ratio was 260, pH was 7.3, hydrogen peroxide was 0.8% by weight, and benzotriazole was 0.1%. A slurry containing 01% by weight and 0.5% by weight citric acid was used.

【0057】次に実施例3、実施例4、比較例3及び比
較例4で得られた研磨用コロイダルシリカを用いて、バ
リア膜であるTaN層を完全に除去するところまで研磨
した。基板を研磨する方法は、実施例3、実施例4、比
較例3及び比較例4で得られたコロイダルシリカをCM
P装置の研磨布に担持させて、基板上に形成された膜を
研磨することにより行った。研磨布として溝加工付き発
砲ポリウレタンを使用した。なお、上記バリア膜を除去
する際、必然的にメタル膜であるCu膜と絶縁膜である
SiO2膜などが同時に磨かれた。採用した研磨条件を
以下に示す。 <平坦性試験における研磨条件> 研磨剤供給速度:200ml/分 研磨圧力:300gf/cm2 トップリングの回転速度:60rpm 研磨定盤の回転速度:60rpm 研磨時間:1分間
Next, the colloidal silica for polishing obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4 was used to polish until the TaN layer as the barrier film was completely removed. The method of polishing the substrate was to use the colloidal silica obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4 as CM.
It was carried out by supporting it on a polishing cloth of a P device and polishing the film formed on the substrate. Grooved polyurethane foam was used as the polishing cloth. When the barrier film was removed, the Cu film, which was a metal film, and the SiO 2 film, which was an insulating film, were necessarily polished at the same time. The adopted polishing conditions are shown below. <Polishing conditions in flatness test> Abrasive supply rate: 200 ml / min Polishing pressure: 300 gf / cm 2 Top ring rotation speed: 60 rpm Polishing plate rotation speed: 60 rpm Polishing time: 1 minute

【0058】研磨表面の平坦性の評価は、上記平坦性試
験のための研磨をそれぞれのコロイダルシリカについて
2回行い、研磨した後の断面形状をAFM(原子間顕微
鏡)により観察することにより行った。評価結果を表1
に示す。なお、評価に用いた基準は以下のとおりであ
る。
The flatness of the polished surface was evaluated by performing the polishing for the flatness test twice for each colloidal silica and observing the cross-sectional shape after polishing with an AFM (atomic force microscope). . Table 1 shows the evaluation results
Shown in. The criteria used for evaluation are as follows.

【0059】<平坦性の評価基準> ○ 表面の粗さ(凹凸の差)が10Å未満 △ 表面の粗さが10Å以上20Å未満 × 表面の粗さが20Å以上<Evaluation Criteria for Flatness> ○ Surface roughness (difference of irregularities) is less than 10Å △ Surface roughness is 10 Å or more and less than 20 Å × Surface roughness is 20Å or more

【0060】(2) スクラッチ試験 次に、実施例3、実施例4、比較例3及び比較例4で得
られたコロイダルシリカを用いて、研磨表面に発生した
スクラッチの有無を調べるスクラッチ試験を行った。研
磨する基板としては、(1)平坦性試験で用いた研磨試
験用基板を使用した。研磨は、実施例3、実施例4、比
較例3及び比較例4で得られたコロイダルシリカによる
研磨の研磨条件として、下記の条件を採用したこと以外
は、(1)平坦性試験で採用した研磨方法等と同様の操
作で行った。
(2) Scratch Test Next, using the colloidal silica obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4, a scratch test was conducted to examine the presence or absence of scratches generated on the polished surface. It was As the substrate to be polished, the substrate for polishing test used in (1) Flatness test was used. The polishing was adopted in (1) flatness test except that the following conditions were adopted as the polishing conditions for polishing with the colloidal silica obtained in Example 3, Example 4, Comparative Example 3 and Comparative Example 4. It carried out by the same operation as the polishing method and the like.

【0061】<スクラッチ試験における研磨条件> 研磨剤供給速度:200ml/分 研磨圧力:300gf/cm2 トップリングの回転速度:40rpm 研磨定盤の回転速度:40rpm 研磨時間:1分間<Polishing conditions in scratch test> Abrasive supply rate: 200 ml / min Polishing pressure: 300 gf / cm 2 Top ring rotation speed: 40 rpm Polishing plate rotation speed: 40 rpm Polishing time: 1 minute

【0062】スクラッチの有無の評価は、上述のように
研磨した後、研磨表面をKLAテンコール社製、異物検
査装置SP1を用いて表面に生じた傷を観察することに
より行った。評価結果を表1に示す。なお、評価に用い
た基準は以下のとおりである。
The presence / absence of scratches was evaluated by observing the scratches on the polished surface using a foreign matter inspection device SP1 manufactured by KLA Tencor Co. after polishing as described above. The evaluation results are shown in Table 1. The criteria used for evaluation are as follows.

【0063】 <スクラッチの評価基準> スクラッチなし 0.14μm以上の傷が1ウエハーに50個以下 スクラッチ多い 0.14μm以上の傷が1ウエハーに50個以上[0063]   <Scratch evaluation criteria>     No scratch 0.14μm or more scratches per wafer 50 or less     Many scratches More than 0.14μm scratches on one wafer 50 or more

【0064】[0064]

【表1】 [Table 1]

【0065】表1から明らかなように、実施例3及び4
で得られたコロイダルシリカによれば、研磨表面のスク
ラッチの発生が少なく、良い平坦性が得られることがわ
かる。一方、比較例3及び比較例4で得られたコロイダ
ルシリカによれば、研磨表面の平坦性は悪く、スクラッ
チの発生も多かった。
As is clear from Table 1, Examples 3 and 4
It can be seen that the colloidal silica obtained in (1) produces less scratches on the polished surface and provides good flatness. On the other hand, according to the colloidal silica obtained in Comparative Example 3 and Comparative Example 4, the flatness of the polished surface was poor, and scratches were often generated.

【0066】(3) 研磨速度試験 次に、実施例4及び比較例4で得られたコロイダルシリ
カを用いて、研磨速度を調べる研磨速度試験を行った。
研磨する基板としては、(1)平坦性試験で用いた研磨
試験用基板を使用した。研磨は、コロイダルシリカとし
て実施例4及び比較例4で得られたコロイダルシリカを
用いたこと以外は、(1)平坦性試験で採用した研磨方
法、研磨条件と同様の方法及び条件で行った。
(3) Polishing Rate Test Next, using the colloidal silica obtained in Example 4 and Comparative Example 4, a polishing rate test for examining the polishing rate was conducted.
As the substrate to be polished, the substrate for polishing test used in (1) Flatness test was used. Polishing was performed by the same method and conditions as the polishing method and polishing conditions adopted in (1) flatness test except that the colloidal silica obtained in Example 4 and Comparative Example 4 was used as the colloidal silica.

【0067】研磨速度測定は、Cu膜、TaN膜及びS
iO2膜における研磨速度を、薄膜測定装置フィルップ
ス社製インパルス300及びナノメトリックス社製ナノ
スペック600を用いて測定することにより行った。測
定結果を表2に示す。
The polishing rate was measured by Cu film, TaN film and S film.
The polishing rate of the iO 2 film was measured by using a thin film measuring apparatus, FILPS impulse 300 and Nanometrics 600 Nanospec 600. The measurement results are shown in Table 2.

【0068】[0068]

【表2】 [Table 2]

【0069】表2から、実施例4で得られたコロイダル
シリカは、Cu膜とSiO2膜の研磨を抑え、TaN等
のバリア膜をよく研磨するものであることがわかる。
From Table 2, it can be seen that the colloidal silica obtained in Example 4 suppresses the polishing of the Cu film and the SiO 2 film and polishes the barrier film of TaN or the like well.

【0070】[0070]

【発明の効果】本発明によれば、メタル膜と絶縁膜が共
存する表面を研磨する際に、スクラッチの発生を最小限
に抑え、かつ良好な平坦面を得ることができる。また、
本発明によれば、シェルフライフを長い研磨剤を提供す
ることができる。
According to the present invention, it is possible to minimize scratches when polishing a surface on which a metal film and an insulating film coexist and to obtain a good flat surface. Also,
According to the present invention, it is possible to provide an abrasive having a long shelf life.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】メタル膜及び絶縁膜が共存する半導体基板
表面を研磨するためのコロイダルシリカにおいて、 ケイ酸アルカリ水溶液からアルカリを除去して生成させ
たシリカ粒子であって、平均一次粒子径が5nm〜30
0nmであり、前記アルカリを、モル比SiO 2/Me2
O(MeはNa、K、Li、NH4又は(CH34Nを
表す)でM=2P+180(式中、Mはモル比、Pは前
記シリカの一次粒子径nmを表す)以上の範囲で含有す
るシリカ粒子と、 水及び/又は水溶性有機溶媒と、酸化剤と、酸とを含
み、 pHが1.5〜6であるメタル膜絶縁膜共存表面研磨用
コロイダルシリカ。
1. A semiconductor substrate in which a metal film and an insulating film coexist.
In colloidal silica for polishing the surface, Generated by removing the alkali from the aqueous solution of alkali silicate
Silica particles having an average primary particle diameter of 5 nm to 30
0 nm and the alkali is added in a molar ratio of SiO 2/ Me2
O (Me is Na, K, Li, NHFourOr (CH3)FourN
M = 2P + 180 (in the formula, M is a molar ratio, P is
(Representing the primary particle diameter nm of silica) contained in the above range
Silica particles, Contains water and / or a water-soluble organic solvent, an oxidizing agent, and an acid.
See For polishing surface coexisting with metal film and insulating film having pH of 1.5 to 6
Colloidal silica.
【請求項2】前記シリカ粒子の表面の一部又は全部がア
ルミニウム被覆されていることを特徴とする請求項1に
記載のメタル膜縁膜膜共存表面研磨用コロイダルシリ
カ。
2. The colloidal silica for surface polishing coexisting with a metal film and an edge film according to claim 1, wherein a part or all of the surface of the silica particles is coated with aluminum.
【請求項3】前記酸化剤が、ハイドロキシアミン及び/
又はその塩であることを特徴とする請求項1または2に
記載のメタル膜絶縁膜共存表面研磨用コロイダルシリ
カ。
3. The oxidizing agent is hydroxyamine and / or
Or a salt thereof, colloidal silica for polishing a surface coexisting with a metal film and an insulating film according to claim 1 or 2.
【請求項4】前記酸化剤が、過酸化水素であることを特
徴とする請求項1または2に記載のメタル膜絶縁膜共存
表面研磨用コロイダルシリカ。
4. The colloidal silica for polishing a surface coexisting with a metal film and an insulating film according to claim 1, wherein the oxidizing agent is hydrogen peroxide.
【請求項5】前記メタル膜が、Cu及び/又はその合金
からなることを特徴とする請求項1〜4のいずれかに記
載のメタル膜絶縁膜共存表面研磨用コロイダルシリカ。
5. The colloidal silica for surface polishing coexisting with a metal film insulating film according to claim 1, wherein the metal film is made of Cu and / or an alloy thereof.
JP2001394414A 2001-12-26 2001-12-26 Colloidal silica for polishing surface wherein metal film and insulation film coexist Pending JP2003197573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394414A JP2003197573A (en) 2001-12-26 2001-12-26 Colloidal silica for polishing surface wherein metal film and insulation film coexist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394414A JP2003197573A (en) 2001-12-26 2001-12-26 Colloidal silica for polishing surface wherein metal film and insulation film coexist

Publications (1)

Publication Number Publication Date
JP2003197573A true JP2003197573A (en) 2003-07-11

Family

ID=27601152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394414A Pending JP2003197573A (en) 2001-12-26 2001-12-26 Colloidal silica for polishing surface wherein metal film and insulation film coexist

Country Status (1)

Country Link
JP (1) JP2003197573A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244123A (en) * 2004-02-27 2005-09-08 Fujimi Inc Polishing composition
JP2006026885A (en) * 2004-06-14 2006-02-02 Kao Corp Polishing liquid composition
EP1813657A2 (en) 2006-01-31 2007-08-01 Fujifilm Corporation Metal-polishing liquid and chemical-mechanical polishing method using the same
EP1813656A2 (en) 2006-01-30 2007-08-01 FUJIFILM Corporation Metal-polishing liquid and chemical mechanical polishing method using the same
EP1813658A2 (en) * 2006-01-31 2007-08-01 Fujifilm Corporation Polishing liquid for barrier layer
JP2007207907A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing solution for metal, and chemical mechanical polishing method employing same
JP2007207785A (en) * 2006-01-30 2007-08-16 Fujifilm Corp Composition for metal polishing
JP2007207909A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing solution for metal, and chemical mechanical polishing method employing same
JP2007214518A (en) * 2006-02-13 2007-08-23 Fujifilm Corp Metal polishing liquid
JP2007214270A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Composition for polishing
JP2007220759A (en) * 2006-02-14 2007-08-30 Fujifilm Corp Polishing solution for metal, and chemical-mechanical polishing method using it
JP2007220995A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Polishing solution for metal
JP2007242734A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Metal polishing solution and chemical mechanical polishing method
JP2007258451A (en) * 2006-03-23 2007-10-04 Fujifilm Corp Polishing solution for metal
JP2007258606A (en) * 2006-03-24 2007-10-04 Fujifilm Corp Polishing solution for chemical-mechanical polishing
JP2007260906A (en) * 2007-07-24 2007-10-11 Kao Corp Manufacturing method of substrate
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
JP2007531631A (en) * 2003-07-11 2007-11-08 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Abrasive particles for chemical mechanical polishing
JP2007320031A (en) * 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP2007331105A (en) * 2004-08-09 2007-12-27 Kao Corp Polishing liquid composition
EP2038916A1 (en) * 2006-06-29 2009-03-25 Cabot Microelectronics Corporation Silicon oxide polishing method utilizing colloidal silica
US7902072B2 (en) 2006-02-28 2011-03-08 Fujifilm Corporation Metal-polishing composition and chemical-mechanical polishing method
JP2013000836A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Method of preparing polishing slurry
US8506359B2 (en) 2008-02-06 2013-08-13 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2018019075A (en) * 2016-07-01 2018-02-01 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Additives for barrier chemical mechanical planarization
CN109153889A (en) * 2016-05-19 2019-01-04 东进世美肯株式会社 Paste compound for chemically mechanical polishing
JP2021103753A (en) * 2019-12-25 2021-07-15 株式会社Mfcテクノロジー Manufacturing method and manufacturing apparatus of slurry for metal film

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531631A (en) * 2003-07-11 2007-11-08 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Abrasive particles for chemical mechanical polishing
US8501027B2 (en) 2004-02-27 2013-08-06 Fujimi Incorporated Polishing composition and polishing method
JP2005244123A (en) * 2004-02-27 2005-09-08 Fujimi Inc Polishing composition
JP2006026885A (en) * 2004-06-14 2006-02-02 Kao Corp Polishing liquid composition
JP4648367B2 (en) * 2004-08-09 2011-03-09 花王株式会社 Polishing liquid composition
JP2007331105A (en) * 2004-08-09 2007-12-27 Kao Corp Polishing liquid composition
EP1813656A3 (en) * 2006-01-30 2009-09-02 FUJIFILM Corporation Metal-polishing liquid and chemical mechanical polishing method using the same
US7857985B2 (en) 2006-01-30 2010-12-28 Fujifilm Corporation Metal-polishing liquid and chemical mechanical polishing method using the same
JP2007207785A (en) * 2006-01-30 2007-08-16 Fujifilm Corp Composition for metal polishing
EP1813656A2 (en) 2006-01-30 2007-08-01 FUJIFILM Corporation Metal-polishing liquid and chemical mechanical polishing method using the same
JP2007207909A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing solution for metal, and chemical mechanical polishing method employing same
EP1813658A3 (en) * 2006-01-31 2009-09-02 Fujifilm Corporation Polishing liquid for barrier layer
JP2007207907A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing solution for metal, and chemical mechanical polishing method employing same
EP1813657A2 (en) 2006-01-31 2007-08-01 Fujifilm Corporation Metal-polishing liquid and chemical-mechanical polishing method using the same
EP1813657A3 (en) * 2006-01-31 2009-09-02 Fujifilm Corporation Metal-polishing liquid and chemical-mechanical polishing method using the same
EP1813658A2 (en) * 2006-01-31 2007-08-01 Fujifilm Corporation Polishing liquid for barrier layer
JP2007207908A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing agent for barrier layer
JP2007214270A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Composition for polishing
JP2007214518A (en) * 2006-02-13 2007-08-23 Fujifilm Corp Metal polishing liquid
US8034252B2 (en) 2006-02-13 2011-10-11 Fujifilm Corporation Metal-polishing liquid and chemical-mechanical polishing method using the same
JP2007220759A (en) * 2006-02-14 2007-08-30 Fujifilm Corp Polishing solution for metal, and chemical-mechanical polishing method using it
JP2007220995A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Polishing solution for metal
US7902072B2 (en) 2006-02-28 2011-03-08 Fujifilm Corporation Metal-polishing composition and chemical-mechanical polishing method
JP2007242734A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Metal polishing solution and chemical mechanical polishing method
JP2007258451A (en) * 2006-03-23 2007-10-04 Fujifilm Corp Polishing solution for metal
JP2007258606A (en) * 2006-03-24 2007-10-04 Fujifilm Corp Polishing solution for chemical-mechanical polishing
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
EP2038916A4 (en) * 2006-06-29 2011-04-13 Cabot Microelectronics Corp Silicon oxide polishing method utilizing colloidal silica
EP2038916A1 (en) * 2006-06-29 2009-03-25 Cabot Microelectronics Corporation Silicon oxide polishing method utilizing colloidal silica
JP2007320031A (en) * 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP2007260906A (en) * 2007-07-24 2007-10-11 Kao Corp Manufacturing method of substrate
US8506359B2 (en) 2008-02-06 2013-08-13 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2013000836A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Method of preparing polishing slurry
CN109153889A (en) * 2016-05-19 2019-01-04 东进世美肯株式会社 Paste compound for chemically mechanical polishing
US11001732B2 (en) 2016-05-19 2021-05-11 Dongjin Semichem Co., Ltd. Polishing slurry composition
CN109153889B (en) * 2016-05-19 2021-10-29 东进世美肯株式会社 Slurry composition for chemical mechanical polishing
JP2018019075A (en) * 2016-07-01 2018-02-01 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Additives for barrier chemical mechanical planarization
JP2021103753A (en) * 2019-12-25 2021-07-15 株式会社Mfcテクノロジー Manufacturing method and manufacturing apparatus of slurry for metal film
JP7469790B2 (en) 2019-12-25 2024-04-17 株式会社Mfcテクノロジー METHOD AND APPARATUS FOR PRODUCING METHOD OF SLURRY FOR METAL FILMS

Similar Documents

Publication Publication Date Title
JP2003197573A (en) Colloidal silica for polishing surface wherein metal film and insulation film coexist
JP3874068B2 (en) Polishing composition
RU2356926C2 (en) Abrasive particles for mechanical polishing
JP3616802B2 (en) Slurry composition and chemical mechanical polishing method using the same
US6689692B1 (en) Composition for oxide CMP
KR20070105301A (en) Aqueous slurry containing metallate-modified silica particles
WO2007116770A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
SG172674A1 (en) Compositions and methods for polishing silicon nitride materials
WO2007137508A1 (en) Polishing slurry for subtle surface planarization and its using method
US20090047870A1 (en) Reverse Shallow Trench Isolation Process
JP4657408B2 (en) Metal film abrasive
JP2006516067A (en) Abrasive composition and polishing method therefor
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP7356932B2 (en) Polishing composition and polishing method
WO2011016323A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using same
JP6279156B2 (en) Polishing composition
TWI792464B (en) Titanium dioxide containing ruthenium chemical mechanical polishing slurry and its use in method for polishing a ruthenium containing substrate
TWI764338B (en) Composition and method for silicon oxide and carbon doped silicon oxide cmp
JPH10172934A (en) Composition for polishing
JP4231950B2 (en) Metal film abrasive
JP2001115144A (en) Polishing material, method for polishing substrate, and semiconductor device
JP5413569B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
TWI843891B (en) Grinding composition and grinding method
TWI837428B (en) Chemical mechanical polishing composition and chemical mechanical polishing method
JPH10172935A (en) Composition for polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807