JPH1135374A - Sintered compact for drilling bit and its production - Google Patents

Sintered compact for drilling bit and its production

Info

Publication number
JPH1135374A
JPH1135374A JP9188358A JP18835897A JPH1135374A JP H1135374 A JPH1135374 A JP H1135374A JP 9188358 A JP9188358 A JP 9188358A JP 18835897 A JP18835897 A JP 18835897A JP H1135374 A JPH1135374 A JP H1135374A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
iron group
oxide
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9188358A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU KODAN
SEKYU KODAN
Original Assignee
SEKIYU KODAN
SEKYU KODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU KODAN, SEKYU KODAN filed Critical SEKIYU KODAN
Priority to JP9188358A priority Critical patent/JPH1135374A/en
Publication of JPH1135374A publication Critical patent/JPH1135374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the diamond sintered compact which is used for a drilling bit and has high strength and also is excellent in fracture resistance, heat resistance, acid resistance and wear resistance, under industrially-producible conditions and at a low cost by using an oxide or double oxide of an iron group metal(s) as a sintering aid for the sintered compact. SOLUTION: This sintered compact comprises 1 to 20 vol.% of a material consisting of a compound that contains an iron group metal(s) and oxygen, and the remainder of a diamond powder having a 20 to 200 μm average particle size. As the compound contg. an iron group metal(s) and oxygen, an oxide of an iron group metal or a double oxide or solid solution of iron group metals, such as FeO, CoO or CoFe2 O4 , is used. This production of the diamond sintered compact for a drilling bit comprises: mixing a powdery oxide or double oxide of an iron group metal(s) with a diamond powder having a 20 to 200μm average particle size or a powdery mixture of this diamond powder and non-diamond carbon to obtain a mixed powder; and maintaining the resulting mixed powder under pressure and temp. conditions within the thermodynamically stable region of diamond to sinter the mixed powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般に掘削ビッ
ト用焼結体に関するものであり、より特定的には、石油
掘削等のドリルビットの刃先素材として用いられるダイ
ヤモンド焼結体に関する。この発明は、また、そのよう
な掘削ビット用焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a sintered body for a drill bit, and more particularly to a diamond sintered body used as a cutting edge material of a drill bit for oil drilling or the like. The present invention also relates to a method for manufacturing such a sintered body for a drill bit.

【0002】[0002]

【従来の技術】従来の掘削ビット用ダイヤモンド焼結体
としては、焼結助剤あるいは結合剤としてCo、Ni、
Feなどに鉄族金属を用いたものや、SiCなどのセラ
ミックスを用いたものが知られており、工業的に利用さ
れている。
2. Description of the Related Art Conventional diamond sintered bodies for drill bits include Co, Ni, and sintering aids or binders.
Those using an iron group metal for Fe or the like and those using ceramics such as SiC are known and used industrially.

【0003】また、ダイヤモンド焼結体として焼結助剤
として炭酸塩を用いたものも知られている(特開平4−
74766号公報、特開平4−114966号公報)
が、今のところ、掘削ビットとしては用いられていな
い。
Also, a diamond sintered body using a carbonate as a sintering aid has been known (Japanese Patent Laid-Open Publication No.
No. 74766, JP-A-4-114966)
However, it is not currently used as a drill bit.

【0004】その他、天然のダイヤモンド焼結体(カー
ボナード)があるが、材質のばらつきが大きく、また産
出量も極少量であるため、あまり掘削ビットとしては使
用されていない。
[0004] In addition, there is a natural diamond sintered body (carbonado), but it is not widely used as a drill bit because of a large variation in the material and an extremely small output.

【0005】[0005]

【発明が解決しようとする課題】Coなどの鉄族金属を
焼結助剤としたダイヤモンド焼結体は、Coなどの鉄族
金属がダイヤモンドの黒鉛化を促す触媒として作用する
ため、耐熱性に劣る。すなわち、不活性ガス雰囲気中で
700℃程度で黒鉛化してしまう。また、ダイヤモンド
粒の粒界にCoなどの金属が連続層として存在するた
め、焼結体の強度はあまり高くない。さらに、この金属
とダイヤモンドの熱膨張差のため熱劣化が起こりやすく
なる。このため、このようなダイヤモンド焼結体を掘削
ビットとして用いた場合、刃先が欠損、摩耗しやすいと
いった問題がある。
A diamond sintered body using an iron group metal such as Co as a sintering aid has a low heat resistance because the iron group metal such as Co acts as a catalyst for promoting the graphitization of diamond. Inferior. That is, it is graphitized at about 700 ° C. in an inert gas atmosphere. Further, since a metal such as Co exists as a continuous layer at the grain boundaries of diamond grains, the strength of the sintered body is not very high. Furthermore, thermal degradation is likely to occur due to the difference in thermal expansion between the metal and diamond. For this reason, when such a diamond sintered body is used as a drill bit, there is a problem that the cutting edge is easily damaged or worn.

【0006】耐熱性を上げるために、上記の粒界の金属
を酸処理により除去されたものも知られている。これに
より、耐熱温度は約1200℃と向上するが、焼結体が
多孔質となるため、強度がさらに大幅に(30%程
度)、低下する。
It is also known that the above-mentioned metal at the grain boundary is removed by an acid treatment in order to increase heat resistance. As a result, the heat-resistant temperature is improved to about 1200 ° C., but the strength is further greatly reduced (about 30%) because the sintered body becomes porous.

【0007】SiCを結合剤としたダイヤモンド焼結体
は、耐熱性には優れるが、ダイヤモンド粒同士は結合が
ないため、強度は低い。
[0007] A diamond sintered body using SiC as a binder is excellent in heat resistance, but has low strength because there is no bonding between diamond grains.

【0008】一方、焼結助剤として炭酸塩を用いたダイ
ヤモンド焼結体は、Co結合剤による焼結体に比べると
耐熱性に優れるが、1000℃程度より、炭酸塩の分解
が始まり、焼結体の強度が低下する。また、炭酸塩は酸
に溶けるため、掘削ビットの用途には問題が生じる。ま
た、この場合、ダイヤモンド焼結体の製造に7.7GP
a、2000℃以上と大変厳しい圧力、温度条件を要す
るため、コストがかなり高くなり、工業生産は難しい。
On the other hand, a diamond sintered body using a carbonate as a sintering aid has better heat resistance than a sintered body using a Co binder, but decomposition of the carbonate starts at about 1000 ° C. The strength of the unit is reduced. Also, the carbonate is soluble in the acid, which causes a problem in the use of the drill bit. In this case, 7.7 GP is required to manufacture the diamond sintered body.
a. Since extremely severe pressure and temperature conditions of 2000 ° C. or more are required, the cost is considerably increased, and industrial production is difficult.

【0009】本発明は、以上の問題点を解決するために
なされたもので、高強度で、優れた耐欠損性、耐熱性、
耐酸性、耐摩耗性を有する掘削用ダイヤモンド焼結体を
提供することを目的とする。
The present invention has been made to solve the above problems, and has high strength, excellent fracture resistance and heat resistance.
An object of the present invention is to provide a drilled diamond sintered body having acid resistance and wear resistance.

【0010】本発明の他の目的は、そのような掘削用ダ
イヤモンド焼結体を工業生産可能な条件で、低コストで
製造する方法を提供することにある。
Another object of the present invention is to provide a method for producing such a diamond sintered compact for excavation at a low cost under conditions capable of industrial production.

【0011】[0011]

【課題を解決するための手段】請求項1に係る掘削ビッ
ト用焼結体は、鉄族金属と酸素を含有する化合物からな
る物質を1〜20体積%含み、残部が平均粒径20μm
以上200μm以下のダイヤモンドからなる。
The sintered body for a drill bit according to the present invention contains 1 to 20% by volume of a substance composed of a compound containing an iron group metal and oxygen, and the remainder has an average particle diameter of 20 μm.
It is made of diamond having a size of 200 μm or more.

【0012】請求項2に記載の掘削ビット用焼結体にお
いては、鉄族金属と酸素を含有する上記化合物が、鉄族
金属の酸化物、複酸化物または固溶体である。
In the sintered compact for a drill bit according to the present invention, the compound containing an iron group metal and oxygen is an oxide, a double oxide or a solid solution of an iron group metal.

【0013】請求項3に係る掘削ビット用焼結体の製造
方法は、焼結助剤として鉄族金属の酸化物または複酸化
物を用い、この粉末と、平均粒径20μm以上200μ
m以下のダイヤモンド粉末もしくは、平均粒径20μm
以上200μm以下のダイヤモンドと非ダイヤモンド炭
素の混合粉末を混合し、これをダイヤモンドの熱力学的
安定領域の圧力、温度条件で保持し、焼結することを特
徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a sintered body for a drill bit, wherein an oxide or a double oxide of an iron group metal is used as a sintering aid.
m or less, or an average particle diameter of 20 μm
It is characterized in that a mixed powder of diamond and non-diamond carbon having a diameter of 200 μm or less is mixed, and the mixed powder is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.

【0014】請求項4に係る掘削ビット用焼結体の製造
方法は、焼結助剤として鉄族金属の酸化物または複酸化
物を用い、この粉末の成形体と、平均粒径20μm以上
200μm以下のダイヤモンド粉末の成形体または、平
均粒径20μm以上200μm以下のダイヤモンドと非
ダイヤモンド炭素の混合粉末の成形体とを積層し、これ
をダイヤモンドの熱力学的安定領域の圧力、温度条件で
保持し、焼結することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a sintered body for a drill bit, wherein an oxide or a double oxide of an iron group metal is used as a sintering aid. The following compact of diamond powder or a compact of mixed powder of diamond and non-diamond carbon having an average particle diameter of 20 μm or more and 200 μm or less is laminated, and this is held under the pressure and temperature conditions of the thermodynamically stable region of diamond. And sintering.

【0015】請求項5に係る掘削ビット用焼結体の製造
方法は、平均粒径20μm以上200μm以下のダイヤ
モンド粉末の表面に鉄族金属の酸化物または複酸化物を
形成し、これをダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a sintered body for a drill bit, wherein an oxide or a double oxide of an iron group metal is formed on the surface of diamond powder having an average particle diameter of 20 μm or more and 200 μm or less. It is characterized by holding and sintering under the pressure and temperature conditions of the thermodynamic stability region.

【0016】[0016]

【発明の実施の形態】従来、鉄族金属の酸化物や複酸化
物がダイヤモンド焼結体の有効な焼結助剤となることは
知られていなかった。この度、本発明者らにより、これ
らの酸化物や複酸化物を焼結助剤とすることで、従来に
ない高強度で、かつ耐欠損性、耐熱性、耐食性に優れた
ダイヤモンド焼結体が、従来の非金属触媒を焼結助剤と
した場合より低い圧力・温度条件で得られ、掘削ビット
として有効であることが新たに見出され、本発明に至っ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It has not been known that oxides or double oxides of iron group metals are effective sintering aids for sintered diamond. By using the oxides and double oxides as sintering aids, the present inventors have obtained a diamond sintered body having an unprecedented high strength, and excellent fracture resistance, heat resistance, and corrosion resistance. The present invention was newly found to be obtained under lower pressure and temperature conditions than in the case where a conventional nonmetallic catalyst was used as a sintering aid, and to be effective as a drill bit, leading to the present invention.

【0017】すなわち、本発明の特徴は、ダイヤモンド
焼結体の焼結助剤として鉄族金属の酸化物(FeO、F
2 3 、CoOなど)や複酸化物(CoFe2 4
ど)を用い、原料に平均粒径20μm以上200μm以
下のダイヤモンドを用いた点にある。
That is, the feature of the present invention is that an oxide of iron group metal (FeO, F
Using e 2 O 3, CoO, etc.) or a composite oxide (such as CoFe 2 O 4), lies in using the following diamond 200μm average particle size 20μm or more in the raw material.

【0018】これらの鉄族金属の酸化物や複酸化物は、
ダイヤモンドに対し、強い触媒作用を示し、これらを焼
結助剤とするとダイヤモンド粒子が極めて強固に結合し
たマトリックスが形成される。
These iron group metal oxides and double oxides are:
It exhibits a strong catalytic action on diamond, and when these are used as sintering aids, a matrix is formed in which diamond particles are very strongly bonded.

【0019】さらに、これらの酸化物や複酸化物の触媒
作用は、炭酸塩触媒に比べ、約600℃低い温度で起こ
る。このため、これらの複酸化物や混合物を焼結助剤と
した場合、6GPa、1500℃といったマイルドな条
件で、上記のような強固な焼結体が得られる。
Further, the catalytic action of these oxides and double oxides occurs at a temperature lower by about 600 ° C. than that of the carbonate catalyst. Therefore, when these complex oxides and mixtures are used as sintering aids, the above-mentioned strong sintered body can be obtained under mild conditions such as 6 GPa and 1500 ° C.

【0020】すなわち、従来にない高強度で耐欠損性に
優れたダイヤモンド焼結体が、工業生産が容易な条件で
得られる。
[0020] That is, a diamond sintered body having an unprecedented high strength and excellent fracture resistance can be obtained under conditions that facilitate industrial production.

【0021】こうして得られるダイヤモンド焼結体は、
鉄族金属および酸素を含有する化合物からなる物質を含
むのが特徴で、このような物質としては、たとえば、F
eO、Fe2 3 、CoO、Co3 4 などの鉄族金属
酸化物やCoFe2 4 などの複酸化物が挙げられる。
このような物質は、1000℃程度の高温下でも安定で
ある。このため、本発明のダイヤモンド焼結体は、高強
度で耐欠損性に優れる他、耐熱性にも優れた特性を示
し、掘削ビット用途として非常に有効である。
The diamond sintered body thus obtained is
It is characterized by containing a substance consisting of a compound containing an iron group metal and oxygen.
Examples include iron group metal oxides such as eO, Fe 2 O 3 , CoO, and Co 3 O 4 , and multiple oxides such as CoFe 2 O 4 .
Such a substance is stable even at a high temperature of about 1000 ° C. Therefore, the diamond sintered body of the present invention has high strength and excellent fracture resistance, and also exhibits excellent heat resistance, and is very effective as a drill bit application.

【0022】本発明のダイヤモンド焼結体において、鉄
族金属および酸素を含有する化合物からなる物質の含有
量は、1〜20体積%が好ましいが、この理由は1体積
%未満ではダイヤモンド粒子間の結合性、すなわち焼結
性が低下し、20体積%を超えると過剰の化合物の影響
で、強度や耐欠損性が低下するからである。
In the diamond sintered body of the present invention, the content of a substance comprising a compound containing an iron group metal and oxygen is preferably 1 to 20% by volume. This is because the bondability, that is, the sinterability is reduced, and when the content exceeds 20% by volume, the strength and the fracture resistance are reduced due to the influence of the excess compound.

【0023】原料としては、平均粒径20〜200μm
の合成ダイヤモンド粉末、天然ダイヤモンド粉末、多結
晶ダイヤモンド粉末などを用いる。平均粒径が20μm
より小さいと、焼結体の耐衝撃性や破壊靱性が低くな
り、200μmを超えると耐摩耗性が低下して、いずれ
も掘削用ビットとしては使用できない。なお、場合によ
っては、ダイヤモンド粒子の空隙を少なくするため、2
0μm以下の微細なダイヤモンド粒子を少量添加しても
よいが、全体の平均粒径は20μm以上である必要があ
る。
As a raw material, the average particle size is 20 to 200 μm.
Synthetic diamond powder, natural diamond powder, polycrystalline diamond powder and the like. Average particle size is 20μm
If it is smaller, the impact resistance and fracture toughness of the sintered body will be low, and if it exceeds 200 μm, the wear resistance will be reduced, and neither can be used as a drill bit. In some cases, in order to reduce voids in the diamond particles, 2
A small amount of fine diamond particles of 0 μm or less may be added, but the average particle diameter of the whole needs to be 20 μm or more.

【0024】また、これらのダイヤモンドに、成形性、
焼結性を向上させるために、適量の黒鉛、グラッシーカ
ーボン、熱分解黒鉛などの非ダイヤモンドを添加しても
よい。
Further, the formability,
In order to improve sinterability, an appropriate amount of non-diamond such as graphite, glassy carbon, and pyrolytic graphite may be added.

【0025】本発明のダイヤモンド焼結体の製造方法と
しては、ダイヤモンド粉末や非ダイヤモンド粉末を含む
ダイヤモンド粉末と、鉄族金属の酸化物や複酸化物を、
ダイヤモンドが熱力学的に安定な圧力、温度条件下で保
持する方法と、ダイヤモンド粉末や非ダイヤモンド黒鉛
を含むダイヤモンド粉末の成形体と、鉄族金属の酸化物
や複酸化物の成形体を積層したものを原料として、上記
の圧力、温度条件下で保持する方法がある。
The method for producing a diamond sintered body of the present invention comprises the steps of: preparing a diamond powder including a diamond powder and a non-diamond powder;
A method in which diamond is held under thermodynamically stable pressure and temperature conditions, a compact of diamond powder containing diamond powder and non-diamond graphite, and a compact of oxides and complex oxides of iron group metals There is a method in which the raw material is kept under the above pressure and temperature conditions.

【0026】また、鉄族金属の酸化物や複酸化物を予め
原料のダイヤモンド粉末の表面に形成しておき、これを
上記の圧力、温度条件で焼結すると、より均質な焼結体
が得られる。
Further, when an oxide or double oxide of an iron group metal is previously formed on the surface of the raw material diamond powder and this is sintered under the above pressure and temperature conditions, a more homogeneous sintered body is obtained. Can be

【0027】[0027]

【実施例】実施例1 焼結助剤として粒径1μmのFeOを用いた。粒径20
〜40μm(平均粒径30μm)の天然ダイヤモンド粉
末と、FeO粉末をそれぞれ90体積%、10体積%の
割合で十分に混合し、この混合物をMoカプセルに入
れ、ベルト型の超高圧高温発生装置を用いて、6.5G
Pa、1650℃の圧力、温度条件で15分間保持し、
焼結させた。得られたダイヤモンド焼結体について、X
線回析により組成を同定したところ、ダイヤモンドの
他、約10体積%の鉄の酸化物が検出された。この焼結
体の硬度をヌープ圧子により評価したところ、8100
Kg/mm2 と高硬度であった。また、破壊靱性をイン
デンテーション法により従来の市販のCoバインダ焼結
体に対し相対比較したところ、従来の焼結体の約1.5
倍の相対靱性であった。また、得られた焼結体を真空中
で1000℃に加熱処理した後、硬度、靱性を測定した
が、処理前とほとんど変化がなかった。また、得られた
焼結体で切削工具を作製し、花崗岩を切削して耐摩耗性
を評価すると、この焼結体の耐摩耗性は従来のCoバイ
ンダの掘削ビット用焼結体の10倍以上であった。
Example 1 FeO having a particle size of 1 μm was used as a sintering aid. Particle size 20
4040 μm (average particle size: 30 μm) of natural diamond powder and FeO powder are sufficiently mixed at a ratio of 90% by volume and 10% by volume, respectively, and the mixture is placed in a Mo capsule. 6.5G
Pa, maintained at a pressure of 1650 ° C. and temperature conditions for 15 minutes,
Sintered. For the obtained diamond sintered body, X
When the composition was identified by line diffraction, about 10% by volume of iron oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated using a Knoop indenter,
The hardness was as high as Kg / mm 2 . Further, when the fracture toughness was relatively compared with a conventional commercially available Co binder sintered body by the indentation method, it was found that the conventional sintered body had a fracture toughness of about 1.5%.
Double relative toughness. Further, after the obtained sintered body was subjected to heat treatment in vacuum at 1000 ° C., the hardness and toughness were measured. When a cutting tool was prepared from the obtained sintered body and the wear resistance was evaluated by cutting the granite, the wear resistance of the sintered body was 10 times that of the conventional sintered body for a drilling bit of a Co binder. That was all.

【0028】実施例2 焼結助剤にFe2 3 を用いた他は、実施例1と同様に
して、ダイヤモンド焼結体を作製した。得られた焼結体
には、鉄の酸化物が含まれており、硬度、靱性、耐熱
性、耐摩耗性とも実施例1と同様であった。
Example 2 A diamond sintered body was produced in the same manner as in Example 1 except that Fe 2 O 3 was used as a sintering aid. The obtained sintered body contained iron oxide, and the hardness, toughness, heat resistance, and abrasion resistance were the same as those in Example 1.

【0029】実施例3 焼結助剤として、CoOとFe2 3 をモル比で1:1
で混合したものを焼結体助剤とした他は、実施例1と同
様にして、ダイヤモンド焼結体を作製した。得られた焼
結体には、コバルトと鉄の複酸化物が含まれており、硬
度、靱性、耐熱性、耐摩耗性とも実施例1と同様であっ
た。
Example 3 As a sintering aid, CoO and Fe 2 O 3 were mixed at a molar ratio of 1: 1.
A diamond sintered body was produced in the same manner as in Example 1 except that the mixture obtained in (1) was used as a sintered body assistant. The obtained sintered body contained a double oxide of cobalt and iron, and the hardness, toughness, heat resistance, and wear resistance were the same as in Example 1.

【0030】実施例4 焼結助剤として、CoOを焼結助剤とした他は、実施例
1と同様にして、ダイヤモンド焼結体を作製した。得ら
れた焼結体には、コバルトの酸化物が含まれており、硬
度、靱性、耐熱性、耐摩耗性とも実施例1と同様であっ
た。
Example 4 A diamond sintered body was produced in the same manner as in Example 1, except that CoO was used as a sintering aid. The obtained sintered body contained an oxide of cobalt, and the hardness, toughness, heat resistance, and abrasion resistance were the same as in Example 1.

【0031】実施例5 焼結助剤として、粒径1μmのFeOを用いた。粒径4
0〜80μmの合成ダイヤモンド粉末と、FeO粉末を
それぞれ厚み2mm、1mmに成形したものを交互に積
層して、Moカプセルに入れ、ベルト型の超高圧高温発
生装置を用いて、6.5GPa、1600℃の圧力、温
度条件で15分間保持し、焼結した。得られたダイヤモ
ンド焼結体についてX線回析により組成を同定したとこ
ろ、ダイヤモンドの他、約2体積%の鉄の酸化物が検出
された。この焼結体の硬度をヌープ圧子により評価した
ところ、約7100Kg/mm2 と高硬度であった。ま
た、破壊靱性をインデンテーション法により、従来の市
販のCoバインダ焼結体に対し相対比較したところ、従
来の焼結体の約1.5倍の相対靱性であった。また、得
られた焼結体を真空中で1000℃に加熱処理した後、
硬度、靱性を測定したが、処理前とほとんど変化がなか
った。
Example 5 FeO having a particle size of 1 μm was used as a sintering aid. Particle size 4
Synthetic diamond powder of 0 to 80 μm and FeO powder molded into a thickness of 2 mm and 1 mm, respectively, are alternately laminated, placed in Mo capsules, and heated to 6.5 GPa, 1600 using a belt type ultra-high pressure and high temperature generator. It was kept at a pressure and temperature of 15 ° C. for 15 minutes and sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 2% by volume of iron oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated using a Knoop indenter, it was as high as about 7100 kg / mm 2 . Further, when the fracture toughness was compared with a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.5 times that of the conventional sintered body. Further, after heating the obtained sintered body to 1000 ° C. in a vacuum,
The hardness and toughness were measured, but hardly changed from those before the treatment.

【0032】実施例6 焼結助剤として、CoFe2 4 を焼結助剤とした他
は、実施例5と同様にしてダイヤモンド焼結体を作製し
た。得られた焼結体には、コバルトと鉄の複酸化物が含
まれており、硬度、靱性、耐熱性、耐摩耗性とも実施例
5と同様であった。
Example 6 A diamond sintered body was produced in the same manner as in Example 5, except that CoFe 2 O 4 was used as a sintering aid. The obtained sintered body contained a double oxide of cobalt and iron, and the hardness, toughness, heat resistance, and wear resistance were the same as in Example 5.

【0033】実施例7 粒径20〜40μmのダイヤモンド粉体の表面に、約1
0体積%のFeOをコーティングし、これをMoカプセ
ルに入れ、ベルト型の超高圧高温発生装置を用いて、6
GPa、1550℃の圧力、温度条件で15分間保持
し、焼結させた。得られたダイヤモンド焼結体につい
て、X線回析により組成を同定したところ、ダイヤモン
ドの他、約10体積%の鉄の酸化物が検出された。この
焼結体の硬度をヌープ圧子により評価したところ、約7
500Kg/mm2 と高硬度であった。また、破壊靱性
をインデンテーション法により、従来の市販のCoバイ
ンダ焼結体に対し相対比較したところ、従来の焼結体の
約1.5倍の相対靱性であった。また、得られた焼結体
を真空中で1000℃に加熱処理した後、硬度、靱性を
測定したが、処理前とほとんど変化がなかった。また、
得られた焼結体で切削工具を作製し、花崗岩を切削して
耐摩耗性を評価すると、この焼結体の耐摩耗性は、従来
のCoバインダの掘削ビット用焼結体の10倍以上であ
った。
Example 7 The surface of a diamond powder having a particle size of 20 to 40 μm was coated with about 1
0% by volume of FeO was coated in a Mo capsule, and the resultant was coated with a belt-type ultra-high pressure and high temperature generator.
The sample was held at GPa, a pressure of 1550 ° C. and a temperature condition for 15 minutes, and sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 10% by volume of iron oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated using a Knoop indenter, it was found to be about 7
The hardness was as high as 500 kg / mm 2 . Further, when the fracture toughness was compared with a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.5 times that of the conventional sintered body. Further, after the obtained sintered body was subjected to heat treatment in vacuum at 1000 ° C., the hardness and toughness were measured. Also,
When a cutting tool is manufactured from the obtained sintered body and the wear resistance is evaluated by cutting the granite, the wear resistance of the sintered body is at least 10 times that of the conventional sintered body for the drill bit of the Co binder. Met.

【0034】比較例1 焼結助剤として、FeOを用いた。粒径20〜40μm
の合成ダイヤモンド粉末に、微量の上記混合物の粉末
(約0.1体積%)を添加し、十分に混合したものを原
料にした他は、実施例1と同様にダイヤモンド焼結体の
製造を試みた。しかし、得られた焼結体には、未焼結部
が多く残留していた。
Comparative Example 1 FeO was used as a sintering aid. Particle size 20-40 μm
Production of a diamond sintered body was attempted in the same manner as in Example 1 except that a small amount of the powder of the above-mentioned mixture (about 0.1% by volume) was added to the synthetic diamond powder of Example 1 and the mixture was used as a raw material. Was. However, many unsintered portions remained in the obtained sintered body.

【0035】比較例2 焼結助剤として、FeOを用いた。粒径40〜80μm
の合成ダイヤモンド粉末60体積%と、上記混合物の粉
末30体積%を添加し、十分に混合したものを原料にし
た他は、実施例1と同様にダイヤモンド焼結体の製造を
試みた。しかし、得られた焼結体には、粒子同士の結合
が十分でなく、硬度は3300Kg/mm2 程度と低か
った。
Comparative Example 2 FeO was used as a sintering aid. Particle size 40-80 μm
Production of a diamond sintered body was attempted in the same manner as in Example 1, except that 60% by volume of the synthetic diamond powder and 30% by volume of the powder of the above mixture were added and used as a raw material. However, in the obtained sintered body, the bonding between the particles was not sufficient, and the hardness was as low as about 3300 Kg / mm 2 .

【0036】比較例3 焼結助剤として、FeOを用いた。平均粒径3μmの合
成ダイヤモンド粉末95体積%と、上記混合物の粉末5
体積%を添加し、十分に混合したものを原料にした他
は、実施例1と同様にダイヤモンド焼結体の製造を試み
た。しかし、得られた焼結体は、破壊靱性値が従来のC
oバインダのものと同程度で、大幅な向上は認められな
かった。
Comparative Example 3 FeO was used as a sintering aid. 95 volume% of synthetic diamond powder having an average particle size of 3 μm and powder 5 of the above mixture
An attempt was made to produce a diamond sintered body in the same manner as in Example 1, except that the raw material was a mixture obtained by adding volume% and sufficiently mixing. However, the obtained sintered body has a fracture toughness value of conventional C
o No significant improvement was observed, comparable to that of the binder.

【0037】比較例4 焼結助剤として、Y3 Fe5 12を用いた。平均粒径2
70μmの合成ダイヤモンド粉末95体積%と、上記混
合物の粉末5体積%を添加し、十分に混合したものを原
料にした他は、実施例1と同様にダイヤモンド焼結体の
製造を試みた。しかし、得られた焼結体で切削工具を作
製し、花崗岩を切削して耐摩耗性を評価すると、この焼
結体の耐摩耗性は従来のCoバインダの掘削ビット用焼
結体と同程度か数倍程度で、大幅な向上は見られなかっ
た。
Comparative Example 4 Y 3 Fe 5 O 12 was used as a sintering aid. Average particle size 2
Production of a diamond sintered body was attempted in the same manner as in Example 1, except that 95% by volume of 70 μm synthetic diamond powder and 5% by volume of the powder of the above mixture were added and used as a raw material. However, when a cutting tool was prepared from the obtained sintered body and the wear resistance was evaluated by cutting granite, the wear resistance of this sintered body was comparable to that of a conventional sintered body for a drill bit made of a Co binder. It was about several times, and no significant improvement was seen.

【0038】[0038]

【発明の効果】以上説明したとおり、本発明のダイヤモ
ンド焼結体は、従来にない高強度で、耐熱性、耐欠損
性、耐摩耗性を有するので、石油掘削用途等のドリルビ
ットの刃先素材として有効に使用できるという効果を奏
する。
As described above, the diamond sintered body of the present invention has unprecedented high strength, heat resistance, chipping resistance, and wear resistance. This has the effect that it can be used effectively.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄族金属と酸素を含有する化合物からな
る物質を1〜20体積%含み、残部が平均粒径20μm
以上200μm以下のダイヤモンドからなる掘削ビット
用焼結体。
1. A composition comprising 1 to 20% by volume of a substance comprising a compound containing an iron group metal and oxygen, and the balance having an average particle size of 20 μm.
A sintered body for a drill bit made of diamond having a diameter of 200 μm or less.
【請求項2】 鉄族金属と酸素を含有する前記化合物
が、鉄族金属の酸化物、複酸化物または固溶体である、
請求項1に記載の掘削ビット用焼結体。
2. The compound containing an iron group metal and oxygen is an oxide, a double oxide or a solid solution of an iron group metal,
The sintered body for a drill bit according to claim 1.
【請求項3】 焼結助剤として鉄族金属の酸化物または
複酸化物を用い、この粉末と、平均粒径20μm以上2
00μm以下のダイヤモンド粉末もしくは、平均粒径2
0μm以上200μm以下のダイヤモンドと非ダイヤモ
ンド炭素の混合粉末を混合し、これをダイヤモンドの熱
力学的安定領域の圧力、温度条件で保持し、焼結するこ
とを特徴とする、掘削ビット用焼結体の製造方法。
3. An oxide or double oxide of an iron group metal is used as a sintering aid, and the powder is mixed with an average particle size of 20 μm or more.
Diamond powder of 00 μm or less or average particle size 2
A sintered body for a drill bit, comprising mixing a mixed powder of diamond and non-diamond carbon having a diameter of 0 μm or more and 200 μm or less, holding the mixture under the pressure and temperature conditions in the thermodynamically stable region of diamond, and sintering. Manufacturing method.
【請求項4】 焼結助剤として鉄族金属の酸化物または
複酸化物を用い、この粉末の成形体と、平均粒径20μ
m以上200μm以下のダイヤモンド粉末の成形体また
は、平均粒径20μm以上200μm以下のダイヤモン
ドと非ダイヤモンド炭素の混合粉末の成形体とを積層
し、これをダイヤモンドの熱力学的安定領域の圧力、温
度条件で保持し、焼結することを特徴とする、掘削ビッ
ト用焼結体の製造方法。
4. An oxide or a double oxide of an iron group metal is used as a sintering aid.
A molded body of diamond powder having a diameter of not less than m and not more than 200 μm or a molded article of a mixed powder of diamond and non-diamond carbon having an average particle diameter of not less than 20 μm and not more than 200 μm is laminated, and this is subjected to pressure and temperature conditions in the thermodynamically stable region of diamond. A method for producing a sintered body for a drill bit, wherein the method comprises holding and sintering.
【請求項5】 平均粒径20μm以上200μm以下の
ダイヤモンド粉末の表面に鉄族金属の酸化物または複酸
化物を形成し、これをダイヤモンドの熱力学的安定領域
の圧力、温度条件で保持し、焼結することを特徴とす
る、掘削ビット用焼結体の製造方法。
5. An oxide or double oxide of an iron group metal is formed on the surface of diamond powder having an average particle diameter of not less than 20 μm and not more than 200 μm, and this is maintained under pressure and temperature conditions in a thermodynamically stable region of diamond. A method for producing a sintered body for a drill bit, comprising sintering.
JP9188358A 1997-07-14 1997-07-14 Sintered compact for drilling bit and its production Pending JPH1135374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9188358A JPH1135374A (en) 1997-07-14 1997-07-14 Sintered compact for drilling bit and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9188358A JPH1135374A (en) 1997-07-14 1997-07-14 Sintered compact for drilling bit and its production

Publications (1)

Publication Number Publication Date
JPH1135374A true JPH1135374A (en) 1999-02-09

Family

ID=16222234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9188358A Pending JPH1135374A (en) 1997-07-14 1997-07-14 Sintered compact for drilling bit and its production

Country Status (1)

Country Link
JP (1) JPH1135374A (en)

Similar Documents

Publication Publication Date Title
JP5966218B2 (en) Carbide structures, tool elements, and methods of making them
WO2010128492A1 (en) Ultra-hard diamond composites
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPH09142932A (en) Diamond sintered compact and its production
JPH09142933A (en) Diamond sintered compact and its production
JPH1135374A (en) Sintered compact for drilling bit and its production
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JPS63236763A (en) Boron carbide sintered body and manufacture
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPH01116048A (en) High hardness sintered diamond and its manufacture
JPH1135375A (en) Sintered compact of drilling bit and its production
JPS62105911A (en) Hard diamond mass and production thereof
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JP3642082B2 (en) Diamond sintered body and manufacturing method thereof
JPS59563B2 (en) Manufacturing method of diamond sintered body
JPH10182231A (en) High strength sintered compact and its production
JPH0952766A (en) Diamond sintered compact and production thereof
JPH09324236A (en) Production of diamond sintered body and its production
JPH0967164A (en) Diamond sintered compact and its production
JP3978789B2 (en) Diamond sintered body and method for producing the same
JPH10182230A (en) High strength sintered compact and its production
JPH08310865A (en) Diamond sintered compact and its production
JPS61111965A (en) Polycrystal diamond for tool and manufacture
JPH0432034B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331