JPH0432034B2 - - Google Patents

Info

Publication number
JPH0432034B2
JPH0432034B2 JP62115392A JP11539287A JPH0432034B2 JP H0432034 B2 JPH0432034 B2 JP H0432034B2 JP 62115392 A JP62115392 A JP 62115392A JP 11539287 A JP11539287 A JP 11539287A JP H0432034 B2 JPH0432034 B2 JP H0432034B2
Authority
JP
Japan
Prior art keywords
boride
metal
sintered body
double
hfb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62115392A
Other languages
Japanese (ja)
Other versions
JPS63282166A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62115392A priority Critical patent/JPS63282166A/en
Priority to DE19883815648 priority patent/DE3815648A1/en
Publication of JPS63282166A publication Critical patent/JPS63282166A/en
Publication of JPH0432034B2 publication Critical patent/JPH0432034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、切削工具材料、特に木工用切削工具
及び耐摩材料として好適な高密度を有する新規金
属ホウ化物基セラミツクス焼結体に関するもので
ある。 <従来の技術> これまで、切削工具材料としては、主としてタ
ングステンカーバイドが用いられてきたが、最近
資源的に原料不足の傾向があるため、これに代わ
るべき材料として金属ホウ化物、例えば二ホウ化
チタン焼結体が注目を浴びる様になつてきた。 ところで、この金属ホウ化物焼結体は、耐熱
性、耐酸化性、高温における強度及び硬度が優
れ、資源的にも入手しやすいものであるが、焼結
性に難点がある上に切削工具とするには抗折強度
が低いという欠点がある。 本発明者等は、このような金属ホウ化物焼結体
の焼結性及び抗折強度を向上させるために先に
種々の結合剤を配合することを提案し(特公昭56
−41690号公報、特公昭56−45984号公報、特開昭
54−72779号公報、特開昭56−23246号公報、特開
昭56−32379号公報)それぞれある程度の効果を
得たが、更に耐熱性、硬度、抗折強度を高めるた
めに研究を続け、Ti、Cr、V、Ta、Nb、Mn、
Mo、Hf、Al、Zrなどの金属の一ホウ化物、二
ホウ化物の中から選ばれた少なくとも1種と結合
剤用金属化合物の少なくとも1種とを基本成分と
し、これに金属炭化物及び金属窒化物の中から選
ばれた添加剤を配合し焼結したものが、更に優れ
た物性を示すことを見出した(特開昭57−42578
号公報)。このものは耐摩工具としては満足し得
る物性を示すが、木工切削工具用としては靭性が
不足し満足しうるものとはいえない。そこで炭窒
化チタンを添加したセラミツクスを開発した(特
開昭61−97169号公報)。しかし乍ら更に耐衝撃性
を向上させ、広範な材料の切削工具として利用を
広げる必要がある。 <発明が解決しようとする問題点> 本発明の目的は、切削工具や耐摩工具として広
範囲に使用できる耐衝撃性を有する金属ホウ化物
基セラミツクスを提供することである。 <問題点を解決する為の手段> 本発明者等は金属ホウ化物系セラミツクスに耐
衝撃性を付与するため、鋭意研究を重ねてきた結
果、耐衝撃性を向上させる為に靭性を高めるだけ
でなく、欠陥となる大粒や気孔を除去しなければ
ならないということを見出した。そこで微細粒化
したホウ化金属粉原料を作製し焼結体を得ようと
したが、微細化したホウ化金属粉は酸化しやす
く、かえつて気孔が多くなり耐衝撃性をそれほど
改善することはできなかつた。そこで酸素除去効
果のある添加剤を捜したのであるが、炭化物や炭
窒化物にその効果があること、さらに複炭化物や
複炭窒化物に著しい酸素除去効果があることが判
明し、耐衝撃性も酸素除去により改善できること
を確認し、本発明をなすに至つた。 即ち、本発明は(A)MB2、MB、M2B5型ホウ化
物(Mは金属を示す)の1種以上に(B)結合剤用金
属化合物としてホウ化コバルト、ホウ化ニツケ
ル、ホウ化鉄の少なくとも1種以上を混合したも
のを基本成分とし、これに(C)Ti、Zr、Hf、Wと
炭素から成る複炭化物、及び窒素をさらに含んだ
TiCNを除く炭窒化物や複炭窒化物を全量に対し
0.1重量%から10重量%添加した混合物の焼結体
からなる高密度ホウ化金属系セラミツクス焼結体
に係るものである。 本発明の主成分である(A)成分は、TiB2、ZrB2
CrB2、VB2、TaB2、NbB2、MnB2、MoB2
HfB2、YB2、AlB2、MgB2、ZrB2などの金属二
ホウ化物、CrB、VB、ZrB、TaB、NbB、
MoB、HfB、YB、AlB、MgB等の金属一ホウ
化物、W2B5、Mo2B5などの金属五二ホウ化物の
中から選ばれた金属ホウ化物である。これらは単
独で用いてもよいし、また2種以上組み合わせて
用いてもよい。 次に(B)成分として用いられる結合剤用金属化合
物は、これまでの金属ホウ化物基焼結体の結合剤
として通常使用されているものであつて、例えば
CoB、Co2B、Co3Bのようなホウ化コバルト、
NiB、Ni2B、Ni3B、Ni4B3のようなホウ化ニツ
ケル、FeB、Fe2Bのようなホウ化鉄などがある これらは単独で用いてもよいし、また2種以上
組み合わせて用いてもよい。 この結合剤用金属化合物の添加量は、原料組成
物全量に基づき0.1〜10重量%の範囲で選ばれる。
この量が0.1重量%未満の場合には十分緻密化し
ないし、また10重量%を越えると焼結時にセラミ
ツクス表面に発汗してしまい、これ以上添加して
も意味がない。 本発明においては、前記した(A)成分と(B)成分と
から成る基本成分に複炭化物、炭窒化物及び複炭
化物の一種以上を添加することが必要である。 この複炭化物としては、Ti、Zr、Hf、WとC
とから成る複炭化物であり2種の金属の原子比は
1:9から9:1の範囲である。 また複炭化物としては、Ti、Zr、HfとCとN
とからなる複炭窒化物であり、2種の金属の原子
比は1:9〜9:1の範囲であるし、炭素と窒素
の原子比C/Nが1/9〜9のものが用いられ
る。この原子比C/Nが1/9以下のものを用い
ると複窒化物と同じになる。また9以上になると
複炭化物となり、添加効果は複炭化物と同じにな
る。更に金属原子比M1/M2の2種金属において
も1/9〜9の範囲の原子比のものがよい。 また炭窒化物としてはZr、Hfの炭窒化物であ
り、炭素と窒素の原子比C/Nは1/9〜9の範
囲がよい。これ以外の範囲になると、炭化物や窒
化物の添加と同様の効果しかない。 本発明のセラミツクスは前記した各成分を平均
粒径4μm以下、好ましくは2μm以下に分級した
原料を用いる方が好ましい。また製造法はこれら
の原料粉の混合物をこれまで知られているホツト
プレス法、普通焼結法、熱間静水圧焼結法によつ
て製造することができる。 例えば原料粉末混合物を型に充填して0.5〜
10ton/cm2程度のプレス圧により冷間圧縮し、次
いでラバープレスによりさらに0.5〜10ton/cm2
度の静水圧で成形する。もちろんどちらか一方で
成形してもよいし、また泥漿法により成形しても
よい。次にこのようにして得られた圧粉体を真空
中又はアルゴン、水素、二酸化炭素ガスなど中性
若しくは還元性雰囲気中において、1300〜2000
℃、好ましくは1400〜1700℃の温度で30〜300分
間焼結する。更に必要であれば熱間静水圧焼成法
により、アルゴンガスなどによる2ton/cm2以下程
度の圧力のもとで1200〜1700℃で5〜300分間焼
結する。この際圧粉体を金属缶中に入れることに
より普通焼結工程を省略することもできる。 又原料粉末混合物を例えば黒鉛型等の型に充填
した後、真空中又はアルゴン、水素、二酸化炭素
ガスなどの中性若しくは還元性雰囲気中に於い
て、ダイ圧力50〜300Kg/cm2、温度1300〜2000℃、
好ましくは1400〜1700℃の条件で10〜200分間加
熱焼結する、所謂ホツトプレス法を用いて焼結す
ることもできる。 このようにして各種切削工具としては好適な金
属ホウ化物基セラミツクス焼結体が得られる。 <実施例> 微細に粉砕したTiB2、TaB2、CoB、
(Ta8Hf2)C粉末を分級器により粒径4μm以下に
分級し、原料粉とした。このような原料を91%
TiB2−6%TaB2−1%CoB−2%(Ti8Hf2)C
の組成比で混合した。但し比率は重量比である。
このような原料粉を黒鉛ダイスに充填し、ホツト
プレス圧200Kg/cm2のもとで真空中1500℃で60分
間加熱焼結した。得られた焼結体の空隙率は
0.06vol%、靭性値4MPam1/2、硬度2400Hvであ
つた。本例を第1表のNo.4に示す。 又別の組成についても、同様の実験を行つた。
その結果を第1表に示す。但し1*、9*、10*
は比較例として示した。
<Industrial Application Field> The present invention relates to a novel metal boride-based ceramic sintered body having a high density and suitable as a cutting tool material, particularly a cutting tool for woodworking and a wear-resistant material. <Prior art> Until now, tungsten carbide has been mainly used as a material for cutting tools, but as there has been a recent tendency for raw materials to be in short supply, metal borides, such as diboride, have been used as an alternative material. Titanium sintered bodies are beginning to attract attention. Incidentally, this metal boride sintered body has excellent heat resistance, oxidation resistance, strength and hardness at high temperatures, and is easily available in terms of resources. However, it has the disadvantage of low flexural strength. In order to improve the sinterability and bending strength of such a metal boride sintered body, the present inventors proposed that various binders be added to the metal boride sintered body (Japanese Patent Publication No. 56
-41690 Publication, Japanese Patent Publication No. 56-45984, Japanese Patent Publication No. Sho
54-72779, JP 56-23246, JP 56-32379) Each achieved some degree of effectiveness, but research continued to further improve heat resistance, hardness, and bending strength. Ti, Cr, V, Ta, Nb, Mn,
The basic components are at least one selected from monoborides and diborides of metals such as Mo, Hf, Al, and Zr, and at least one metal compound for a binder, and metal carbides and metal nitrides are used as basic components. It was discovered that sintered products containing additives selected from among materials exhibited even better physical properties (Japanese Patent Laid-Open No. 57-42578).
Publication No.). Although this material exhibits satisfactory physical properties as a wear-resistant tool, it lacks toughness and cannot be said to be satisfactory as a woodworking cutting tool. Therefore, we developed ceramics to which titanium carbonitride was added (Japanese Patent Application Laid-Open No. 61-97169). However, it is necessary to further improve impact resistance and expand its use as a cutting tool for a wide range of materials. <Problems to be Solved by the Invention> An object of the present invention is to provide metal boride-based ceramics having impact resistance that can be widely used as cutting tools and wear-resistant tools. <Means for solving the problem> The present inventors have conducted extensive research in order to impart impact resistance to metal boride ceramics, and have found that in order to improve impact resistance, it is possible to improve impact resistance by simply increasing toughness. It was discovered that large grains and pores that cause defects must be removed. Therefore, an attempt was made to obtain a sintered body by producing a fine-grained metal boride powder raw material, but the fine-grained metal boride powder is easily oxidized and has more pores, making it difficult to improve impact resistance that much. I couldn't do it. Therefore, we searched for an additive that had an oxygen removal effect, and found that carbides and carbonitrides had this effect, and that double carbides and double carbonitrides had a remarkable oxygen removal effect, and they improved their impact resistance. It was confirmed that this can also be improved by removing oxygen, leading to the present invention. That is, the present invention includes (A) one or more of MB 2 , MB, M 2 B type 5 borides (M represents a metal) and (B) cobalt boride, nickel boride, or boron as a metal compound for the binder. The basic component is a mixture of at least one kind of iron oxides, and further contains (C)Ti, Zr, Hf, double carbide consisting of W and carbon, and nitrogen.
Carbonitrides and double carbonitrides other than TiCN relative to the total amount
This relates to a high-density metal boride ceramic sintered body made of a sintered body of a mixture to which 0.1% to 10% by weight has been added. Component (A), which is the main component of the present invention, includes TiB 2 , ZrB 2 ,
CrB2 , VB2 , TaB2 , NbB2 , MnB2 , MoB2 ,
Metal diborides such as HfB 2 , YB 2 , AlB 2 , MgB 2 , ZrB 2 , CrB, VB, ZrB, TaB, NbB,
It is a metal boride selected from metal monoborides such as MoB, HfB, YB, AlB, and MgB, and metal pentaborides such as W 2 B 5 and Mo 2 B 5 . These may be used alone or in combination of two or more. Next, the metal compound for the binder used as component (B) is one that has been commonly used as a binder for conventional metal boride-based sintered bodies, such as
Cobalt boride, like CoB, Co2B , Co3B
These include nickel borides such as NiB, Ni 2 B, Ni 3 B, and Ni 4 B 3 , and iron borides such as FeB and Fe 2 B. These may be used alone or in combination of two or more. It may also be used. The amount of the metal compound for binder added is selected in the range of 0.1 to 10% by weight based on the total amount of the raw material composition.
If this amount is less than 0.1% by weight, it will not be sufficiently densified, and if it exceeds 10% by weight, the ceramic surface will sweat during sintering, so there is no point in adding any more. In the present invention, it is necessary to add one or more types of double carbides, carbonitrides, and double carbides to the basic component consisting of the components (A) and (B) described above. These double carbides include Ti, Zr, Hf, W and C.
It is a double carbide consisting of and the atomic ratio of the two metals is in the range of 1:9 to 9:1. Also, as double carbides, Ti, Zr, Hf, C and N
The atomic ratio of the two metals is in the range of 1:9 to 9:1, and the carbon to nitrogen atomic ratio C/N is 1/9 to 9. It will be done. If a material with an atomic ratio C/N of 1/9 or less is used, it will be the same as a double nitride. Moreover, when it is 9 or more, it becomes a double carbide, and the effect of addition is the same as that of a double carbide. Furthermore, the two metals having the metal atomic ratio M 1 /M 2 preferably have an atomic ratio in the range of 1/9 to 9. Further, the carbonitride is a carbonitride of Zr or Hf, and the atomic ratio C/N of carbon to nitrogen is preferably in the range of 1/9 to 9. Outside this range, the effect is similar to that of adding carbides or nitrides. For the ceramics of the present invention, it is preferable to use raw materials obtained by classifying each of the above-mentioned components into average particle sizes of 4 μm or less, preferably 2 μm or less. Further, as for the production method, the mixture of these raw material powders can be produced by the hitherto known hot pressing method, ordinary sintering method, or hot isostatic pressure sintering method. For example, fill a mold with a raw powder mixture and
It is cold compressed using a press pressure of about 10 ton/cm 2 , and then further molded using a rubber press using a hydrostatic pressure of about 0.5 to 10 ton/cm 2 . Of course, it may be molded using either one, or may be molded by a slurry method. Next, the green compact obtained in this way is heated to 1300 to 2000 in a vacuum or in a neutral or reducing atmosphere such as argon, hydrogen, or carbon dioxide gas.
Sinter at a temperature of 1400-1700°C for 30-300 minutes. Further, if necessary, sintering is performed by hot isostatic sintering at 1200 to 1700° C. for 5 to 300 minutes under a pressure of about 2 tons/cm 2 or less using argon gas or the like. At this time, the normal sintering step can be omitted by placing the green compact in a metal can. After filling the raw material powder mixture into a mold such as a graphite mold, it is heated at a die pressure of 50 to 300 Kg/cm 2 and a temperature of 1300 in a vacuum or in a neutral or reducing atmosphere such as argon, hydrogen, or carbon dioxide gas. ~2000℃,
Sintering can also be carried out using a so-called hot press method, in which the material is heated and sintered preferably at a temperature of 1400 to 1700°C for 10 to 200 minutes. In this way, a metal boride-based ceramic sintered body suitable for various cutting tools can be obtained. <Example> Finely ground TiB 2 , TaB 2 , CoB,
(Ta 8 Hf 2 )C powder was classified to a particle size of 4 μm or less using a classifier to obtain a raw material powder. 91% of such raw materials
TiB 2 -6% TaB 2 -1% CoB - 2% (Ti 8 Hf 2 )C
They were mixed at a composition ratio of However, the ratio is a weight ratio.
Such raw material powder was filled into a graphite die, and heated and sintered at 1500° C. for 60 minutes in a vacuum under a hot press pressure of 200 kg/cm 2 . The porosity of the obtained sintered body is
It had a toughness of 4 MPam 1/2 and a hardness of 2400 Hv. This example is shown in No. 4 of Table 1. Similar experiments were also conducted with other compositions.
The results are shown in Table 1. However, 1*, 9*, 10*
is shown as a comparative example.

【表】【table】

【表】 * 比較例
<発明の効果> 本発明によると微細粉体を原料とした気孔のな
いホウ化金属系セラミツクス焼結体が得られ、耐
衝撃性が優れた切削工具や耐摩部材として用いる
ことができる。
[Table] * Comparative Example <Effects of the Invention> According to the present invention, a porosity-free metal boride ceramic sintered body made from fine powder can be obtained, which can be used as cutting tools and wear-resistant members with excellent impact resistance. be able to.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)TiB2、ZrB2、CrB2、HfB2、VB2
TaB2、NbB2、MnB2、MoB2、YB2、AlB2
MgB2、CrB、VB、TaB、NbB、MoB、HfB、
YB、ZrB、HfB、TiB、MnB、W2B5及び
Mo2B5の中から選ばれた少なくとも1種と、(B)
結合剤用金属化合物のホウ化コバルト、ホウ化ニ
ツケル、ホウ化鉄の少なくとも1種とを基本成分
とし、これに(C)Ti、Zr、Hf、WとCとから成る
複炭化物、あるいはTi、Zr、HfとC及びNとか
ら成るTiCNを除く炭窒化物あるいは複炭窒化物
の1種以上を全量当り0.1重量%〜10重量%添加
した混合物の焼結体から成る高密度金属ホウ化物
基セラミツクス焼結体。
1 (A) TiB 2 , ZrB 2 , CrB 2 , HfB 2 , VB 2 ,
TaB 2 , NbB 2 , MnB 2 , MoB 2 , YB 2 , AlB 2 ,
MgB2 , CrB, VB, TaB, NbB, MoB, HfB,
YB, ZrB, HfB, TiB, MnB, W 2 B 5 and
At least one species selected from Mo 2 B 5 , and (B)
The basic component is at least one of cobalt boride, nickel boride, and iron boride as a metal compound for a binder, and (C) Ti, Zr, Hf, a double carbide consisting of W and C, or Ti, A high-density metal boride base consisting of a sintered body of a mixture to which one or more carbonitrides or double carbonitrides other than TiCN consisting of Zr, Hf, C, and N are added in an amount of 0.1% to 10% by weight based on the total amount. Ceramics sintered body.
JP62115392A 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body Granted JPS63282166A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62115392A JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body
DE19883815648 DE3815648A1 (en) 1987-05-11 1988-05-07 High-density ceramic sintered body based on metal boride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115392A JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body

Publications (2)

Publication Number Publication Date
JPS63282166A JPS63282166A (en) 1988-11-18
JPH0432034B2 true JPH0432034B2 (en) 1992-05-28

Family

ID=14661416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115392A Granted JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body

Country Status (2)

Country Link
JP (1) JPS63282166A (en)
DE (1) DE3815648A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
FR2979341B1 (en) 2011-08-31 2020-01-31 Arianegroup Sas ULTRA-REFRACTORY MATERIAL STABLE IN A HUMID ENVIRONMENT AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128560A (en) * 1979-03-27 1980-10-04 Agency Of Ind Science & Technol Boride based ultrahard heat resistant material
US4292081A (en) * 1979-06-07 1981-09-29 Director-General Of The Agency Of Industrial Science And Technology Boride-based refractory bodies
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
JPS5843352B2 (en) * 1979-08-23 1983-09-26 工業技術院長 Boride-based high-strength hard heat-resistant material
JPS5822067B2 (en) * 1979-09-22 1983-05-06 工業技術院長 Method for thermal decomposition of polyolefin plastics
JPS5837274B2 (en) * 1980-08-26 1983-08-15 工業技術院長 High strength composite sintered material
JPS6197169A (en) * 1984-10-19 1986-05-15 工業技術院長 Tenacious metal boride base superhard heat resistant material

Also Published As

Publication number Publication date
DE3815648A1 (en) 1988-12-22
JPS63282166A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
JPH07242466A (en) Production of polycrystalline cubic boron nitride
JPH06128680A (en) Sintered metal material mixture based on boride, nitride and iron binder metal
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
EP0480636B1 (en) High hardness, wear resistant materials
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH0583514B2 (en)
US5036028A (en) High density metal boride-based ceramic sintered body
JPH0432034B2 (en)
US4808557A (en) Sintered titanium carbo-nitride ceramics
JPH0411506B2 (en)
JPS62187173A (en) Bite chip for machining iron material
JPH0122233B2 (en)
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JPH0350808B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS63282234A (en) High-density metallic boride-base ceramics using iron group metal
JPH07172924A (en) Highly tough sintered compact for tool and its production
EP0689525B1 (en) Complex multi-phase reaction sintered hard and wear resistant materials
JPS6332750B2 (en)
JPH0331668B2 (en)
JPS61151065A (en) Titanium carbonitride ceramic material
JPS6119593B2 (en)
JPS644987B2 (en)
JPS6126566A (en) Method of sintering sic composite body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term