JPS6126566A - Method of sintering sic composite body - Google Patents

Method of sintering sic composite body

Info

Publication number
JPS6126566A
JPS6126566A JP59148329A JP14832984A JPS6126566A JP S6126566 A JPS6126566 A JP S6126566A JP 59148329 A JP59148329 A JP 59148329A JP 14832984 A JP14832984 A JP 14832984A JP S6126566 A JPS6126566 A JP S6126566A
Authority
JP
Japan
Prior art keywords
sintering
sic
elements
present
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59148329A
Other languages
Japanese (ja)
Inventor
可児 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP59148329A priority Critical patent/JPS6126566A/en
Publication of JPS6126566A publication Critical patent/JPS6126566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はSiC質複合体の製造方法1.特には成形後無
加圧で焼結するいわゆる通常焼結であっても、緻密かつ
高強度のSiC質複合体を得ることのできる製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a SiC composite; 1. In particular, the present invention relates to a manufacturing method that allows a dense and high-strength SiC composite to be obtained even with so-called normal sintering, in which sintering is performed without pressure after molding.

従来の技術 SiCは在米上り硬度が高く、耐摩耗性にすぐれ、熱膨
張率が小さく、また分解温度が高く、耐酸化性が大きく
化学的に安定で、かつ一般にかなりの電気伝導性を有す
る有用なセラミックス材料として知られている。このS
iCの高密度焼結体は上記の性質に加え、強度が高温ま
で大きく、耐熱wi撃性にすぐれ、高温構造材料として
有望とされ、ガスタービン用をはじめとして種々の用途
にその応用が試みられている。SiCは共有結合性の強
い化合物であるため、単独では焼結が困難であり、高密
度の焼結体を得るためには何らかの焼結助剤の添加が必
要である。そしてホットプレス法の場合には焼結助剤と
してB、84C,AcあるいはAINなどが知られてい
る。また常圧焼結法の場合にはB、B4C,At、At
N  に加えて炭素を添加することが知られている。
Conventional technology SiC has high hardness, excellent wear resistance, low coefficient of thermal expansion, high decomposition temperature, high oxidation resistance, chemical stability, and generally has considerable electrical conductivity. Known as a useful ceramic material. This S
In addition to the above-mentioned properties, iC's high-density sintered body has high strength up to high temperatures and excellent heat shock resistance, making it promising as a high-temperature structural material, and its application has been attempted in a variety of applications including gas turbines. ing. Since SiC is a compound with strong covalent bonding properties, it is difficult to sinter it alone, and in order to obtain a high-density sintered body, it is necessary to add some kind of sintering aid. In the case of the hot press method, B, 84C, Ac or AIN are known as sintering aids. In addition, in the case of pressureless sintering method, B, B4C, At, At
It is known to add carbon in addition to N.

発明が解決しようとする問題点 しかし前記常圧焼結助剤を用いる方法では、助剤の添加
量が限られた範囲であると共に、助剤化合物も限られて
いるので、得られるSiC複合体の物性も限られたもの
にすぎない。
Problems to be Solved by the Invention However, in the method using the pressureless sintering aid, the amount of the aid added is within a limited range, and the amount of the aid compound is also limited. The physical properties of are also limited.

また、前記ホットプレス法の場合は、−軸加圧しながら
焼結を進行させるものであるため単純形状品しか得られ
ず、複雑な形状のものを製作するには不適当である。一
方前記常圧焼結法の場合は、炭素を添加するためSiC
との混合に簡便な水素を使用することができず、一般的
に添加物の分散が良くないという欠点がある。また、成
形後の脱脂工程におい′Cも助剤に活性なものが多く空
気雰囲気を使用できない等の困難を有している。
Further, in the case of the hot press method, since sintering is progressed while applying negative axis pressure, only products with simple shapes can be obtained, and it is not suitable for manufacturing products with complex shapes. On the other hand, in the case of the pressureless sintering method, SiC
There is a drawback that hydrogen cannot be used easily for mixing with the additives, and the dispersion of additives is generally poor. In addition, in the degreasing process after molding, there are many active auxiliary agents such as 'C', making it difficult to use an air atmosphere.

問題点を解決するための手段 そこで本発明はホットプレス法によらない通常焼成の方
法によってでも従来と同等以上の特性を持ったSiC複
合体を焼結することを目的に実験を重ねた結果、本発明
に至ったもので本発明は、焼結助剤としてAm元素含有
物を金属N重量換算で0.01−20%と、添加物とし
てBe5B、 AI。
Means for Solving the Problems The present invention was developed as a result of repeated experiments with the aim of sintering a SiC composite with properties equal to or better than conventional ones even by a normal sintering method without using the hot press method. The invention has led to the present invention, and the present invention uses a substance containing Am element as a sintering aid in an amount of 0.01-20% in terms of metal N weight, and Be5B and AI as additives.

IVa族元素、■a族元素あるいは■a族元索の内少な
くとも1種以上の含有物を重量換算で0.1%以−Lを
配合し、残部が実質的にSiCからなる混合物を成形後
非酸化性雰囲気中で焼結してSiC複合体を得ることを
要旨とするものである。
After molding a mixture in which 0.1% or more of L containing at least one of group IVa elements, group a elements, or group a elements is blended, and the remainder is substantially SiC. The gist of this method is to obtain a SiC composite by sintering in a non-oxidizing atmosphere.

本発明の原料、製造方法などについて以下具体的に説明
する。
The raw materials, manufacturing method, etc. of the present invention will be specifically explained below.

まずSiC原料としてはα形、β形いずれの結晶形のも
のでも同様に使用できる。純度は98%以上のものが好
ましいが、90〜98%のものも有効に使用できる。粒
度は極微粒の場合、平均粒径よりも比表面積で表わすこ
とが適当であり、本発明の目的を有利に達成するには比
表面積5 m27g以上好ましくは 10+L12/g
以上のものを使用することが良い。
First, as the SiC raw material, either the α-form or the β-form can be used. A purity of 98% or more is preferred, but purity of 90 to 98% can also be used effectively. In the case of extremely fine particles, it is more appropriate to express the particle size by the specific surface area rather than the average particle diameter.In order to advantageously achieve the object of the present invention, the specific surface area should be 5 m27g or more, preferably 10+L12/g.
It is better to use more than one.

つぎに焼結助剤としてのA9元素含有物および添加物と
しての各種元素含有物は、金属であってもよいし、他元
素との化合物であっても構わないが、粉砕、混合、成形
、脱脂等の工程で安定なものが好ましく、酸化物、炭化
物、窒化物、珪化物、硼化物あるいはそれらの複化合物
であることが好適である。該化合物は配合時にその形態
である必要はなく、例えば脱脂あるいは焼結の昇温過程
等途中の工程で転化するものでも良い。該焼結助剤およ
び添加元素の各種アルコレートや水酸化物はその好適な
例であって、例えば空気中であれば酸化物を形成し、窒
素雰囲気中であれば窒化物を形成し、炭素共有状態であ
れば炭化物が形成される等の転化が起る。該添加7c素
の形状は、成形体中で分散状態の良いことが必要である
ため、液体かもしくは固体の場合通常5+n2/Fi以
−1ユの比表面積を有するものを使用するのが好ましい
Next, the A9 element-containing substance as a sintering aid and the various element-containing substances as additives may be metals or compounds with other elements, but they can be crushed, mixed, molded, Those that are stable during processes such as degreasing are preferred, and oxides, carbides, nitrides, silicides, borides, or complex compounds thereof are preferred. The compound does not need to be in that form at the time of blending, and may be converted during an intermediate step such as degreasing or heating during sintering. The sintering aids and various alcoholates and hydroxides of additive elements are suitable examples.For example, they form oxides in air, form nitrides in nitrogen atmosphere, and form carbon oxides. If they are in a shared state, conversion such as the formation of carbides will occur. Since the shape of the added 7c element must be well-dispersed in the molded body, it is preferable to use one having a specific surface area of 5+n2/Fi or less if it is liquid or solid.

焼結助剤のA9含有物量は金属重量換算で0.01〜2
0%である。0,01%以下ではmi化が充分でなく、
また20%以上では焼結体が多孔化し易く、またSiC
本末の特性である高温強度が大きいという性質を劣化さ
せ好ましくない。
The amount of A9 contained in the sintering aid is 0.01 to 2 in terms of metal weight.
It is 0%. If it is less than 0.01%, mi conversion is not sufficient,
Moreover, if it exceeds 20%, the sintered body tends to become porous, and SiC
This is undesirable because it deteriorates the property of high temperature strength, which is a characteristic of the powder.

添加物の添加量の下限は添加元素の金属重量%で0.1
%である。これ以下では焼結しても緻密化が充分進まな
いことが多く、また複合体として特性改善の効果がない
。添加量の上限は、焼結体の緻密度と共に添加物とSi
Cの複合体の好適な特性を実験的に定めることにより決
定されるものであって、実質的な制限は存在しないが、
SiCの物性を優先させる目的においては、およそ50
%とするのが常識的である。
The lower limit of the amount of additives added is 0.1% by metal weight of the added element.
%. Below this range, even if sintered, densification often does not proceed sufficiently, and there is no effect of improving the properties of the composite. The upper limit of the amount added depends on the density of the sintered body as well as the additive and Si.
Although there are no practical limitations, this is determined by experimentally determining the preferred properties of the complex of C.
For the purpose of prioritizing the physical properties of SiC, approximately 50
It is common sense to set it as %.

つぎに本発明における成形方法としては普通セラミック
スの成形に使用される方法がすべて使用できる。すなわ
ち、プレス成形、泥漿鋳込成形、射出成形、押出成形な
どが適当である。焼成は非酸化性雰囲気中1900〜2
300°Cで行うことが必要である。非酸化性雰囲気と
しては窒素、アルゴン、ヘリツム、水素などが使用でき
るが中でもアルゴン、ヘリウムが便利で好ましい。温度
はより好ましくは1950〜2200°Cである。i黒
度が1900℃より低いと緻密化が充分進まず、高密度
焼結体が得られず、“2300℃より高いと成形体が分
解し過ぎ多孔化し好ましくないがらである。なお、時間
は通常0.1〜24時間必要でより好ましくは0.5〜
1()時間である。これは時間が短か過ぎると緻密化せ
ず、また緻密化しても充分な強度が生ぜず、艮過ぎると
分解し過ぎ多孔化し好ましくないことが多いがらである
。雰囲気圧力は、無加圧あるいは減圧でも良く、またホ
ットアイソスタティックプレス法でも良い。もちろんホ
ットプレス法も可能である。
Next, as the molding method in the present invention, all methods commonly used for molding ceramics can be used. That is, press molding, slurry casting, injection molding, extrusion molding, etc. are suitable. Firing in a non-oxidizing atmosphere at 1900~2
It is necessary to carry out at 300°C. As the non-oxidizing atmosphere, nitrogen, argon, helium, hydrogen, etc. can be used, and among them, argon and helium are convenient and preferred. The temperature is more preferably 1950-2200°C. If the blackness is lower than 1900°C, densification will not proceed sufficiently and a high-density sintered body will not be obtained. Usually 0.1 to 24 hours are required, more preferably 0.5 to 24 hours.
1 () hours. This is because if the time is too short, the material will not be densified, and even if it is densified, sufficient strength will not be produced, and if the time is too short, it will decompose too much and become porous, which is often undesirable. The atmospheric pressure may be no pressure or reduced pressure, or a hot isostatic press method may be used. Of course, a hot press method is also possible.

作用 ここで本発明の焼結過程について説明すると次の通りで
ある。SiC自体の焼結に本質的な助剤の役割を示すの
は、Al元素と考えられる。A9元素含有物は焼結温度
においてAI蒸気を発生して、またはそのままSiCあ
るいはその表面酸化物と反応して液相が形成され、液相
の存在下でSiC粒子の好ましい粒成長が起こると同時
に液相な主体とした分角τ蒸発が起り成形体からの脱離
も進むと考えられる。この液相形成には、SiCから発
生するSi、SiO蒸気や焼結容器とじて通常使用され
る黒鉛からのC雰囲気も影響するかも知れないが、詳し
い機構は明続ではない。この好ましい液相の生成を阻害
しないか助長し、またこの液相のSiC表面への濡れ性
ひいてはSiC焼結性を阻害しないか助長する添加物で
あればSiC複合体の製造が可能であり、本発明の添加
物はその例である。但し、焼結助剤を含まず、添加物単
味の添加では、焼結がほとんど起らないことから本発明
の添加物の役割が一層よく理解される。なお、Al含有
物質の内焼結温度において液相形成に寄与しないか寄与
の少ない化合物の場合、これは添加物として考えられる
ものである。
Function The sintering process of the present invention will now be explained as follows. It is believed that Al element plays an essential role as an auxiliary agent in the sintering of SiC itself. The A9 element-containing material generates AI vapor at the sintering temperature or directly reacts with SiC or its surface oxide to form a liquid phase, and favorable grain growth of SiC particles occurs in the presence of the liquid phase. It is thought that evaporation of the liquid phase with an angle of τ occurs and that detachment from the molded body also progresses. The formation of this liquid phase may be influenced by Si and SiO vapor generated from SiC and the carbon atmosphere from graphite normally used in sintering containers, but the detailed mechanism is not clear. It is possible to produce a SiC composite as long as the additive does not inhibit or promote the formation of this preferred liquid phase, and also does not inhibit or promote the wettability of this liquid phase to the SiC surface, and furthermore, the SiC sinterability. The additive of the present invention is an example. However, if no sintering aid is included and only the additive is added, sintering hardly occurs, so that the role of the additive in the present invention can be better understood. Note that in the case of a compound that does not contribute or makes a small contribution to the formation of a liquid phase at the internal sintering temperature of the Al-containing material, it can be considered as an additive.

本発明以外の元素添加物の場合、成形体が緻密化しない
か、あるいは緻密化しても発泡し多孔化してしまうこと
から本発明添加物の効果は明らかである。
In the case of elemental additives other than those of the present invention, the effect of the additives of the present invention is obvious because the molded product either does not become densified, or even if it becomes densified, it foams and becomes porous.

発明の効果 このように本発明は、常圧焼結において従来の焼結添加
元素よりはるかに広範に元素の種類、形態および量が選
択できることがら得られるSiC質複合体の物性例えば
電気伝導度、熱膨張係数、熱伝導度等が広範囲に選択で
きる利点を有するものである。さらに、焼結添加元素に
炭素を使用していないので、SiCとの混合に水が使用
可能で、そのため添加物を充分に分散することが出来、
また脱脂工程においても、炭素が含まれないので、空気
中で脱脂することが出来る添加物を選択し得るものであ
る。また、焼結においては非酸化性ガスの圧力を高めた
いわゆるホットアイソスタティックプレス法も適用可能
である。
Effects of the Invention As described above, the present invention allows the type, form, and amount of elements to be selected from a much wider range than conventional sintering additive elements in pressureless sintering, and thereby improves the physical properties of the SiC composite, such as electrical conductivity, It has the advantage that the coefficient of thermal expansion, thermal conductivity, etc. can be selected from a wide range. Furthermore, since carbon is not used as an additive element for sintering, water can be used for mixing with SiC, which allows the additive to be sufficiently dispersed.
Furthermore, in the degreasing process, additives that do not contain carbon and can be degreased in air can be selected. Furthermore, in sintering, a so-called hot isostatic press method in which the pressure of non-oxidizing gas is increased can also be applied.

本発明で得られるSiCと添加物からなる複合焼結体は
SiCの特性の他に種々の特性を付与できる。例えばS
iC焼結体の電気抵抗は通常10°〜104Ω・cm程
度であるが、7%+a族、■a族、■a族元素の添加に
より、その電気抵抗を10−’Ω・0m以下とすること
が可能で、これは難加工性のSiC焼結体に、放電加工
を容易にするという利点をイ」与する。また、BeO、
BN、%N 、へ1203等の添加によれば、105以
上の電気抵抗の焼結体が可能で、これは電子回路等に応
用できる。その他の物性に関してもその値の幅が広がれ
ば適用範囲が広くなることは明白である。
The composite sintered body made of SiC and additives obtained in the present invention can be provided with various properties in addition to the properties of SiC. For example, S
The electrical resistance of the iC sintered body is usually about 10° to 104 Ω・cm, but by adding 7% + group a, ■a group, and ■a group elements, the electrical resistance is reduced to 10−′Ω・0m or less. This gives the SiC sintered body, which is difficult to machine, the advantage of facilitating electrical discharge machining. Also, BeO,
By adding BN, %N, 1203, etc., it is possible to produce a sintered body with an electrical resistance of 105 or more, which can be applied to electronic circuits and the like. It is clear that the wider the range of values for other physical properties, the wider the range of application.

以上のごとく本発明の利点は明らかであるが、つぎのよ
うな利点もあげることができる。すなわち、本発明で適
用可能な添加元素はがなり広範囲なものであるので、原
料SiCの製造時あるいは粉砕工程等で不可避的に混入
する不純物や、意識的に添加する元素を、本発明添加元
素に選べば、特に添加物を配合する工程を経ることなく
、焼結が可能で、これも本発明の適用範囲となる。また
、本発明添加元素以外の元素に関しても少量であれば焼
結に特には悪影響を与えることはなく、添加物として酸
化物、窒化物、珪化物等が使用できることは、原料Si
Cが多少酸化あるいは窒化されていても、また遊離珪素
を含んでいても、充分焼結可能であることを示す。
Although the advantages of the present invention are clear as described above, the following advantages can also be mentioned. In other words, since the additive elements that can be applied in the present invention are wide-ranging, the additive elements of the present invention include impurities that are unavoidably mixed in during the production of raw material SiC or the pulverization process, and elements that are intentionally added. If selected, sintering can be performed without going through the process of blending additives, and this is also within the scope of the present invention. In addition, elements other than the elements added in the present invention will not have a particularly bad effect on sintering if they are in small amounts, and the fact that oxides, nitrides, silicides, etc. can be used as additives means that the raw material Si
This shows that sufficient sintering is possible even if C is slightly oxidized or nitrided or contains free silicon.

実施例 このように本発明は工業的に極めて有利なものであり、
これはさらに以下に示す実施例により理解されるであろ
う。第1表に示した実施例1〜18はSiC粉末と純度
98%以上の焼結助剤および添加物を、液体状もしくは
固体の場合は3m27g以上の粉末として混合乾燥し、
15001c、8/cI02にて液圧成形し、10X5
X60+II+nの成形体とし、この成形体を蓋付きカ
ーボンルツボ中に収納し、該カーボンルツボをアルゴン
ガス通気中に置いて、tIc1表に示した焼成条件によ
り焼結して得たものである。それぞれの焼結体の密度、
曲げ強度、電気抵抗を第1表に示す。
Examples As described above, the present invention is industrially extremely advantageous.
This will be further understood by the examples given below. In Examples 1 to 18 shown in Table 1, SiC powder and sintering aids and additives with a purity of 98% or more were mixed and dried as a powder of 3 m27 g or more in the case of liquid or solid.
Hydroformed with 15001c, 8/cI02, 10X5
A molded body of X60+II+n was obtained by storing this molded body in a carbon crucible with a lid, placing the carbon crucible in an argon gas atmosphere, and sintering it under the firing conditions shown in Table tIc1. The density of each sintered body,
The bending strength and electrical resistance are shown in Table 1.

Claims (4)

【特許請求の範囲】[Claims] (1)焼結助剤としてAl元素含有物質を金属Al重量
換算で0.01〜20%と、添加物としてBe、B、A
l、IVa族元素、Va族元素、あるいはVIa族元素の内
少なくとも1種以上の含有物を重量換算で0.1%以上
を配合し、残部が実質的にSiCからなる混合物を形成
後非酸化性雰囲気で焼結することを特徴とするSiC質
複合体の焼結方法。
(1) 0.01 to 20% of Al element-containing material as a sintering aid in terms of metal Al weight, and Be, B, and A as additives.
After forming a mixture containing at least one of group IVa elements, group Va elements, or group VIa elements in an amount of 0.1% or more in terms of weight, the remainder being essentially SiC, the mixture is non-oxidized. 1. A method for sintering a SiC composite, the method comprising sintering in a neutral atmosphere.
(2)焼結を非加圧あるいは非酸化性ガス加圧で行なう
特許請求の範囲第1項記載の焼結方法。
(2) The sintering method according to claim 1, wherein the sintering is performed without pressure or with pressurization of non-oxidizing gas.
(3)焼結助剤あるいは添加物が、配合時に、あるいは
焼結に至る工程中に転化して、酸化物、炭化物、窒化物
、珪化物、硼化物あるいはそれらの複合化物であること
を特徴とする特許請求の範囲第1項又は第2項記載の焼
結方法。
(3) The sintering aid or additive is converted into an oxide, carbide, nitride, silicide, boride, or a composite thereof during blending or during the process leading to sintering. A sintering method according to claim 1 or 2.
(4)焼結温度を1900〜2300℃で行なう特許請
求の範囲第1項又は第2項記載の焼結方法。
(4) The sintering method according to claim 1 or 2, wherein the sintering temperature is 1900 to 2300°C.
JP59148329A 1984-07-17 1984-07-17 Method of sintering sic composite body Pending JPS6126566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59148329A JPS6126566A (en) 1984-07-17 1984-07-17 Method of sintering sic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59148329A JPS6126566A (en) 1984-07-17 1984-07-17 Method of sintering sic composite body

Publications (1)

Publication Number Publication Date
JPS6126566A true JPS6126566A (en) 1986-02-05

Family

ID=15450338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148329A Pending JPS6126566A (en) 1984-07-17 1984-07-17 Method of sintering sic composite body

Country Status (1)

Country Link
JP (1) JPS6126566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185860A (en) * 1987-01-29 1988-08-01 日本セメント株式会社 Manufacture of silicon carbide sintered body
JPH02271965A (en) * 1989-04-13 1990-11-06 Toshiba Ceramics Co Ltd Electrically conductive combined ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116668A (en) * 1979-02-28 1980-09-08 Asahi Glass Co Ltd Silicon carbide sintered body
JPS5895651A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Sliding member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116668A (en) * 1979-02-28 1980-09-08 Asahi Glass Co Ltd Silicon carbide sintered body
JPS5895651A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185860A (en) * 1987-01-29 1988-08-01 日本セメント株式会社 Manufacture of silicon carbide sintered body
JPH02271965A (en) * 1989-04-13 1990-11-06 Toshiba Ceramics Co Ltd Electrically conductive combined ceramics

Similar Documents

Publication Publication Date Title
US4351787A (en) Process for sintering reaction bonded silicon nitride
JPS6131358A (en) Silicon nitride sintered body for cutting tool and manufacture
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS6212663A (en) Method of sintering b4c base fine body
JPS6210954B2 (en)
US4810678A (en) Gas pressure sintering of silicon nitride with addition of rare earth oxides
JPS6126566A (en) Method of sintering sic composite body
US5302329A (en) Process for producing β-sialon based sintered bodies
JPS632913B2 (en)
JPS638069B2 (en)
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS6212664A (en) Method of sintering b4c base composite body
JPH0254297B2 (en)
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JP2541150B2 (en) Aluminum nitride sintered body
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JPH06279124A (en) Production of silicon nitride sintered compact
JPH01219062A (en) Production of silicon nitride sintered body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPS6126565A (en) Manufacture of sic sintered body
JP2536448B2 (en) Aluminum nitride sintered body
JPH0559073B2 (en)