JPS63282166A - High-density metal boride-base sintered ceramics body - Google Patents

High-density metal boride-base sintered ceramics body

Info

Publication number
JPS63282166A
JPS63282166A JP62115392A JP11539287A JPS63282166A JP S63282166 A JPS63282166 A JP S63282166A JP 62115392 A JP62115392 A JP 62115392A JP 11539287 A JP11539287 A JP 11539287A JP S63282166 A JPS63282166 A JP S63282166A
Authority
JP
Japan
Prior art keywords
boride
metal
double
carbonitride
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62115392A
Other languages
Japanese (ja)
Other versions
JPH0432034B2 (en
Inventor
Tadahiko Watanabe
忠彦 渡辺
Takeshi Michitsu
道津 毅
Kazuhisa Shobu
一久 菖蒲
Yukio Kai
甲斐 由紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62115392A priority Critical patent/JPS63282166A/en
Priority to DE19883815648 priority patent/DE3815648A1/en
Publication of JPS63282166A publication Critical patent/JPS63282166A/en
Publication of JPH0432034B2 publication Critical patent/JPH0432034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Abstract

PURPOSE:To form a sintered ceramics body which has excellent impact resistance and is useful for cutting tools by calcining a mixture prepd. by using >=1 kinds of borides of MB2 MB, M2B5 types (M is metal) and metal compd. for a binder as basic components, and adding a specific double carbide, carbonitride or double carbonitride. CONSTITUTION:This high-density metal boride-base sintered ceramics body has the following constitution: The sintered body of the mixture prepd. by using (A) at least one kinds selected from TiB2, ZrB2, CrB2, HfB2, VB2, TaB2, NbB2, MnB2, MoB2, YB2, AlB2, MgB2, CrB, VB, TaB, NbB, MoB, HfB, YB, ZrB, TiB, MnB, W2B5, and Mo2B5 and (B) at least one kinds among the cobalt boride, nickel boride and iron boride of the metal compd. for the binder as the basic components and adding >=1 kinds among the double carbide of Ti, Zr, Hf, W, and C or carbonitride or double carbonitride consisting of Ti, Zr, Hf, and C and N except TiCN at 0.1-10wt.% of the total weight to these components.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、切削工具材料、特に木工用切削工具及び耐摩
材料として好適な高密度を有する新規金属ホウ化物基セ
ラミックス焼結体に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a novel metal boride-based ceramic sintered body having a high density and suitable as a cutting tool material, particularly a cutting tool for woodworking and a wear-resistant material. .

〈従来の技術〉 これまで、切削工具材料としては、主としてタングステ
ンカーバイドが用いられてきたが、最近資源的に原料不
足の傾向があるため、これに代わるべき材料として金属
ホウ化物、例えばニホウ化チタン焼結体が注目を浴びる
様になってきた。
<Prior art> Until now, tungsten carbide has been mainly used as a cutting tool material, but due to the recent trend of raw material shortages, metal borides, such as titanium diboride, have been used as an alternative material. Sintered bodies have started to attract attention.

ところで、この金属ホウ化物焼結体は、耐熱性、耐酸化
性、高温における強度及び硬度が優れ、資源的にも入手
しやすいものであるが、焼結性に難点がある上に切削工
具とするには抗折強度が低いという欠点がある。
Incidentally, this metal boride sintered body has excellent heat resistance, oxidation resistance, strength and hardness at high temperatures, and is easily available in terms of resources. However, it has the disadvantage of low flexural strength.

本発明者等は、このような金属ホウ化物焼結体の焼結性
及び抗折強度を向上させるために先に種々の結合剤を配
合することを提案しく特公昭56−41690号公報、
特公昭56−45984号公報、特開昭54−7277
9号公報、特開昭56−23246号公報、特開昭56
−32379号公報)それぞれある程度の効果を得たが
、更に耐熱性、硬度、抗折強度を高めるために研究を続
け、Ti、 Cr、 V、 Ta、 Nb、 Mn、 
Mo、 Hf、人4゜Zrなどの金属の一ホウ化物、ニ
ホウ化物の中から選ばれた少なくとも1種と結合剤用金
属化合物の少なくとも1種とを基本成分とし、これに金
属炭化物及び金属窒化物の中から選ばれた添加剤を配合
し焼結したものが、更に優れた物性を示すことを見出し
た(特開昭57−′42578号公報)。このものは耐
摩工具としては満足し得る物性を示すが、木工切削工具
用としては靭性が不足し満足しうるものとくよいえない
。そこで炭窒化チタンを添加したセラミックスを開発し
た(特開昭61−97169号公報)。
In order to improve the sinterability and bending strength of such a metal boride sintered body, the present inventors proposed that various binders be added in advance, as disclosed in Japanese Patent Publication No. 56-41690,
Japanese Patent Publication No. 56-45984, Japanese Patent Publication No. 54-7277
No. 9, JP-A-56-23246, JP-A-56
-32379 Publication) Each achieved some degree of effectiveness, but research continued to further improve heat resistance, hardness, and bending strength.
The basic components are at least one selected from monoborides and diborides of metals such as Mo, Hf, and Zr, and at least one metal compound for a binder, and metal carbides and metal nitrides are added to the base ingredients. It has been found that a material prepared by blending selected additives and sintering exhibits even better physical properties (Japanese Patent Laid-Open No. 57-'42578). Although this material exhibits satisfactory physical properties as a wear-resistant tool, it lacks toughness and cannot be considered satisfactory as a woodworking cutting tool. Therefore, we developed ceramics to which titanium carbonitride was added (Japanese Patent Laid-Open No. 61-97169).

しかし乍ら更に耐衝撃性を向上させ、広範な材料の切削
工具として利用を広げる必要がある。
However, it is necessary to further improve impact resistance and expand its use as a cutting tool for a wide range of materials.

〈発明が解決しようとする問題点〉 本発明の目的は、切削工具や耐摩工具として広範囲に使
用できる耐衝撃性を有する金属ホウ化物基セラミックス
を提供することである。
<Problems to be Solved by the Invention> An object of the present invention is to provide a metal boride-based ceramic having impact resistance that can be widely used as cutting tools and wear-resistant tools.

〈問題点を解決する為の手段〉 本発明者等は金属ホウ化物系セラミックスに耐衝撃性を
付与するため、鋭意研究を重ねてきた結果、耐衝撃性を
向上させる為に靭性を高めるだけでなく、欠陥となる大
粒や気孔を除去しなければならないということを見出し
た。そこで微細粒化したホウ化金属粉原料を作製し焼結
体を得ようとしたが、微細化したホウ化金属粉は酸化し
ゃすく、かえって気孔が多くなり耐衝撃性をそれほど改
善することはできなかった。そこで酸素除去効果のある
添加剤を捜したのであるが、炭化物や炭窒化物にその効
果があること、さらに複炭化物や複炭窒化物に著しい酸
素除去効果があることが判明し、耐衝撃性も酸素除去に
より改善できることを確認し、本発明をなすに至った。
<Means for solving the problem> The present inventors have conducted extensive research in order to impart impact resistance to metal boride ceramics, and have found that in order to improve impact resistance, it is possible to improve impact resistance by simply increasing toughness. It was discovered that large grains and pores that cause defects must be removed. Therefore, an attempt was made to obtain a sintered body by producing a fine grained metal boride powder raw material, but the fine grained metal boride powder oxidizes easily and has more pores, making it impossible to improve impact resistance that much. There wasn't. Therefore, we searched for an additive that had an oxygen removal effect, and found that carbides and carbonitrides had this effect, and that double carbides and double carbonitrides had a remarkable oxygen removal effect, and they improved their impact resistance. It was confirmed that this can also be improved by removing oxygen, leading to the present invention.

即ち、本発明は(A) MB2 、 MB、 JBr型
ホウ化物(Mは金属を示す)の1種以上にCB)結合剤
用金属化合物としてホウ化コバルト、ホウ化−ッケル。
That is, the present invention includes (A) one or more of MB2, MB, and JBr type borides (M represents a metal) and CB) cobalt boride and nickel boride as a metal compound for the binder.

ホウ化鉄の少なくとも1種以上を混合したものを基本成
分とし、これに(C)Ti、 Zr、 Hf、 Wと炭
素から成る複炭化物、及び窒素をさらに含んだTiCN
を除く炭窒化物や複炭窒化物を全量に対し0.1重量%
から10重量%添加した混合物の焼結体からなる高密度
ホウ化金属系セラミックス焼結体に係るものである。
The basic component is a mixture of at least one type of iron boride, and TiCN further contains (C) a double carbide consisting of Ti, Zr, Hf, W and carbon, and nitrogen.
0.1% by weight of carbonitrides and double carbonitrides, excluding carbonitrides
This relates to a high-density metal boride ceramic sintered body made of a sintered body of a mixture containing 10% by weight of .

本発明の主成分である(A)成分は、TiB2 、 Z
rB2 。
The component (A) which is the main component of the present invention is TiB2, Z
rB2.

CrB2. VB2. TaB2. NbB2. Mn
Bz、 MoB2. HfBz、 YB2゜At’ B
2. MgB2. ZrB2などの金属ニホウ化物、C
rB。
CrB2. VB2. TaB2. NbB2. Mn
Bz, MoB2. HfBz, YB2゜At' B
2. MgB2. Metal diborides such as ZrB2, C
rB.

VB、 ZrB、 TaB、 NbB、 MoB、旧B
、 YB、 kl B、 MgB等の金属−ホウ化物、
W、B5 P Mo2B5などの金属五ニホウ化物の中
から選ばれた金属ホウ化物である。
VB, ZrB, TaB, NbB, MoB, old B
, YB, kl B, MgB and other metal-borides,
It is a metal boride selected from metal pentaborides such as W, B5 P Mo2B5.

これらは単独で用いてもよいし、また2種以上組み合わ
せて用いてもよい。
These may be used alone or in combination of two or more.

次に(B)成分として用いられる結合剤用金属化合物は
、これまでの金属ホウ化物基焼結体の結合剤として通常
使用されているものであって、例えばCOB、 C02
B、 GO3Bのようなホウ化コバルト、NiB。
Next, the metal compound for a binder used as component (B) is one that has been commonly used as a binder for conventional metal boride-based sintered bodies, such as COB, C02, etc.
B, Cobalt boride like GO3B, NiB.

Ni2B、 Ni3B 、 Ni4B3のようなホウ化
ニッケル、FeB、 Fe2Bのようなホウ化鉄などが
あるこれらは単独で用いてもよいし、また2種以上組み
合わせて用いてもよい。
These include nickel borides such as Ni2B, Ni3B, and Ni4B3, and iron borides such as FeB and Fe2B, and these may be used alone or in combination of two or more.

この結合剤用金属化合物の添加量は、原料組成物全量に
基づき0,1〜10重量%の範囲で選ばれる。
The amount of the metal compound for binder added is selected in the range of 0.1 to 10% by weight based on the total amount of the raw material composition.

この量が0.1重量%未満の場合には十分緻密化しない
し、また10重量%を越えると焼結時にセラミックス表
面に発汗してしまい、これ以上添加しても意味がない。
If this amount is less than 0.1% by weight, it will not be sufficiently densified, and if it exceeds 10% by weight, the ceramic surface will sweat during sintering, so there is no point in adding any more.

本発明においては、前記した(A)成分と(B)成分と
から成る基本成分に複炭化物、炭窒化物及び複炭化物の
一種以上を添加することが必要である。
In the present invention, it is necessary to add one or more types of double carbide, carbonitride, and double carbide to the basic component consisting of the components (A) and (B) described above.

この複炭化物としては、Ti、 Zr、 If、 Wと
Cとから成る複炭化物であり2種の金属の原子比は1:
9から9: 1の範囲である。
This double carbide is composed of Ti, Zr, If, W and C, and the atomic ratio of the two metals is 1:
It is in the range of 9 to 9:1.

また複炭化物としては、Ti、 Zr、 HfとCとN
とからなる複炭窒化物であり、2種の金属の原子比は1
: 9〜9: 1の範囲であるし、炭素と窒素の原子比
C/Nが1/9〜9のものが用いられる。この原子比C
/Nが179以下のものを用いると複窒化物と同じにな
る。また9以上になると複炭化物となり、添加効果は複
炭化物と同じになる。更に金属原子比M>/Mzの2種
金属においても179〜9の範囲の原子比のものがよい
In addition, as double carbides, Ti, Zr, Hf, C and N
It is a double carbonitride consisting of and the atomic ratio of the two metals is 1.
:9 to 9:1, and the atomic ratio C/N of carbon to nitrogen is 1/9 to 9. This atomic ratio C
When /N is 179 or less, it becomes the same as double nitride. Moreover, when it is 9 or more, it becomes a double carbide, and the effect of addition is the same as that of a double carbide. Furthermore, for the two types of metals with a metal atomic ratio M>/Mz, those having an atomic ratio in the range of 179 to 9 are preferable.

また炭窒化物としてはZr、 Hfの炭窒化物であり、
炭素と窒素の原子比C/Nは1/9〜9の範囲がよい。
In addition, carbonitrides include Zr and Hf carbonitrides,
The atomic ratio C/N of carbon and nitrogen is preferably in the range of 1/9 to 9.

これ以外の範囲になると、炭化物や窒化物の添加と同様
の効果しかない。
Outside this range, the effect is similar to that of adding carbides or nitrides.

本発明のセラミックスは前記した各成分を平均粒径4μ
m以下、好ましくは2μm以下に分級した原料を用いる
方が好ましい。また製造法はこれらの原料粉の混合物を
これまで知られているホットプレス法、普通焼結法、熱
間静水圧焼結法によって製造することができる。
The ceramics of the present invention contain the above-mentioned components with an average particle size of 4 μm.
It is preferable to use a raw material that has been classified into particles of 2 μm or less, preferably 2 μm or less. Further, as a production method, a mixture of these raw material powders can be produced by the hitherto known hot pressing method, ordinary sintering method, or hot isostatic pressure sintering method.

例えば原料粉末混合物を型に充填して0,5〜10to
n/c+#程度のプレス圧により冷間圧縮し、次いでラ
バープレスによりさらに05〜10ton/ei程度の
静水圧で成形する。もちろんどちらか一方で成形しても
よいし、また泥漿法により成形してもよい。次にこのよ
うして得られた圧粉体を真空中又はアルゴン、水素、二
酸化炭素ガスなど中性若しくは還元性雰囲気中において
、13oo−2000℃、好ましくは1400〜170
0℃の温度で30〜300分間焼結する。更に必要であ
れば熱間静水圧焼成法により、アルゴンガスなどによる
2 ton/cd以下程度の圧力のもとで1200〜1
700℃で5〜300分間焼結する。
For example, fill a mold with a raw material powder mixture and
It is cold compressed using a press pressure of approximately n/c+#, and then further molded using a rubber press under a hydrostatic pressure of approximately 05 to 10 ton/ei. Of course, it may be molded using either one, or may be molded by a slurry method. Next, the green compact thus obtained is heated at 13oo-2000°C, preferably 1400-170°C in vacuum or in a neutral or reducing atmosphere such as argon, hydrogen, carbon dioxide gas, etc.
Sinter at a temperature of 0° C. for 30-300 minutes. Furthermore, if necessary, a hot isostatic sintering method is used to heat the product under a pressure of about 2 ton/cd or less using argon gas or the like.
Sinter at 700°C for 5-300 minutes.

この際圧粉体を金属缶中に入れることによりi通焼結工
程を省略することもできる。
At this time, the continuous sintering process can be omitted by placing the green compact in a metal can.

又原料粉末混合物を例えば黒鉛型等の型に充填した後、
真空中又はアルゴン、水素、二酸化炭素ガスなどの中性
若しくは還元性雰囲気中に於いて、ダイ圧力50〜30
0kg/cd、温度1300〜2000℃、好ましくは
1400〜1700℃の条件で10〜200分間加熱焼
結する、所謂ホットプレス法を用いて焼結することもで
きる。
After filling the raw material powder mixture into a mold such as a graphite mold,
In a vacuum or in a neutral or reducing atmosphere such as argon, hydrogen, or carbon dioxide gas, the die pressure is 50 to 30
Sintering can also be carried out using the so-called hot press method, in which heating and sintering is carried out at 0 kg/cd and a temperature of 1300 to 2000°C, preferably 1400 to 1700°C, for 10 to 200 minutes.

このようにして各種切削工具としては好適な金属ホウ化
物基セラミックス焼結体が得られる。
In this way, a metal boride-based ceramic sintered body suitable for various cutting tools is obtained.

〈実施例〉 微細に粉砕したTi’Bz、 TaJ、 CoB、  
(TiBHf2)C粉末を分級器により粒径4μm以下
に分級し、原料粉とした。このような原料を91%Ti
B2−6%TaB2−1%CoB−2%(T+gHfz
)Cの組成比で混合した。
<Example> Finely ground Ti'Bz, TaJ, CoB,
(TiBHf2)C powder was classified to a particle size of 4 μm or less using a classifier to obtain a raw material powder. 91% Ti
B2-6% TaB2-1% CoB-2% (T+gHfz
) were mixed at a composition ratio of C.

但し比率は重量比である。このような原料粉を黒鉛ダイ
スに充填し、ホットプレス圧200kg/ci/のもと
で真空中1500℃で60分間加熱焼結した。得られた
焼結体の空隙率は0.06vo 1%、U性値4 MP
am’S 。
However, the ratio is a weight ratio. Such raw material powder was filled into a graphite die, and heated and sintered at 1500° C. for 60 minutes in a vacuum under a hot press pressure of 200 kg/ci/. The porosity of the obtained sintered body was 0.06vo 1%, and the U property value was 4 MP.
am'S.

硬度2400Hvであった。本例を第1表のNcL4に
示す。
The hardness was 2400Hv. This example is shown in NcL4 in Table 1.

又別の組成について°も、同様の実験を行った。Similar experiments were also conducted with other compositions.

その結果を第1表に示す。但し1本、9本、10本は比
較例として示した。
The results are shown in Table 1. However, 1, 9, and 10 were shown as comparative examples.

〈発明の効果〉 本発明によると微細粉体を原料とした気孔のないホウ化
金属系セラミックス焼結体が得られ、耐衝撃性に擾れな
切削工具や耐摩部材として用いることができる。
<Effects of the Invention> According to the present invention, a porosity-free metal boride ceramic sintered body made from fine powder can be obtained, and can be used as a cutting tool or wear-resistant member with low impact resistance.

Claims (1)

【特許請求の範囲】[Claims] 1、(A)TiB_2、ZrB_2、CrB_2、Hf
B_2、VB_2、TaB__2、NbB_2、MnB
_2、MoB_2、YB_2、AlB_2、MgB_2
、CrB、VB、TaB、NbB、MoB、HfB、Y
B、ZrB、HfB、TiB、MnB、W_2B_5及
びMo_2B_5の中から選ばれた少なくとも1種と、
(B)結合剤用金属化合物のホウ化コバルト、ホウ化ニ
ッケル、ホウ化鉄の少なくとも1種とを基本成分とし、
これに(C)Ti、Zr、Hf、WとCとから成る複炭
化物、あるいはTi、Zr、HfとC及びNとから成る
TiCNを除く炭窒化物あるいは複炭窒化物の1種以上
を全量当り0.1重量%〜10重量%添加した混合物の
焼結体から成る高密度金属ホウ化物基セラミックス焼結
体。
1, (A) TiB_2, ZrB_2, CrB_2, Hf
B_2, VB_2, TaB__2, NbB_2, MnB
_2, MoB_2, YB_2, AlB_2, MgB_2
, CrB, VB, TaB, NbB, MoB, HfB, Y
At least one species selected from B, ZrB, HfB, TiB, MnB, W_2B_5 and Mo_2B_5,
(B) at least one of cobalt boride, nickel boride, and iron boride as a metal compound for binder as a basic component;
Add to this the total amount of (C) one or more types of double carbides consisting of Ti, Zr, Hf, W and C, or carbonitrides or double carbonitrides other than TiCN consisting of Ti, Zr, Hf, C and N. A high-density metal boride-based ceramic sintered body comprising a sintered body of a mixture to which 0.1% to 10% by weight is added.
JP62115392A 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body Granted JPS63282166A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62115392A JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body
DE19883815648 DE3815648A1 (en) 1987-05-11 1988-05-07 High-density ceramic sintered body based on metal boride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115392A JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body

Publications (2)

Publication Number Publication Date
JPS63282166A true JPS63282166A (en) 1988-11-18
JPH0432034B2 JPH0432034B2 (en) 1992-05-28

Family

ID=14661416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115392A Granted JPS63282166A (en) 1987-05-11 1987-05-11 High-density metal boride-base sintered ceramics body

Country Status (2)

Country Link
JP (1) JPS63282166A (en)
DE (1) DE3815648A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
FR2979341B1 (en) * 2011-08-31 2020-01-31 Arianegroup Sas ULTRA-REFRACTORY MATERIAL STABLE IN A HUMID ENVIRONMENT AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128560A (en) * 1979-03-27 1980-10-04 Agency Of Ind Science & Technol Boride based ultrahard heat resistant material
US4292081A (en) * 1979-06-07 1981-09-29 Director-General Of The Agency Of Industrial Science And Technology Boride-based refractory bodies
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
JPS5843352B2 (en) * 1979-08-23 1983-09-26 工業技術院長 Boride-based high-strength hard heat-resistant material
JPS5822067B2 (en) * 1979-09-22 1983-05-06 工業技術院長 Method for thermal decomposition of polyolefin plastics
JPS5837274B2 (en) * 1980-08-26 1983-08-15 工業技術院長 High strength composite sintered material
JPS6197169A (en) * 1984-10-19 1986-05-15 工業技術院長 Tenacious metal boride base superhard heat resistant material

Also Published As

Publication number Publication date
JPH0432034B2 (en) 1992-05-28
DE3815648A1 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
JPH07242466A (en) Production of polycrystalline cubic boron nitride
JPH06128680A (en) Sintered metal material mixture based on boride, nitride and iron binder metal
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
JPH0583514B2 (en)
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPS63282166A (en) High-density metal boride-base sintered ceramics body
US5036028A (en) High density metal boride-based ceramic sintered body
US4808557A (en) Sintered titanium carbo-nitride ceramics
JPH0411506B2 (en)
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JPH0122233B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS6332750B2 (en)
JPS63282234A (en) High-density metallic boride-base ceramics using iron group metal
JPH0350808B2 (en)
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS61151065A (en) Titanium carbonitride ceramic material
JPH0331668B2 (en)
JPS61242958A (en) Boron carbide-containing titanium carbonitirde base ceramic material
JPS6126566A (en) Method of sintering sic composite body
JPS6359990B2 (en)
JPS644987B2 (en)
JPS6177670A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPH03215363A (en) Production of ceramic material based on cubic boron nitride having high toughness

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term