JP4106590B2 - Cubic boron nitride sintered body and manufacturing method thereof - Google Patents

Cubic boron nitride sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP4106590B2
JP4106590B2 JP2001389346A JP2001389346A JP4106590B2 JP 4106590 B2 JP4106590 B2 JP 4106590B2 JP 2001389346 A JP2001389346 A JP 2001389346A JP 2001389346 A JP2001389346 A JP 2001389346A JP 4106590 B2 JP4106590 B2 JP 4106590B2
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
cubic boron
cubic
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001389346A
Other languages
Japanese (ja)
Other versions
JP2003192443A (en
Inventor
均 角谷
直大 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001389346A priority Critical patent/JP4106590B2/en
Publication of JP2003192443A publication Critical patent/JP2003192443A/en
Application granted granted Critical
Publication of JP4106590B2 publication Critical patent/JP4106590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は立方晶窒化硼素焼結体およびその製造方法に関するものである。特に、高強度で熱的特性に優れ、鉄系材料の高速断続切削加工に用いることのできるバインダーを含まない立方晶窒化硼素焼結体に関するものである。
【0002】
【従来の技術】
立方晶窒化硼素(cBN)は、ダイヤモンドに次ぐ硬度を有し、熱的化学的安定性の高い物質であり、従来より鉄系材料の切削工具として用いられている。
【0003】
現在、切削工具として用いられているcBN焼結体は、cBNの粉末を、TiN、TiC、Coなどのバインダーを用いて超高圧下で焼結されたもので、焼結体には10〜40体積%程度のバインダーが含まれる。このバインダーが、焼結体の強度、耐熱性、熱放散性に大きく影響を与え、特に鉄系材料を高速で切削加工する場合に、刃先の欠損や亀裂が生じやすく、工具としての寿命が非常に短くなる。焼結体にバインダーが含まれている限り、このような問題は避けられない。
【0004】
一方、バインダーを含まないcBN焼結体として、ホウ窒化マグネシウムなどの触媒を用いて六方晶窒化硼素(hBN)を原料として、反応焼結させた焼結体がある。
【0005】
この焼結体はバインダーがなくcBN粒子が強く結合しているため熱伝導率が6〜7W/cm℃と高く、ヒートシンク材やTAB(Tape Automated Bonding)ボンディングツールなどに用いられている。しかし、この焼結体の中には触媒がいくらか残留しているため、熱を加えるとこの触媒とcBNとの熱膨張差による微細クラックが入りやすい。このため、その耐熱温度は700℃程度と低く、切削工具としては大きな問題となる。また、cBN粒径が10μm前後と大きいため、熱伝導率が高いものの、強度が十分でなく、負荷の大きい断続的な切削には対応できない。
【0006】
cBNは、hBN(六方晶窒化硼素)などの常圧型BNを超高圧高温下で、無触媒で合成(直接変換)することが可能である。このhBN→cBN変換と同時に焼結させることで、バインダーを含まないcBN焼結体を作製できることが知られている。例えば、特開昭47−34099号公報や特開平3−159964号公報には、hBNを超高圧下でcBNに変換させ、cBN焼結体を得る方法が示されている。また、特公昭63−394号公報や特開平8−47801号公報には、熱分解窒化硼素(pBN)原料にしてcBN焼結体を作製する方法が示されている。
【0007】
【発明が解決しようとする課題】
しかし、鋳鉄や鋼の高速フライスやミリング切削加工などで十分満足のいく性能を持った強度の高いcBN焼結体は得られていない。hBNなどの常圧型BNを超高圧高温下でcBNに直接変換焼結させて得られるcBN焼結体は、それを構成するcBN結晶に多くの結晶欠陥による歪みを含むことが透過電子顕微鏡観察により明らかになった。また、このcBN焼結体には、1GPa程度の応力が残留していることがX線による応力解析によりわかった。このような、焼結体を構成するcBN結晶内の歪みや転位欠陥、あるいは大きな残留応力により、このcBN焼結体を切削工具とした場合に、刃先は欠損しやすく、十分満足する性能のものが、安定して得られなかった。
【0008】
従って、本発明の主目的は、切削工具としても十分な強度が得られるバインダーレスcBN焼結体とその製造方法とを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、常圧型窒化硼素から直接変換により得たcBN焼結体に所定の熱処理を施すことで上記の目的を達成する。
【0010】
すなわち、本発明cBN焼結体の製造方法は、常圧型窒化硼素を出発物質として、超高圧高温下で立方晶窒化硼素に直接変換させると同時に焼結させて作製した立方晶窒化硼素焼結体を、真空中もしくは不活性ガス中で、800℃以上1400℃未満の温度で熱処理することを特徴とする。
【0011】
本発明者らは常圧型窒化硼素から直接変換により得られるcBN焼結体の強度向上に関して種々の検討を行った結果、直接変換により得られるcBN焼結体に上記の熱処理を施すことにより高強度のcBN焼結体が得られることを見出した。このような熱処理を施すことで、変換焼結の際にcBN結晶内に導入される結晶欠陥による歪みや、超高圧高温状態から取り出す際に焼結体内に導入される応力を低減することができる。
【0012】
常圧型BNからcBNに直接変換したcBN焼結体に施す熱処理温度の下限を800℃としたのは、800℃未満では残留応力が十分開放されないからである。逆に上限を1400℃未満としたのは、1400℃以上になるとcBNがhBNに部分的に逆変換し出すので好ましくないからである。より好ましい熱処理温度は1000℃以上1400℃未満である。また、この熱処理温度に保持する時間は、長い程好ましいが、30分程度でも十分である。
【0013】
特に、圧縮型hBNが残留したcBN焼結体において、このような熱処理効果が顕著に現れる。すなわち、このような熱処理によってcBN焼結体に閉じこめられている圧縮型hBNの残留量が熱処理前後で60〜90%程度に低減したり、cBNのX線回折のピーク強度比が少し変化するなど、焼結体の微細組織が変化し、この組織変化が焼結体の残留応力を効率よく開放することがわかった。従って、熱処理する前のcBN焼結体はある程度圧縮型hBNを含むことが好ましい。
【0014】
具体的には、熱処理前のcBN焼結体は0.01〜7体積%の圧縮型六方晶窒化硼素を含むことが好ましい。0.01%未満では熱処理によるアニール効果が十分でなく、7体積%を越えるとcBN焼結体の強度が大幅に低下してしまう。
【0015】
出発物質となる常圧型窒化硼素は、非酸化性雰囲気中1500℃以上の熱処理により酸素不純物を低減した常圧型窒化硼素であることが好ましい。より具体的には、酸素不純物を1重量%以下とすることが好ましい。この熱処理をしない常圧型窒化硼素や、酸素不純物を1重量%超含む常圧型窒化硼素を出発物質とすると、cBNへの変換率が大幅に低下し、十分強固なcBN焼結体が得にくいからである。非酸化性雰囲気としては、窒素、アルゴンなどが挙げられる。
【0016】
また、この常圧型窒化硼素は、酸化硼素もしくはホウ酸を炭素もしくは炭素を含む物質で還元し、窒化させることにより合成されることが好ましい。この方法によればcBNへの変換が容易で、微粒で強固なcBN焼結体をより安定的に得ることができる。
【0017】
上記の常圧型窒化硼素は、超高圧高温下で立方晶窒化硼素に直接変換させると同時に焼結されて立方晶窒化硼素焼結体となる。超高圧高温とは、例えば6.5GPa以上、1800℃以上である。合成温度は1800〜2400℃が好ましい。
【0018】
一方、本発明cBN焼結体は、立方晶窒化硼素が95体積%以上含有され、立方晶窒化硼素の粒子同士がバインダーなしに結合した立方晶窒化硼素焼結体であって、立方晶窒化硼素のTO光学モードによるラマン線が、波数1052cm 1以上1055cm 1以下にあることを特徴とする。
【0019】
TO光学モードによるラマン線は、フォノン振動モードの一つで横光学(Transverse Optical)モードによるラマン線のことである。通常、直接変換で得られるcBN多結晶体は多くの残留応力を有するため、cBN結晶格子が歪みを受け、本来のcBNのTOラマン線位置1055cm 1より高波数側にシフトする。ほとんどの場合、1056cm 1以上にシフトし、1060cm 1近くにまでシフトする場合もある。この場合、cBN焼結体にはおよそ1GPa近い残留応力が見られる。TOラマン線が1056cm 1以上のcBN焼結体は、残留歪みにより強度が不十分で切削工具に使用できない。
【0020】
本発明の焼結体は残留応力が小さいため、TOラマン線は1055cm 1以下に現れる。特にcBNの平均粒径が1μm以下の微細なcBN粒子からなるcBN焼結体とすることは残留応力の低減に効果的である。TOラマン線が1052cm 1未満の焼結体は、構成するcBNの結晶性が不十分なため、焼結体の機械特性が低下する傾向がある。
【0021】
また、熱処理後のcBN焼結体には、0.01〜5体積%の圧縮型六方晶窒化硼素が含まれることも好ましい。前述したように、熱処理前のcBN焼結体には、ある程度圧縮型hBNを含むことが好ましい。この圧縮型hBNが熱処理後も残存することになる。
【0022】
本発明のcBN焼結体は、従来の直接変換法によるcBN焼結体に比べて残留応力が小さいため機械特性に優れ、従来困難であった鋳鉄や鋼などの鉄系材料の超高速断続切削が可能となる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例)
酸化硼素(B2O3)とメラミン(C3N6H6)をモル比で3:1で配合し、乳鉢で均一に混合した。これを、管状炉で、窒素ガス中、合成温度1050℃で6時間処理した。得られた粉末をエタノールで洗浄して未反応のB2O3を除去し、さらに、高周波炉で、N2ガス中、2100℃で2時間処理した。得られた窒化硼素粉末の酸素含有量を、ガス分析により測定すると0.08重量%であった。
【0024】
この常圧型BN粉末を6ton/cm2で型押し成形し、直径8mm、厚み3mmの成形体を作製し、この成形体を再度、高周波炉で、N2ガス中、2100℃で2時間処理した。
【0025】
次に、これをMoカプセルに入れ、ベルト型超高圧発生装置で7.5GPa、1800〜2400℃の各種温度で15分間処理した。こうして得られた焼結体のX線回折によりcBNへの変換量、つまり圧縮型hBNの残留量を求めた(熱処理前hBN)。また、ラマン分光分析装置で、cBNのTOラマン線のピーク位置を求めた(熱処理前TOラマン線)。
【0026】
次に、窒素ガス中で各種の温度で30分処理し、得られた試料の圧縮型hBNの残留量(熱処理後hBN)とcBNのTOラマン線(熱処理後TOラマン線)のピーク位置を求めた。
【0027】
そして、一部の試料について、鋳鉄の高速フライステスト(被削材FC250、切削速度1500mm/分、切込み0.5mm、送り0.15mm/刃、湿式)を行い、寿命に至る切削量(切り屑排出量)を求めた。それぞれの結果を表1に示す。また、比較のため、熱処理しなかったもの(比較例1、2)、合成温度が低すぎる(比較例3)か高すぎるもの(比較例5)、熱処理温度が高すぎるもの(比較例4)の結果も表1に示す。
【0028】
【表1】

Figure 0004106590
【0029】
この表から明らかなように、熱処理の前後で圧縮型hBNの量が低下し、切削試験で実施例が好結果を得ていることがわかる。これに対して、熱処理を行わなかったものなど、いずれの比較例も焼結できなかったり切削試験結果が好ましくないことがわかる。
【0030】
【発明の効果】
以上説明したように、本発明cBN焼結体の製造方法によれば、常圧型窒化硼素を出発物質として超高圧高温下で立方晶窒化硼素に直接変換させると同時に焼結させて立方晶窒化硼素焼結体を得て、この焼結体を真空中もしくは不活性ガス中にて800℃以上1400℃未満の温度で熱処理することにより、結晶欠陥による歪みや残留応力を低減することができる。
【0031】
また、本発明cBN焼結体は、結晶欠陥による歪みや残留応力が少ないため、高強度が得られ、従来困難であった鋳鉄や鋼などの鉄系材料の超高速断続切削が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cubic boron nitride sintered body and a method for producing the same. In particular, the present invention relates to a cubic boron nitride sintered body that does not contain a binder and has high strength and excellent thermal characteristics and can be used for high-speed intermittent cutting of iron-based materials.
[0002]
[Prior art]
Cubic boron nitride (cBN) has a hardness next to diamond and has high thermal and chemical stability, and has been conventionally used as a cutting tool for iron-based materials.
[0003]
The cBN sintered body currently used as a cutting tool is obtained by sintering cBN powder under a super-high pressure using a binder such as TiN, TiC, Co, etc. A binder of about volume% is included. This binder greatly affects the strength, heat resistance, and heat dissipation of the sintered body. Especially when cutting ferrous materials at high speeds, the cutting edge is prone to cracks and cracks, resulting in an extremely long tool life. Becomes shorter. As long as a binder is included in the sintered body, such a problem is unavoidable.
[0004]
On the other hand, as a cBN sintered body containing no binder, there is a sintered body obtained by reactive sintering using hexagonal boron nitride (hBN) as a raw material using a catalyst such as magnesium boronitride.
[0005]
Since this sintered body has no binder and cBN particles are strongly bonded, its thermal conductivity is as high as 6-7 W / cm ° C., and it is used for heat sink materials and TAB (Tape Automated Bonding) bonding tools. However, since some catalyst remains in the sintered body, when heat is applied, fine cracks due to a difference in thermal expansion between the catalyst and cBN are likely to occur. For this reason, the heat-resistant temperature is as low as about 700 ° C., which is a serious problem as a cutting tool. In addition, since the cBN particle size is as large as around 10 μm, the thermal conductivity is high, but the strength is not sufficient and it is not possible to handle intermittent cutting with a large load.
[0006]
cBN can synthesize (directly convert) atmospheric pressure type BN such as hBN (hexagonal boron nitride) under ultra high pressure and high temperature without catalyst. It is known that a cBN sintered body containing no binder can be produced by sintering simultaneously with this hBN → cBN conversion. For example, Japanese Patent Application Laid-Open No. 47-34099 and Japanese Patent Application Laid-Open No. 3-159964 disclose a method of obtaining a cBN sintered body by converting hBN into cBN under an ultrahigh pressure. Japanese Patent Publication No. 63-394 and Japanese Patent Application Laid-Open No. 8-47801 show a method for producing a cBN sintered body using a pyrolytic boron nitride (pBN) raw material.
[0007]
[Problems to be solved by the invention]
However, a high-strength cBN sintered body with sufficiently satisfactory performance has not been obtained by high-speed milling or milling of cast iron or steel. A cBN sintered body obtained by directly converting and sintering normal pressure type BN such as hBN to cBN under ultra-high pressure and high temperature shows that the cBN crystal constituting it contains strains due to many crystal defects. It was revealed. In addition, it was found by X-ray stress analysis that a stress of about 1 GPa remained in this cBN sintered body. Due to the distortion, dislocation defects, or large residual stress in the cBN crystals that make up the sintered body, the cutting edge tends to be chipped when this cBN sintered body is used as a cutting tool, and has a sufficiently satisfactory performance. However, it was not obtained stably.
[0008]
Accordingly, a main object of the present invention is to provide a binderless cBN sintered body that can provide sufficient strength as a cutting tool and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention achieves the above object by subjecting a cBN sintered body obtained by direct conversion from atmospheric pressure boron nitride to a predetermined heat treatment.
[0010]
That is, the method for producing a cBN sintered body according to the present invention is a cubic boron nitride sintered body produced by directly converting into cubic boron nitride under an ultrahigh pressure and high temperature at the same time as sintering, using atmospheric pressure boron nitride as a starting material. Is heat-treated at a temperature of 800 ° C. or higher and lower than 1400 ° C. in vacuum or in an inert gas.
[0011]
As a result of various studies on the strength improvement of the cBN sintered body obtained by direct conversion from atmospheric pressure boron nitride, the present inventors have obtained high strength by applying the above heat treatment to the cBN sintered body obtained by direct conversion. It was found that a sintered body of cBN was obtained. By applying such heat treatment, distortion caused by crystal defects introduced into the cBN crystal during conversion sintering and stress introduced into the sintered body when taken out from an ultra-high pressure and high temperature state can be reduced. .
[0012]
The reason why the lower limit of the heat treatment temperature applied to the cBN sintered body directly converted from normal pressure type BN to cBN is set to 800 ° C. is that the residual stress is not sufficiently released below 800 ° C. On the contrary, the upper limit is set to less than 1400 ° C. because cBN partially reversely transforms into hBN when the temperature is 1400 ° C. or higher. A more preferable heat treatment temperature is 1000 ° C. or higher and lower than 1400 ° C. Further, the longer the time for maintaining the heat treatment temperature, the better. However, about 30 minutes is sufficient.
[0013]
In particular, such a heat treatment effect appears remarkably in a cBN sintered body in which compressed hBN remains. That is, the residual amount of compression-type hBN confined in the cBN sintered body by such heat treatment is reduced to about 60 to 90% before and after the heat treatment, and the peak intensity ratio of cBN X-ray diffraction slightly changes. It was found that the microstructure of the sintered body changed, and this change in structure efficiently released the residual stress of the sintered body. Therefore, it is preferable that the cBN sintered body before the heat treatment contains some compression type hBN.
[0014]
Specifically, the cBN sintered body before heat treatment preferably contains 0.01 to 7% by volume of compressed hexagonal boron nitride. If it is less than 0.01%, the annealing effect by the heat treatment is not sufficient, and if it exceeds 7% by volume, the strength of the cBN sintered body is significantly reduced.
[0015]
The normal pressure boron nitride used as a starting material is preferably normal pressure boron nitride in which oxygen impurities are reduced by heat treatment at 1500 ° C. or higher in a non-oxidizing atmosphere. More specifically, the oxygen impurity is preferably 1% by weight or less. If normal pressure boron nitride without this heat treatment or normal pressure boron nitride containing more than 1% by weight of oxygen impurities is used as the starting material, the conversion rate to cBN will be greatly reduced, making it difficult to obtain a sufficiently strong cBN sintered body. It is. Examples of the non-oxidizing atmosphere include nitrogen and argon.
[0016]
The atmospheric pressure boron nitride is preferably synthesized by reducing and nitriding boron oxide or boric acid with carbon or a substance containing carbon. According to this method, conversion to cBN is easy, and a fine and strong cBN sintered body can be obtained more stably.
[0017]
The normal pressure type boron nitride is directly converted into cubic boron nitride under an ultra-high pressure and high temperature and simultaneously sintered to form a cubic boron nitride sintered body. The ultra-high pressure and high temperature are, for example, 6.5 GPa or more and 1800 ° C. or more. The synthesis temperature is preferably 1800-2400 ° C.
[0018]
On the other hand, the cBN sintered body of the present invention is a cubic boron nitride sintered body containing 95% by volume or more of cubic boron nitride, in which cubic boron nitride particles are bonded together without a binder, and includes cubic boron nitride. Raman lines by tO optical mode, wavenumber 1052cm - 1 or more 1055Cm -, characterized in that in 1 below.
[0019]
The Raman line in the TO optical mode is one of the phonon vibration modes and the Raman line in the transverse optical mode. Usually, the cBN polycrystalline material obtained by the direct conversion because it has a lot of residual stress, undergoing distortion cBN crystal lattice, TO Raman line position 1055cm the original cBN - shift 1 from the high frequency side. In most cases, it is shifted to 1056 cm - 1 or more, and may be shifted to near 1060 cm - 1 . In this case, the cBN sintered body has a residual stress of approximately 1 GPa. TO Raman lines 1056cm - 1 or more cBN sintered body, it can not be used in poor cutting tool strength by residual strain.
[0020]
Sintered body of the present invention, since the residual stress is small, TO Raman lines 1055Cm - appears at 1 or less. In particular, it is effective to reduce the residual stress by using a cBN sintered body composed of fine cBN particles having an average particle size of cBN of 1 μm or less. TO Raman lines 1052cm - 1 than the sintered body, the crystal of the cBN constituting the insufficient mechanical properties of the sintered body tends to decrease.
[0021]
The heat-treated cBN sintered body preferably contains 0.01 to 5% by volume of compressed hexagonal boron nitride. As described above, it is preferable that the cBN sintered body before the heat treatment contains some degree of compression type hBN. This compression type hBN remains after the heat treatment.
[0022]
The cBN sintered body of the present invention has excellent mechanical properties because it has a lower residual stress than cBN sintered bodies obtained by the conventional direct conversion method. Is possible.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Example)
Boron oxide (B 2 O 3 ) and melamine (C 3 N 6 H 6 ) were mixed at a molar ratio of 3: 1 and mixed uniformly in a mortar. This was treated in a tube furnace in nitrogen gas at a synthesis temperature of 1050 ° C. for 6 hours. The obtained powder was washed with ethanol to remove unreacted B 2 O 3 , and further treated in a high frequency furnace at 2100 ° C. for 2 hours in N 2 gas. The oxygen content of the obtained boron nitride powder was 0.08% by weight as measured by gas analysis.
[0024]
The normal pressure type BN powder was die pressed molded at 6 ton / cm 2, having a diameter of 8 mm, molding of thick 3 mm, the molded body again, in a high-frequency furnace in N 2 gas for 2 hours at 2100 ° C. .
[0025]
Next, this was put in a Mo capsule and treated with a belt type ultrahigh pressure generator at various temperatures of 7.5 GPa and 1800 to 2400 ° C. for 15 minutes. The amount of conversion to cBN, that is, the residual amount of compressed hBN, was determined by X-ray diffraction of the sintered body thus obtained (hBN before heat treatment). In addition, the peak position of the cBN TO Raman line was obtained using a Raman spectrometer (TO Raman line before heat treatment).
[0026]
Next, the sample was treated in nitrogen gas at various temperatures for 30 minutes, and the residual amount of compressed hBN (hBN after heat treatment) and the peak position of the cBN TO Raman line (TO Raman line after heat treatment) of the obtained sample were obtained. It was.
[0027]
For some samples, cast iron high-speed milling test (work material FC250, cutting speed 1500 mm / min, cutting 0.5 mm, feed 0.15 mm / blade, wet), cutting amount to reach the end of life (chip discharge amount) ) The results are shown in Table 1. Also, for comparison, those that were not heat-treated (Comparative Examples 1 and 2), synthesis temperature too low (Comparative Example 3) or too high (Comparative Example 5), heat treatment temperature too high (Comparative Example 4) The results are also shown in Table 1.
[0028]
[Table 1]
Figure 0004106590
[0029]
As is apparent from this table, it can be seen that the amount of compression-type hBN decreased before and after the heat treatment, and the examples obtained good results in the cutting test. On the other hand, it can be seen that none of the comparative examples, such as those that were not heat-treated, could be sintered or the cutting test results were unfavorable.
[0030]
【The invention's effect】
As described above, according to the method for producing a cBN sintered body of the present invention, cubic boron nitride is directly converted into cubic boron nitride at the same time as ultra-high pressure and high temperature using atmospheric pressure boron nitride as a starting material and simultaneously sintered. By obtaining a sintered body and heat-treating the sintered body at a temperature of 800 ° C. or higher and lower than 1400 ° C. in vacuum or in an inert gas, distortion due to crystal defects and residual stress can be reduced.
[0031]
In addition, since the cBN sintered body of the present invention has less distortion and residual stress due to crystal defects, high strength can be obtained, and ultrahigh-speed intermittent cutting of iron-based materials such as cast iron and steel, which has been difficult in the past, becomes possible.

Claims (7)

立方晶窒化硼素が95体積%以上含有され、立方晶窒化硼素の粒子同士がバインダーなしに結合した立方晶窒化硼素焼結体であって、圧縮型六方晶窒化硼素を 0.01 5 体積%含み、立方晶窒化硼素のTO光学モードによるラマン線が、波数1052cm 1以上1055cm 1以下にあることを特徴とする高強度立方晶窒化硼素焼結体。A cubic boron nitride sintered body containing 95% by volume or more of cubic boron nitride and particles of cubic boron nitride bonded together without a binder, containing 0.01 to 5 % by volume of compressed hexagonal boron nitride , cubic Raman lines by tO optical modes boron nitride is, wavenumber 1052cm - 1 or 1055cm - 1 high strength cubic boron nitride sintered body, characterized in that in the following. 前記立方晶窒化硼素の粒子の平均粒径が1μm以下であることを特徴とする請求項1記載の立方晶窒化硼素焼結体。2. The cubic boron nitride sintered body according to claim 1, wherein the average particle diameter of the cubic boron nitride particles is 1 μm or less. 常圧型窒化硼素を出発物質として、超高圧高温下で立方晶窒化硼素に直接変換させると同時に焼結させて作製したバインダーを含まない立方晶窒化硼素焼結体を、真空中もしくは不活性ガス中にて800℃以上1400℃未満の温度で熱処理することを特徴とする立方晶窒化硼素焼結体の製造方法。A cubic boron nitride sintered body that does not contain a binder and is produced by directly converting to cubic boron nitride under ultra-high pressure and high temperature at the same time as sintering using atmospheric pressure boron nitride as a starting material, in vacuum or in an inert gas A method for producing a cubic boron nitride sintered body characterized by heat-treating at 800 ° C. or more and less than 1400 ° C. 前記超高圧高温下で作製した熱処理前の立方晶窒化硼素焼結体は、0.01〜7体積%の圧縮型六方晶窒化硼素を含むことを特徴とする請求項3に記載の立方晶窒化硼素焼結体の製造方法。4. The cubic boron nitride sintered body according to claim 3 , wherein the sintered cubic boron nitride sintered body produced under the ultrahigh pressure and high temperature contains 0.01 to 7% by volume of compressed hexagonal boron nitride. A method for producing a knot. 前記出発物質は、非酸化性雰囲気中1500℃以上の熱処理により酸素不純物を低減した常圧型窒化硼素であることを特徴とする請求項3 または 4記載の立方晶窒化硼素焼結体の製造方法。The starting material, the production method according to claim 3 or 4 cubic boron nitride sintered body, wherein the through 1500 ° C. or more heat treatment in a non-oxidizing atmosphere is a normal pressure type boron nitride with a reduced oxygen impurity. 前記常圧型窒化硼素の酸素不純物が1重量%以下であることを特徴とする請求項3 5のいずれか1 に記載の立方晶窒化硼素焼結体の製造方法。The method according to claim 3 to cubic boron nitride sintered body according to any one of 5, wherein the oxygen impurity of the normal pressure type boron nitride is less than 1 wt%. 前記常圧型窒化硼素は、酸化硼素もしくはホウ酸を炭素もしくは炭素を含む物質で還元し、窒化させることにより合成されることを特徴とする請求項3 6のいずれか1 に記載の立方晶窒化硼素焼結体の製造方法。The normal pressure type boron nitride, boron oxide or boric acid and reduced with materials containing carbon or carbon, cubic according to any one of claims 3-6, characterized in that it is synthesized by nitriding A method for producing a boron nitride sintered body.
JP2001389346A 2001-12-21 2001-12-21 Cubic boron nitride sintered body and manufacturing method thereof Expired - Fee Related JP4106590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389346A JP4106590B2 (en) 2001-12-21 2001-12-21 Cubic boron nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389346A JP4106590B2 (en) 2001-12-21 2001-12-21 Cubic boron nitride sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003192443A JP2003192443A (en) 2003-07-09
JP4106590B2 true JP4106590B2 (en) 2008-06-25

Family

ID=27597587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389346A Expired - Fee Related JP4106590B2 (en) 2001-12-21 2001-12-21 Cubic boron nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4106590B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201108975D0 (en) * 2011-05-27 2011-07-13 Element Six Ltd Superhard structure, tool element and method of making same
JP6291986B2 (en) * 2014-04-14 2018-03-14 住友電気工業株式会社 Cubic boron nitride composite sintered body, method for producing the same, cutting tool, wear-resistant tool, and grinding tool
JP6256169B2 (en) * 2014-04-14 2018-01-10 住友電気工業株式会社 Cubic boron nitride composite sintered body, method for producing the same, cutting tool, wear-resistant tool, and grinding tool
JP7076531B2 (en) 2018-09-27 2022-05-27 住友電工ハードメタル株式会社 Cubic boron nitride polycrystal
WO2020174922A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
CN114007785B (en) * 2019-06-27 2024-02-23 京瓷株式会社 Cutting insert and cutting tool
EP4079707A4 (en) * 2019-12-16 2022-12-07 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered compact
US11319255B2 (en) 2020-03-18 2022-05-03 Sumitomo Electric Hardmetal Corp. Composite sintered material and tool using same

Also Published As

Publication number Publication date
JP2003192443A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
US7001577B2 (en) Low oxygen cubic boron nitride and its production
JP2001504433A (en) Manufacturing method of dense ceramic workpiece
US6071841A (en) Cubic boron nitride sintered body and method of preparing the same
JP4106590B2 (en) Cubic boron nitride sintered body and manufacturing method thereof
KR100567279B1 (en) Cubic system boron nitride sintered body cutting tool
JP2006347850A (en) Cubic system boron nitride sintered compact and method of manufacturing the same
CN107188565A (en) A kind of ternary system osmium tungsten diboride hard material and its preparation method and application
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
JP4110338B2 (en) Cubic boron nitride sintered body
JP4110339B2 (en) Cubic boron nitride sintered body
JP5002886B2 (en) Method for producing cubic boron nitride polycrystal
JP2000042807A (en) Precision cutting tool
JP2007217281A (en) Cubical boron nitride sintered compact and method of manufacturing the same
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JP2013234093A (en) SiAlON-BASED PARTICLE, SINTERED BODY AND TOOL
JPS621348B2 (en)
JPH0455144B2 (en)
JP3346609B2 (en) Fiber reinforced ceramics and method for producing the same
JPS6241193B2 (en)
JPS62108716A (en) Production of cubic boron nitride
JP2000042823A (en) Milling cutter and manufacture thereof
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
CN113336553A (en) V2AlC bulk material synthesized by microwave sintering and preparation method and application thereof
JPH0563539B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees