WO2024005058A1 - Insert and cutting tool - Google Patents

Insert and cutting tool Download PDF

Info

Publication number
WO2024005058A1
WO2024005058A1 PCT/JP2023/023936 JP2023023936W WO2024005058A1 WO 2024005058 A1 WO2024005058 A1 WO 2024005058A1 JP 2023023936 W JP2023023936 W JP 2023023936W WO 2024005058 A1 WO2024005058 A1 WO 2024005058A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
cbn
cubic boron
boron nitride
particles
Prior art date
Application number
PCT/JP2023/023936
Other languages
French (fr)
Japanese (ja)
Inventor
太志 磯部
亜寿紗 萩原
佑脩 永岡
真二 明日山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024005058A1 publication Critical patent/WO2024005058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides

Definitions

  • the present disclosure relates to inserts and cutting tools.
  • Cubic boron nitride (cBN) has a hardness second only to diamond and is excellent in chemical stability. Therefore, cBN sintered bodies are widely used as cutting tools for machining ferrous metals such as hardened steel, cast iron, or sintered alloys.
  • An insert according to one aspect of the present disclosure includes a cubic boron nitride sintered body that includes a plurality of cubic boron nitride particles and a binder phase that binds the plurality of cubic boron nitride particles.
  • the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 ⁇ m - It is 1 or more.
  • FIG. 1 is a perspective view showing an example of an insert according to an embodiment.
  • FIG. 2 is a side sectional view showing an example of the insert according to the embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the coating film according to the embodiment.
  • FIG. 4 is a schematic enlarged view of section H shown in FIG. 3.
  • FIG. 5 is a cross-sectional view showing an example of a cBN sintered body constituting the base according to the embodiment.
  • FIG. 6 is a front view showing an example of the cutting tool according to the embodiment.
  • FIG. 7 is a diagram showing the results of image analysis on photographs of each cross section of the cBN sintered body according to the example and photographs of each cross section of the cBN sintered body according to the comparative example.
  • FIG. 1 is a perspective view showing an example of an insert according to an embodiment.
  • FIG. 2 is a side sectional view showing an example of the insert according to the embodiment.
  • FIG. 3 is a cross-sectional view
  • FIG. 8 shows the field of view No. in the cBN sintered body according to the example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • FIG. FIG. 9 shows the field of view No. in the cBN sintered body according to the comparative example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • Cubic boron nitride (cBN) has a hardness second only to diamond and is excellent in chemical stability. Therefore, cBN sintered bodies are widely used as cutting tools for machining ferrous metals such as hardened steel, cast iron, or sintered alloys.
  • FIG. 1 is a perspective view showing an example of an insert 1 according to an embodiment.
  • FIG. 2 is a side sectional view showing an example of the insert 1 according to the embodiment.
  • the insert 1 is an insert for a cutting tool, and has, for example, a hexahedral shape in which the upper surface and the lower surface (the surface intersecting the Z axis shown in FIG. 1) are parallelograms.
  • the insert 1 includes a main body 2 and a base 10 attached to the main body 2 via a bonding material 40 (see FIG. 2), which will be described later.
  • the main body portion 2 is made of cemented carbide, for example.
  • the cemented carbide contains W (tungsten), specifically, WC (tungsten carbide).
  • the cemented carbide may contain Ni (nickel) or Co (cobalt).
  • the main body portion 2 may be formed of cermet.
  • the cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride).
  • the cermet may contain Ni or Co.
  • a seat surface 4 for attaching the base 10 is located at the end of the main body 2.
  • a through hole 5 that vertically passes through the main body 2 is located in the center of the main body 2 .
  • a screw 75 for attaching the insert 1 to a holder 70 (described later) is inserted into the through hole 5 (see FIG. 6).
  • the base 10 is attached to the seat surface 4 of the main body 2. Thereby, the base body 10 is integrated with the main body portion 2.
  • the base 10 has a first surface 6 (here, the top surface) and a second surface 7 (here, the side surface) connected to the first surface 6.
  • the first surface 6 functions as a "rake surface” that scoops up chips generated by cutting
  • the second surface 7 functions as a "relief surface.”
  • a cutting blade 8 is located on at least a portion of the ridge line where the first surface 6 and the second surface 7 intersect, and the insert 1 cuts the work material by applying the cutting blade 8 to the work material. do.
  • the base body 10 is a cubic boron nitride (cBN) sintered body (hereinafter referred to as "cBN sintered body").
  • cBN cubic boron nitride
  • cBN sintered body has a hardness second only to diamond and has excellent chemical stability. The specific structure of the cBN sintered body constituting the base body 10 will be described later.
  • a substrate 30 made of, for example, cemented carbide or cermet may be located on the lower surface of the base 10.
  • the base 10 is bonded to the seat surface 4 of the main body 2 via the substrate 30 and the bonding material 40.
  • the bonding material 40 is, for example, a brazing material.
  • the base 10 may be joined to the main body 2 via a bonding material 40 at a portion of the main body 2 other than the seat surface 4 .
  • the base body 10, which is a part of the insert 1 is made of a cBN sintered body, but the entire insert 1 may be made of a cBN sintered body.
  • the base body 10 may be covered with a coating film 20.
  • the coating film 20 covers the base body 10 for the purpose of improving the wear resistance, heat resistance, etc. of the base body 10, for example.
  • the coating film 20 covers the main body portion 2 and the base 10 entirely.
  • the present invention is not limited thereto, and the coating film 20 may be located on at least a portion of the surface of the base body 10 . In this case, the heat resistance and abrasion resistance of the base body 10 can be improved.
  • the coating film 20 may be located on the upper surface of the main body part 2.
  • the first surface 6 see FIG. 1 has high wear resistance and high heat resistance.
  • the second surface 7 has high wear resistance and heat resistance.
  • FIG. 3 is a cross-sectional view showing an example of the coating film 20 according to the embodiment.
  • the coating film 20 includes a hard layer 21.
  • the hard layer 21 is a layer with excellent wear resistance compared to the metal layer 22 described later.
  • Hard layer 21 includes one or more metal nitride layers.
  • the hard layer 21 may be one layer. As shown in FIG. 3, multiple metal nitride layers may be overlapped.
  • the hard layer 21 may include a laminated portion 23 in which a plurality of metal nitride layers are laminated, and a third metal nitride layer 24 located on the laminated portion 23. The structure of such hard layer 21 will be described later.
  • Metal layer 22 Covering film 20 includes metal layer 22 .
  • Metal layer 22 is located between base body 10 and hard layer 21 . Specifically, the metal layer 22 is in contact with the upper surface of the base 10 on one surface (here, the lower surface), and is in contact with the lower surface of the hard layer 21 on the other surface (here, the upper surface).
  • the metal layer 22 has higher adhesion to the base 10 than the hard layer 21.
  • metal elements having such characteristics include Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y.
  • the metal layer 22 contains at least one metal element among the above metal elements. In this way, when the metal layer 22 contains at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y, The adhesion between the coating film 10 and the coating film 20 can be improved.
  • a simple substance of Ti, a simple substance of Zr, a simple substance of V, a simple substance of Cr, and a simple substance of Al are not used as the metal layer 22. This is because all of these have low melting points and low oxidation resistance, making them unsuitable for use in cutting tools. Hf alone, Nb alone, and Ta alone have low adhesion to the substrate 10. However, this does not apply to alloys containing Ti, Zr, V, Cr, Ta, Nb, Hf, or Al. Therefore, the metal layer 22 may be made of a metal other than Ti, Zr, V, Cr, Ta, Nb, Hf, and Al. In this case, the oxidation resistance of the metal layer 22 and the adhesion between the base 10 and the coating film 20 can be improved.
  • the metal layer 22 may be an Al-Cr alloy layer containing an Al-Cr alloy. Since the metal layer 22 has particularly high adhesion to the base 10, it is highly effective in improving the adhesion between the base 10 and the coating film 20.
  • the content of Al in the metal layer 22 may be greater than the content of Cr in the metal layer 22.
  • the composition ratio (atomic %) of Al and Cr in the metal layer 22 may be 70:30. With such a composition ratio, the adhesion between the base body 10 and the metal layer 22 is higher.
  • the metal layer 22 may contain components other than the above metal elements (Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y). However, from the viewpoint of adhesion to the base 10, the metal layer 22 may contain at least 95 atomic % or more of the above metal elements in total. The metal layer 22 may contain the above metal elements in a total amount of 98 atomic % or more. For example, when the metal layer 22 is an Al--Cr alloy layer, the metal layer 22 may contain at least 95 atomic % or more of Al and Cr in total. The metal layer 22 may contain at least 98 atomic % or more of Al and Cr in total. The proportion of metal components in the metal layer 22 can be determined, for example, by analysis using an EDS (energy dispersive X-ray spectrometer).
  • EDS energy dispersive X-ray spectrometer
  • the metal layer 22 may contain as little Ti as possible from the viewpoint of improving adhesion with the substrate 10. Specifically, the content of Ti in the metal layer 22 may be 15 atomic % or less.
  • the base 10 and the coating film can be bonded to each other. 20 can be improved. Since the metal layer 22 has high adhesion to the hard layer 21, peeling of the hard layer 21 from the metal layer 22 is unlikely to occur.
  • cBN used as the substrate 10 is an insulator
  • cBN which is an insulator
  • PVD physical vapor deposition
  • FIG. 4 is a schematic enlarged view of section H shown in FIG. 3.
  • the hard layer 21 has a laminated part 23 located on the metal layer 22 and a third metal nitride layer 24 located on the laminated part 23.
  • the laminated portion 23 includes a plurality of first metal nitride layers 23a and a plurality of second metal nitride layers 23b.
  • the laminated portion 23 has a structure in which first metal nitride layers 23a and second metal nitride layers 23b are alternately laminated.
  • the thickness of the first metal nitride layer 23a and the second metal nitride layer 23b may each be 50 nm or less.
  • the first metal nitride layer 23a is a layer in contact with the metal layer 22, and the second metal nitride layer 23b is formed on the first metal nitride layer 23a.
  • the first metal nitride layer 23a and the second metal nitride layer 23b may contain the metal contained in the metal layer 22.
  • the metal layer 22 contains two types of metals (herein referred to as "first metal” and "second metal”).
  • first metal nitride layer 23a contains nitrides of the first metal and the third metal.
  • the third metal is a metal that is not included in the metal layer 22.
  • second metal nitride layer 23b contains nitrides of the first metal and the second metal.
  • the metal layer 22 may contain Al and Cr.
  • the first metal nitride layer 23a may contain Al.
  • the first metal nitride layer 23a may be an AlTiN layer containing AlTiN, which is a nitride of Al and Ti.
  • the second metal nitride layer 23b may be an AlCrN layer containing AlCrN, which is a nitride of Al and Cr.
  • the adhesion between the metal layer 22 and the hard layer 21 is high. This makes it difficult for the hard layer 21 to peel off from the metal layer 22, so the durability of the coating film 20 is high.
  • the first metal nitride layer 23a that is, the AlTiN layer
  • the second metal nitride layer 23b ie, the AlCrN layer
  • the coating film 20 controls the characteristics such as wear resistance and heat resistance of the hard layer 21 by including the first metal nitride layer 23a and the second metal nitride layer 23b having mutually different compositions. be able to. Thereby, the tool life of the insert 1 can be extended.
  • mechanical properties such as adhesion with the metal layer 22 and abrasion resistance can be improved while maintaining the excellent heat resistance of AlCrN.
  • the laminated portion 23 may be formed by, for example, an arc ion plating method (AIP method).
  • AIP method uses arc discharge in a vacuum atmosphere to evaporate target metals (here, AlTi target and AlCr target), and forms metal nitrides (here, AlTiN and AlCrN) by combining with N2 gas. This is a method of coating.
  • the metal layer 22 may also be formed by the AIP method.
  • the third metal nitride layer 24 may be located on the laminated portion 23. Specifically, the third metal nitride layer 24 is in contact with the second metal nitride layer 23b of the laminated portion 23.
  • the third metal nitride layer 24 is, for example, a metal nitride layer (AlTiN layer) containing Ti and Al, like the first metal nitride layer 23a.
  • the thickness of the third metal nitride layer 24 may be thicker than each of the first metal nitride layer 23a and the second metal nitride layer 23b. Specifically, when the first metal nitride layer 23a and the second metal nitride layer 23b have a thickness of 50 nm or less as described above, the third metal nitride layer 24 may have a thickness of 1 ⁇ m or more. For example, the thickness of the third metal nitride layer 24 may be 1.2 ⁇ m.
  • the welding resistance of the insert 1 can be improved.
  • the wear resistance of the insert 1 can be improved.
  • the oxidation start temperature of the third metal nitride layer 24 is high, the oxidation resistance of the insert 1 can be improved.
  • the thickness of the third metal nitride layer 24 may be thicker than the thickness of the laminated portion 23. Specifically, in the embodiment, when the thickness of the laminated portion 23 is 0.5 ⁇ m or less, the thickness of the third metal nitride layer 24 may be 1 ⁇ m or more. For example, when the thickness of the laminated portion 23 is 0.3 ⁇ m, the thickness of the third metal nitride layer 24 may be 1.2 ⁇ m.
  • the thickness of the metal layer 22 may be, for example, 0.1 ⁇ m or more and less than 0.6 ⁇ m. That is, the metal layer 22 may be thicker than each of the first metal nitride layer 23a and the second metal nitride layer 23b, and thinner than the laminated portion 23.
  • FIG. 5 is a cross-sectional view showing an example of the cBN sintered body 11 that constitutes the base body 10 according to the embodiment.
  • the cBN sintered body 11 constituting the base 10 includes a plurality of cubic boron nitride (cBN) particles (hereinafter referred to as "cBN particles") 12 and a binder phase 13. including.
  • the cBN particles 12 are particles made of cubic boron nitride (cBN).
  • the binder phase 13 refers to a portion of the cBN sintered body 11 other than the plurality of cBN particles 12.
  • the bonded phase 13 is located between the plurality of cBN particles 12.
  • the bonded phase 13 binds the plurality of cBN particles 12. That is, in the cBN sintered body 11, a plurality of cBN particles 12 are bonded together via the binder phase 13.
  • the binder phase 13 is, for example, a carbide containing Ti (TiC), a nitride containing Ti (TiN), a carbonitride containing Ti (TiCN), a boride containing Ti, Al, AlN, and Al. Contains at least one compound selected from the group consisting of 2O3 .
  • boride containing Ti include titanium diboride (TiB 2 ).
  • Such a binder phase 13 can more firmly bind the plurality of cBN particles 12. Thereby, it is possible to reduce shedding of the cBN particles 12 from the binder phase 13 and/or the occurrence of cracks in the cBN sintered body 11. Thereby, the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
  • the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the plurality of cBN particles 12 is 3.2 ⁇ m ⁇ 1 That's all.
  • the cross section of the cBN sintered body 11 according to the embodiment is not particularly limited, and is any cross section of the cBN sintered body 11.
  • a photograph of the cross section of the cBN sintered body 11 can be taken using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • image processing software such as Image J can be used, for example.
  • the area of the cross section of the cBN sintered body 11 (cross-sectional area of the cBN sintered body 11) ( ⁇ m 2 ) and the cBN
  • the content rate (area %) of a plurality of cBN particles 12 in the quality sintered body 11 is obtained.
  • the content rate of the cBN particles 12 in the cBN sintered body 11 is determined by the sum of the area of the cBN particles 12 included in the cross section of the cBN sintered body 11 relative to the area of the cross section of the cBN sintered body 11. The ratio is x100.
  • the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 in the cross section of the cBN sintered body 11 can be determined. Obtain the sum ( ⁇ m).
  • the plural cBN particles 12 and the binder phase 13 can be increased. That is, the dispersibility of the plurality of cBN particles 12 in the binder phase 13 can be improved. Thereby, the bonding between the plurality of cBN particles 12 and the binder phase 13 can be improved. That is, the plurality of cBN particles 12 can be more firmly bound (sintered) by the binder phase 13.
  • bonding between the plurality of cBN particles 12 can be reduced.
  • the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
  • the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the cBN sintered body 11 is 2.2 ⁇ m ⁇ It may be 1 or more.
  • the cross sectional area ( ⁇ m 2 ) of the cBN sintered body 11 and the plurality of cBN particles 12 within the cross section of the cBN sintered body 11 are determined.
  • the total length ( ⁇ m) of grain boundaries between and the binder phase 13 is obtained.
  • the cBN sintered body 11 is determined.
  • the length ( ⁇ m ⁇ 1 ) of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area is obtained.
  • the plurality of cBN particles 12 and The contact area with phase 13 can be increased. That is, the dispersibility of the plurality of cBN particles 12 in the binder phase 13 can be improved. Thereby, the bonding between the plurality of cBN particles 12 and the binder phase 13 can be improved. That is, the plurality of cBN particles 12 can be more firmly bound (sintered) by the binder phase 13.
  • bonding between the plurality of cBN particles 12 can be reduced.
  • the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
  • the content of the plurality of cBN particles 12 in the cBN sintered body 11 may be at least 60 area % or more.
  • the content of the plurality of cBN particles 12 in the cBN sintered body 11 may be 65 area % or more.
  • the content rate of the plurality of cBN particles 12 in the cBN sintered body 11 may be 55 area % or more and 85 area % or less.
  • the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 55 area% or more, the fracture resistance of the insert 1 including the base body 10 constituted by the cBN sintered body 11 is improved. can be done.
  • the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 85 area% or less, the wear resistance of the insert 1 including the base body 10 constituted by the cBN sintered body 11 is improved. can be done.
  • each raw material powder in an organic solvent is ground and mixed in a ball mill for 20 to 24 hours. After pulverizing and mixing each raw material powder, the organic solvent is evaporated to obtain a first mixed powder.
  • IPA isopropyl alcohol
  • cBN powder having an average particle size of 2.0 to 4.5 ⁇ m is added to the obtained first mixed powder.
  • the volume ratio of the first mixed powder and the cBN powder is 22-32%:68-78%.
  • An organic solvent is added to the first mixed powder and cBN powder.
  • the organic solvent acetone or alcohols such as IPA can be used.
  • the first mixed powder in the organic solvent and the cBN powder are ground and mixed in a ball mill for 20 to 24 hours. After pulverizing and mixing the first mixed powder and cBN powder, the organic solvent is evaporated to obtain a second mixed powder.
  • the obtained second mixed powder is heat-treated in a vacuum atmosphere at 650 to 1000° C. for 1 to 4 hours in a vacuum furnace to obtain a third mixed powder.
  • an organic solvent is added to the obtained third mixed powder.
  • the organic solvent acetone or alcohols such as IPA can be used.
  • the third mixed powder in the organic solvent is ground and mixed in a ball mill for 20 to 24 hours.
  • an organic binder is added to the third mixed powder in the organic solvent.
  • the organic binder paraffin, acrylic resin, or the like can be used.
  • a fourth mixed powder is obtained by evaporating the organic solvent.
  • a dispersant may be added as necessary.
  • a molded body is obtained by molding this fourth mixed powder into a predetermined shape.
  • known methods such as uniaxial press or cold isostatic press (CIP) can be used.
  • This molded body is heated at a predetermined temperature within the range of 500 to 1000°C to evaporate and remove the organic binder, thereby obtaining a molded body for firing.
  • the molded body for firing is placed in an ultra-high pressure heating device and heated at a temperature of 1200 to 1500° C. for 15 to 30 minutes under a pressure of 4 to 6 GPa.
  • a cBN sintered body 11 according to the embodiment is obtained.
  • the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the plurality of cBN particles 12 is 3.2 ⁇ m - 1 or more, the cBN-based sintered body 11 can be obtained. Further, in the cross section of the cBN sintered body 11, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the cBN sintered body 11 is 2.2 ⁇ m ⁇ 1 or more. Thus, a cBN sintered body 11 can be obtained.
  • the cBN sintered body 11 is arranged so that the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 55 area % or more and 85 area % or less in the cross section of the cBN sintered body 11. can be obtained.
  • An insert 1 including a base body 10 can be obtained using the obtained cBN sintered body 11.
  • FIG. 6 is a front view showing an example of the cutting tool 100 according to the embodiment.
  • the cutting tool 100 includes an insert 1 and a holder 70 for fixing the insert 1.
  • the holder 70 is a rod-shaped member that extends from a first end (upper end in FIG. 6) to a second end (lower end in FIG. 6).
  • the holder 70 is made of steel or cast iron, for example. In particular, among these materials, steel with high toughness is sometimes used.
  • the holder 70 has a pocket 73 at the first end.
  • the pocket 73 is a portion to which the insert 1 is attached, and has a seating surface that intersects with the rotational direction of the workpiece, and a restraining side surface that is inclined with respect to the seating surface.
  • the seating surface is provided with a screw hole into which a screw 75 (described later) is screwed.
  • the insert 1 is located in the pocket 73 of the holder 70 and is attached to the holder 70 by a screw 75. That is, a screw 75 is inserted into the through hole 5 of the insert 1, and the tip of the screw 75 is inserted into a screw hole formed in the seating surface of the pocket 73, so that the screw portions are screwed together. Thereby, the insert 1 is attached to the holder 70 so that the cutting edge portion 3 protrudes outward from the holder 70.
  • a cutting tool used for so-called turning is exemplified.
  • turning processing include inner diameter processing, outer diameter processing, and grooving.
  • the cutting tool is not limited to those used for turning.
  • the insert 1 may be used in a cutting tool used for milling.
  • Cutting tools used for milling include, for example, milling cutters such as flat milling cutters, face milling cutters, side milling cutters, and groove milling cutters, and end mills such as single-flute end mills, multi-flute end mills, tapered-flute end mills, and ball end mills. Examples include.
  • cutting of a workpiece includes (1) a process of rotating the workpiece, (2) a process of bringing the cutting blade 3 of the insert 1 into contact with the rotating workpiece to cut the workpiece, and , (3) including the step of separating the insert 1 from the workpiece.
  • typical examples of the material of the workpiece include carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
  • Example 1 A cBN sintered body according to an example was produced as described below.
  • acetone and a dispersant were added to 77% by volume TiN raw powder, 18% by volume Al raw material powder, and 5 % by volume Al2O3 raw material powder, and then each raw material was mixed in acetone for 24 hours in a ball mill. The powder was ground and mixed. After pulverizing and mixing each raw material powder, acetone was evaporated to obtain a first mixed powder.
  • cBN powder with an average particle size of 3 ⁇ m was added to the obtained first mixed powder.
  • the volume ratio of the first mixed powder and cBN powder was 27:73.
  • the first mixed powder and cBN powder were ground and mixed in acetone for 24 hours in a ball mill.
  • acetone was evaporated to obtain a second mixed powder.
  • the obtained second mixed powder was heat treated in a vacuum atmosphere at a temperature of 800° C. for 2 hours in a vacuum furnace to obtain a third mixed powder.
  • acetone and a dispersant were added to the obtained third mixed powder, and then the third mixed powder in acetone was ground and mixed in a ball mill for 24 hours. After pulverizing and mixing the obtained third mixed powder, an organic binder was further added to the third mixed powder in acetone. Thereafter, the acetone was evaporated to obtain a fourth mixed powder.
  • a molded body was obtained by molding the obtained fourth mixed powder using a uniaxial pressure press.
  • the organic binder was evaporated and removed by heating the obtained molded body at a temperature of 800° C., and a molded body for firing was obtained.
  • the obtained compact for firing was placed in an ultra-high pressure heating device and heated at a temperature of 1350° C. for 20 minutes under a pressure of 5 GPa.
  • a cBN sintered body according to the example was obtained.
  • acetone and a dispersant were added to 77% by volume TiN raw powder, 18% by volume Al raw material powder, and 5 % by volume Al2O3 raw material powder, and then each raw material was mixed in acetone for 24 hours in a ball mill. The powder was ground and mixed. After pulverizing and mixing each raw material powder, acetone was evaporated to obtain a fifth mixed powder.
  • cBN powder having an average particle size of 3 ⁇ m was added to the obtained fifth mixed powder.
  • the volume ratio of the fifth mixed powder and cBN powder was 27:73.
  • the fifth mixed powder and cBN powder were ground and mixed in acetone for 24 hours in a ball mill.
  • an organic binder was further added to the fifth mixed powder and cBN powder in acetone. Thereafter, the acetone was evaporated to obtain a sixth mixed powder.
  • a molded body was obtained by molding the obtained sixth mixed powder using a uniaxial pressure press.
  • the organic binder was evaporated and removed by heating the obtained molded body at a temperature of 800° C., and a molded body for firing was obtained.
  • the obtained compact for firing was placed in an ultra-high pressure heating device and heated at a temperature of 1350° C. for 20 minutes under a pressure of 5 GPa.
  • a cBN sintered body according to a comparative example was obtained.
  • the total area ( ⁇ m 2 ) of cBN particles in the cross section of the cBN sintered body was calculated from the cross-sectional area of the cBN sintered body and the content of cBN particles in the cBN sintered body. From the total length of the grain boundaries between the cBN particles and the binder phase and the total area of the cBN particles, the length of the grain boundaries between the cBN particles and the binder phase per unit area of the cBN particles ( ⁇ m -1 ) was calculated. From the total length of the grain boundaries between the cBN particles and the binder phase and the cross-sectional area of the cBN sintered body 11, the length of the grain boundaries between the cBN particles and the binder phase per unit area of the cBN sintered body is calculated. The length ( ⁇ m ⁇ 1 ) was obtained.
  • FIG. 7 is a diagram showing the results of image analysis for photographs of each cross section of the cBN sintered body according to the example and the photographs of each cross section of the cBN sintered body according to the comparative example.
  • the relationship between the cBN particles and the binder phase per unit area of the cBN particles in the cross section of the cBN sintered body according to the example is The grain boundary length was 3.2 ⁇ m ⁇ 1 or more.
  • the length of the grain boundary between the cBN particles and the binder phase per unit area of the cBN sintered body in the cross section of the cBN sintered body according to the example was 2.2 ⁇ m ⁇ 1 or more.
  • the content of cBN particles in the cBN sintered body in the cross section of the cBN sintered body according to the example is 55 area % or more and 85 area % or less. there were.
  • the ratio of cBN particles and binder phase per unit area of cBN particles in the cross section of the cBN sintered body according to the comparative example is The length of the grain boundaries between the grains was less than 3.2 ⁇ m ⁇ 1 .
  • the length of the grain boundary between the cBN particles and the binder phase per unit area of the cBN sintered body in the cross section of the cBN sintered body according to the comparative example was less than 2.2 ⁇ m ⁇ 1 .
  • FIG. 8 shows the field of view No. in the cBN sintered body according to the example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • FIG. 9 shows the field of view No. in the cBN sintered body according to the comparative example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • FIG. 8 shows the field of view No. in the cBN sintered body according to the example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • FIG. 9 shows the field of view No. in the cBN sintered body according to the comparative example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1.
  • the contact area between the cBN particles and the binder phase in the cBN sintered body according to the example is the same as the contact area between the cBN particles and the binder phase in the cBN sintered body according to the comparative example. It was confirmed that the contact area between the In other words, the frequency of bonding between cBN particles in the cBN sintered body according to the example is lower than the frequency of bonding between cBN particles in the cBN sintered body according to the comparative example. I was able to confirm.
  • the dispersibility of cBN particles in the binder phase in the cBN sintered body according to the example is higher than the dispersibility of cBN particles in the binder phase in the cBN sintered body according to the comparative example. I was able to do that.
  • an insert according to an embodiment includes a plurality of cubic boron nitride particles (for example, a plurality of cBN particles 12) and a bonding phase that binds the plurality of cubic boron nitride particles.
  • a cubic boron nitride sintered body for example, a cBN sintered body 11
  • a binder phase 13 for example, a binder phase 13
  • the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 ⁇ m - It is 1 or more.
  • the length of the grain boundary between the binder phase and the plurality of cubic boron nitride particles per unit area of the cubic boron nitride sintered body is 2.2 ⁇ m. -1 or more.
  • the content of the plurality of cubic boron nitride particles in the cubic boron nitride sintered body is 55 area % or more and 85 area % or less.
  • the dispersibility of the plurality of cBN particles in the binder phase can be improved, and therefore the bonding between the plurality of cBN particles and the binder phase can be improved. Therefore, the wear resistance and chipping resistance of the insert including the base body made of the cBN sintered body can be improved.
  • the insert 1 according to the embodiment may further include a coating film (for example, the coating film 20) located on the cBN sintered body 11.
  • a coating film for example, the coating film 20 located on the cBN sintered body 11.
  • the shape of the top surface and the bottom surface of the cutting tool 100 is a parallelogram, but the shape of the top surface and the bottom surface of the cutting tool 100 may be a rhombus, a square, or the like.
  • the shape of the upper surface and lower surface of the cutting tool 100 may be triangular, pentagonal, hexagonal, or the like.
  • the shape of the cutting tool 100 may be a positive type or a negative type.
  • the positive type is a type in which the side surface is inclined with respect to a central axis passing through the center of the upper surface and the center of the lower surface of the cutting tool 100
  • the negative type is a type in which the side surface is parallel to the central axis.
  • a cross-section of the cubic boron nitride sintered body comprising a plurality of cubic boron nitride particles and a binder phase that binds the plurality of cubic boron nitride particles.
  • the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 ⁇ m ⁇ 1 or more.
  • the binder phase is a group consisting of a carbide containing Ti, a nitride containing Ti, a carbonitride containing Ti, a boride containing Ti, Al, AlN, and Al 2 O 3
  • the coating film includes a hard phase and a metal layer located between the cubic boron nitride sintered body and the hard phase, and the metal layer includes Ti, Zr, V , Cr, Ta, Nb, Hf, and Al, the insert according to supplementary note (5).
  • the metal layer contains at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y. ).
  • a cutting tool comprising a rod-shaped holder having a pocket at an end, and an insert according to any one of Supplementary Notes (1) to (7) located within the pocket.

Abstract

An insert according to the present disclosure comprises a cubic boron nitride sintered compact including a plurality of cubic boron nitride particles and a binding phase that bind the plurality of cubic boron nitride particles. In the cross-section of the cubic boron nitride sintered compact, the length of grain boundaries between the binding phase and the plurality of cubic boron nitride particles per unit area of the plurality of cubic boron nitride particles is 3.2 μm-1 or greater.

Description

インサートおよび切削工具inserts and cutting tools 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年6月28日に出願された日本国特許出願2022-103940の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。 This application claims priority to Japanese Patent Application No. 2022-103940 filed on June 28, 2022, and the entire disclosure of this earlier application is hereby incorporated by reference.
 本開示は、インサートおよび切削工具に関する。 The present disclosure relates to inserts and cutting tools.
 立方晶窒化硼素(cBN:cubic Boron Nitride)は、ダイヤモンドに次ぐ硬度を有し、化学的安定性に優れる。このため、cBN質焼結体は、たとえば焼入鋼、鋳鉄、または焼結合金等の鉄系金属を加工するための切削工具として広く用いられている。 Cubic boron nitride (cBN) has a hardness second only to diamond and is excellent in chemical stability. Therefore, cBN sintered bodies are widely used as cutting tools for machining ferrous metals such as hardened steel, cast iron, or sintered alloys.
特許第6900590号公報Patent No. 6900590
 本開示の一態様によるインサートは、複数の立方晶窒化硼素粒子および複数の立方晶窒化硼素粒子を結合する結合相を含む立方晶窒化硼素質焼結体を備える。立方晶窒化硼素質焼結体の断面内において、複数の立方晶窒化硼素粒子の単位面積当たりの複数の立方晶窒化硼素粒子と結合相との間における粒界の長さは、3.2μm-1以上である。 An insert according to one aspect of the present disclosure includes a cubic boron nitride sintered body that includes a plurality of cubic boron nitride particles and a binder phase that binds the plurality of cubic boron nitride particles. In the cross section of the cubic boron nitride sintered body, the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 μm - It is 1 or more.
図1は、実施形態に係るインサートの一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an insert according to an embodiment. 図2は、実施形態に係るインサートの一例を示す側断面図である。FIG. 2 is a side sectional view showing an example of the insert according to the embodiment. 図3は、実施形態に係る被覆膜の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of the coating film according to the embodiment. 図4は、図3に示すH部の模式拡大図である。FIG. 4 is a schematic enlarged view of section H shown in FIG. 3. 図5は、実施形態に係る基体を構成するcBN質焼結体の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a cBN sintered body constituting the base according to the embodiment. 図6は、実施形態に係る切削工具の一例を示す正面図である。FIG. 6 is a front view showing an example of the cutting tool according to the embodiment. 図7は、実施例に係るcBN焼結体の各断面の写真および比較例に係るcBN焼結体の各断面の写真に対する画像解析の結果を示す図である。FIG. 7 is a diagram showing the results of image analysis on photographs of each cross section of the cBN sintered body according to the example and photographs of each cross section of the cBN sintered body according to the comparative example. 図8は、実施例に係るcBN質焼結体における視野No.1の断面の写真の部分拡大図である。FIG. 8 shows the field of view No. in the cBN sintered body according to the example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1. FIG. 図9は、比較例に係るcBN質焼結体における視野No.1の断面の写真の部分拡大図である。FIG. 9 shows the field of view No. in the cBN sintered body according to the comparative example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1. FIG.
 以下に、本開示によるインサートおよび切削工具を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。この実施形態により本開示によるインサートおよび切削工具が限定されるものではない。各実施形態は、内容を矛盾させない範囲で適宜組み合わせることが可能である。以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments for implementing the insert and cutting tool according to the present disclosure (hereinafter referred to as "embodiments") will be described in detail with reference to the drawings. This embodiment does not limit inserts and cutting tools according to the present disclosure. Each embodiment can be combined as appropriate within the scope of not contradicting the contents. In each of the following embodiments, the same parts are given the same reference numerals, and redundant explanations will be omitted.
 以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、または設置精度などのずれを許容するものとする。 In the embodiments described below, expressions such as "constant," "orthogonal," "perpendicular," or "parallel" may be used, but these expressions strictly refer to "constant," "orthogonal," and "perpendicular." Or, they do not need to be "parallel". That is, each of the above expressions allows deviations in manufacturing accuracy, installation accuracy, etc., for example.
 立方晶窒化硼素(cBN:cubic Boron Nitride)は、ダイヤモンドに次ぐ硬度を有し、化学的安定性に優れる。このため、cBN質焼結体は、たとえば焼入鋼、鋳鉄、または焼結合金等の鉄系金属を加工するための切削工具として広く用いられている。 Cubic boron nitride (cBN) has a hardness second only to diamond and is excellent in chemical stability. Therefore, cBN sintered bodies are widely used as cutting tools for machining ferrous metals such as hardened steel, cast iron, or sintered alloys.
 上述した従来技術には、耐摩耗性および耐欠損性を向上させるという点で更なる改善の余地がある。 The above-mentioned conventional techniques have room for further improvement in terms of improving wear resistance and chipping resistance.
 そこで、上述の問題点を克服し、耐摩耗性および耐欠損性を向上させることができる技術の実現が期待されている。 Therefore, it is expected to realize a technology that can overcome the above-mentioned problems and improve wear resistance and chipping resistance.
 <インサート>
 まず、実施形態に係るインサート1の具体的な構成について図1および図2を参照して説明する。図1は、実施形態に係るインサート1の一例を示す斜視図である。図2は、実施形態に係るインサート1の一例を示す側断面図である。
<Insert>
First, the specific configuration of the insert 1 according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing an example of an insert 1 according to an embodiment. FIG. 2 is a side sectional view showing an example of the insert 1 according to the embodiment.
 図1に示すように、実施形態に係るインサート1は、切削工具用のインサートであり、たとえば、上面および下面(図1に示すZ軸と交わる面)の形状が平行四辺形である六面体形状を有する。 As shown in FIG. 1, the insert 1 according to the embodiment is an insert for a cutting tool, and has, for example, a hexahedral shape in which the upper surface and the lower surface (the surface intersecting the Z axis shown in FIG. 1) are parallelograms. have
 (本体部2)
 実施形態に係るインサート1は、本体部2と、後述する接合材40(図2参照)を介して本体部2に取り付けられた基体10とを含む。
(Main body part 2)
The insert 1 according to the embodiment includes a main body 2 and a base 10 attached to the main body 2 via a bonding material 40 (see FIG. 2), which will be described later.
 本体部2は、たとえば超硬合金で形成される。超硬合金は、W(タングステン)、具体的には、WC(炭化タングステン)を含有する。超硬合金は、Ni(ニッケル)またはCo(コバルト)を含有していてもよい。本体部2は、サーメットで形成されてもよい。サーメットは、たとえばTi(チタン)、具体的には、TiC(炭化チタン)またはTiN(窒化チタン)を含有する。サーメットは、NiまたはCoを含有していてもよい。 The main body portion 2 is made of cemented carbide, for example. The cemented carbide contains W (tungsten), specifically, WC (tungsten carbide). The cemented carbide may contain Ni (nickel) or Co (cobalt). The main body portion 2 may be formed of cermet. The cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride). The cermet may contain Ni or Co.
 本体部2の端部には、基体10を取り付けるための座面4が位置する。本体部2の中央部には、本体部2を上下に貫通する貫通孔5が位置する。貫通孔5には、後述するホルダ70にインサート1を取り付けるためのネジ75が挿入される(図6参照)。 A seat surface 4 for attaching the base 10 is located at the end of the main body 2. A through hole 5 that vertically passes through the main body 2 is located in the center of the main body 2 . A screw 75 for attaching the insert 1 to a holder 70 (described later) is inserted into the through hole 5 (see FIG. 6).
 (基体10)
 基体10は、本体部2の座面4に取り付けられる。これにより、基体10は、本体部2と一体化される。
(Base 10)
The base 10 is attached to the seat surface 4 of the main body 2. Thereby, the base body 10 is integrated with the main body portion 2.
 基体10は、第1面6(ここでは、上面)と、第1面6に連接する第2面7(ここでは、側面)とを有する。実施形態において、第1面6は切削により生じた切屑をすくい取る「すくい面」として機能し、第2面7は「逃げ面」として機能する。第1面6と第2面7とが交わる稜線の少なくとも一部には、切刃8が位置しており、インサート1は、かかる切刃8を被削材に当てることによって被削材を切削する。 The base 10 has a first surface 6 (here, the top surface) and a second surface 7 (here, the side surface) connected to the first surface 6. In the embodiment, the first surface 6 functions as a "rake surface" that scoops up chips generated by cutting, and the second surface 7 functions as a "relief surface." A cutting blade 8 is located on at least a portion of the ridge line where the first surface 6 and the second surface 7 intersect, and the insert 1 cuts the work material by applying the cutting blade 8 to the work material. do.
 基体10は、立方晶窒化硼素(cBN:cubic Boron Nitride)質焼結体(以下、「cBN質焼結体」と記載する。)である。cBNは、ダイヤモンドに次ぐ硬度を有し、化学的安定性に優れる。基体10を構成するcBN質焼結体の具体的な構成については、後述する。 The base body 10 is a cubic boron nitride (cBN) sintered body (hereinafter referred to as "cBN sintered body"). cBN has a hardness second only to diamond and has excellent chemical stability. The specific structure of the cBN sintered body constituting the base body 10 will be described later.
 図2に示すように、基体10の下面には、たとえば超硬合金またはサーメットからなる基板30が位置していてもよい。この場合、基体10は、基板30および接合材40を介して本体部2の座面4に接合される。接合材40は、たとえばロウ材である。本体部2の座面4以外の部分では、基体10は接合材40を介して本体部2と接合されてもよい。 As shown in FIG. 2, a substrate 30 made of, for example, cemented carbide or cermet may be located on the lower surface of the base 10. In this case, the base 10 is bonded to the seat surface 4 of the main body 2 via the substrate 30 and the bonding material 40. The bonding material 40 is, for example, a brazing material. The base 10 may be joined to the main body 2 via a bonding material 40 at a portion of the main body 2 other than the seat surface 4 .
 実施形態では、インサート1の一部である基体10のみがcBN質焼結体で構成されるが、インサート1の全体がcBN質焼結体で構成されてもよい。 In the embodiment, only the base body 10, which is a part of the insert 1, is made of a cBN sintered body, but the entire insert 1 may be made of a cBN sintered body.
 (被覆膜20)
 基体10は、被覆膜20に覆われていてもよい。被覆膜20は、例えば、基体10の耐摩耗性、および耐熱性等を向上させることを目的として基体10を被覆する。図2の例では、被覆膜20が本体部2および基体10を全体的に被覆している。これに限らず、被覆膜20は、基体10の表面の少なくとも一部上に位置していればよい。この場合には、基体10の耐熱性および耐摩耗性を向上させることができる。被覆膜20は、本体部2の上面に位置していてもよい。被覆膜20が基体10の上面に位置する場合、第1面6(図1参照)の耐摩耗性、および耐熱性が高い。被覆膜20が基体10の側面に位置する場合、第2面7(図1参照)の耐摩耗性、および耐熱性が高い。
(Coating film 20)
The base body 10 may be covered with a coating film 20. The coating film 20 covers the base body 10 for the purpose of improving the wear resistance, heat resistance, etc. of the base body 10, for example. In the example of FIG. 2, the coating film 20 covers the main body portion 2 and the base 10 entirely. However, the present invention is not limited thereto, and the coating film 20 may be located on at least a portion of the surface of the base body 10 . In this case, the heat resistance and abrasion resistance of the base body 10 can be improved. The coating film 20 may be located on the upper surface of the main body part 2. When the coating film 20 is located on the upper surface of the base 10, the first surface 6 (see FIG. 1) has high wear resistance and high heat resistance. When the coating film 20 is located on the side surface of the base 10, the second surface 7 (see FIG. 1) has high wear resistance and heat resistance.
 ここで、被覆膜20の具体的な構成について図3を参照して説明する。図3は、実施形態に係る被覆膜20の一例を示す断面図である。 Here, the specific structure of the coating film 20 will be explained with reference to FIG. 3. FIG. 3 is a cross-sectional view showing an example of the coating film 20 according to the embodiment.
 図3に示すように、被覆膜20は、硬質層21を含む。硬質層21は、後述する金属層22と比較して耐摩耗性に優れた層である。硬質層21は、一層以上の金属窒化物層を有する。硬質層21は一層であってもよい。図3に示すように複数の金属窒化物層が重なっていてもよい。硬質層21は、複数の金属窒化物層が積層された積層部23と、積層部23の上に位置する第3金属窒化物層24とを有していてもよい。かかる硬質層21の構成については後述する。 As shown in FIG. 3, the coating film 20 includes a hard layer 21. The hard layer 21 is a layer with excellent wear resistance compared to the metal layer 22 described later. Hard layer 21 includes one or more metal nitride layers. The hard layer 21 may be one layer. As shown in FIG. 3, multiple metal nitride layers may be overlapped. The hard layer 21 may include a laminated portion 23 in which a plurality of metal nitride layers are laminated, and a third metal nitride layer 24 located on the laminated portion 23. The structure of such hard layer 21 will be described later.
 (金属層22)
 被覆膜20は、金属層22を含む。金属層22は、基体10と硬質層21との間に位置する。具体的には、金属層22は、一方の面(ここでは下面)において基体10の上面に接し、且つ、他方の面(ここでは上面)において硬質層21の下面に接する。
(Metal layer 22)
Covering film 20 includes metal layer 22 . Metal layer 22 is located between base body 10 and hard layer 21 . Specifically, the metal layer 22 is in contact with the upper surface of the base 10 on one surface (here, the lower surface), and is in contact with the lower surface of the hard layer 21 on the other surface (here, the upper surface).
 金属層22は、基体10との密着性が硬質層21と比べて高い。このような特性を有する金属元素としては、たとえば、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、およびYが挙げられる。金属層22は、上記金属元素のうち少なくとも一種以上の金属元素を含有する。このように、金属層22が、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、およびYからなる群より選択された少なくとも一種の元素を含有する場合には、基体10と被覆膜20との間の密着性を向上させることができる。 The metal layer 22 has higher adhesion to the base 10 than the hard layer 21. Examples of metal elements having such characteristics include Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y. The metal layer 22 contains at least one metal element among the above metal elements. In this way, when the metal layer 22 contains at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y, The adhesion between the coating film 10 and the coating film 20 can be improved.
 Tiの単体、Zrの単体、Vの単体、Crの単体およびAlの単体は、金属層22としては用いられない。これらはいずれも融点が低く、耐酸化性が低いことから、切削工具への使用に適さないためである。Hfの単体、Nbの単体、Taの単体は、基体10との密着性が低い。ただし、Ti、Zr、V、Cr、Ta、Nb、Hf、またはAlを含む合金については、この限りではない。よって、金属層22は、Ti、Zr、V、Cr、Ta、Nb、Hf、およびAlの単体以外の金属からなることがある。この場合には、金属層22の耐酸化性および基体10と被覆膜20との間の密着力を向上させることができる。 A simple substance of Ti, a simple substance of Zr, a simple substance of V, a simple substance of Cr, and a simple substance of Al are not used as the metal layer 22. This is because all of these have low melting points and low oxidation resistance, making them unsuitable for use in cutting tools. Hf alone, Nb alone, and Ta alone have low adhesion to the substrate 10. However, this does not apply to alloys containing Ti, Zr, V, Cr, Ta, Nb, Hf, or Al. Therefore, the metal layer 22 may be made of a metal other than Ti, Zr, V, Cr, Ta, Nb, Hf, and Al. In this case, the oxidation resistance of the metal layer 22 and the adhesion between the base 10 and the coating film 20 can be improved.
 金属層22は、Al-Cr合金を含有するAl-Cr合金層であってもよい。かかる金属層22は、基体10との密着性が特に高いことから、基体10と被覆膜20との密着性を向上させる効果が高い。 The metal layer 22 may be an Al-Cr alloy layer containing an Al-Cr alloy. Since the metal layer 22 has particularly high adhesion to the base 10, it is highly effective in improving the adhesion between the base 10 and the coating film 20.
 金属層22がAl-Cr合金層である場合、金属層22におけるAlの含有量は、金属層22におけるCrの含有量よりも多くてもよい。たとえば、金属層22におけるAlとCrとの組成比(原子%)は、70:30であってもよい。このような組成比率とすることで、基体10と金属層22との密着性はより高い。 When the metal layer 22 is an Al-Cr alloy layer, the content of Al in the metal layer 22 may be greater than the content of Cr in the metal layer 22. For example, the composition ratio (atomic %) of Al and Cr in the metal layer 22 may be 70:30. With such a composition ratio, the adhesion between the base body 10 and the metal layer 22 is higher.
 金属層22は、上記金属元素(Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、およびY)以外の成分を含有していてもよい。ただし、基体10との密着性の観点から、金属層22は、上記金属元素を合量で少なくとも95原子%以上含有していてもよい。金属層22は、上記金属元素を合量で98原子%以上含有してもよい。たとえば、金属層22がAl-Cr合金層である場合、金属層22は、少なくとも、AlおよびCrを合量で95原子%以上含有していてもよい。金属層22は、少なくとも、AlおよびCrを合量で98原子%以上含有していてもよい。金属層22における金属成分の割合は、たとえば、EDS(エネルギー分散型X線分光器)を用いた分析により特定可能である。 The metal layer 22 may contain components other than the above metal elements (Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y). However, from the viewpoint of adhesion to the base 10, the metal layer 22 may contain at least 95 atomic % or more of the above metal elements in total. The metal layer 22 may contain the above metal elements in a total amount of 98 atomic % or more. For example, when the metal layer 22 is an Al--Cr alloy layer, the metal layer 22 may contain at least 95 atomic % or more of Al and Cr in total. The metal layer 22 may contain at least 98 atomic % or more of Al and Cr in total. The proportion of metal components in the metal layer 22 can be determined, for example, by analysis using an EDS (energy dispersive X-ray spectrometer).
 Tiは実施形態に係る基体10との濡れ性が悪いため、基体10との密着性向上の観点から、金属層22は、Tiを極力含有していないことがある。具体的には、金属層22におけるTiの含有量は、15原子%以下であってもよい。 Since Ti has poor wettability with the substrate 10 according to the embodiment, the metal layer 22 may contain as little Ti as possible from the viewpoint of improving adhesion with the substrate 10. Specifically, the content of Ti in the metal layer 22 may be 15 atomic % or less.
 このように、実施形態に係るインサート1では、基体10との濡れ性が硬質層21と比べて高い金属層22を基体10と硬質層21との間に設けることにより、基体10と被覆膜20との密着性を向上させることができる。金属層22は、硬質層21との密着性も高いため、硬質層21が金属層22から剥離するといったことも生じにくい。 In this way, in the insert 1 according to the embodiment, by providing the metal layer 22 which has higher wettability with the base 10 than the hard layer 21 between the base 10 and the hard layer 21, the base 10 and the coating film can be bonded to each other. 20 can be improved. Since the metal layer 22 has high adhesion to the hard layer 21, peeling of the hard layer 21 from the metal layer 22 is unlikely to occur.
 基体10として用いられるcBNは、絶縁体であり、絶縁体であるcBNには、PVD法(物理蒸着)により形成される膜との密着性に改善の余地があった。これに対し、実施形態に係るインサート1では、導電性を有する金属層22を基体10の表面に設けることで、PVDにより形成される硬質層21と金属層22との密着性が高い。 cBN used as the substrate 10 is an insulator, and cBN, which is an insulator, has room for improvement in adhesion with a film formed by PVD (physical vapor deposition). In contrast, in the insert 1 according to the embodiment, by providing the conductive metal layer 22 on the surface of the base 10, the adhesion between the hard layer 21 and the metal layer 22 formed by PVD is high.
 (硬質層21)
 次に、硬質層21の構成について図4を参照して説明する。図4は、図3に示すH部の模式拡大図である。
(Hard layer 21)
Next, the structure of the hard layer 21 will be explained with reference to FIG. 4. FIG. 4 is a schematic enlarged view of section H shown in FIG. 3.
 図4に示すように、硬質層21は、金属層22の上に位置する積層部23と、積層部23の上に位置する第3金属窒化物層24とを有する。 As shown in FIG. 4, the hard layer 21 has a laminated part 23 located on the metal layer 22 and a third metal nitride layer 24 located on the laminated part 23.
 積層部23は、複数の第1金属窒化物層23aと複数の第2金属窒化物層23bとを有する。積層部23は、第1金属窒化物層23aと第2金属窒化物層23bとが交互に積層された構成を有している。 The laminated portion 23 includes a plurality of first metal nitride layers 23a and a plurality of second metal nitride layers 23b. The laminated portion 23 has a structure in which first metal nitride layers 23a and second metal nitride layers 23b are alternately laminated.
 第1金属窒化物層23aおよび第2金属窒化物層23bの厚みは、それぞれ50nm以下としてもよい。このように、第1金属窒化物層23aおよび第2金属窒化物層23bを薄く形成することで、第1金属窒化物層23aおよび第2金属窒化物層23bの残留応力が小さい。これにより、たとえば、第1金属窒化物層23aおよび第2金属窒化物層23bの剥離またはクラック等が生じ難くなることから、被覆膜20の耐久性が高い。 The thickness of the first metal nitride layer 23a and the second metal nitride layer 23b may each be 50 nm or less. By forming the first metal nitride layer 23a and the second metal nitride layer 23b thin in this way, the residual stress in the first metal nitride layer 23a and the second metal nitride layer 23b is small. Thereby, for example, peeling or cracking of the first metal nitride layer 23a and the second metal nitride layer 23b becomes less likely to occur, so that the durability of the coating film 20 is high.
 第1金属窒化物層23aは、金属層22に接する層であり、第2金属窒化物層23bは、第1金属窒化物層23a上に形成される。 The first metal nitride layer 23a is a layer in contact with the metal layer 22, and the second metal nitride layer 23b is formed on the first metal nitride layer 23a.
 第1金属窒化物層23aおよび第2金属窒化物層23bは、金属層22に含まれる金属を含有していてもよい。 The first metal nitride layer 23a and the second metal nitride layer 23b may contain the metal contained in the metal layer 22.
 たとえば、金属層22に二種類の金属(ここでは、「第1の金属」、および「第2の金属」とする)が含まれているとする。この場合、第1金属窒化物層23aは、第1の金属および第3の金属の窒化物を含有する。第3の金属は、金属層22に含まれない金属である。また、第2金属窒化物層23bは、第1の金属および第2の金属の窒化物を含有する。 For example, assume that the metal layer 22 contains two types of metals (herein referred to as "first metal" and "second metal"). In this case, the first metal nitride layer 23a contains nitrides of the first metal and the third metal. The third metal is a metal that is not included in the metal layer 22. Further, the second metal nitride layer 23b contains nitrides of the first metal and the second metal.
 たとえば、実施形態において、金属層22は、AlおよびCrを含有してもよい。この場合、第1金属窒化物層23aは、Alを含有してもよい。具体的には、第1金属窒化物層23aは、AlおよびTiの窒化物であるAlTiNを含有するAlTiN層であってもよい。第2金属窒化物層23bは、AlおよびCrの窒化物であるAlCrNを含有するAlCrN層であってもよい。 For example, in the embodiment, the metal layer 22 may contain Al and Cr. In this case, the first metal nitride layer 23a may contain Al. Specifically, the first metal nitride layer 23a may be an AlTiN layer containing AlTiN, which is a nitride of Al and Ti. The second metal nitride layer 23b may be an AlCrN layer containing AlCrN, which is a nitride of Al and Cr.
 このように、金属層22に含まれる金属を含有する第1金属窒化物層23aを金属層22の上に位置させることで、金属層22と硬質層21との密着性が高い。これにより、硬質層21が金属層22から剥離し難くなるため、被覆膜20の耐久性が高い。 In this way, by positioning the first metal nitride layer 23a containing the metal contained in the metal layer 22 on the metal layer 22, the adhesion between the metal layer 22 and the hard layer 21 is high. This makes it difficult for the hard layer 21 to peel off from the metal layer 22, so the durability of the coating film 20 is high.
 第1金属窒化物層23aすなわちAlTiN層は、上述した金属層22との密着性の他、たとえば耐摩耗性に優れる。第2金属窒化物層23bすなわちAlCrN層は、たとえば耐熱性、および耐酸化性に優れる。このように、被覆膜20は、互いに異なる組成の第1金属窒化物層23aおよび第2金属窒化物層23bを含むことで、硬質層21の耐摩耗性および耐熱性等の特性を制御することができる。これにより、インサート1の工具寿命を延ばすことができる。たとえば、実施形態に係る硬質層21においては、AlCrNが持つ優れた耐熱性を維持しつつ、金属層22との密着性および耐摩耗性といった機械的性質を向上させることができる。 The first metal nitride layer 23a, that is, the AlTiN layer, has excellent adhesion with the metal layer 22 described above and, for example, excellent wear resistance. The second metal nitride layer 23b, ie, the AlCrN layer, has excellent heat resistance and oxidation resistance, for example. In this way, the coating film 20 controls the characteristics such as wear resistance and heat resistance of the hard layer 21 by including the first metal nitride layer 23a and the second metal nitride layer 23b having mutually different compositions. be able to. Thereby, the tool life of the insert 1 can be extended. For example, in the hard layer 21 according to the embodiment, mechanical properties such as adhesion with the metal layer 22 and abrasion resistance can be improved while maintaining the excellent heat resistance of AlCrN.
 積層部23は、たとえばアークイオンプレーティング法(AIP法)により成膜してもよい。AIP法は、真空雰囲気でアーク放電を利用してターゲット金属(ここでは、AlTiターゲットおよびAlCrターゲット)を蒸発させ、Nガスと結合することによって金属窒化物(ここでは、AlTiNとAlCrN)を成膜する方法である。金属層22もAIP法により成膜してもよい。 The laminated portion 23 may be formed by, for example, an arc ion plating method (AIP method). The AIP method uses arc discharge in a vacuum atmosphere to evaporate target metals (here, AlTi target and AlCr target), and forms metal nitrides (here, AlTiN and AlCrN) by combining with N2 gas. This is a method of coating. The metal layer 22 may also be formed by the AIP method.
 第3金属窒化物層24は、積層部23の上に位置してもよい。具体的には、第3金属窒化物層24は、積層部23のうち第2金属窒化物層23bと接する。第3金属窒化物層24は、たとえば、第1金属窒化物層23aと同様、TiおよびAlを含有する金属窒化物層(AlTiN層)である。 The third metal nitride layer 24 may be located on the laminated portion 23. Specifically, the third metal nitride layer 24 is in contact with the second metal nitride layer 23b of the laminated portion 23. The third metal nitride layer 24 is, for example, a metal nitride layer (AlTiN layer) containing Ti and Al, like the first metal nitride layer 23a.
 第3金属窒化物層24の厚みは、第1金属窒化物層23aおよび第2金属窒化物層23bの各厚みよりも厚くてもよい。具体的には、上述したように第1金属窒化物層23aおよび第2金属窒化物層23bの厚みは50nm以下とした場合、第3金属窒化物層24の厚みは、1μm以上としてもよい。たとえば、第3金属窒化物層24の厚みは、1.2μmであってもよい。 The thickness of the third metal nitride layer 24 may be thicker than each of the first metal nitride layer 23a and the second metal nitride layer 23b. Specifically, when the first metal nitride layer 23a and the second metal nitride layer 23b have a thickness of 50 nm or less as described above, the third metal nitride layer 24 may have a thickness of 1 μm or more. For example, the thickness of the third metal nitride layer 24 may be 1.2 μm.
 これにより、たとえば、第3金属窒化物層24の摩擦係数が低い場合には、インサート1の耐溶着性を向上させることができる。たとえば、第3金属窒化物層24の硬度が高い場合には、インサート1の耐摩耗性を向上させることができる。たとえば、第3金属窒化物層24の酸化開始温度が高い場合には、インサート1の耐酸化性を向上させることができる。 Thereby, for example, when the third metal nitride layer 24 has a low coefficient of friction, the welding resistance of the insert 1 can be improved. For example, when the third metal nitride layer 24 has high hardness, the wear resistance of the insert 1 can be improved. For example, when the oxidation start temperature of the third metal nitride layer 24 is high, the oxidation resistance of the insert 1 can be improved.
 第3金属窒化物層24の厚みは、積層部23の厚みよりも厚くてもよい。具体的には、実施形態において、積層部23の厚みは0.5μm以下とした場合、第3金属窒化物層24の厚みは、1μm以上であってもよい。たとえば、積層部23の厚みが0.3μmである場合、第3金属窒化物層24の厚みは1.2μmであってもよい。このように、第3金属窒化物層24を積層部23よりも厚くすることで、上述した耐溶着性、および耐摩耗性等を向上させる効果がさらに高い。 The thickness of the third metal nitride layer 24 may be thicker than the thickness of the laminated portion 23. Specifically, in the embodiment, when the thickness of the laminated portion 23 is 0.5 μm or less, the thickness of the third metal nitride layer 24 may be 1 μm or more. For example, when the thickness of the laminated portion 23 is 0.3 μm, the thickness of the third metal nitride layer 24 may be 1.2 μm. By making the third metal nitride layer 24 thicker than the laminated portion 23 in this way, the effect of improving the welding resistance, wear resistance, etc. described above is even higher.
 金属層22の厚みは、たとえば0.1μm以上、0.6μm未満であってもよい。すなわち、金属層22は、第1金属窒化物層23aおよび第2金属窒化物層23bの各々よりも厚く、且つ、積層部23よりも薄くてもよい。 The thickness of the metal layer 22 may be, for example, 0.1 μm or more and less than 0.6 μm. That is, the metal layer 22 may be thicker than each of the first metal nitride layer 23a and the second metal nitride layer 23b, and thinner than the laminated portion 23.
 <cBN質焼結体の構成>
 次に、図5を参照して実施形態に係る基体10を構成するcBN質焼結体11の構成を説明する。図5は、実施形態に係る基体10を構成するcBN質焼結体11の一例を示す断面図である。
<Structure of cBN sintered body>
Next, the configuration of the cBN sintered body 11 that constitutes the base body 10 according to the embodiment will be explained with reference to FIG. FIG. 5 is a cross-sectional view showing an example of the cBN sintered body 11 that constitutes the base body 10 according to the embodiment.
 図5に示すように、実施形態に係る基体10を構成するcBN質焼結体11は、複数の立方晶窒化硼素(cBN)粒子(以下、「cBN粒子」と記載する)12および結合相13を含む。cBN粒子12は、立方晶窒化硼素(cBN)で構成された粒子である。 As shown in FIG. 5, the cBN sintered body 11 constituting the base 10 according to the embodiment includes a plurality of cubic boron nitride (cBN) particles (hereinafter referred to as "cBN particles") 12 and a binder phase 13. including. The cBN particles 12 are particles made of cubic boron nitride (cBN).
 結合相13は、cBN質焼結体11における複数のcBN粒子12以外の部分を指す。結合相13は、複数のcBN粒子12の間に位置する。結合相13は、複数のcBN粒子12を結合する。すなわち、cBN質焼結体11においては、複数のcBN粒子12が結合相13を介して結合されている。 The binder phase 13 refers to a portion of the cBN sintered body 11 other than the plurality of cBN particles 12. The bonded phase 13 is located between the plurality of cBN particles 12. The bonded phase 13 binds the plurality of cBN particles 12. That is, in the cBN sintered body 11, a plurality of cBN particles 12 are bonded together via the binder phase 13.
 結合相13は、例えば、Tiを含有する炭化物(TiC)、Tiを含有する窒化物(TiN)、Tiを含有する炭窒化物(TiCN)、Tiを含有する硼化物、Al、AlN、およびAlからなる群より選択された少なくとも一種の化合物を含有する。Tiを含有する硼化物としては、例えば、二硼化チタン(TiB)が挙げられる。 The binder phase 13 is, for example, a carbide containing Ti (TiC), a nitride containing Ti (TiN), a carbonitride containing Ti (TiCN), a boride containing Ti, Al, AlN, and Al. Contains at least one compound selected from the group consisting of 2O3 . Examples of boride containing Ti include titanium diboride (TiB 2 ).
 このような結合相13は、複数のcBN粒子12をより強固に結びつけることができる。それにより、結合相13からのcBN粒子12の脱粒および/またはcBN質焼結体11内のクラックの発生を低減することができる。それにより、cBN質焼結体11によって構成される基体10を含むインサート1の耐摩耗性および耐欠損性を向上させることができる。 Such a binder phase 13 can more firmly bind the plurality of cBN particles 12. Thereby, it is possible to reduce shedding of the cBN particles 12 from the binder phase 13 and/or the occurrence of cracks in the cBN sintered body 11. Thereby, the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
 実施形態に係るcBN質焼結体11の断面内において、複数のcBN粒子12の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さは、3.2μm-1以上である。 In the cross section of the cBN sintered body 11 according to the embodiment, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the plurality of cBN particles 12 is 3.2 μm −1 That's all.
 実施形態に係るcBN質焼結体11の断面は、特に限定されず、cBN質焼結体11の任意の断面である。例えば、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)によって、cBN質焼結体11の断面の写真を撮影することができる。 The cross section of the cBN sintered body 11 according to the embodiment is not particularly limited, and is any cross section of the cBN sintered body 11. For example, a photograph of the cross section of the cBN sintered body 11 can be taken using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
 cBN質焼結体11の断面の写真に対して画像解析を適用することによって、cBN質焼結体11の断面内における、複数のcBN粒子12の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さを得ることができる。cBN質焼結体11の断面の写真に対する画像解析には、例えば、Image Jのような画像処理ソフトウェアを用いることができる。 By applying image analysis to a photograph of the cross section of the cBN sintered body 11, it is possible to determine the number of cBN particles 12 and the binder phase per unit area of the plurality of cBN particles 12 in the cross section of the cBN sintered body 11. 13 can be obtained. For image analysis of the photograph of the cross section of the cBN sintered body 11, image processing software such as Image J can be used, for example.
 まず、cBN質焼結体11の断面の写真に対して画像解析を適用することによって、cBN質焼結体11の断面の面積(cBN質焼結体11の断面積)(μm)およびcBN質焼結体11中の複数のcBN粒子12の含有率(面積%)を得る。cBN質焼結体11中の複数のcBN粒子12の含有率は、cBN質焼結体11の断面の面積に対するcBN質焼結体11の断面に含まれる複数のcBN粒子12の面積の総和の比×100である。次に、cBN質焼結体11の断面積にcBN質焼結体11中の複数のcBN粒子12の含有率/100を乗算することによって、cBN質焼結体11の断面内における複数のcBN粒子12の面積の総和(μm)を得る。 First, by applying image analysis to a photograph of the cross section of the cBN sintered body 11, the area of the cross section of the cBN sintered body 11 (cross-sectional area of the cBN sintered body 11) (μm 2 ) and the cBN The content rate (area %) of a plurality of cBN particles 12 in the quality sintered body 11 is obtained. The content rate of the cBN particles 12 in the cBN sintered body 11 is determined by the sum of the area of the cBN particles 12 included in the cross section of the cBN sintered body 11 relative to the area of the cross section of the cBN sintered body 11. The ratio is x100. Next, by multiplying the cross-sectional area of the cBN sintered body 11 by the content ratio of the plurality of cBN particles 12 in the cBN sintered body 11/100, the number of cBN particles in the cross section of the cBN sintered body 11 is calculated. The total area (μm 2 ) of the particles 12 is obtained.
 cBN質焼結体11の断面の写真に対して画像解析を適用することによって、cBN質焼結体11の断面内における複数のcBN粒子12と結合相13との間における粒界の長さの総和(μm)を得る。 By applying image analysis to a photograph of the cross section of the cBN sintered body 11, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 in the cross section of the cBN sintered body 11 can be determined. Obtain the sum (μm).
 次に、上記のような複数のcBN粒子12と結合相13との間における粒界の長さの総和を上記のような複数のcBN粒子12の面積の総和で除算することによって、複数のcBN粒子12の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さ(μm-1)を得る。 Next, by dividing the total length of the grain boundaries between the multiple cBN particles 12 and the binder phase 13 by the total area of the multiple cBN particles 12 as described above, The length (μm −1 ) of grain boundaries between the plurality of cBN particles 12 and the binder phase 13 per unit area of the particles 12 is obtained.
 複数のcBN粒子12の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さが、3.2μm-1以上である場合には、複数のcBN粒子12と結合相13との間の接触面積を増加させることができる。すなわち、結合相13中における複数のcBN粒子12の分散性を向上させることができる。それにより、複数のcBN粒子12と結合相13との間の結合を向上させることができる。すなわち、複数のcBN粒子12を結合相13によってより強固に結合(焼結)させることができる。 When the length of the grain boundary between the plural cBN particles 12 and the binder phase 13 per unit area of the plural cBN particles 12 is 3.2 μm −1 or more, the plural cBN particles 12 and the binder phase 13 can be increased. That is, the dispersibility of the plurality of cBN particles 12 in the binder phase 13 can be improved. Thereby, the bonding between the plurality of cBN particles 12 and the binder phase 13 can be improved. That is, the plurality of cBN particles 12 can be more firmly bound (sintered) by the binder phase 13.
 言い換えれば、複数のcBN粒子12の間の接合を低減することができる。その結果、複数のcBN粒子12の間の接合部分から生じると考えられる、結合相13からのcBN粒子12の脱粒および/またはcBN質焼結体11内のクラックの発生を低減することができる。それにより、cBN質焼結体11によって構成される基体10を含むインサート1の耐摩耗性および耐欠損性を向上させることができる。 In other words, bonding between the plurality of cBN particles 12 can be reduced. As a result, it is possible to reduce shedding of the cBN particles 12 from the binder phase 13 and/or the occurrence of cracks in the cBN sintered body 11, which are thought to occur from the joint portions between the plurality of cBN particles 12. Thereby, the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
 実施形態に係るcBN質焼結体11の断面内において、cBN質焼結体11の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さは、2.2μm-1以上であることがある。 In the cross section of the cBN sintered body 11 according to the embodiment, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the cBN sintered body 11 is 2.2 μm It may be 1 or more.
 cBN質焼結体11の断面の写真に対して画像解析を適用することによって、cBN質焼結体11の断面積(μm)およびcBN質焼結体11の断面内における複数のcBN粒子12と結合相13との間における粒界の長さの総和(μm)を得る。次に、上記のような複数のcBN粒子12と結合相13との間における粒界の長さの総和をcBN質焼結体11の断面積で除算することによって、cBN質焼結体11の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さ(μm-1)を得る。 By applying image analysis to a photograph of the cross section of the cBN sintered body 11, the cross sectional area (μm 2 ) of the cBN sintered body 11 and the plurality of cBN particles 12 within the cross section of the cBN sintered body 11 are determined. The total length (μm) of grain boundaries between and the binder phase 13 is obtained. Next, by dividing the sum of the lengths of the grain boundaries between the plurality of cBN particles 12 and the binder phase 13 as described above by the cross-sectional area of the cBN sintered body 11, the cBN sintered body 11 is determined. The length (μm −1 ) of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area is obtained.
 cBN質焼結体11の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さが、2.2μm-1以上である場合には、複数のcBN粒子12と結合相13との間の接触面積を増加させることができる。すなわち、結合相13中における複数のcBN粒子12の分散性を向上させることができる。それにより、複数のcBN粒子12と結合相13との間の結合を向上させることができる。すなわち、複数のcBN粒子12を結合相13によってより強固に結合(焼結)させることができる。 When the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the cBN-based sintered body 11 is 2.2 μm −1 or more, the plurality of cBN particles 12 and The contact area with phase 13 can be increased. That is, the dispersibility of the plurality of cBN particles 12 in the binder phase 13 can be improved. Thereby, the bonding between the plurality of cBN particles 12 and the binder phase 13 can be improved. That is, the plurality of cBN particles 12 can be more firmly bound (sintered) by the binder phase 13.
 言い換えれば、複数のcBN粒子12の間の接合を低減することができる。その結果、複数のcBN粒子12の間の接合部分から生じると考えられる、結合相13からのcBN粒子12の脱粒および/またはcBN質焼結体11内のクラックの発生を低減することができる。それにより、cBN質焼結体11によって構成される基体10を含むインサート1の耐摩耗性および耐欠損性を向上させることができる。 In other words, bonding between the plurality of cBN particles 12 can be reduced. As a result, it is possible to reduce shedding of the cBN particles 12 from the binder phase 13 and/or the occurrence of cracks in the cBN sintered body 11, which are thought to occur from the joint portions between the plurality of cBN particles 12. Thereby, the wear resistance and chipping resistance of the insert 1 including the base body 10 made of the cBN sintered body 11 can be improved.
 実施形態に係るcBN質焼結体11の断面内において、cBN質焼結体11中の複数のcBN粒子12の含有率は、少なくとも60面積%以上であればよい。cBN質焼結体11中の複数のcBN粒子12の含有率は、65面積%以上であってもよい。cBN質焼結体11の断面の写真に対して画像解析を適用することによって、cBN質焼結体11中の複数のcBN粒子12の含有率(面積%)を得る。 In the cross section of the cBN sintered body 11 according to the embodiment, the content of the plurality of cBN particles 12 in the cBN sintered body 11 may be at least 60 area % or more. The content of the plurality of cBN particles 12 in the cBN sintered body 11 may be 65 area % or more. By applying image analysis to a photograph of the cross section of the cBN sintered body 11, the content rate (area %) of the plurality of cBN particles 12 in the cBN sintered body 11 is obtained.
 実施形態に係るcBN質焼結体11の断面内において、cBN質焼結体11中の複数のcBN粒子12の含有率は、55面積%以上85面積%以下であることがある。cBN質焼結体11中の複数のcBN粒子12の含有率が、55面積%以上である場合には、cBN質焼結体11によって構成される基体10を含むインサート1の耐欠損性を向上させることができる。cBN質焼結体11中の複数のcBN粒子12の含有率が、85面積%以下である場合には、cBN質焼結体11によって構成される基体10を含むインサート1の耐摩耗性を向上させることができる。 In the cross section of the cBN sintered body 11 according to the embodiment, the content rate of the plurality of cBN particles 12 in the cBN sintered body 11 may be 55 area % or more and 85 area % or less. When the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 55 area% or more, the fracture resistance of the insert 1 including the base body 10 constituted by the cBN sintered body 11 is improved. can be done. When the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 85 area% or less, the wear resistance of the insert 1 including the base body 10 constituted by the cBN sintered body 11 is improved. can be done.
 <cBN質焼結体の製造方法>
 次に、実施形態に係るcBN質焼結体11を製造する方法の一例を説明する。cBN質焼結体11を製造する方法は、以下に示す方法に限定されない。
<Method for producing cBN sintered body>
Next, an example of a method for manufacturing the cBN sintered body 11 according to the embodiment will be described. The method for manufacturing the cBN sintered body 11 is not limited to the method shown below.
 まず、72~82体積%のTiN原料粉末、13~23体積%のAl原料粉末、および1~11体積%のAl原料粉末を準備する。準備した各原料粉末に有機溶媒を添加する。有機溶媒としては、アセトン、またはイソプロピルアルコール(IPA)等のアルコール類を用いることができる。その後、ボールミルにて、20~24時間、有機溶媒中の各原料粉末を粉砕および混合する。各原料粉末の粉砕および混合後、有機溶媒を蒸発させることにより、第1混合粉末を得る。 First, 72 to 82 volume % TiN raw powder, 13 to 23 volume % Al raw material powder, and 1 to 11 volume % Al 2 O 3 raw material powder are prepared. An organic solvent is added to each prepared raw material powder. As the organic solvent, acetone or alcohols such as isopropyl alcohol (IPA) can be used. Thereafter, each raw material powder in an organic solvent is ground and mixed in a ball mill for 20 to 24 hours. After pulverizing and mixing each raw material powder, the organic solvent is evaporated to obtain a first mixed powder.
 次に、得られた第1混合粉末へ平均粒径が2.0~4.5μmであるcBN粉末を添加する。ここで、第1混合粉末およびcBN粉末の体積比は、22~32%:68~78%である。第1混合粉末およびcBN粉末に有機溶媒を添加する。有機溶媒としては、アセトン、またはIPA等のアルコール類が用いることができる。その後、ボールミルにて、20~24時間、有機溶媒中の第1混合粉末およびcBN粉末を粉砕および混合する。第1混合粉末およびcBN粉末の粉砕および混合後、有機溶媒を蒸発させることにより、第2混合粉末を得る。 Next, cBN powder having an average particle size of 2.0 to 4.5 μm is added to the obtained first mixed powder. Here, the volume ratio of the first mixed powder and the cBN powder is 22-32%:68-78%. An organic solvent is added to the first mixed powder and cBN powder. As the organic solvent, acetone or alcohols such as IPA can be used. Thereafter, the first mixed powder in the organic solvent and the cBN powder are ground and mixed in a ball mill for 20 to 24 hours. After pulverizing and mixing the first mixed powder and cBN powder, the organic solvent is evaporated to obtain a second mixed powder.
 次に、得られた第2混合粉末を、真空炉にて、650~1000℃で1~4時間、真空雰囲気で熱処理を施すことにより、第3混合粉末を得る。 Next, the obtained second mixed powder is heat-treated in a vacuum atmosphere at 650 to 1000° C. for 1 to 4 hours in a vacuum furnace to obtain a third mixed powder.
 次に、得られた第3混合粉末に有機溶媒を添加する。有機溶媒としては、アセトン、またはIPA等のアルコール類を用いることができる。その後、ボールミルにて20~24時間、有機溶媒中の第3混合粉末を粉砕および混合する。第3混合粉末の粉砕および混合後、有機溶媒中の第3混合粉末に有機バインダーを添加する。有機バインダーとしては、パラフィン、またはアクリル系樹脂等を用いることができる。その後、有機溶媒を蒸発させることにより、第4混合粉末が得られる。 Next, an organic solvent is added to the obtained third mixed powder. As the organic solvent, acetone or alcohols such as IPA can be used. Thereafter, the third mixed powder in the organic solvent is ground and mixed in a ball mill for 20 to 24 hours. After pulverizing and mixing the third mixed powder, an organic binder is added to the third mixed powder in the organic solvent. As the organic binder, paraffin, acrylic resin, or the like can be used. Thereafter, a fourth mixed powder is obtained by evaporating the organic solvent.
 なお、ボールミルを用いた工程では必要に応じて分散剤を添加してもよい。 Note that in the process using a ball mill, a dispersant may be added as necessary.
 この第4混合粉末を所定の形状に成形することによって成形体が得られる。成形には、一軸加圧プレス、または冷間等方圧プレス(CIP)等の既知の方法を使用することができる。この成形体を500~1000℃の範囲内の所定の温度にて加熱し、有機バインダーを蒸発および除去し、焼成用成形体を得る。 A molded body is obtained by molding this fourth mixed powder into a predetermined shape. For forming, known methods such as uniaxial press or cold isostatic press (CIP) can be used. This molded body is heated at a predetermined temperature within the range of 500 to 1000°C to evaporate and remove the organic binder, thereby obtaining a molded body for firing.
 次に、焼成用成形体を超高圧加熱装置に装入し、4~6GPaの圧力下において1200~1500℃の温度で15~30分間加熱する。これにより、実施形態に係るcBN質焼結体11を得る。 Next, the molded body for firing is placed in an ultra-high pressure heating device and heated at a temperature of 1200 to 1500° C. for 15 to 30 minutes under a pressure of 4 to 6 GPa. As a result, a cBN sintered body 11 according to the embodiment is obtained.
 このようにして、cBN質焼結体11の断面内において、複数のcBN粒子12の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さが、3.2μm-1以上であるように、cBN質焼結体11を得ることができる。また、cBN質焼結体11の断面内において、cBN質焼結体11の単位面積当たりの複数のcBN粒子12と結合相13との間における粒界の長さが、2.2μm-1以上であるように、cBN質焼結体11を得ることができる。また、cBN質焼結体11の断面内において、cBN質焼結体11中の複数のcBN粒子12の含有率が、55面積%以上85面積%以下であるように、cBN質焼結体11を得ることができる。得られたcBN質焼結体11を用いて基体10含むインサート1を得ることができる。 In this way, within the cross section of the cBN sintered body 11, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the plurality of cBN particles 12 is 3.2 μm - 1 or more, the cBN-based sintered body 11 can be obtained. Further, in the cross section of the cBN sintered body 11, the length of the grain boundary between the plurality of cBN particles 12 and the binder phase 13 per unit area of the cBN sintered body 11 is 2.2 μm −1 or more. Thus, a cBN sintered body 11 can be obtained. Further, the cBN sintered body 11 is arranged so that the content of the plurality of cBN particles 12 in the cBN sintered body 11 is 55 area % or more and 85 area % or less in the cross section of the cBN sintered body 11. can be obtained. An insert 1 including a base body 10 can be obtained using the obtained cBN sintered body 11.
 <切削工具>
 次に、上述したインサート1を備えた切削工具100の構成について図6を参照して説明する。図6は、実施形態に係る切削工具100の一例を示す正面図である。
<Cutting tools>
Next, the configuration of the cutting tool 100 including the insert 1 described above will be described with reference to FIG. 6. FIG. 6 is a front view showing an example of the cutting tool 100 according to the embodiment.
 図6に示すように、実施形態に係る切削工具100は、インサート1と、インサート1を固定するためのホルダ70とを備える。 As shown in FIG. 6, the cutting tool 100 according to the embodiment includes an insert 1 and a holder 70 for fixing the insert 1.
 ホルダ70は、第1端(図6における上端)から第2端(図6における下端)に向かって伸びる棒状の部材である。ホルダ70は、たとえば、鋼、または鋳鉄製である。特に、これらの材料の中で靱性の高い鋼を用いることがある。 The holder 70 is a rod-shaped member that extends from a first end (upper end in FIG. 6) to a second end (lower end in FIG. 6). The holder 70 is made of steel or cast iron, for example. In particular, among these materials, steel with high toughness is sometimes used.
 ホルダ70は、第1端側の端部にポケット73を有する。ポケット73は、インサート1が装着される部分であり、被削材の回転方向と交わる着座面と、着座面に対して傾斜する拘束側面とを有する。着座面には、後述するネジ75を螺合させるネジ孔が設けられている。 The holder 70 has a pocket 73 at the first end. The pocket 73 is a portion to which the insert 1 is attached, and has a seating surface that intersects with the rotational direction of the workpiece, and a restraining side surface that is inclined with respect to the seating surface. The seating surface is provided with a screw hole into which a screw 75 (described later) is screwed.
 インサート1は、ホルダ70のポケット73に位置し、ネジ75によってホルダ70に装着される。すなわち、インサート1の貫通孔5にネジ75を挿入し、このネジ75の先端をポケット73の着座面に形成されたネジ孔に挿入してネジ部同士を螺合させる。これにより、インサート1は、切刃部3がホルダ70から外方に突出するようにホルダ70に装着される。 The insert 1 is located in the pocket 73 of the holder 70 and is attached to the holder 70 by a screw 75. That is, a screw 75 is inserted into the through hole 5 of the insert 1, and the tip of the screw 75 is inserted into a screw hole formed in the seating surface of the pocket 73, so that the screw portions are screwed together. Thereby, the insert 1 is attached to the holder 70 so that the cutting edge portion 3 protrudes outward from the holder 70.
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工および溝入れ加工が挙げられる。切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具にインサート1を用いてもよい。転削加工に用いられる切削工具としては、たとえば、平フライス、正面フライス、側フライス、および溝切りフライスなどフライス、および、1枚刃エンドミル、複数刃エンドミル、テーパ刃エンドミル、およびボールエンドミルなどのエンドミルなどが挙げられる。 In the embodiment, a cutting tool used for so-called turning is exemplified. Examples of turning processing include inner diameter processing, outer diameter processing, and grooving. The cutting tool is not limited to those used for turning. For example, the insert 1 may be used in a cutting tool used for milling. Cutting tools used for milling include, for example, milling cutters such as flat milling cutters, face milling cutters, side milling cutters, and groove milling cutters, and end mills such as single-flute end mills, multi-flute end mills, tapered-flute end mills, and ball end mills. Examples include.
 たとえば、被削材の切削加工は、(1)被削材を回転させる工程、(2)回転する被削材にインサート1の切刃部3を接触させて被削材を切削する工程、および、(3)インサート1を被削材から離す工程を含む。なお、被削材の材質の代表例としては、炭素鋼、合金鋼、ステンレス、鋳鉄、または非鉄金属などが挙げられる。 For example, cutting of a workpiece includes (1) a process of rotating the workpiece, (2) a process of bringing the cutting blade 3 of the insert 1 into contact with the rotating workpiece to cut the workpiece, and , (3) including the step of separating the insert 1 from the workpiece. Note that typical examples of the material of the workpiece include carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
 以下、本開示の実施例を説明するが、本開示は以下の実施例に限定されるものではない。 Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
 (実施例)
 実施例に係るcBN質焼結体を以下に述べるように作製した。
(Example)
A cBN sintered body according to an example was produced as described below.
 まず、77体積%のTiN原料粉末と、18体積%のAl原料粉末と、5体積%のAl原料粉末にアセトンおよび分散剤を添加した後、ボールミルにて24時間アセトン中の各原料粉末を粉砕および混合した。各原料粉末の粉砕および混合後、アセトンを蒸発させることにより、第1混合粉末を得た。 First, acetone and a dispersant were added to 77% by volume TiN raw powder, 18% by volume Al raw material powder, and 5 % by volume Al2O3 raw material powder, and then each raw material was mixed in acetone for 24 hours in a ball mill. The powder was ground and mixed. After pulverizing and mixing each raw material powder, acetone was evaporated to obtain a first mixed powder.
 次に、得られた第1混合粉末へ平均粒径が3μmのcBN粉末を添加した。第1混合粉末およびcBN粉末の体積比は、27:73であった。第1混合粉末およびcBN粉末にアセトンおよび分散剤を添加した後、ボールミルにて24時間アセトン中の第1混合粉末およびcBN粉末を粉砕および混合した。第1混合粉末およびcBN粉末の粉砕および混合後、アセトンを蒸発させることにより、第2混合粉末を得た。 Next, cBN powder with an average particle size of 3 μm was added to the obtained first mixed powder. The volume ratio of the first mixed powder and cBN powder was 27:73. After adding acetone and a dispersant to the first mixed powder and cBN powder, the first mixed powder and cBN powder were ground and mixed in acetone for 24 hours in a ball mill. After pulverizing and mixing the first mixed powder and cBN powder, acetone was evaporated to obtain a second mixed powder.
 次に、得られた第2混合粉末に対して、真空炉にて2時間800℃の温度における真空雰囲気で熱処理を施すことにより、第3混合粉末を得た。 Next, the obtained second mixed powder was heat treated in a vacuum atmosphere at a temperature of 800° C. for 2 hours in a vacuum furnace to obtain a third mixed powder.
 次に、得られた第3混合粉末にアセトンおよび分散剤を添加した後、ボールミルにて24時間アセトン中の第3混合粉末を粉砕および混合した。得られた第3混合粉末の粉砕および混合後、アセトン中の第3混合粉末に有機バインダーをさらに添加した。その後、アセトンを蒸発させることにより、第4混合粉末を得た。 Next, acetone and a dispersant were added to the obtained third mixed powder, and then the third mixed powder in acetone was ground and mixed in a ball mill for 24 hours. After pulverizing and mixing the obtained third mixed powder, an organic binder was further added to the third mixed powder in acetone. Thereafter, the acetone was evaporated to obtain a fourth mixed powder.
 次に、得られた第4混合粉末を一軸加圧プレスにて成形することにより、成形体を得た。得られた成形体を800℃の温度で加熱することにより、有機バインダーを蒸発および除去し、焼成用成形体を得た。 Next, a molded body was obtained by molding the obtained fourth mixed powder using a uniaxial pressure press. The organic binder was evaporated and removed by heating the obtained molded body at a temperature of 800° C., and a molded body for firing was obtained.
 次に、得られた焼成用成形体を超高圧加熱装置に装入し、5GPaの圧力下において1350℃の温度で20分間加熱した。これにより、実施例に係るcBN質焼結体を得た。 Next, the obtained compact for firing was placed in an ultra-high pressure heating device and heated at a temperature of 1350° C. for 20 minutes under a pressure of 5 GPa. As a result, a cBN sintered body according to the example was obtained.
 (比較例)
 比較例に係るcBN質焼結体を以下に述べるように作製した。
(Comparative example)
A cBN sintered body according to a comparative example was produced as described below.
 まず、77体積%のTiN原料粉末と、18体積%のAl原料粉末と、5体積%のAl原料粉末にアセトンおよび分散剤を添加した後、ボールミルにて24時間アセトン中の各原料粉末を粉砕および混合した。各原料粉末の粉砕および混合後、アセトンを蒸発させることにより、第5混合粉末を得た。 First, acetone and a dispersant were added to 77% by volume TiN raw powder, 18% by volume Al raw material powder, and 5 % by volume Al2O3 raw material powder, and then each raw material was mixed in acetone for 24 hours in a ball mill. The powder was ground and mixed. After pulverizing and mixing each raw material powder, acetone was evaporated to obtain a fifth mixed powder.
 次に、得られた第5混合粉末へ平均粒径が3μmのcBN粉末を添加した。第5混合粉末およびcBN粉末の体積比は、27:73であった。第5混合粉末およびcBN粉末にアセトンおよび分散剤を添加した後、ボールミルにて24時間アセトン中の第5混合粉末およびcBN粉末を粉砕および混合した。第5混合粉末およびcBN粉末の粉砕および混合後、アセトン中の第5混合粉末およびcBN粉末に有機バインダーをさらに添加した。その後、アセトンを蒸発させることにより、第6混合粉末を得た。 Next, cBN powder having an average particle size of 3 μm was added to the obtained fifth mixed powder. The volume ratio of the fifth mixed powder and cBN powder was 27:73. After adding acetone and a dispersant to the fifth mixed powder and cBN powder, the fifth mixed powder and cBN powder were ground and mixed in acetone for 24 hours in a ball mill. After grinding and mixing the fifth mixed powder and cBN powder, an organic binder was further added to the fifth mixed powder and cBN powder in acetone. Thereafter, the acetone was evaporated to obtain a sixth mixed powder.
 次に、得られた第6混合粉末を一軸加圧プレスにて成形することにより、成形体を得た。得られた成形体を800℃の温度で加熱することにより、有機バインダーを蒸発および除去し、焼成用成形体を得た。 Next, a molded body was obtained by molding the obtained sixth mixed powder using a uniaxial pressure press. The organic binder was evaporated and removed by heating the obtained molded body at a temperature of 800° C., and a molded body for firing was obtained.
 次に、得られた焼成用成形体を超高圧加熱装置に装入し、5GPaの圧力下において1350℃の温度で20分間加熱した。これにより、比較例に係るcBN質焼結体を得た。 Next, the obtained compact for firing was placed in an ultra-high pressure heating device and heated at a temperature of 1350° C. for 20 minutes under a pressure of 5 GPa. As a result, a cBN sintered body according to a comparative example was obtained.
 (画像解析)
 得られた実施例に係るcBN質焼結体および比較例に係るcBN質焼結体の各々について、走査型電子顕微鏡(SEM)によって、cBN質焼結体の断面の写真を撮影した。ここで、実施例に係るcBN質焼結体における視野No.1、視野No.2、視野No.3、および視野No.4の断面の写真を撮影した。比較例に係るcBN質焼結体における視野No.1、視野No.2、および視野No.3の断面の写真を撮影した。
(Image analysis)
For each of the obtained cBN sintered body according to the example and the cBN sintered body according to the comparative example, a photograph of a cross section of the cBN sintered body was taken using a scanning electron microscope (SEM). Here, the field of view No. in the cBN sintered body according to the example. 1. Field of view No. 2. Field of view No. 3, and field of view no. A photograph of the cross section of 4 was taken. Field of view No. in the cBN sintered body according to the comparative example. 1. Field of view No. 2, and field of view no. I took a photo of the cross section of 3.
 次に、画像処理ソフトウェアImage Jを用いることによって、実施例に係るcBN焼結体の各断面の写真および比較例に係るcBN焼結体の各断面の写真に対して画像解析を行った。このようなcBN質焼結体の各断面の写真に対する画像解析によって、cBN質焼結体の断面積(μm)、cBN質焼結体中のcBN粒子の含有率(面積%)、および、cBN質焼結体の断面内におけるcBN粒子と結合相との間における粒界の長さの総和(μm)を得た。 Next, by using image processing software Image J, image analysis was performed on the photographs of each cross section of the cBN sintered body according to the example and the photographs of each cross section of the cBN sintered body according to the comparative example. By image analysis of photographs of each cross section of such a cBN sintered body, the cross-sectional area (μm 2 ) of the cBN sintered body, the content rate (area %) of cBN particles in the cBN sintered body, and The total length (μm) of the grain boundaries between the cBN particles and the binder phase in the cross section of the cBN sintered body was obtained.
 cBN質焼結体の断面積およびcBN質焼結体中のcBN粒子の含有率から、cBN質焼結体の断面内におけるcBN粒子の面積の総和(μm)を算出した。cBN粒子と結合相との間における粒界の長さの総和およびcBN粒子の面積の総和から、cBN粒子の単位面積当たりのcBN粒子と結合相との間における粒界の長さ(μm-1)を算出した。cBN粒子と結合相との間における粒界の長さの総和およびcBN質焼結体11の断面積から、cBN質焼結体の単位面積当たりのcBN粒子と結合相との間における粒界の長さ(μm-1)を得た。 The total area (μm 2 ) of cBN particles in the cross section of the cBN sintered body was calculated from the cross-sectional area of the cBN sintered body and the content of cBN particles in the cBN sintered body. From the total length of the grain boundaries between the cBN particles and the binder phase and the total area of the cBN particles, the length of the grain boundaries between the cBN particles and the binder phase per unit area of the cBN particles (μm -1 ) was calculated. From the total length of the grain boundaries between the cBN particles and the binder phase and the cross-sectional area of the cBN sintered body 11, the length of the grain boundaries between the cBN particles and the binder phase per unit area of the cBN sintered body is calculated. The length (μm −1 ) was obtained.
 図7は、実施例に係るcBN焼結体の各断面の写真および比較例に係るcBN焼結体の各断面の写真に対する画像解析の結果を示す図である。 FIG. 7 is a diagram showing the results of image analysis for photographs of each cross section of the cBN sintered body according to the example and the photographs of each cross section of the cBN sintered body according to the comparative example.
 図7に示すように、実施例に係るcBN焼結体の各断面について、実施例に係るcBN質焼結体の断面内における、cBN粒子の単位面積当たりのcBN粒子と結合相との間における粒界の長さは、3.2μm-1以上であった。実施例に係るcBN焼結体の各断面について、実施例に係るcBN質焼結体の断面内における、cBN質焼結体の単位面積当たりのcBN粒子と結合相との間における粒界の長さは、2.2μm-1以上であった。実施例に係るcBN焼結体の各断面について、実施例に係るcBN質焼結体の断面内における、cBN質焼結体中のcBN粒子の含有率は、55面積%以上85面積%以下であった。 As shown in FIG. 7, for each cross section of the cBN sintered body according to the example, the relationship between the cBN particles and the binder phase per unit area of the cBN particles in the cross section of the cBN sintered body according to the example is The grain boundary length was 3.2 μm −1 or more. For each cross section of the cBN sintered body according to the example, the length of the grain boundary between the cBN particles and the binder phase per unit area of the cBN sintered body in the cross section of the cBN sintered body according to the example. The thickness was 2.2 μm −1 or more. Regarding each cross section of the cBN sintered body according to the example, the content of cBN particles in the cBN sintered body in the cross section of the cBN sintered body according to the example is 55 area % or more and 85 area % or less. there were.
 一方、図7に示すように、比較例に係るcBN焼結体の各断面について、比較例に係るcBN質焼結体の断面内における、cBN粒子の単位面積当たりのcBN粒子と結合相との間における粒界の長さは、3.2μm-1未満であった。比較例に係るcBN焼結体の各断面について、比較例に係るcBN質焼結体の断面内における、cBN質焼結体の単位面積当たりのcBN粒子と結合相との間における粒界の長さは、2.2μm-1未満であった。 On the other hand, as shown in FIG. 7, for each cross section of the cBN sintered body according to the comparative example, the ratio of cBN particles and binder phase per unit area of cBN particles in the cross section of the cBN sintered body according to the comparative example is The length of the grain boundaries between the grains was less than 3.2 μm −1 . For each cross section of the cBN sintered body according to the comparative example, the length of the grain boundary between the cBN particles and the binder phase per unit area of the cBN sintered body in the cross section of the cBN sintered body according to the comparative example. The thickness was less than 2.2 μm −1 .
 図8は、実施例に係るcBN質焼結体における視野No.1の断面の写真の部分拡大図である。図9は、比較例に係るcBN質焼結体における視野No.1の断面の写真の部分拡大図である。 FIG. 8 shows the field of view No. in the cBN sintered body according to the example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1. FIG. FIG. 9 shows the field of view No. in the cBN sintered body according to the comparative example. 1 is a partially enlarged view of a cross-sectional photograph of No. 1. FIG.
 図8および図9に示すように、実施例に係るcBN質焼結体におけるcBN粒子と結合相との間の接触面積は、比較例に係るcBN質焼結体におけるcBN粒子と結合相との間の接触面積よりも大きいことを確認することができた。すなわち、実施例に係るcBN質焼結体におけるcBN粒子の間の接合の頻度は、比較例に係るcBN質焼結体におけるcBN質焼結体におけるcBN粒子の間の接合の頻度より低いことを確認することができた。言い換えれば、実施例に係るcBN質焼結体における結合相中におけるcBN粒子の分散性は、比較例に係るcBN質焼結体における結合相中におけるcBN粒子の分散性よりも高いことを確認することができた。 As shown in FIGS. 8 and 9, the contact area between the cBN particles and the binder phase in the cBN sintered body according to the example is the same as the contact area between the cBN particles and the binder phase in the cBN sintered body according to the comparative example. It was confirmed that the contact area between the In other words, the frequency of bonding between cBN particles in the cBN sintered body according to the example is lower than the frequency of bonding between cBN particles in the cBN sintered body according to the comparative example. I was able to confirm. In other words, it is confirmed that the dispersibility of cBN particles in the binder phase in the cBN sintered body according to the example is higher than the dispersibility of cBN particles in the binder phase in the cBN sintered body according to the comparative example. I was able to do that.
 上述してきたように、実施形態に係るインサート(一例として、インサート1)は、複数の立方晶窒化硼素粒子(一例として、複数のcBN粒子12)および複数の立方晶窒化硼素粒子を結合する結合相(一例として、結合相13)を含む立方晶窒化硼素質焼結体(一例として、cBN質焼結体11)を備える。立方晶窒化硼素質焼結体の断面内において、複数の立方晶窒化硼素粒子の単位面積当たりの複数の立方晶窒化硼素粒子と結合相との間における粒界の長さは、3.2μm-1以上である。 As described above, an insert according to an embodiment (for example, insert 1) includes a plurality of cubic boron nitride particles (for example, a plurality of cBN particles 12) and a bonding phase that binds the plurality of cubic boron nitride particles. A cubic boron nitride sintered body (for example, a cBN sintered body 11) containing a binder phase 13 (for example, a binder phase 13) is provided. In the cross section of the cubic boron nitride sintered body, the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 μm - It is 1 or more.
 立方晶窒化硼素質焼結体の断面内において、立方晶窒化硼素質焼結体の単位面積当たりの複数の立方晶窒化硼素粒子と結合相との間における粒界の長さは、2.2μm-1以上である。 In the cross section of the cubic boron nitride sintered body, the length of the grain boundary between the binder phase and the plurality of cubic boron nitride particles per unit area of the cubic boron nitride sintered body is 2.2 μm. -1 or more.
 立方晶窒化硼素質焼結体の断面内において、立方晶窒化硼素質焼結体中の複数の立方晶窒化硼素粒子の含有率は、55面積%以上85面積%以下である。 In the cross section of the cubic boron nitride sintered body, the content of the plurality of cubic boron nitride particles in the cubic boron nitride sintered body is 55 area % or more and 85 area % or less.
 それにより、結合相中における複数のcBN粒子の分散性を向上させることができるため、複数のcBN粒子と結合相との間の結合を向上させることができる。よって、cBN質焼結体によって構成される基体を含むインサートの耐摩耗性および耐欠損性を向上させることができる。 Thereby, the dispersibility of the plurality of cBN particles in the binder phase can be improved, and therefore the bonding between the plurality of cBN particles and the binder phase can be improved. Therefore, the wear resistance and chipping resistance of the insert including the base body made of the cBN sintered body can be improved.
 実施形態に係るインサート1は、cBN質焼結体11の上に位置する被覆膜(一例として、被覆膜20)をさらに有していてもよい。被覆膜を有することで、耐摩耗性および耐熱性をさらに向上させることができる。 The insert 1 according to the embodiment may further include a coating film (for example, the coating film 20) located on the cBN sintered body 11. By having a coating film, wear resistance and heat resistance can be further improved.
 上述した実施形態では、切削工具100の上面および下面の形状が平行四辺形である場合の例を示したが、切削工具100の上面および下面の形状は、ひし形または正方形等であってもよい。切削工具100の上面および下面の形状は、三角形、五角形、または六角形等であってもよい。 In the embodiment described above, an example was shown in which the shape of the top surface and the bottom surface of the cutting tool 100 is a parallelogram, but the shape of the top surface and the bottom surface of the cutting tool 100 may be a rhombus, a square, or the like. The shape of the upper surface and lower surface of the cutting tool 100 may be triangular, pentagonal, hexagonal, or the like.
 切削工具100の形状は、ポジティブ型であってもよいしネガティブ型であってもよい。ポジティブ型は、切削工具100の上面の中心および下面の中心を通る中心軸に対して側面が傾斜しているタイプであり、ネガティブ型は、上記中心軸に対して側面が平行なタイプである。 The shape of the cutting tool 100 may be a positive type or a negative type. The positive type is a type in which the side surface is inclined with respect to a central axis passing through the center of the upper surface and the center of the lower surface of the cutting tool 100, and the negative type is a type in which the side surface is parallel to the central axis.
 付記(1):複数の立方晶窒化硼素粒子および前記複数の立方晶窒化硼素粒子を結合する結合相を含む立方晶窒化硼素質焼結体を備え、前記立方晶窒化硼素質焼結体の断面内において、前記複数の立方晶窒化硼素粒子の単位面積当たりの前記複数の立方晶窒化硼素粒子と前記結合相との間における粒界の長さは、3.2μm-1以上である、インサート。
 付記(2):前記立方晶窒化硼素質焼結体の断面内において、前記立方晶窒化硼素質焼結体の単位面積当たりの前記複数の立方晶窒化硼素粒子と前記結合相との間における粒界の長さは、2.2μm-1以上である、付記(1)に記載のインサート。
 付記(3):前記立方晶窒化硼素質焼結体の断面内において、前記立方晶窒化硼素質焼結体中の前記複数の立方晶窒化硼素粒子の含有率は、55面積%以上85面積%以下である、付記(1)または(2)に記載のインサート。
 付記(4):前記結合相は、Tiを含有する炭化物、Tiを含有する窒化物、Tiを含有する炭窒化物、Tiを含有する硼化物、Al、AlN、およびAlからなる群より選択された少なくとも一種の化合物を含有する、付記(1)から(3)のいずれか一つに記載のインサート。
 付記(5):前記立方晶窒化硼素質焼結体の表面の少なくとも一部上に位置する被覆膜をさらに備える、付記(1)から(4)のいずれか一つに記載のインサート。
 付記(6):前記被覆膜は、硬質相、および、前記立方晶窒化硼素質焼結体と前記硬質相との間に位置する金属層を含み、前記金属層は、Ti、Zr、V、Cr、Ta、Nb、Hf、およびAlの単体以外の金属からなる、付記(5)に記載のインサート。
 付記(7):前記金属層は、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、およびYからなる群より選択された少なくとも一種の元素を含有する、付記(6)に記載のインサート。
 付記(8):端部にポケットを有する棒状のホルダと、前記ポケット内に位置する、付記(1)から(7)のいずれか一つに記載のインサートとを備える、切削工具。
Additional Note (1): A cross-section of the cubic boron nitride sintered body comprising a plurality of cubic boron nitride particles and a binder phase that binds the plurality of cubic boron nitride particles. In the insert, the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is 3.2 μm −1 or more.
Additional Note (2): Within the cross section of the cubic boron nitride sintered body, grains between the plurality of cubic boron nitride particles and the binder phase per unit area of the cubic boron nitride sintered body. The insert according to appendix (1), wherein the field length is 2.2 μm −1 or more.
Additional Note (3): In the cross section of the cubic boron nitride sintered body, the content of the plurality of cubic boron nitride particles in the cubic boron nitride sintered body is 55 area % or more and 85 area %. The insert according to supplementary note (1) or (2), which is as follows.
Additional Note (4): The binder phase is a group consisting of a carbide containing Ti, a nitride containing Ti, a carbonitride containing Ti, a boride containing Ti, Al, AlN, and Al 2 O 3 The insert according to any one of Supplementary Notes (1) to (3), containing at least one compound selected from the above.
Supplementary Note (5): The insert according to any one of Supplementary Notes (1) to (4), further comprising a coating film located on at least a portion of the surface of the cubic boron nitride-based sintered body.
Additional Note (6): The coating film includes a hard phase and a metal layer located between the cubic boron nitride sintered body and the hard phase, and the metal layer includes Ti, Zr, V , Cr, Ta, Nb, Hf, and Al, the insert according to supplementary note (5).
Supplementary Note (7): The metal layer contains at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y. ).
Supplementary Note (8): A cutting tool comprising a rod-shaped holder having a pocket at an end, and an insert according to any one of Supplementary Notes (1) to (7) located within the pocket.
 さらなる効果および/または変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further advantages and/or modifications can be easily deduced by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1 インサート
 2 本体部
 3 切刃部
 4 座面
 5 貫通孔
 6 第1面
 7 第2面
 8 切刃
 10 基体
 11 cBN質焼結体
 12 cBN粒子
 13 結合相
 20 被覆膜
 21 硬質層
 22 金属層
 23 積層部
 23a 第1金属窒化物層
 23b 第2金属窒化物層
 24 第3金属窒化物層
 30 基板
 40 接合材
 70 ホルダ
 73 ポケット
 75 ネジ
 100 切削工具
1 insert 2 main body 3 cutting edge 4 seating surface 5 through hole 6 first surface 7 second surface 8 cutting edge 10 base 11 cBN sintered body 12 cBN particles 13 binder phase 20 coating film 21 hard layer 22 metal layer 23 Laminated portion 23a First metal nitride layer 23b Second metal nitride layer 24 Third metal nitride layer 30 Substrate 40 Bonding material 70 Holder 73 Pocket 75 Screw 100 Cutting tool

Claims (8)

  1.  複数の立方晶窒化硼素粒子および前記複数の立方晶窒化硼素粒子を結合する結合相を含む立方晶窒化硼素質焼結体
     を備え、
     前記立方晶窒化硼素質焼結体の断面内において、前記複数の立方晶窒化硼素粒子の単位面積当たりの前記複数の立方晶窒化硼素粒子と前記結合相との間における粒界の長さは、3.2μm-1以上である、
     インサート。
    A cubic boron nitride sintered body comprising a plurality of cubic boron nitride particles and a binder phase that binds the plurality of cubic boron nitride particles,
    In the cross section of the cubic boron nitride sintered body, the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the plurality of cubic boron nitride particles is: 3.2 μm −1 or more,
    insert.
  2.  前記立方晶窒化硼素質焼結体の断面内において、前記立方晶窒化硼素質焼結体の単位面積当たりの前記複数の立方晶窒化硼素粒子と前記結合相との間における粒界の長さは、2.2μm-1以上である、
     請求項1に記載のインサート。
    In the cross section of the cubic boron nitride sintered body, the length of the grain boundary between the plurality of cubic boron nitride particles and the binder phase per unit area of the cubic boron nitride sintered body is , 2.2 μm −1 or more,
    An insert according to claim 1.
  3.  前記立方晶窒化硼素質焼結体の断面内において、前記立方晶窒化硼素質焼結体中の前記複数の立方晶窒化硼素粒子の含有率は、55面積%以上85面積%以下である、
     請求項1または2に記載のインサート。
    In the cross section of the cubic boron nitride sintered body, the content of the plurality of cubic boron nitride particles in the cubic boron nitride sintered body is 55 area % or more and 85 area % or less,
    An insert according to claim 1 or 2.
  4.  前記結合相は、Tiを含有する炭化物、Tiを含有する窒化物、Tiを含有する炭窒化物、Tiを含有する硼化物、Al、AlN、およびAlからなる群より選択された少なくとも一種の化合物を含有する、
     請求項1から3のいずれか一つに記載のインサート。
    The binder phase is at least selected from the group consisting of Ti-containing carbide, Ti-containing nitride, Ti-containing carbonitride, Ti-containing boride, Al, AlN , and Al2O3 . Contains a type of compound,
    An insert according to any one of claims 1 to 3.
  5.  前記立方晶窒化硼素質焼結体の表面の少なくとも一部上に位置する被覆膜
     をさらに備える、
     請求項1から4のいずれか一つに記載のインサート。
    further comprising a coating film located on at least a portion of the surface of the cubic boron nitride sintered body,
    An insert according to any one of claims 1 to 4.
  6.  前記被覆膜は、
      硬質相、および、
      前記立方晶窒化硼素質焼結体と前記硬質相との間に位置する金属層
     を含み、
     前記金属層は、Ti、Zr、V、Cr、Ta、Nb、Hf、およびAlの単体以外の金属からなる、
     請求項5に記載のインサート。
    The coating film is
    hard phase, and
    a metal layer located between the cubic boron nitride sintered body and the hard phase;
    The metal layer is made of a metal other than Ti, Zr, V, Cr, Ta, Nb, Hf, and Al,
    Insert according to claim 5.
  7.  前記金属層は、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、およびYからなる群より選択された少なくとも一種の元素を含有する、
     請求項6に記載のインサート。
    The metal layer contains at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y.
    Insert according to claim 6.
  8.  端部にポケットを有する棒状のホルダと、
     前記ポケット内に位置する、請求項1から7のいずれか一項に記載のインサートと
     を備える、切削工具。
    a rod-shaped holder with a pocket at the end;
    A cutting tool comprising: an insert according to any one of claims 1 to 7, located within the pocket.
PCT/JP2023/023936 2022-06-28 2023-06-28 Insert and cutting tool WO2024005058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-103940 2022-06-28
JP2022103940 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024005058A1 true WO2024005058A1 (en) 2024-01-04

Family

ID=89382349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023936 WO2024005058A1 (en) 2022-06-28 2023-06-28 Insert and cutting tool

Country Status (1)

Country Link
WO (1) WO2024005058A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335175A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2004042192A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Coated cutting tool
JP2010284759A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface coated cutting tool
JP2015193046A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 cutting tool
JP2018052781A (en) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 Cubic boron nitride-based sintered body and cutting tool made of cubic boron nitride-based sintered body
WO2019244894A1 (en) * 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2021192509A1 (en) * 2020-03-24 2021-09-30 昭和電工株式会社 Cubic boron nitride sintered body, method for producing same, and tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335175A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2004042192A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Coated cutting tool
JP2010284759A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface coated cutting tool
JP2015193046A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 cutting tool
JP2018052781A (en) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 Cubic boron nitride-based sintered body and cutting tool made of cubic boron nitride-based sintered body
WO2019244894A1 (en) * 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2021192509A1 (en) * 2020-03-24 2021-09-30 昭和電工株式会社 Cubic boron nitride sintered body, method for producing same, and tool

Similar Documents

Publication Publication Date Title
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2004042192A (en) Coated cutting tool
EP2623241A1 (en) Cutting tool
EP3332899A1 (en) Coated cutting tool
CN113853265B (en) Cutting tool
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
WO2018070195A1 (en) Surface-coated cutting tool
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
WO2024005058A1 (en) Insert and cutting tool
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
EP1757388A1 (en) Surface-coated cutware and process for producing the same
WO2022138147A1 (en) Coated tool and cutting tool
JP3879113B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
WO2022163719A1 (en) Coated tool and cutting tool
WO2023032582A1 (en) Coated tool and cutting tool
JP5266587B2 (en) CBN sintered body for cutting tools containing coarse cBN particles
JP2021030356A (en) Surface-coated cutting tool
WO2022138400A1 (en) Coated tool and cutting tool
WO2022138146A1 (en) Insert and cutting tool
WO2022163718A1 (en) Coated tool and cutting tool
JP7400692B2 (en) Cubic boron nitride sintered body and tool having cubic boron nitride sintered body
WO2023008189A1 (en) Coated tool and cutting tool
JP7462045B2 (en) Inserts and Cutting Tools
WO2023008113A1 (en) Coated tool and cutting tool
WO2022230182A1 (en) Cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831498

Country of ref document: EP

Kind code of ref document: A1