JPH11246271A - Cubic boron nitride sintered body and its production - Google Patents

Cubic boron nitride sintered body and its production

Info

Publication number
JPH11246271A
JPH11246271A JP10064709A JP6470998A JPH11246271A JP H11246271 A JPH11246271 A JP H11246271A JP 10064709 A JP10064709 A JP 10064709A JP 6470998 A JP6470998 A JP 6470998A JP H11246271 A JPH11246271 A JP H11246271A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
cubic boron
strength
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10064709A
Other languages
Japanese (ja)
Other versions
JP4106574B2 (en
Inventor
Hitoshi Sumiya
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP06470998A priority Critical patent/JP4106574B2/en
Publication of JPH11246271A publication Critical patent/JPH11246271A/en
Application granted granted Critical
Publication of JP4106574B2 publication Critical patent/JP4106574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decrease in strength at a high temp. by reducing and nitriding a compd. containing boron and oxygen with carbon to obtain normal pressure type boron nitride, refining the obtd. boron nitride into high purity and then, converting it into cubic boron nitride and sintering it. SOLUTION: A compd. containing boron and oxygen is reduced and nitrided with carbon to obtain normal pressure type boron nitride. The obtd. normal pressure type boron nitride is heated in a nonoxidizing atmosphere and high purification treatment is performed. Then, it is directly converted into a cubic boron nitride at 6 to 7 Pa at 1,550 to 2,00 deg.C in the absence of a catalyst and sintered to obtain a cubic boron nitride sintered body. The obtd. sintered body contains >=99.5 vol.% the cubic boron nitride in which the cubic boron nitride particles are bonded to each other without containing a binder and the body shows no decrease in the strength in 800 to 1,400 deg.C temp. range contains 0.01 to 0.5 vol.% compressed type hexagonal boron nitride and has <=1 μm particle size. Thereby, a cubic boron nitride sintered body having a dense structure and high strength with fine particles can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は立方晶窒化ホウ素
(cBN)焼結体およびその製造方法に関するもので、
特に鉄系材料の切削加工に有用な、高温下でも強度が低
下しないcBN焼結体に関する。
The present invention relates to a cubic boron nitride (cBN) sintered body and a method for producing the same.
Particularly, the present invention relates to a cBN sintered body that is useful for cutting iron-based materials and does not decrease in strength even at high temperatures.

【0002】[0002]

【従来の技術】cBNは、ダイヤモンドに次ぐ硬度を有
し、熱的化学的安定性の高い物質であり、従来より鉄系
材料の切削工具として用いられている。現在、切削工具
として用いられているcBN焼結体は、cBNの粉末
を、TiN、TiC、Coなどのバインダーを用いて超
高圧下で焼結されたもので、焼結体には10〜40体積
%程度のバインダーが含まれる。このバインダーが、焼
結体の強度、耐熱性、熱放散性に大きく影響を与え、特
に鉄系材料を高速で切削加工する場合に、刃先の欠損や
亀裂が生じやすく、工具としての寿命が非常に短くな
る。焼結体にバインダーが含まれている限り、このよう
な問題はさけられない。
2. Description of the Related Art cBN is a material having the second highest hardness next to diamond and having high thermochemical stability, and has been conventionally used as a cutting tool for iron-based materials. The cBN sintered body currently used as a cutting tool is obtained by sintering cBN powder under an ultra-high pressure using a binder such as TiN, TiC, and Co. A volume% binder is included. This binder greatly affects the strength, heat resistance, and heat dissipation of the sintered body.Especially when cutting ferrous materials at high speed, the cutting edge is liable to chip or crack, and the tool life is extremely short. Becomes shorter. As long as the sintered body contains a binder, such a problem cannot be avoided.

【0003】一方、バインダーを含まないcBN焼結体
として、ホウ窒化マグネシウムなどの触媒を用いて六方
晶窒化ホウ素(hBN)を原料として、反応焼結させた
焼結体がある。この焼結体はバインダーがなくcBN粒
子が強く結合しているため熱伝導率が6〜7W/cm℃
と高く、ヒートシンク材やTABボンディングツールな
どに用いられている。しかし、この焼結体の中には触媒
がいくらか残留しているため、熱を加えるとこの触媒と
cBNとの熱膨張差による微細クラックが入りやすい。
このため、その耐熱温度は700℃程度と低く、切削工
具としては大きな問題となる。また、粒径が10μm前
後と大きいため、熱伝導率が高いものの、強度が十分で
なく、負荷の大きい切削には対応出来ない。
On the other hand, as a cBN sintered body containing no binder, there is a sintered body obtained by reaction sintering using hexagonal boron nitride (hBN) as a raw material using a catalyst such as magnesium boronitride. This sintered body has no binder and has cBN particles strongly bonded, and thus has a thermal conductivity of 6 to 7 W / cm ° C.
It is used for heat sink materials and TAB bonding tools. However, since some catalyst remains in the sintered body, when heat is applied, fine cracks tend to occur due to the difference in thermal expansion between the catalyst and cBN.
Therefore, its heat-resistant temperature is as low as about 700 ° C., which is a serious problem as a cutting tool. Further, since the particle size is as large as about 10 μm, the thermal conductivity is high, but the strength is not sufficient, and it is not possible to cope with cutting with a large load.

【0004】他方、cBNは、hBNなどの常圧型BN
を超高圧高温下で、無触媒で合成(直接変換)すること
が可能である。このhBN→cBN変換と同時に焼結さ
せることで、バインダーを含まないcBN焼結体を作製
できることが知られている。たとえば、特開昭47−3
4099号や特開平3−159964号にhBNを超高
圧高温下でcBNに変換させ、cBN焼結体を得る方法
が示されている。
On the other hand, cBN is a normal pressure type BN such as hBN.
Can be synthesized (direct conversion) under ultrahigh pressure and high temperature without a catalyst. It is known that a cBN sintered body containing no binder can be produced by sintering simultaneously with the hBN → cBN conversion. For example, JP-A-47-3
No. 4099 and JP-A-3-159964 disclose a method of converting hBN into cBN under ultra-high pressure and high temperature to obtain a cBN sintered body.

【0005】また、特公昭63−394号や特開平8−
47801号には熱分解窒化ホウ素(pBN)を原料に
して、cBN焼結体を作製する方法が示されている。こ
れらは、7GPa、2100℃以上の厳しい圧力温度条
件が必要である。
Further, Japanese Patent Publication No. 63-394 and Japanese Patent Application Laid-Open No.
No. 47801 discloses a method for producing a cBN sintered body using pyrolytic boron nitride (pBN) as a raw material. These require severe pressure and temperature conditions of 7 GPa and 2100 ° C. or higher.

【0006】よりマイルドな条件で直接変換によりcB
Nを得る方法として例えば、特公昭49−27518号
に、一次粒子の平均粒径が3μm以下の六方晶系窒化ホ
ウ素を原料とする方法が示されている。これにより6G
Pa、1100℃の条件でcBNが得られる。しかし、
六方晶窒化ホウ素が微粉であるため、数%の酸化ホウ素
不純物や吸着ガスを含み、そのため焼結が十分に進行せ
ず、また、酸化物を焼結体内に多く含むため、高硬度、
高強度で耐熱性に優れた焼結体が得られず、切削工具に
用いることができない。
[0006] cB by the direct conversion under milder conditions
As a method for obtaining N, for example, Japanese Patent Publication No. 49-27518 discloses a method using hexagonal boron nitride having an average primary particle size of 3 μm or less as a raw material. This allows 6G
CBN is obtained under the conditions of Pa and 1100 ° C. But,
Since hexagonal boron nitride is a fine powder, it contains a few percent of boron oxide impurities and adsorbed gas, so that sintering does not proceed sufficiently, and since a large amount of oxide is contained in the sintered body, high hardness,
A sintered body having high strength and excellent heat resistance cannot be obtained, and cannot be used for a cutting tool.

【0007】[0007]

【発明が解決しようとする課題】上記のhBNなどの常
圧型BNを超高圧高温下で、無触媒で直接変換焼結され
たcBN焼結体は、切削工具としてある程度使用可能で
あるが、800℃以上の高温下での強度が十分でなく、
高速で、負荷の大きい切削条件では、切削中の刃先のチ
ッピングが問題であった。従来のバインダーを含むcB
N焼結体も、高温下で強度が大幅に低下する。
The cBN sintered body obtained by directly converting the normal pressure type BN such as the above hBN and the like under non-catalyst under ultra-high pressure and high temperature can be used to some extent as a cutting tool. Insufficient strength at high temperatures above ℃
Under high-speed, high-load cutting conditions, chipping of the cutting edge during cutting has been a problem. CB containing conventional binder
The strength of the N sintered body also drops significantly at high temperatures.

【0008】本発明者は上記のような問題を解決するた
め、先に特願平8−317699号により、hBN→c
BN直接変換、焼結を行うに当り、用いるhBNを特定
することや、cBN焼結体の結晶面間のX線回折強度比
を特定することを提案した。
In order to solve the above problem, the present inventor has previously disclosed in Japanese Patent Application No. 8-317699 that hBN → c
In performing BN direct conversion and sintering, it was proposed to specify the hBN to be used and to specify the X-ray diffraction intensity ratio between crystal planes of the cBN sintered body.

【0009】この提案は、同出願明細書に記載した要件
により、同明細書に記載した効果を奏するものである
が、更に試作研究を重ねた結果、新たな観点に立った次
項以下に示す発明に到達することができた。
This proposal achieves the effects described in the specification in accordance with the requirements described in the specification of the same application. However, as a result of repeated trials and research, the invention described in the following paragraphs from a new viewpoint has been achieved. Could be reached.

【0010】[0010]

【課題を解決するための手段】即ち本発明の第1の特徴
とするところは、cBNが99.5体積%以上で、各c
BN粒子同士が結合し、実質的にバインダーを含まず、
800℃以上1400℃以下の温度域で強度が低下しな
い特性を備えていることである。
That is, the first feature of the present invention is that cBN is 99.5% by volume or more and each cBN is not less than 99.5% by volume.
BN particles are bonded to each other and contain substantially no binder,
It has a characteristic that the strength does not decrease in a temperature range of 800 ° C. or more and 1400 ° C. or less.

【0011】そして、この特性はcBNの粒子径が1μ
m以下である場合に安定して得られ、更にcBN焼結体
中に圧縮型hBN(compressed hBN)が0.01〜0.
5体積%含まれることが最も好ましいということを確認
した。
[0011] This characteristic is that the particle size of cBN is 1 μm.
m or less, and a stable hBN (compressed hBN) of 0.01 to 0.1 in the cBN sintered body is obtained.
It was confirmed that the content of 5% by volume was most preferable.

【0012】また上記に基づいて試験の結果、上記特徴
を備えることにより、本発明のcBN焼結体は1000
℃以上1400℃以下の温度域においては、室温におけ
る強度より高い強度を示し得ると言う驚くべき知見を得
た。
Further, as a result of the test based on the above, the cBN sintered body of the present invention is provided with the above-mentioned features, so that
In a temperature range of not less than 1 ° C. and not more than 1400 ° C., a surprising finding that the strength can be higher than that at room temperature has been obtained.

【0013】本発明の別の特徴は、上記のような特性を
備えたcBN焼結体を安定して製造する方法を提供する
ことである。即ち酸化ホウ素やホウ酸などのホウ素と酸
素を含む化合物を炭素で還元窒化させた常圧型BNを、
非酸化性雰囲気で加熱して高純度精製処理を施した後、
触媒を添加せず、圧力6〜7GPa、温度1550〜2
100℃を加えて直接cBNに変換、焼結せしめること
である。
Another feature of the present invention is to provide a method for stably producing a cBN sintered body having the above characteristics. That is, a normal pressure BN obtained by reducing and nitriding a compound containing boron and oxygen such as boron oxide or boric acid with carbon,
After performing high-purity purification treatment by heating in a non-oxidizing atmosphere,
No catalyst added, pressure 6-7 GPa, temperature 1550-2
That is, it is directly converted to cBN by applying 100 ° C. and sintered.

【0014】[0014]

【作用】本発明のcBN焼結体は、構成するcBN粒子
同士の結合力、粒子径および未変換hBN(圧縮型hB
Nとして焼結体内に残留)の残留量を制御することによ
り得られる。具体的には出発原料に高純度で微粒もしく
は低結晶性のhBNを用い、粒成長の起こらない温度範
囲で変換焼結する。ここで用いる、低結晶性の常圧型B
Nは、酸化ホウ素やホウ酸を炭素や有機物で還元し、窒
化させて作製されたものが好ましい。
The cBN sintered body of the present invention is characterized in that the bonding force between the constituent cBN particles, the particle size and the unconverted hBN (compressed hBN)
N in the sintered body). Specifically, conversion and sintering are performed in a temperature range in which grain growth does not occur, using high purity fine particles or low crystallinity hBN as a starting material. Low crystallinity normal pressure type B used here
N is preferably formed by reducing boron oxide or boric acid with carbon or an organic substance and nitriding the same.

【0015】通常、常圧型BNの合成方法として、酸化
ホウ素やホウ酸をアンモニアと反応させる方法が一般に
工業的に行われている。しかし、このようにして得られ
たBNは、高温で熱処理するとhBNへ結晶化する。こ
のため、この方法により微細で低結晶性の常圧型BNを
合成しても、不純物の酸化ホウ素を除去するための高温
精製処理(窒素ガス中2050℃以上、真空中1650
℃以上など)を行うと、hBNに結晶化、粒成長してし
まう。
Usually, as a method of synthesizing normal pressure BN, a method of reacting boron oxide or boric acid with ammonia is generally industrially performed. However, the BN thus obtained is crystallized into hBN when heat-treated at a high temperature. For this reason, even if a fine and low-crystalline normal-pressure BN is synthesized by this method, high-temperature purification treatment (2050 ° C. or more in nitrogen gas, 1650
℃ or more), crystallization and grain growth of hBN occur.

【0016】これに対し、酸化ホウ素やホウ酸を炭素で
還元窒化させた常圧型BNは、高温で熱処理しても結晶
化しない特徴があり、したがって、この方法で微粒で低
結晶性の常圧型BNを合成し、窒素ガス中2050℃以
上または真空中1650℃以上などの高純度精製処理を
行うことで、酸化ホウ素や吸着ガスのない直接変換焼結
に非常に適した常圧型BNが得られる。
On the other hand, a normal-pressure BN obtained by reducing and nitriding boron oxide or boric acid with carbon has a feature that it does not crystallize even when heat-treated at a high temperature. By synthesizing BN and performing high-purity purification treatment such as 2050 ° C. or more in nitrogen gas or 1650 ° C. or more in vacuum, an atmospheric pressure BN which is very suitable for direct conversion sintering without boron oxide or adsorption gas can be obtained. .

【0017】本発明のcBN焼結体の合成(焼結)条件
は、圧力6〜7GPa、温度1550℃〜2100℃が
好ましい。特に焼結温度が重要で、低いとcBNへの変
換が十分でなく、高すぎるとcBNの粒成長が進行し、
cBN同士の結合力が小さくなる。cBNの粒成長の起
こらない焼結温度は、出発原料の結晶性、粒径により変
化する。
The conditions for synthesizing (sintering) the cBN sintered body of the present invention are preferably a pressure of 6 to 7 GPa and a temperature of 1550 ° C. to 2100 ° C. In particular, the sintering temperature is important. If the sintering temperature is low, the conversion to cBN is not sufficient, and if it is too high, the grain growth of cBN proceeds,
The bonding force between cBNs is reduced. The sintering temperature at which grain growth of cBN does not occur varies depending on the crystallinity and grain size of the starting material.

【0018】上記の適切な焼結温度範囲で焼結したcB
N焼結体は、粒径1μm以下のcBNからなる緻密な組
織を有し、曲げ強度が高い。この焼結体の破面を見る
と、粒内破壊が支配的で、粒子同士の結合力が強いこと
を示している。1000℃の高温でも強度が低下せず、
むしろ室温より向上すると言う驚くべき傾向がある。高
温下で、粒子内の転位の移動による塑性変形が起こり、
それにより亀裂先端での応力集中が緩和され、破壊強度
が向上すると考えられる。
CB sintered in the above-mentioned appropriate sintering temperature range
The N sintered body has a dense structure made of cBN having a particle size of 1 μm or less, and has high bending strength. The fracture surface of this sintered body indicates that intragranular fracture is dominant and that the bonding force between the particles is strong. The strength does not decrease even at a high temperature of 1000 ° C.
Rather, there is a surprising tendency to improve over room temperature. Under high temperature, plastic deformation occurs due to the movement of dislocations in the particles,
It is considered that the stress concentration at the crack tip is thereby alleviated, and the fracture strength is improved.

【0019】一方、これより高い温度で焼結した焼結体
は、粒径が1μmを越え、破面を見ると主に粒界で破壊
し、粒間結合が弱いことを示した。高温下ではさらに強
度が低下、1000℃では室温の約半分程度の強度とな
る。高温下では弱い粒界が更に弱化し、粒界で不均一な
変形がおこるため、高温での強度が低下すると考えられ
る。従来の直接変換によるcBN焼結体は、結晶性のよ
いhBNやpBNを用いていたので、十分なhBN→c
BN変換を行うのに2100℃以上の温度が必要で、そ
の結果、焼結体を構成するcBN粒子の粒径が3〜5μ
mと大きくなり、粒子間の結合力も弱く、上記の理由で
高温での強度は低い。すなわち、従来の方法では、本発
明のような高温下で高い強度を有する焼結体は得られな
い。なお、1400℃を越える高温下では、cBNはh
BNに変換する。
On the other hand, the sintered body sintered at a higher temperature than this had a grain size of more than 1 μm, and the fracture surface showed that the sintered body was broken mainly at the grain boundaries, indicating that intergranular bonding was weak. At high temperatures, the strength is further reduced, and at 1000 ° C., the strength is about half of room temperature. It is considered that at high temperatures, weak grain boundaries are further weakened, and uneven deformation occurs at the grain boundaries, so that the strength at high temperatures is reduced. Since the conventional cBN sintered body by direct conversion uses hBN or pBN having good crystallinity, a sufficient hBN → c
To perform the BN conversion, a temperature of 2100 ° C. or higher is required, and as a result, the particle size of the cBN particles constituting the sintered body is 3 to 5 μm.
m, the bonding strength between the particles is weak, and the strength at high temperatures is low for the above-mentioned reason. That is, the conventional method cannot provide a sintered body having high strength at a high temperature as in the present invention. At high temperatures exceeding 1400 ° C., cBN is h
Convert to BN.

【0020】また、本発明のcBN焼結体は0.01〜
0.5体積%の圧縮型hBNを含むのが特徴である。こ
の程度の圧縮型hBNは焼結体の強度に影響を及ぼさな
い。むしろ亀裂の進展を阻止し、靱性を向上させる効果
がある。圧縮型hBNが0.01体積より少ない焼結体
は、靱性が低下し、0.5体積%を超えると、圧縮型h
BNでの応力集中が大きくなり、強度が低下する。
The cBN sintered body of the present invention has a
It is characterized by containing 0.5% by volume of compressed hBN. Such a compression type hBN does not affect the strength of the sintered body. Rather, it has the effect of preventing the growth of cracks and improving toughness. A sintered body having a compression type hBN of less than 0.01 volume has a reduced toughness.
The stress concentration in the BN increases, and the strength decreases.

【0021】[0021]

【発明の実施の形態】次に本発明の具体的な実施の態様
を実施例によって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, specific embodiments of the present invention will be described with reference to examples.

【0022】[0022]

【実施例】窒素雰囲気中で、酸化ホウ素(B23 )と
メラミン(C366 )の混合物を炭素で還元窒化さ
せて微細なhBNの粉末を合成し、さらに、窒素雰囲気
中、2100℃で2時間処理した。得られたhBN粉末
は、平均粒径0.1μmで、酸素含有量は0.1重量%
であった。このhBN粉末を6ton/cm2 で型押し
成形し、直径8mm、厚み3mmの試料体を作製し、こ
の試料体を再度、高周波炉で、N2 ガス中、2100℃
で2時間かけて高純度処理した。
EXAMPLE In a nitrogen atmosphere, a mixture of boron oxide (B 2 O 3 ) and melamine (C 3 N 6 H 6 ) was reduced and nitrided with carbon to synthesize a fine hBN powder, and further, in a nitrogen atmosphere. And treated at 2100 ° C. for 2 hours. The obtained hBN powder has an average particle size of 0.1 μm and an oxygen content of 0.1% by weight.
Met. This hBN powder was embossed at 6 ton / cm 2 to prepare a sample having a diameter of 8 mm and a thickness of 3 mm, and this sample was again subjected to a high frequency furnace at 2100 ° C. in N 2 gas.
For 2 hours.

【0023】次にこの高純度処理した試料体をMoカプ
セルに入れ、6.5GPaに保ったベルト型高圧発生装
置中で、表1に記載した実施例1、2、3並びに比較例
1、2の焼結温度に15分間保持し、cBNに直接変
換、焼結した。得られた各焼結体は表1に示すようにほ
とんどcBNからなる緻密な焼結体で、0.03〜0.
33体積%の圧縮型hBNを含むことがわかった。また
それぞれの焼結体の破面をSEM観察したところ、いず
れもcBN粒子の大きさは約0.1〜0.5μmと微細
であり、かつ、粒内破壊が支配的で、粒子同士が強固に
結合していることを示していた。
Next, the high-purity treated sample was placed in a Mo capsule, and placed in a belt-type high-pressure generator maintained at 6.5 GPa. Was kept at the sintering temperature for 15 minutes, directly converted to cBN and sintered. As shown in Table 1, each of the obtained sintered bodies was a dense sintered body almost composed of cBN.
It was found to contain 33% by volume of compressed hBN. Further, when the fracture surface of each sintered body was observed by SEM, the size of each cBN particle was as fine as about 0.1 to 0.5 μm, and intragranular fracture was dominant. It was shown to be bound to.

【0024】これらの焼結体から、6×3×0.7mm
の試料片を切り出し、SiC製の治具を用いて、曲げ強
度(スパン長:4mm)を測定した。結果を表1に示
す。なお市販されているバインダー約10%を含むcB
N焼結体の測定結果も比較例3として同表中に記載し
た。
From these sintered bodies, 6 × 3 × 0.7 mm
Was cut out, and the bending strength (span length: 4 mm) was measured using a jig made of SiC. Table 1 shows the results. CB containing about 10% of a commercially available binder
The measurement results of the N sintered body are also shown in the table as Comparative Example 3.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上各項において述べたように、本発明
によるcBN焼結体は、微粒でcBN粒子同士が強固に
結合した緻密な組織を有するため、高強度で、高温でも
その強度が低下することがない。
As described above, the cBN sintered body according to the present invention has a high-strength structure and a low strength even at a high temperature because it has a fine structure in which cBN particles are firmly bonded to each other. Never do.

【0027】特に1000℃以上1400℃以下の高温
域での強度は、従来のcBN焼結体の2倍以上を示すと
言う驚くべき特徴を有する。従って、たとえば本発明の
cBN焼結体を鉄系材料の高速切削材料として用いれ
ば、その切削速度、精度寿命を更に向上せしめることが
可能となる。
In particular, there is a surprising feature that the strength in the high temperature range of 1000 ° C. to 1400 ° C. is twice or more that of the conventional cBN sintered body. Therefore, for example, if the cBN sintered body of the present invention is used as a high-speed cutting material of an iron-based material, the cutting speed and the precision life can be further improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 35/626 C04B 35/58 103Q ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI C04B 35/626 C04B 35/58 103Q

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 立方晶窒化ホウ素が99.5体積%以上
で、各立方晶窒化ホウ素粒子同士が結合し、実質的にバ
インダーを含まない焼結体であって、800℃以上14
00℃以下の温度域において強度が低下しないことを特
徴とする立方晶窒化ホウ素焼結体。
1. A sintered body having a cubic boron nitride content of 99.5% by volume or more, in which each cubic boron nitride particle is bonded to each other, and substantially does not contain a binder.
A cubic boron nitride sintered body characterized in that strength does not decrease in a temperature range of 00 ° C or lower.
【請求項2】 立方晶窒化ホウ素の粒子径が1μm以下
であることを特徴とする請求項1記載の立方晶窒化ホウ
素焼結体。
2. The cubic boron nitride sintered body according to claim 1, wherein the particle diameter of the cubic boron nitride is 1 μm or less.
【請求項3】 圧縮型六方晶窒化ホウ素を0.01〜
0.5体積%含むことを特徴とする請求項1または2記
載の立方晶窒化ホウ素焼結体。
3. The method according to claim 1, wherein the compression type hexagonal boron nitride is 0.01 to
The cubic boron nitride sintered body according to claim 1, wherein the sintered body contains 0.5% by volume.
【請求項4】 1000℃以上1400℃以下の温度域
における強度が室温の強度より高いことを特徴とする請
求項1、2または3記載の立方晶窒化ホウ素焼結体。
4. The cubic boron nitride sintered body according to claim 1, wherein the strength in a temperature range from 1000 ° C. to 1400 ° C. is higher than the strength at room temperature.
【請求項5】 ホウ素と酸素を含む化合物を炭素で還元
窒化させて得た常圧型窒化ホウ素を、非酸化性雰囲気で
加熱して高純度精製処理を施した後、触媒を添加せず圧
力6〜7GPa、温度1550〜2100℃を加えて直
接立方晶窒化ホウ素に変換、焼結せしめることを特徴と
する立方晶窒化ホウ素焼結体の製造方法。
5. A normal-pressure type boron nitride obtained by reducing and nitriding a compound containing boron and oxygen with carbon is subjected to a high-purity purification treatment by heating in a non-oxidizing atmosphere. A method for producing a cubic boron nitride sintered body, which comprises directly converting sintering to cubic boron nitride by applying 〜7 GPa and a temperature of 1550-2100 ° C. and sintering the cubic boron nitride.
【請求項6】 請求項5記載の方法で、請求項1、2、
3または4記載の立方晶窒化ホウ素焼結体を生成するこ
とを特徴とする立方晶窒化ホウ素焼結体の製造方法。
6. The method according to claim 5, wherein
5. A method for producing a cubic boron nitride sintered body, which comprises producing the cubic boron nitride sintered body according to 3 or 4.
JP06470998A 1998-02-28 1998-02-28 Cubic boron nitride sintered body and method for producing the same Expired - Lifetime JP4106574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06470998A JP4106574B2 (en) 1998-02-28 1998-02-28 Cubic boron nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06470998A JP4106574B2 (en) 1998-02-28 1998-02-28 Cubic boron nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11246271A true JPH11246271A (en) 1999-09-14
JP4106574B2 JP4106574B2 (en) 2008-06-25

Family

ID=13265960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06470998A Expired - Lifetime JP4106574B2 (en) 1998-02-28 1998-02-28 Cubic boron nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4106574B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
JP2001129703A (en) * 1999-11-04 2001-05-15 Sumitomo Electric Ind Ltd Coating sintered body for cutting tool
WO2001066492A1 (en) * 2000-03-08 2001-09-13 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
JP2004196567A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science High purity superfine particle cubic boron nitride sintered compact and its producing method
KR100584742B1 (en) * 2001-12-21 2006-05-30 주식회사 포스코 High Strength and Lubricous Boron Nitride Ceramics
JP2006334732A (en) * 2005-06-02 2006-12-14 Konica Minolta Opto Inc Cutting tool, cutting method, cutting device, mold for forming optical element, optical element and cutting method for mold for forming optical element
JP2008094670A (en) * 2006-10-13 2008-04-24 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
JP2019525883A (en) * 2016-06-29 2019-09-12 スミス インターナショナル インコーポレイテッド Binderless cBN sintering with cubic press
WO2019244894A1 (en) 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
WO2020009117A1 (en) 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 Cutting insert and manufacturing method thereof
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
WO2020066517A1 (en) 2018-09-27 2020-04-02 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline body and method for producing same
WO2020175644A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020175647A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020174923A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020175642A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020174921A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
JPWO2020262468A1 (en) * 2019-06-27 2020-12-30
WO2021059700A1 (en) 2019-09-25 2021-04-01 住友電気工業株式会社 Polycrystal cubic crystal boron nitride and tool
WO2021186617A1 (en) 2020-03-18 2021-09-23 住友電工ハードメタル株式会社 Compound sintered compact and tool using same
WO2022138401A1 (en) * 2020-12-25 2022-06-30 京セラ株式会社 Insert and cutting tool
WO2023012857A1 (en) 2021-08-02 2023-02-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline substance and heat sink using same

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
JP2001129703A (en) * 1999-11-04 2001-05-15 Sumitomo Electric Ind Ltd Coating sintered body for cutting tool
WO2001066492A1 (en) * 2000-03-08 2001-09-13 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
KR100584742B1 (en) * 2001-12-21 2006-05-30 주식회사 포스코 High Strength and Lubricous Boron Nitride Ceramics
JP2004196567A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science High purity superfine particle cubic boron nitride sintered compact and its producing method
JP2006334732A (en) * 2005-06-02 2006-12-14 Konica Minolta Opto Inc Cutting tool, cutting method, cutting device, mold for forming optical element, optical element and cutting method for mold for forming optical element
JP2008094670A (en) * 2006-10-13 2008-04-24 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
EP2942341A1 (en) 2011-08-30 2015-11-11 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
US9416304B2 (en) 2011-08-30 2016-08-16 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
JP2015205789A (en) * 2014-04-18 2015-11-19 住友電気工業株式会社 Cubic crystal boron nitride polycrystalline body, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic crystal boron nitride polycrystalline body
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
JP2019525883A (en) * 2016-06-29 2019-09-12 スミス インターナショナル インコーポレイテッド Binderless cBN sintering with cubic press
US11066334B2 (en) 2016-06-29 2021-07-20 Schlumberger Technology Corporation Binderless cBN sintering with cubic press
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
US11453589B2 (en) 2016-10-06 2022-09-27 Sumitomo Electric Industries, Ltd. Method of producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resisting tool, and grinding tool
WO2019244894A1 (en) 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
KR20200140372A (en) 2018-06-18 2020-12-15 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for producing same
US11046581B2 (en) 2018-06-18 2021-06-29 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and method for manufacturing the same
WO2020009117A1 (en) 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 Cutting insert and manufacturing method thereof
WO2020066517A1 (en) 2018-09-27 2020-04-02 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline body and method for producing same
JP2022122882A (en) * 2018-09-27 2022-08-23 住友電工ハードメタル株式会社 Cubic boron nitride polycrystal
KR20210058855A (en) 2018-09-27 2021-05-24 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for producing same
WO2020175642A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
KR20210129661A (en) 2019-02-28 2021-10-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for manufacturing the same
JP6798090B1 (en) * 2019-02-28 2020-12-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystal and its manufacturing method
WO2020175644A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020175647A1 (en) 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
US11214522B2 (en) 2019-02-28 2022-01-04 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and method for manufacturing the same
WO2020174922A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020174921A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
WO2020174923A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor
US11208324B2 (en) 2019-02-28 2021-12-28 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and method for manufacturing the same
KR20210129662A (en) 2019-02-28 2021-10-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for manufacturing the same
JP6798091B1 (en) * 2019-02-28 2020-12-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystal and its manufacturing method
KR20210130151A (en) 2019-02-28 2021-10-29 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for manufacturing the same
US11186485B2 (en) 2019-02-28 2021-11-30 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and method for manufacturing the same
WO2020262468A1 (en) * 2019-06-27 2020-12-30 京セラ株式会社 Insert and cutting tool
JPWO2020262468A1 (en) * 2019-06-27 2020-12-30
WO2021059700A1 (en) 2019-09-25 2021-04-01 住友電気工業株式会社 Polycrystal cubic crystal boron nitride and tool
WO2021186617A1 (en) 2020-03-18 2021-09-23 住友電工ハードメタル株式会社 Compound sintered compact and tool using same
US11319255B2 (en) 2020-03-18 2022-05-03 Sumitomo Electric Hardmetal Corp. Composite sintered material and tool using same
KR20220143140A (en) 2020-03-18 2022-10-24 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Composite sintered compact and tool using same
WO2022138401A1 (en) * 2020-12-25 2022-06-30 京セラ株式会社 Insert and cutting tool
WO2023012857A1 (en) 2021-08-02 2023-02-09 住友電工ハードメタル株式会社 Cubic boron nitride polycrystalline substance and heat sink using same
US11845658B2 (en) 2021-08-02 2023-12-19 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and heatsink using the same
KR20240026231A (en) 2021-08-02 2024-02-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and heat sink using it

Also Published As

Publication number Publication date
JP4106574B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
US6071841A (en) Cubic boron nitride sintered body and method of preparing the same
JP4106590B2 (en) Cubic boron nitride sintered body and manufacturing method thereof
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
EP0407946B2 (en) Cubic boron nitride sintered compact and method of preparing the same
JP4110338B2 (en) Cubic boron nitride sintered body
JP4110339B2 (en) Cubic boron nitride sintered body
JPH0510282B2 (en)
JP5002886B2 (en) Method for producing cubic boron nitride polycrystal
US5108967A (en) Process for producing nonequiaxed silicon aluminum oxynitride
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JPH09142932A (en) Diamond sintered compact and its production
JP2000042807A (en) Precision cutting tool
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP2007217281A (en) Cubical boron nitride sintered compact and method of manufacturing the same
JP4025810B2 (en) Method for producing silicon nitride particles
JPH0455144B2 (en)
JPS62108716A (en) Production of cubic boron nitride
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH0559073B2 (en)
JP2000042823A (en) Milling cutter and manufacture thereof
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same
JPH0563539B2 (en)
JPS62176959A (en) Manufacture of cubic boron nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term