JPS6157381B2 - - Google Patents
Info
- Publication number
- JPS6157381B2 JPS6157381B2 JP54033074A JP3307479A JPS6157381B2 JP S6157381 B2 JPS6157381 B2 JP S6157381B2 JP 54033074 A JP54033074 A JP 54033074A JP 3307479 A JP3307479 A JP 3307479A JP S6157381 B2 JPS6157381 B2 JP S6157381B2
- Authority
- JP
- Japan
- Prior art keywords
- cbn
- cutting
- sintered
- powder
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims 2
- 235000019169 all-trans-retinol Nutrition 0.000 claims 1
- 239000011717 all-trans-retinol Substances 0.000 claims 1
- 238000005056 compaction Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- 229910000997 High-speed steel Inorganic materials 0.000 description 5
- 239000010730 cutting oil Substances 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は立方晶窒化硼素(以下CBNと称す
る)とMoとの焼結体及びその製造法に関する。
CBNはダイヤモンドに次ぐ硬度を有する硬質
物質として近年脚光を浴びており、合成粉末及び
焼結体工具が市販されている。現在市販されてい
るCBN焼結工具には金属AlまたはCoなどを結合
材としたものとTiNなどのセラミツクを結合材と
したものがある。各種のCBN焼結体工具につい
て切削試験を行なつた結果によれば、結合材の種
類により切削用途が異なり、あらゆる材質の被削
材あるいはあらゆる硬さ水準の被削材に一律に充
分満足な切削性能を有するCBN焼結体工具は、
現在のところ存在しないことが判明した。例えば
セラミツクを結合材としたものは耐摩耗性の点で
優れているが、靭性は劣り特にHRC65以上の高
硬度の高速度鋼焼入鋼材などを切削する場合は欠
損を起しやすい。また金属AlまたはCoなどを結
合材としたものは、高温での軟化による耐摩耗性
の低下やCoが硼化物を形成することにより脆化
するなどの問題があり、やはり上記高硬度材を切
削する場合は欠損を生じやすく必ずしも充分な性
能を有しているとは言えない。
また、既にAl2O3を結合材としたCBN焼結体工
具について特許出願中であるが、これは鋳鉄、高
合金難削材焼入した軸受鋼(HROC60近辺)など
の切削に好適な工具として位置づけられた。
Al2O3は高硬度で耐熱安定性にすぐれた優秀な硬
質物質であるが、セラミツクとしての本質的な脆
さは免れず、HRC65以上の高速度鋼に対する断
続切削の場合のようにかなりの熱衝撃を受ける切
削には必ずしも充分とは言えない。
本発明は高硬度の焼入鋼材の切削において靭性
不足を免れない従来の焼結体ではなく、高硬度で
耐熱衝撃性にすぐれた金属であるMoを結合材と
した、特に高硬度材の切削用途に適した新規な
CBN焼結体工具に関するものである。
Moは第1表に示したように耐熱衝撃性の指標
となるK(1−ν)の値がAl2O3、Co、Niなどに
比べて大きく耐熱衝撃性においてすぐれている。
しかし、Moは高融点で焼結し難く、また酸化し
やすくその酸化物(MoO3)の融点が795℃と低い
ためにCBN焼結体工具のように切削中に高温と
なる部分の構成相として用いることに難点があつ
た。然るにMoは高強度で熱伝導度も大きく耐熱
衝撃性に優れており、焼結が可能でかつ酸化など
の難点が克服されれば、CBN焼結体工具の結合
材としては好適なものである。そこで、焼結する
際に酸化を防止して粒成長を抑制する意味でMo
よりも酸化傾向が強く、再結晶温度上昇に寄与
し、粒成長抑制効果のあるTi、Zr、Taの中の1
種もしくは2種以上の元素金属を重量で0.1〜2.0
%添加して超高圧焼結よりCBN−Mo系焼結体を
作成したところ、切削工具として充分使用可能な
焼結体が得られた。MoはCBN相の空隙を埋める
形で均一に分散焼結しており、またMoは一部硼
化物を形成しCBN粒子との焼結を促進する効果
を有している。MoとCBNの配合比によつてはMo
粒子自体はCBN粒子とMoの硼化物で周囲を被覆
された形となつており、切削中の温度上昇に対し
ても充分な耐酸化性を有している。このように本
発明の特徴は、結合相としてのMoの欠点を添加
元素(Ti、Zr、Ta)の効果とCBNとMoとの配合
比により克服した結合金属にMoを用いた強靭な
CBN焼結体工具を提供するにある。
The present invention relates to a sintered body of cubic boron nitride (hereinafter referred to as CBN) and Mo, and a method for manufacturing the same. CBN has been in the spotlight in recent years as a hard material with hardness second only to diamond, and synthetic powder and sintered tools are commercially available. CBN sintered tools currently on the market include those that use metal Al or Co as a binder, and those that use ceramics such as TiN as a binder. According to the results of cutting tests conducted on various CBN sintered compact tools, cutting applications differ depending on the type of binder, and it is found that the cutting applications are uniformly satisfactory for workpieces of all materials and workpieces of all hardness levels. CBN sintered tools with cutting performance are
Turns out it doesn't currently exist. For example, ceramic bonding materials are excellent in terms of wear resistance, but have poor toughness and are prone to breakage, especially when cutting high-speed hardened steel with a hardness of HRC65 or higher. In addition, those using metal Al or Co as a binder have problems such as a decrease in wear resistance due to softening at high temperatures and embrittlement due to the formation of boride by Co. In this case, defects tend to occur and the performance cannot necessarily be said to be sufficient. Additionally, a patent has already been applied for a CBN sintered tool using Al 2 O 3 as a binder, which is a tool suitable for cutting cast iron, high-alloy hard-to-cut bearing steel (near HROC60), etc. It was positioned as
Although Al 2 O 3 is an excellent hard material with high hardness and excellent heat resistance stability, it is inherently brittle as a ceramic, and it is subject to considerable damage as in the case of interrupted cutting of high-speed steel of HRC65 or higher. This is not necessarily sufficient for cutting that is subject to thermal shock. The present invention uses Mo, a metal with high hardness and excellent thermal shock resistance, as a binder, instead of the conventional sintered body that suffers from insufficient toughness when cutting high-hardness hardened steel materials. A new product suitable for the application
This relates to CBN sintered tools. As shown in Table 1, Mo has a higher value of K(1-v), which is an index of thermal shock resistance, than Al 2 O 3 , Co, Ni, etc., and is superior in thermal shock resistance.
However, Mo has a high melting point and is difficult to sinter, and it is easily oxidized and the melting point of its oxide (MoO 3 ) is as low as 795°C, making it difficult to sinter in parts that are heated to high temperatures during cutting, such as in CBN sintered tools. There were some difficulties in using it as a. However, Mo has high strength, high thermal conductivity, and excellent thermal shock resistance, and if it can be sintered and difficulties such as oxidation can be overcome, it is suitable as a binding material for CBN sintered tools. . Therefore, Mo is used to prevent oxidation and suppress grain growth during sintering.
One of Ti, Zr, and Ta that has a stronger oxidation tendency than the other, contributes to an increase in recrystallization temperature, and has the effect of suppressing grain growth.
Species or two or more elemental metals by weight from 0.1 to 2.0
When a CBN-Mo based sintered body was created by ultra-high pressure sintering with the addition of CBN-Mo, a sintered body that could be sufficiently used as a cutting tool was obtained. Mo fills the voids in the CBN phase and is uniformly dispersed and sintered, and Mo also forms some borides and has the effect of promoting sintering with CBN particles. Depending on the blending ratio of Mo and CBN, Mo
The particles themselves are surrounded by CBN particles and Mo boride, and have sufficient oxidation resistance against temperature rises during cutting. As described above, the feature of the present invention is that the drawbacks of Mo as a binder phase are overcome by the effects of additive elements (Ti, Zr, Ta) and the blending ratio of CBN and Mo.
To provide CBN sintered tools.
【表】
結合金属であるMoとCBNとの重量比は適用条
件によつて種々に変えることができ、CBNは重
量比で50〜95%まで選定できる。また、切削工具
としての耐摩耗性を有するためにはCBNは50%
以上必要であり、さらに焼結体工具としての靭性
を維持するにはCBNは重量比で95%以下でなけ
ればならない。また、焼結中におけるMoの酸化
防止と粒成長抑制のために微粒の不溶性元素粉末
としてTi、Zr、Taの中の1種もしくは2種以上
を重量で0.1〜2.0%添加する。この場合0.1%以下
では効果がなく、2.0%以上では靭性が低下す
る。
本発明焼結体の製造方法としてはCBNとMoを
所定割合に配合してボールミルなどにより混合
し、これを粉末状でもしくは圧粉成型後、混合過
程での吸着水分等を除く意味で真空中で400〜700
℃で乾燥し、ガードル型又はベルト型等の超高圧
装置を用いて超高圧高温の条件で焼結する。焼結
条件は基本的にはCBNの安定存在域で行う必要
があるが、CBNとMoの配合割合によつて変わ
り、圧力は40Kb以上、温度は1200℃以上で行わ
なければならない。
以下、実施例を示す。
実施例 1
平均粒度5μのCBN粉末と平均粒度1μのMo
粉末とZr粉末を重量で各々80%、19%、1%の割
合に配合し、n−ヘキサンを加えて乳鉢で充分混
合した。この混合粉末を外径6.6mm、高さ2.5mmに
圧粉成型した。この成型体を真空炉で10-5torrの
減圧下で500℃に3時間加熱して脱水した。これ
をガードル型超高圧発生装置に装填した。圧力媒
体としてはパイロフエライト、ヒーターとしては
黒鉛を用いた。なお黒鉛と試料の間にはh−BN
を充填した。
まず圧力を58Kbに上げ、ついで温度を1300℃
に上げ30分間保持した。保持後温度を下げ圧力を
徐々におろした。得られた焼結体は外径約6.5
mm、厚さ約1.9mmであつた。これをダイヤモンド
砥石とペーストを用いて研磨して焼結体の硬度を
測定したところH.m.V3500〜4000であつた。
焼結体をダイヤモンド砥石で研削して切削用チ
ツプを作成し切削テストを行つた。比較用として
平均粒度6〜7μのCBNとTiNとの焼結体で市販
されているチツプ、及び平均粒度3μのCBNを
金属Coなどで結合した市販のCBN焼結体チツプ
を用いた。
被削材には熱処理したSKH3を用いた。被削材
の硬さはHRC65.3である。切削条件は長手連続
切削で
切削速度 100m/min
切込み 0.3mm
送 り 0.1mm/rev
切削油 なし
である。結果を第1図に示す。本発明の焼結体チ
ツプは逃げ面摩耗幅が0.3mmに達するのに37分で
あるが、市販のCBN−TiN系チツプは12分、金属
Coを結合剤としたものは20分であつた。
実施例 2
平均粒度5μのCBN粉末と平均粒度1μのMo
粉末及びTi粉末を重量で各々85%、14%、1%
の割合で配合し、超硬合金製ボールミルで48時
間、n−ヘキサン懸濁媒として混合した。この混
合粉末から実施例1と同様の方法により焼結体を
作成し、切削テストを行つた。
被削材はSKH9(HRC64.8)を用いた。
切削条件は
切削速度 100m/min
切込み 0.3mm
送 り 0.1mm/rev
切削油 なし
である。
結果は逃げ面摩耗幅が0.3mmに達するのに本発
明焼結体チツプは40分であつたが、市販のCBN
−TiNは15分、金属Coなどを結合剤としたものは
25分であつた。
実施例 3
平均粒度5μのCBN粉末と平均粒度0.6μのMo
粉末及びTa粉末を重量で各々82%、17%、1%
の割合で配合し、n−ヘキサンを加えて乳鉢で充
分混合した。この混合粉末から実施例と同様の方
法により焼結体チツプを作成し、第2図に示すよ
うに該焼結体チツプを取付けたバイトホルダー2
を用いて、D=4mm、L1=L2=150mmの丸サーフ
エイスブローチ1に対して切削テストを行つた。
切削テストは第2図の1aから12aの刃部の
間130mmを1パスとして下記の条件で行つた。
切削速度 60m/min
切込み 0.2mm
送 り 0.1mm/rev
切削油 なし
結果を第3図に示す。逃げ面摩耗幅が0.2mmに
達するのに本発明焼結体は4パス、市販のCBN
−TiN系は2.5パス、金属Coを結合剤としたもの
は3パスであつた。
実施例 4
平均粒度5μのCBN粉末と平均粒度0.6μのMo
粉末及びZr粉末を重量で各々80%、9.5%、0.5%
の割合で配合しn−ヘキサンを加えて乳鉢で充分
混合した。この混合粉末から実施例1と同様の方
法により焼結体チツプを作成し高速度鋼
(SKH55、HRC65.5)の断続切削を行つた。切削
テストは第4図に示すようにSUJ2のホルダー1
1に被削材12を90゜間隔に取付け、前記焼結体
を取付けたバイトホルダー3により下記の条件で
送りを変数として行つた。なお、D1=260mm、D2
=200mm、B=32mm、L=340mmであり、Eは楔で
ある。
被削材:SKH55(HRC65.5)
切削速度:60m/min
切込み:0.2mm
送り:0.065、0.1、0.2、0.315、0.4mm/rev
切削油:なし
同一送りでの切削時間:3min
結果を第5図に示す。同一送りで3分間切削し
チツピングが発生しなければ送りを上げて行くと
いう方式である。図中〇印はチツピングの発生な
しを示しており、×印はチツピングの発生したこ
とを示す。
本発明焼結体チツプは送り0.4で初めてチツピ
ングが発生するか、市販のCBN−TiN系チツプ及
びCBN−Co系チツプは送り0.2でチツピングが発
生した。
実施例 5
平均粒度6μのCBN粉末と平均粒度0.6μのMo
粉末及びZr粉末を重量で各々60%、39.5%、0.5
%の割合で配合し、n−ヘキサンを加えて乳鉢で
充分混合した。
この混合粉末から実施例1と同様の方法により
焼結体チツプを作成し高速度鋼(SKH9D、
HRC63.5)の連続切削テストを下記条件で行つ
た。
被削材 SKH9D(HRC63.5)
切削速度 120m/min
切込み 0.3mm
送 り 0.1mm
切削油 なし
結果は逃げ面摩耗幅が0.3mmに達するのに本発
明焼結体チツプは45分、市販のCBN−TiN系チツ
プは30分、金属Coなどを結合剤としたものは38
分であつた。[Table] The weight ratio of Mo and CBN, which are binding metals, can be varied depending on the application conditions, and CBN can be selected from 50 to 95% by weight. In addition, in order to have wear resistance as a cutting tool, CBN must be 50%
In addition, in order to maintain the toughness of a sintered compact tool, CBN must be 95% or less by weight. Further, in order to prevent Mo from oxidizing and suppress grain growth during sintering, one or more of Ti, Zr, and Ta is added as fine insoluble element powder in an amount of 0.1 to 2.0% by weight. In this case, if it is less than 0.1%, there is no effect, and if it is more than 2.0%, the toughness decreases. The method for manufacturing the sintered body of the present invention is to mix CBN and Mo in a predetermined ratio using a ball mill, etc., and then to form a powder or after compacting, in a vacuum to remove adsorbed moisture during the mixing process. 400~700
It is dried at ℃ and sintered under ultra-high pressure and high temperature conditions using an ultra-high pressure device such as a girdle type or belt type. Sintering conditions basically need to be carried out in a stable CBN presence range, but this varies depending on the blending ratio of CBN and Mo, and the pressure must be 40 Kb or higher and the temperature must be 1200°C or higher. Examples are shown below. Example 1 CBN powder with an average particle size of 5μ and Mo with an average particle size of 1μ
The powder and the Zr powder were blended in weight ratios of 80%, 19%, and 1%, respectively, and n-hexane was added and thoroughly mixed in a mortar. This mixed powder was compacted into an outer diameter of 6.6 mm and a height of 2.5 mm. This molded body was dehydrated by heating it at 500° C. for 3 hours under a reduced pressure of 10 −5 torr in a vacuum furnace. This was loaded into a girdle type ultra-high pressure generator. Pyroferrite was used as the pressure medium and graphite was used as the heater. Note that there is h-BN between the graphite and the sample.
filled with. First increase the pressure to 58Kb, then increase the temperature to 1300℃
and held for 30 minutes. After holding, the temperature was lowered and the pressure was gradually lowered. The obtained sintered body has an outer diameter of approximately 6.5
mm, and the thickness was approximately 1.9 mm. This was polished using a diamond grindstone and paste, and the hardness of the sintered body was measured and found to be HmV3500-4000. The sintered body was ground with a diamond grindstone to create a cutting chip, and a cutting test was conducted. For comparison, we used a commercially available chip made of a sintered body of CBN and TiN with an average particle size of 6 to 7 μm, and a commercially available sintered CBN chip made of CBN with an average grain size of 3 μm bonded with metal Co or the like. Heat-treated SKH3 was used as the work material. The hardness of the work material is HRC65.3. The cutting conditions were longitudinal continuous cutting, cutting speed 100m/min, depth of cut 0.3mm, feed 0.1mm/rev, and no cutting oil. The results are shown in Figure 1. It takes 37 minutes for the flank wear width of the sintered chip of the present invention to reach 0.3 mm, but it takes 12 minutes for the commercially available CBN-TiN chip to reach a wear width of 0.3 mm.
The one using Co as a binder took 20 minutes. Example 2 CBN powder with an average particle size of 5μ and Mo with an average particle size of 1μ
Powder and Ti powder are 85%, 14%, and 1% by weight, respectively.
They were mixed in a cemented carbide ball mill for 48 hours as an n-hexane suspension medium. A sintered body was prepared from this mixed powder in the same manner as in Example 1, and a cutting test was conducted. The work material used was SKH9 (HRC64.8). The cutting conditions are cutting speed 100m/min, depth of cut 0.3mm, feed 0.1mm/rev, and no cutting oil. As a result, it took 40 minutes for the flank wear width to reach 0.3 mm for the sintered chip of the present invention, but for the commercially available CBN chip.
−15 minutes for TiN, and for those using metal Co as a binder.
It was hot in 25 minutes. Example 3 CBN powder with an average particle size of 5μ and Mo with an average particle size of 0.6μ
Powder and Ta powder by weight 82%, 17%, 1% respectively
n-hexane was added and thoroughly mixed in a mortar. A sintered chip was made from this mixed powder in the same manner as in the example, and a tool holder 2 with the sintered chip attached as shown in FIG.
A cutting test was conducted on a round surf ace broach 1 with D=4 mm and L 1 =L 2 =150 mm. The cutting test was conducted under the following conditions, with one pass being 130 mm between the blade portions 1a to 12a in FIG. Cutting speed 60m/min Depth of cut 0.2mm Feed 0.1mm/rev Cutting oil None The results are shown in Figure 3. The sintered body of the present invention required 4 passes for the flank wear width to reach 0.2 mm, compared to commercially available CBN.
-TiN system required 2.5 passes, and those using metal Co as a binder required 3 passes. Example 4 CBN powder with an average particle size of 5μ and Mo with an average particle size of 0.6μ
Powder and Zr powder by weight 80%, 9.5%, 0.5% respectively
n-hexane was added and thoroughly mixed in a mortar. Sintered chips were prepared from this mixed powder in the same manner as in Example 1, and interrupted cutting of high speed steel (SKH55, HRC65.5) was performed. The cutting test was performed using SUJ2 holder 1 as shown in Figure 4.
Workpieces 12 were attached to the cutting machine 1 at 90° intervals, and feeding was performed as a variable under the following conditions using the cutting tool holder 3 to which the sintered body was attached. In addition, D 1 = 260mm, D 2
= 200mm, B = 32mm, L = 340mm, and E is a wedge. Work material: SKH55 (HRC65.5) Cutting speed: 60m/min Depth of cut: 0.2mm Feed: 0.065, 0.1, 0.2, 0.315, 0.4mm/rev Cutting oil: None Cutting time at the same feed: 3min Results are shown in 5th As shown in the figure. The method is to cut for 3 minutes at the same feed rate, and if no chipping occurs, increase the feed rate. In the figure, a circle mark indicates that chipping did not occur, and a cross mark indicates that chipping occurred. Chipping occurred for the first time in the sintered chip of the present invention at a feed rate of 0.4, whereas chipping occurred in the commercially available CBN-TiN chips and CBN-Co chips at a feed rate of 0.2. Example 5 CBN powder with an average particle size of 6μ and Mo with an average particle size of 0.6μ
Powder and Zr powder by weight 60%, 39.5%, 0.5 respectively
%, n-hexane was added, and the mixture was thoroughly mixed in a mortar. Sintered chips were made from this mixed powder in the same manner as in Example 1, and high-speed steel (SKH9D,
A continuous cutting test of HRC63.5) was conducted under the following conditions. Work material SKH9D (HRC63.5) Cutting speed 120m/min Depth of cut 0.3mm Feed 0.1mm Cutting oil None As a result, the flank wear width reached 0.3mm with the sintered chip of the present invention in 45 minutes, compared with commercially available CBN. −30 minutes for TiN chips, 38 minutes for those using metal Co as a binder
It was hot in minutes.
第1図は本発明の焼結体を用いた切削用チツプ
と市販のCBN−TiN系及びCBN−Co系焼結体チ
ツプとの高速度鋼丸棒に対する連続テストの比較
図、第2図は本発明の他の実施例の焼結体を用い
た切削用チツプと市販のCBN−TiN系及びCBN−
Co系焼結体チツプとの切削性能の比較に用いた
丸サーフエスブローチの側面図、第3図は第2図
に示した丸サーフエスブローチに対する本発明焼
結体チツプと市販の焼結体チツプとの切削テスト
の比較図、第4図は本発明焼結体チツプと市販の
CBN焼結体チツプの高速度鋼に対する断続切削
テストの概略図、第5図は第4図に示す要領で行
つた本発明焼結体チツプと市販のCBN焼結体チ
ツプとの断続切削テストの比較図である。
Figure 1 is a comparison of cutting chips using the sintered body of the present invention and commercially available CBN-TiN and CBN-Co sintered chips in continuous tests on high-speed steel round bars. Cutting chips using sintered bodies of other embodiments of the present invention and commercially available CBN-TiN and CBN-
Figure 3 is a side view of the round Surf S broach used for comparison of cutting performance with the Co-based sintered tip, and the sintered tip of the present invention and the commercially available sintered body for the round Surf S broach shown in Figure 2. Figure 4 is a comparison diagram of the cutting test between the sintered chip of the present invention and the commercially available chip.
FIG. 5 is a schematic diagram of an interrupted cutting test of a CBN sintered chip on high-speed steel, and FIG. It is a comparison diagram.
Claims (1)
残部がMoを主体としTi、Zr、Taの中から選ばれ
た1種もしくは2種以上の元素を0.1〜2.0重量%
含有する結合金属であることを特徴とする切削工
具用焼結体。 2 重量%で50〜95%の立方晶窒化硼素粉末に、
残部としてMo粉末を主体としTi、Zr、Taの中か
ら選ばれた1種もしくは2種以上の金属粉末を重
量%で0.1〜2.0%混合し、これを粉末状でもしく
は圧粉成型後、超高圧高温装置を用いて40Kb以
上の高圧下で1200℃以上の温度に加熱して焼結す
ることを特徴とする切削工具用焼結体の製造法。[Claims] 1. Contains 50 to 95% by weight of cubic boron nitride,
The balance is mainly Mo, and 0.1 to 2.0% by weight of one or more elements selected from Ti, Zr, and Ta.
A sintered body for a cutting tool, characterized in that the sintered body contains a bonding metal. 2 50-95% by weight cubic boron nitride powder,
The remainder is mainly composed of Mo powder, and one or more metal powders selected from Ti, Zr, and Ta are mixed at a weight percentage of 0.1 to 2.0%, and this is mixed in powder form or after compaction into a super A method for producing a sintered body for cutting tools, which is characterized by heating and sintering at a temperature of 1200°C or higher under high pressure of 40Kb or higher using a high-pressure, high-temperature device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3307479A JPS55125257A (en) | 1979-03-20 | 1979-03-20 | Sintered body for cutting tool and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3307479A JPS55125257A (en) | 1979-03-20 | 1979-03-20 | Sintered body for cutting tool and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55125257A JPS55125257A (en) | 1980-09-26 |
JPS6157381B2 true JPS6157381B2 (en) | 1986-12-06 |
Family
ID=12376564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3307479A Granted JPS55125257A (en) | 1979-03-20 | 1979-03-20 | Sintered body for cutting tool and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55125257A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376252U (en) * | 1989-11-22 | 1991-07-31 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7175687B2 (en) * | 2003-05-20 | 2007-02-13 | Exxonmobil Research And Engineering Company | Advanced erosion-corrosion resistant boride cermets |
US7316724B2 (en) * | 2003-05-20 | 2008-01-08 | Exxonmobil Research And Engineering Company | Multi-scale cermets for high temperature erosion-corrosion service |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518508A (en) * | 1978-07-21 | 1980-02-08 | Mitsubishi Metal Corp | Sintering material having toughness and abrasion resisting property |
-
1979
- 1979-03-20 JP JP3307479A patent/JPS55125257A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518508A (en) * | 1978-07-21 | 1980-02-08 | Mitsubishi Metal Corp | Sintering material having toughness and abrasion resisting property |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376252U (en) * | 1989-11-22 | 1991-07-31 |
Also Published As
Publication number | Publication date |
---|---|
JPS55125257A (en) | 1980-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568827B2 (en) | Cubic boron nitride sintered body and cubic boron nitride sintered body tool | |
JPH0443874B2 (en) | ||
JPS627149B2 (en) | ||
JPS6335589B2 (en) | ||
JPS6157381B2 (en) | ||
JPS6156067B2 (en) | ||
JP2861487B2 (en) | High hardness sintered cutting tool | |
JPS6157382B2 (en) | ||
JP3146803B2 (en) | Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance | |
JPS6222951B2 (en) | ||
JPS6319585B2 (en) | ||
JPH0328172A (en) | High toughness-and high hardness-sintered material | |
JPS596837B2 (en) | Ceramic sintered body for tools and its manufacturing method | |
JP7473149B2 (en) | High-hardness diamond-based block tool material and its manufacturing method | |
JPS5935423B2 (en) | Sintered material for cutting tools containing cubic boron nitride | |
JPH0377151B2 (en) | ||
JPS6242989B2 (en) | ||
JPS6143306B2 (en) | ||
JPS638072B2 (en) | ||
JPS62983B2 (en) | ||
JPS6146429B2 (en) | ||
JPS58213678A (en) | Sialon base sintering material for cutting tool and abrasion-resistant tool | |
JPS6143307B2 (en) | ||
JPS5915971B2 (en) | Densely structured sintered material with toughness and wear resistance | |
JPS6119591B2 (en) |