JPH0328172A - High toughness-and high hardness-sintered material - Google Patents

High toughness-and high hardness-sintered material

Info

Publication number
JPH0328172A
JPH0328172A JP1163451A JP16345189A JPH0328172A JP H0328172 A JPH0328172 A JP H0328172A JP 1163451 A JP1163451 A JP 1163451A JP 16345189 A JP16345189 A JP 16345189A JP H0328172 A JPH0328172 A JP H0328172A
Authority
JP
Japan
Prior art keywords
average particle
boron nitride
ceramics
fiber
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163451A
Other languages
Japanese (ja)
Inventor
Kojiro Kitahata
北畑 浩二郎
Manabu Miyamoto
学 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1163451A priority Critical patent/JPH0328172A/en
Publication of JPH0328172A publication Critical patent/JPH0328172A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the subject high toughness- and high hardness-sintered material excellent in cutting force, detect resistance and chipping resistance by blending a high pressure phase form boron nitride having a specified average particle diameter with a heat-resistant and high hardness ceramics fiber and a transition metal ceramics as binders. CONSTITUTION:An objective high toughness- and high hardness-sintered material is composed of (A) 20-80V% pressure phase form boron nitride (<=1mum average particle size), (B) 3-30V% heat-resistant and high hardeness ceramics fiber (e.g. preferably SiC fiber having 0.2-1mum average fiber diameter, 5-20mum average fiber length and 10-50 aspect ratio) and (C) a carbide, a nitride, a borate of a transition metal (e.g. Ti, Zr, Hf, V, Nb, Ta, Cr or Mo) belonging to IVA, VA or VIA group, an oxide or a nitride of Al, a mixture thereof or a solid solution thereof (<=1mum average particle diameter) and having 5-50 ratio of the average length of (B) component to the average particle size of (A) and (C) components.

Description

【発明の詳細な説明】 [a業上の利用分野コ 本発明は、高硬度で優れた耐摩耗性を示し且つ靭性の優
れた焼結体に関し、この焼結体は、高硬度鋼やNi基も
しくはCo基超硬合金等の切削工具あるいは軸受や線引
ダイス等の耐摩耗工具用素材として有用である. [従来の技術] 上記の様な切削工具や耐摩耗性工具用の素材としては、
従来より炭化タングステン(WC)基の超硬材料が使用
されてきた.しかし需要者の要求が厳しくなってくるに
つれて、上記WC基超硬材料以上の優秀な工具材料の開
発が待たれている. こうした要望に沿う工具用材料として、立方晶窒化硼素
に少量のAIと鉄族金属を含有させた立方晶型窒化硼素
焼結体(特開昭48−17503号公報)、あるいはセ
ラミックスを結合材として用いた立方晶窒化硼素焼結体
く特公昭57一3631号公報〉等が提案された.とこ
ろがこれらの素材により製作された切削工具は、微小切
込みの連続切削の如く比較的負荷の小さい切削条件の下
では優れた切削性能を発揮するが、切込みが大きい場合
、あるいは断続切削の如く繰り返して衝撃力が加わえら
れる苛酷な切削条件の下では必ずしも満足のいく性能は
得られず、耐欠損性や耐チッピング性に問題がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered body having high hardness, excellent wear resistance, and excellent toughness. It is useful as a material for cutting tools such as base or Co-base cemented carbide, or wear-resistant tools such as bearings and wire drawing dies. [Prior art] Materials for cutting tools and wear-resistant tools such as those mentioned above include:
Traditionally, tungsten carbide (WC)-based superhard materials have been used. However, as the demands of users become more stringent, the development of tool materials superior to the above-mentioned WC-based carbide materials is awaited. As tool materials that meet these demands, cubic boron nitride sintered bodies containing small amounts of AI and iron group metals in cubic boron nitride (Japanese Unexamined Patent Publication No. 17503/1983), or ceramics as a binder, are available. A cubic boron nitride sintered body using the same method was proposed in Japanese Patent Publication No. 57-3631. However, cutting tools made from these materials exhibit excellent cutting performance under relatively light cutting conditions, such as continuous cutting with a small depth of cut, but they exhibit excellent cutting performance under relatively low load cutting conditions, such as continuous cutting with a small depth of cut, but when cutting with a large depth of cut or repeated cutting, such as with interrupted cutting. Under severe cutting conditions where impact force is applied, satisfactory performance is not necessarily obtained, and there are problems with fracture resistance and chipping resistance.

[発明が解決しようとする課題] 本発明は上記の様な事情.に着目してなされたものであ
って、その目的は、大きな負荷を受ける切削条件、ある
いは小さな負荷であっても繰り返しam力の加わる様な
切削条件においても優れた切削性能を発揮する、耐欠損
性、耐チッピング性および耐摩耗性に優れた、高靭性で
高強度の焼結体をI是供しようとするものである. cm題を解決するための手段] 上記課題を解決することのできた本発明に係る焼結体の
構成は、 ■平均粒径1μm以下の高圧相型窒化硼素:20〜80
体積% ■繊維状耐熱性高硬度セラミックス ■平均粒径1μm以下である、周期率表第4a,5a,
6a族lm維金属の炭化物、窒化物、硼化物あるいはA
Iの酸化物、窒化物よりなる群から選択される1f!、
またはそれらの2種以上の混合物もしくは相互固溶体化
合物:残部 からなり、且つ上記■成分の平均長さと、上記■成分お
よび■戒分の平均粒径との比が5〜50であるところに
要旨を有するものである.[作用] 本発明者らは、セラミックスを結合材とする前記窒化硼
素焼結体が耐欠損性や耐チッピング性を欠く理由を解明
するため種々検討を行なったところ、上記欠陥を生ずる
原因は、結合部を構成するセラよツクスの靭性不足によ
るものであることが4a,5a,6a族繊維金g(即ち
Ti,Zr,Hf,V,Nb,Ta.Cr,Mo,Ta
)の炭化物、窒化物、硼化物、およびA1の酸化物、窒
化物の1ff!あるいはそれらから選ばれる2f!以上
の混合物もしくは相互固溶体(以下、これらを総称して
遷移金属セラミックスという)■と繊維状耐熱性高硬度
セラミックス(以下、繊維状セラミックスという)■を
併用することとし、且つ該繊維状セラミックス■の平均
長さと、上記遷移金属セラミックス■および高圧相型窒
化硼素■の平均粒子径との比を特定すると共に、これら
■、■、■の配合率を特定範囲に設定してやれば、耐チ
ッピング性および耐欠損性の優れた高耐摩耗性の焼結体
が得られることを知った. 本発明で使用される■成分の高圧相型窒化硼素、とは、
立方晶型窒化硼素およびウルツ型窒化硼素を総称するも
ので、これらはダイヤモンドに次ぐ硬さを有しており、
切.削乃至研磨の主体となる戒分であって、焼結体(所
定の切削・研磨性能を与えるには、焼結体中の含有率が
20〜80体積%となる様に配合量を調整しなければな
らず、また焼結原料としての平均粒径は1μm以下のも
のでなければならない.しかして高圧相型窒化硼素■の
含有率が20体積%未満である場合は、焼結体の硬さが
不十分となって切削・研磨工具として満足のいくものが
得られず、一方、80体積%を超える場合は、結合相を
構成する遷移金属セラミックス■や繊維状セラミックス
■の量が不足気味となって靭性が低下し、本発明で意図
する様な耐チッピング性や耐欠損性が得られなくなる。
[Problem to be solved by the invention] The present invention solves the above-mentioned circumstances. The purpose was to create a fracture-resistant material that exhibits excellent cutting performance even under cutting conditions where large loads are applied, or where even small loads are repeatedly applied. The purpose of the present invention is to provide a high-toughness, high-strength sintered body with excellent toughness, chipping resistance, and wear resistance. [Means for solving the cm problem] The structure of the sintered body according to the present invention that can solve the above problems is: ■ High-pressure phase type boron nitride with an average grain size of 1 μm or less: 20 to 80
Volume % ■Fibrous heat-resistant high-hardness ceramics ■average particle size of 1 μm or less, periodic table No. 4a, 5a,
Group 6a lm fiber metal carbides, nitrides, borides or A
1f selected from the group consisting of oxides and nitrides of I! ,
or a mixture of two or more thereof or a mutual solid solution compound: the remainder, and the ratio of the average length of the above component (1) to the average particle diameter of the above component (1) and the precepts (2) is 5 to 50. It is something that you have. [Function] The present inventors conducted various studies in order to elucidate the reason why the boron nitride sintered body using ceramic as a binder lacks fracture resistance and chipping resistance, and found that the cause of the above defects is as follows. It is believed that this is due to the lack of toughness of the ceramics that constitute the bonding part.
) carbides, nitrides, borides, and oxides, nitrides of A1 1ff! Or 2f selected from them! A mixture or mutual solid solution of the above (hereinafter collectively referred to as transition metal ceramics) ■ and a fibrous heat-resistant high-hardness ceramic (hereinafter referred to as fibrous ceramics) ■ are used together, and the fibrous ceramics ■ By specifying the ratio between the average length and the average particle diameter of the transition metal ceramics ■ and high-pressure phase boron nitride ■, and setting the blending ratio of these ■, ■, and ■ within a specific range, chipping resistance and resistance can be improved. I learned that a sintered body with excellent chipping resistance and high wear resistance can be obtained. The high-pressure phase type boron nitride used in the present invention as component (■) is as follows:
A general term for cubic boron nitride and Wurtz type boron nitride, which have a hardness second only to diamond.
Cut. It is a precept that is the main component of cutting or polishing, and it is a sintered body (in order to give the specified cutting and polishing performance, the blending amount should be adjusted so that the content in the sintered body is 20 to 80% by volume. In addition, the average grain size of the sintering raw material must be 1 μm or less.However, if the content of high-pressure phase boron nitride is less than 20% by volume, the hardness of the sintered body On the other hand, if it exceeds 80% by volume, the amount of transition metal ceramics ■ and fibrous ceramics ■ that make up the binder phase is insufficient. As a result, the toughness decreases, and the chipping resistance and chipping resistance as intended by the present invention cannot be obtained.

高圧相型窒化硼素■のより好ましい含有率は30〜70
体積%である。尚この高圧相型窒化硼素■は、後述する
如く粉末状のものとして!a維状セラミックス■および
遷移金属粉末■と混合し、更に型押戒形後焼結されるが
、高圧相型窒化硼素■の粒度が大き過ぎると、型押成形
時に繊維状セラミックス■が折断し易くなってその靭性
改善効果が低下するので、高圧相型窒化硼素■としては
平均粒径が1μm以下である微粉末を使用しなければな
らない. 次に繊維状セラミックス■は、主として焼結体の結合相
に生じ得るクラックの成長を阻止し靭性を高める作用を
有するもので、その平均繊維長さ(L)は、高圧相型窒
化硼素■と遷移金属セラミックス■の平均粒子径(d)
の5〜50倍の範囲[5d≦L≦50d]でなければな
らない.しかして[L<5d]である場合は、繊維状セ
ラミックス■に期待される靭性改善効果が十分に発揮さ
れず、一方[L>50dlである場合は繊維状セラミッ
クス■同士が絡み合って分散状態が不均一になり、焼結
が不均一になって安定した品質の焼結体が得られなくな
るからである.繊維状セラミックス■は、上記の要件を
満たす限りiam径やlaia長の絶対値は特に限定さ
れないが、1μm以下の粒径の微細な高圧相型窒化硼素
■を使用する本発明においては、平均繊維径が0.2〜
1μm,平均繊維長が5〜20μmでアスベクト比が1
0〜50であるia維状セラよツクス■を使用するのが
好ましい。該ia維状セラミックス■は、焼結原料中に
3〜30体積%を占める様に配合すべきであり、3体積
%未満では靭性改善効果が十分に発揮されず、30体積
%を超える場合は混合状態において繊維状セラよツクス
■が偏析し易くなり、この部分で焼結が不均一となった
り焼結不良になり易くなる.繊維状セラ亙ツクス■のよ
り好ましい配合量は10〜25体積%の範囲である. 次に遷移金属セラミックス■は結合相の主体となるもの
であり、その平均粒径は、高圧相型窒化硼素■について
の説明で述べたのと同様の理由で1μm以下のものが好
ましい.その種類は先に示した通りであるが、それらの
遷移金属セラミックスは優れた耐熱性と強度を有してい
るばかりでなく、前記高圧相型窒化硼素■粉末および繊
維状セラミックス■と共に強固に焼結一体化する性質を
有しており、これらを単独で或は2種以上を組合わせて
結合材として使用することにより強固な焼結体を得るこ
とができる.尚この遷移金属セラミックス■は、前記高
圧相型窒化硼素■および繊維状セラミックス■の残部成
分として配合されるので、配合量は■、■成分の配合量
に応じて変わってくるが、結合相としての機能を有効に
発揮させて均一且つ強固な焼結体を得るには、配合率を
20〜40体積%の範囲に設定するのがよい.上記■、
■、■成分の中でも特に好ましい組合せは、■成分とし
て立方晶型窒化硼素、■成分として繊維状炭化珪素(炭
化珪素ウイスカーを含む)、■成分としてA1203ま
たはA1203とTICを用いた組み合わせであり、こ
れにより卓越した性能の高靭性・高硬度焼結体を得るこ
とができる. 上記原料を用いて焼結体を製造する方法は特に制限され
ず、たとえば■、■、■成分を所定量配合して均一に混
合し、混合粉末の状態で型に充填し、あるいは予め型押
成形した後、高温・高圧下で焼結すると、硬質で高靭性
の焼結体が得られる.このときの焼結条件は、原料成分
、殊に高圧相型窒化硼素を熱変質させることなく、これ
らを焼結一体化し得る条件で自由に選定できるが、般的
な条件として示すならば、温度は 1300〜1700
℃、圧力は30〜70キロバールの範囲である. [実施例] 平均粒径が1μm以下の立方晶型窒化硼素粉末と、平均
粒径が1μm以下の遷移金属セラくツクス粉末、および
平均径が約O.Sμmで平均長さが1〜20μmの炭化
珪素繊維を、第1表C示す割合で使用した. 上記3f!1の原料をエチルアルコールを分散媒として
十分混合し、乾燥して混合粉末とした.尚符号J’  
(比較例)については、平均粒径が3μ市の立方晶型窒
化硼素と平均粒径1μmの遷移金属粉末を用いた. 得られた混合粉末を型押成形した後、真空炉中10′″
’mmHHの真空度で1000℃に1時間保持して脱ガ
スした.この脱ガス成形体を、ベルト型超高圧高温発生
装置により、1600℃、60キロバールで15分間焼
成し、焼結体を得た. 得られた各焼結体から切削チップを作製し、被削材とし
て溝付き円柱状のSCM435(HRe60)材を用い
て、外周長手方向に断続切削試験を行ない、切削チップ
が欠損するまでの時間を測定した.但し切削条件は、速
度:100m/win ,切込み: 0.3 mm、送
り:0.IS am/revとした. 結果を第1表に一括して示す.但し切削チップの欠損寿
命は、符号c’  <比較例)の切削チップが欠損する
までの時間を1とし、これに対する時間比率で示した. 第1表より次の様に考えることができる。
The more preferable content of high-pressure phase boron nitride ■ is 30 to 70.
It is volume %. In addition, this high-pressure phase type boron nitride ■ is in powder form as described later! It is mixed with a fibrous ceramic ■ and transition metal powder ■, and then sintered after being pressed and shaped. However, if the particle size of high-pressure phase boron nitride ■ is too large, the fibrous ceramic ■ will break during pressing. Therefore, as high-pressure phase type boron nitride (2), a fine powder with an average particle size of 1 μm or less must be used. Next, the fibrous ceramics (■) mainly has the effect of inhibiting the growth of cracks that may occur in the binder phase of the sintered body and increasing the toughness, and its average fiber length (L) is different from that of the high-pressure phase type boron nitride (■). Average particle diameter (d) of transition metal ceramics ■
It must be in the range of 5 to 50 times [5d≦L≦50d]. However, if [L<5d], the expected toughness improvement effect of the fibrous ceramics (■) will not be fully exhibited, while if [L>50dl], the fibrous ceramics (■) will become intertwined with each other and the dispersion state will deteriorate. This is because the sintering becomes uneven and sintering becomes uneven, making it impossible to obtain a sintered body of stable quality. The absolute value of the IAM diameter and LAI length of the fibrous ceramic (■) is not particularly limited as long as it satisfies the above requirements. Diameter is 0.2~
1 μm, average fiber length is 5 to 20 μm, and asvect ratio is 1.
It is preferable to use fibrous Serayox (IA) having an IA of 0 to 50. The IA fibrous ceramics (■) should be blended in the sintering raw material so that it accounts for 3 to 30% by volume; if it is less than 3% by volume, the toughness improvement effect will not be sufficiently exhibited, and if it exceeds 30% by volume, In the mixed state, the fibrous ceramics (■) tend to segregate, making sintering uneven or defective in this area. A more preferable amount of fibrous ceramics (2) is in the range of 10 to 25% by volume. Next, the transition metal ceramic (2) is the main component of the binder phase, and its average grain size is preferably 1 μm or less for the same reason as stated in the explanation of the high-pressure phase type boron nitride (2). The types are as shown above, and these transition metal ceramics not only have excellent heat resistance and strength, but also have strong sintering properties with the high-pressure phase boron nitride powder and fibrous ceramics. They have the property of binding together, and by using them alone or in combination as a binding material, a strong sintered body can be obtained. This transition metal ceramic (■) is blended as the remaining component of the high-pressure phase type boron nitride (■) and the fibrous ceramic (■), so the amount blended will vary depending on the blended amounts of components (■) and (■), but it will be used as a binder phase. In order to effectively exhibit the function of molten metal and obtain a uniform and strong sintered body, it is preferable to set the blending ratio in the range of 20 to 40% by volume. ■ above,
A particularly preferable combination among the components (2) and (2) is cubic boron nitride as the component (2), fibrous silicon carbide (including silicon carbide whiskers) as the component (2), A1203 or A1203 and TIC as the component (2), This makes it possible to obtain a sintered body with outstanding performance, high toughness, and high hardness. The method for manufacturing a sintered body using the above raw materials is not particularly limited, and for example, the ingredients ①, ②, and ② may be blended in predetermined amounts, mixed uniformly, and filled into a mold in the state of mixed powder, or pre-embossed. After forming, sintering at high temperature and pressure yields a hard and highly tough sintered body. The sintering conditions at this time can be freely selected so that the raw material components, especially high-pressure phase boron nitride, can be sintered and integrated without thermally altering them. is 1300~1700
°C and pressure ranges from 30 to 70 kbar. [Example] A cubic boron nitride powder with an average particle size of 1 μm or less, a transition metal ceramics powder with an average particle size of 1 μm or less, and an average particle size of about O. Silicon carbide fibers having an average length of 1 to 20 μm in S μm were used in the proportions shown in Table 1 C. 3f above! The raw materials No. 1 were thoroughly mixed using ethyl alcohol as a dispersion medium, and dried to form a mixed powder. Furthermore, code J'
For (comparative example), cubic boron nitride with an average particle size of 3 μm and transition metal powder with an average particle size of 1 μm were used. After the obtained mixed powder was pressed and molded, it was heated in a vacuum furnace for 10''
It was degassed by holding it at 1000°C for 1 hour at a vacuum level of 'mmHH. This degassed compact was fired for 15 minutes at 1600° C. and 60 kbar using a belt-type ultra-high pressure and high temperature generator to obtain a sintered compact. Cutting chips were prepared from each of the obtained sintered bodies, and an interrupted cutting test was performed in the longitudinal direction of the outer circumference using a grooved cylindrical SCM435 (HRe60) material as the work material, and the time required for the cutting chips to break was measured. was measured. However, the cutting conditions are: speed: 100 m/win, depth of cut: 0.3 mm, feed: 0. IS am/rev. The results are summarized in Table 1. However, the breakage life of the cutting tip is expressed as the time ratio with respect to the time taken for the cutting tip with code c'<comparative example to break off, with the time taken as 1. From Table 1, it can be considered as follows.

(!)符号A−Hは本発明で定める要件を充足する実施
例であり、欠損までの寿命は比較例(符号C’ )の3
倍を超えており、切削部材としての寿命はいずれも非常
に優れている。
(!) Codes A-H are examples that satisfy the requirements defined by the present invention, and the lifespan until breakage is 3 of the comparative example (code C').
This is more than twice as long, and the lifespan of each cutting member is extremely excellent.

(2)符号A゜〜J゜は、以下に示す如く本発明で定め
る要件のいずれかを欠く比較例であり、欠損までの寿命
はいずれも本発明より著しく劣っている. 符号A゜ :炭化珪素繊維の長さ比が5未満であ る。
(2) Symbols A° to J° are comparative examples that lack any of the requirements specified by the present invention as shown below, and the lifespan until breakage is significantly inferior to that of the present invention. Symbol A°: The length ratio of the silicon carbide fibers is less than 5.

〜E゜ :炭化珪素繊維が配合されていない. :炭化珪素繊維の配合量が30体積% を超えている. :炭化珪素繊維の長さ比が50を超え ている. 二立方晶型窒化硼素の配合量が90体 積%を超え、遷移金属セラミックス の量が不足気味となっている。~E゜ : Silicon carbide fiber is not blended. :The blending amount of silicon carbide fiber is 30% by volume. exceeds. :Length ratio of silicon carbide fiber exceeds 50 ing. Contains 90 units of dicubic boron nitride More than product%, transition metal ceramics There seems to be a shortage in the amount of

符号B゜ 符号F゜ 符号G゜ 符号H゛ 符号I゛ :立方晶型窒化硼素の配合量が不足する 符号J゜ :立法晶型窒化硼素の平均粒径が1μmを超
えている. [発明の効果コ 本発明は以上の様に構成されており、高圧相型窒化硼素
の結合相として特定の遷移金属セラミックスを使用する
と共に強化材として特定形状の繊維状セラミックスを特
定量併用することにより、高圧相型窒化硼素焼結体の耐
摩耗性を損なうことなくその靭性を高めることができ、
切削工具、軸受け、線引ダイス等の耐摩耗性工具用素材
としての寿命を著しく延長し得ることになった。
Code B゜ Code F゜ Code G゜ Code H゛ Code I゛: The amount of cubic boron nitride is insufficient. Code J゜: The average particle size of cubic boron nitride exceeds 1 μm. [Effects of the Invention] The present invention is constructed as described above, in which a specific transition metal ceramic is used as a binder phase for high-pressure phase boron nitride, and a specific amount of fibrous ceramics with a specific shape is used as a reinforcing material. This makes it possible to increase the toughness of the high-pressure phase type boron nitride sintered body without impairing its wear resistance.
The lifespan of the material for wear-resistant tools such as cutting tools, bearings, and wire drawing dies can be significantly extended.

Claims (1)

【特許請求の範囲】[Claims] (1)[a]平均粒径1μm以下の高圧相型窒化硼素:
20〜80体積% [b]繊維状耐熱性高硬度セラミックス :3〜30体積% [c]平均粒径1μm以下である、周期律表第4a,5
a,6a族繊維金属の炭化物、 窒化物、硼化物、あるいはAlの酸化 物、窒化物よりなる群から選択される1 種、またはそれらの2種以上の混合物も しくは相互固溶体化合物:残部 からなり、且つ上記[b]成分の平均長さと、上記[a
]成分および[c]成分の平均粒径との比が5〜50で
あることを特徴とする高靭性・高硬度焼結体。
(1) [a] High-pressure phase type boron nitride with an average particle size of 1 μm or less:
20 to 80 volume% [b] Fibrous heat-resistant high-hardness ceramics: 3 to 30 volume% [c] Periodic table No. 4a and 5 with an average particle size of 1 μm or less
one selected from the group consisting of carbides, nitrides, and borides of Group A and VIA fiber metals, or oxides and nitrides of Al, or a mixture or mutual solid solution compound of two or more thereof: the remainder; and the average length of the component [b] above, and the average length of the component [a] above.
] A high-toughness, high-hardness sintered body characterized in that the ratio of component [c] to the average particle diameter is 5 to 50.
JP1163451A 1989-06-26 1989-06-26 High toughness-and high hardness-sintered material Pending JPH0328172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163451A JPH0328172A (en) 1989-06-26 1989-06-26 High toughness-and high hardness-sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163451A JPH0328172A (en) 1989-06-26 1989-06-26 High toughness-and high hardness-sintered material

Publications (1)

Publication Number Publication Date
JPH0328172A true JPH0328172A (en) 1991-02-06

Family

ID=15774132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163451A Pending JPH0328172A (en) 1989-06-26 1989-06-26 High toughness-and high hardness-sintered material

Country Status (1)

Country Link
JP (1) JPH0328172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524922A (en) * 1991-04-05 1993-02-02 Agency Of Ind Science & Technol Diamond-containing combined sintered compact with high hardness and high density and production of the same
JPH0524929A (en) * 1991-04-05 1993-02-02 Agency Of Ind Science & Technol High-pressure type boron nitride-containing high-hardness high-density composite sintered compact and production thereof
JPH05139844A (en) * 1991-04-05 1993-06-08 Agency Of Ind Science & Technol Coated high-pressure type boron nitride-containing high-density complex sintered compact having high hardness and its production
JPH05148021A (en) * 1991-04-05 1993-06-15 Agency Of Ind Science & Technol Composite sintered material containing coated diamond having high hardness and density and its production
JPH0632655A (en) * 1991-05-18 1994-02-08 Agency Of Ind Science & Technol Diamond sintered compact and its production
JPH06219841A (en) * 1991-05-18 1994-08-09 Agency Of Ind Science & Technol High pressure type boron nitride sintered compact and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524922A (en) * 1991-04-05 1993-02-02 Agency Of Ind Science & Technol Diamond-containing combined sintered compact with high hardness and high density and production of the same
JPH0524929A (en) * 1991-04-05 1993-02-02 Agency Of Ind Science & Technol High-pressure type boron nitride-containing high-hardness high-density composite sintered compact and production thereof
JPH05139844A (en) * 1991-04-05 1993-06-08 Agency Of Ind Science & Technol Coated high-pressure type boron nitride-containing high-density complex sintered compact having high hardness and its production
JPH05148021A (en) * 1991-04-05 1993-06-15 Agency Of Ind Science & Technol Composite sintered material containing coated diamond having high hardness and density and its production
JPH0632655A (en) * 1991-05-18 1994-02-08 Agency Of Ind Science & Technol Diamond sintered compact and its production
JPH06219841A (en) * 1991-05-18 1994-08-09 Agency Of Ind Science & Technol High pressure type boron nitride sintered compact and its production

Similar Documents

Publication Publication Date Title
JPWO2012029440A1 (en) Cubic boron nitride sintered tool
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPH0328172A (en) High toughness-and high hardness-sintered material
JP2576867B2 (en) High toughness cubic boron nitride based sintered body
JP3297535B2 (en) Cubic boron nitride sintered body
EP0963962A1 (en) Alumina-base ceramic sinter and process for producing the same
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JP4540791B2 (en) Cermet for cutting tools
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
JPH0531514B2 (en)
JP4035045B2 (en) Throw-away tip and manufacturing method thereof
JPH06666B2 (en) Ceramic material with excellent precision workability
JPH0891936A (en) Sintered material of boron nitride of cubic system
EP0095129A1 (en) Composite ceramic cutting tool and process for making same
JPH0849037A (en) Sintered compact for tool and its production
JPH0313539A (en) High toughness and high hardness sintered body and its manufacture
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPH02167606A (en) Cutting tip made of cubic system boron nitride group super high pressure sintered material capable of cutting workpiece difficult to cut
JPH07188827A (en) Sintered body for tool and its manufacture
JPS6157381B2 (en)
JPH07172906A (en) Ceramic sintered compact
JPH0313538A (en) High toughness and high hardness sintered body and its manufacture
JPH11268956A (en) Cutting chip made of ultra-high pressure sintered material based on cubic boron nitride having excellent chipping resistance