JPH0632655A - Diamond sintered compact and its production - Google Patents

Diamond sintered compact and its production

Info

Publication number
JPH0632655A
JPH0632655A JP3213270A JP21327091A JPH0632655A JP H0632655 A JPH0632655 A JP H0632655A JP 3213270 A JP3213270 A JP 3213270A JP 21327091 A JP21327091 A JP 21327091A JP H0632655 A JPH0632655 A JP H0632655A
Authority
JP
Japan
Prior art keywords
powder
diamond
coated
sintered body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3213270A
Other languages
Japanese (ja)
Other versions
JP2847173B2 (en
Inventor
Masaichi Kume
正市 粂
Haruo Yoshida
晴男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3213270A priority Critical patent/JP2847173B2/en
Publication of JPH0632655A publication Critical patent/JPH0632655A/en
Application granted granted Critical
Publication of JP2847173B2 publication Critical patent/JP2847173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain at a low cost the subject uniform, firm, high- performance and high-density diamond sintered compact by using coated diamond powder prepared by coating the individual particles diamond powder with a binder and/or a sintering auxiliary each in an arbitrary amount ranging from a slight to large amount. CONSTITUTION:The objective diamond sintered compact can be obtained by coating the individual particles of diamond powder with a binder and/or a sintering auxiliary through immersion process followed by, either directly (i.e., in a powdered form) or after press molding, sintering at elevated temperatures under an ultrahigh pressure of >=2000MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンドを含有す
る高密度な焼結体およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high density sintered body containing diamond and a method for producing the same.

【0002】[0002]

【従来の技術】ダイヤモンドは、強い共有結合性に基づ
き、多くの非常に優れた性質を有するが、反面、その共
有結合性に起因して、自己拡散係数が非常に小さいため
に、極めて難焼結性であり、しかも、ダイヤモンドは熱
力学的には超高圧力下でのみ安定で、高温下では、圧力
が不十分な場合には黒鉛に相転移するという問題もある
ため、結合材や焼結助剤無添加では、約2440Kとい
う非常に高い温度と同時に、約8500MPaの超高圧
力を作用させなければ強固に焼結することが出来ない。
しかし、このような焼結条件は、極めて苛酷なものであ
り、工業的に高密度ダイヤモンド焼結体を製造するには
不適当である。従って、当該高密度ダイヤモンド焼結体
を製造するためには、工業的に適用可能な条件で焼結す
る必要があり、そのためには、結合材及び/又は焼結助
剤の添加が不可欠である。
2. Description of the Related Art Diamond has many excellent properties due to its strong covalent bond, but on the other hand, due to its covalent bond, its self-diffusion coefficient is very small, which makes it extremely difficult to burn. In addition, diamond is thermodynamically stable only under ultrahigh pressure, and at high temperatures, there is also a problem of phase transition to graphite if the pressure is insufficient. Without the addition of a binder, strong sintering cannot be achieved unless a very high temperature of about 2440 K and an ultrahigh pressure of about 8500 MPa are applied.
However, such sintering conditions are extremely severe and are unsuitable for industrially producing a high-density diamond sintered body. Therefore, in order to manufacture the high-density diamond sintered body, it is necessary to sinter under industrially applicable conditions, and for that purpose, the addition of a binder and / or a sintering aid is essential. .

【0003】結合材及び/又は焼結助剤を粉体状で添加
すると、理想的な均一な添加、即ち均一な分散が極めて
困難であり、仮に均一な分散が実現されたとしても、結
合材及び/又は焼結助剤を粉体粒子単位で添加するため
に、均一の意味にも限界がある。特に、添加量が少ない
場合、焼結体中に結合材や焼結助剤が存在しない部分が
出来る。現実には、多くの場合、ダイヤモンド粉体や当
該、結合材及び/又は焼結助剤の粉体が凝集して焼結体
中に塊状に存在したり、或は、焼結体中で偏在する。こ
のため、ダイヤモンド粉体の凝集部分では、結合材や焼
結助剤無添加と同じで、局部的に未焼結となる。
When a binder and / or a sintering aid is added in powder form, it is extremely difficult to add it uniformly ideally, that is, evenly disperse it. Even if even dispersion is realized, the binder is added. Since the sintering aid is added in powder particle units, there is a limit to the meaning of uniformity. In particular, when the added amount is small, there is a portion in the sintered body where the binder and the sintering aid do not exist. In reality, in many cases, the diamond powder and the powder of the binder and / or the sintering aid are aggregated and exist in a lump in the sintered body, or unevenly distributed in the sintered body. To do. Therefore, the agglomerated portion of the diamond powder is locally unsintered as in the case where no binder or sintering additive is added.

【0004】従って、高密度で強固に結合したダイヤモ
ンド焼結体を製造するためには、ダイヤモンド粉体の粒
子一個一個に確実に結合材及び/又は焼結助剤を分布さ
せる必要があり、更に、各ダイヤモンド粉体の粒子表面
上においても、均一に分布させる必要がある。そのため
には、当該ダイヤモンド粉体の粒子一個一個に焼結助剤
を均一に被覆することが望まれる。
Therefore, in order to manufacture a high-density and strongly-bonded diamond sintered body, it is necessary to surely distribute the binder and / or the sintering aid in each particle of the diamond powder. It is necessary to evenly distribute the particles on the surface of each diamond powder. For that purpose, it is desirable that the particles of the diamond powder be uniformly coated with the sintering aid.

【0005】被覆法として、従来、PVD法やCVD法
等があるが、いずれも、微量から多量までの任意の量の
物質を添加することが困難であった。まして、結合材及
び/又は焼結助剤をダイヤモンド粉体の粒子一個一個の
表面に均一に被覆することは困難であった。しかも、こ
れらの方法では、設備が大がかりとなり高価な方法であ
った。従って、得られる焼結体は高価なものとなりなが
ら、当該焼結体の性能は、充分満足出来るものではなか
った。
Conventionally, the PVD method, the CVD method, and the like have been used as the coating method, but it has been difficult to add an arbitrary amount of a substance from a very small amount to a large amount. Furthermore, it was difficult to uniformly coat the surface of each particle of the diamond powder with the binder and / or the sintering aid. Moreover, these methods are expensive because they require large equipment. Therefore, although the obtained sintered body is expensive, the performance of the sintered body is not sufficiently satisfactory.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、微量
から多量までの任意の量の、結合材及び/又は焼結助剤
を、ダイヤモンド粉体の粒子一個一個の表面に均一に被
覆してなる被覆ダイヤモンド粉体による、均一で、緻密
で、且つ強固に焼結された、高性能な高密度ダイヤモン
ド焼結体及びその製造法を提供するものであり、しか
も、簡便で、且つ安価な手段により、提供することであ
る。
An object of the present invention is to uniformly coat a surface of each particle of diamond powder with a binder and / or a sintering aid in an arbitrary amount from a trace amount to a large amount. The present invention provides a high-performance, high-density, high-density diamond sintered body that is uniformly, densely, and strongly sintered with a coated diamond powder obtained by the method, and is simple and inexpensive. It is provided by means.

【0007】[0007]

【課題を解決するための手段】浸漬法は、先に金属材料
の表面処理技術としての硬度改善及び耐摩耗性の改善法
として提案された方法(特関昭61−87873号参
照)であり、後に、研削砥石用の砥粒の酸化防止や研削
加工時の当該研削砥石の目詰まり防止のための研削砥石
用の砥粒への被覆法として発明された方法(特開平1−
207380号、特開平1−234168号参照)であ
るが、鋭意研究を行った結果、当該浸漬法を結合材及び
/又は焼結助剤添加法として適用することにより、当
該、結合材及び/又は焼結助剤の分布が制御された、均
一で緻密な微組織を有する特徴的な高密度ダイヤモンド
焼結体の製造法を見い出し、当該、結合材及び/又は焼
結助剤の分布が制御された、均一で緻密な微組織を有
し、強固に焼結されたことを特徴とする高性能な高密度
ダイヤモンド焼結体を得た。
Means for Solving the Problems The dipping method is a method previously proposed as a method for improving hardness and wear resistance as a surface treatment technique for metal materials (see Japanese Patent Publication No. 61-87873). After that, a method invented as a method for coating the abrasive grains for the grinding wheel to prevent oxidation of the abrasive grains for the grinding wheel and to prevent clogging of the grinding wheel during the grinding process (JP-A-1-
No. 207380, JP-A-1-234168), but as a result of intensive studies, by applying the dipping method as a binder and / or a sintering additive addition method, the binder and / or A method for producing a characteristic high-density diamond sintered body having a uniform and fine microstructure in which the distribution of the sintering aid is controlled was found, and the distribution of the binder and / or the sintering aid was controlled. Moreover, a high-performance high-density diamond sintered body having a uniform and dense microstructure and being strongly sintered was obtained.

【0008】本発明では、ダイヤモンド粉体表面に被覆
する物質は、所謂、当該ダイヤモンドの焼結を促進する
焼結助剤及び/又は前記ダイヤモンド焼結体において、
ダイヤモンドの粒子を強固に結合せしめる結合材からな
ることは言うまでもない。
In the present invention, the substance that coats the surface of the diamond powder is a so-called sintering aid that promotes the sintering of the diamond and / or the diamond sintered body.
It goes without saying that it is composed of a binder that firmly bonds the diamond particles.

【0009】即ち、基本的には、本発明のダイヤモンド
焼結体の製造法は、ダイヤモンド粉体表面に、浸漬法に
由来する、結合材及び/又は焼結助剤でなる物質の被覆
膜を設けてなる被覆ダイヤモンド粉体を、粉末状で、若
しくは型押し成形後、2000MPa以上の超高圧力・
高温下で焼結せしめることを特徴とするものである。
That is, basically, in the method for producing a diamond sintered body of the present invention, a coating film of a substance consisting of a binder and / or a sintering aid, which is derived from the dipping method, is formed on the surface of diamond powder. Ultra high pressure of 2000MPa or more
It is characterized by being sintered at a high temperature.

【0010】又は、ダイヤモンド粉体表面に、浸漬法に
由来する、結合材及び/又は焼結助剤でなる物質の被覆
膜を設けてなる被覆ダイヤモンド粉体を、体積で1%〜
99.9%、残部が、金属又は化合物の粉体を、体積で
99%〜0.1%を混合せしめてなる混合粉体を、粉末
状で、若しくは型押し成形後、2000MPa以上の超
高圧力・高温下で焼結せしめることを特徴とするか、ダ
イヤモンド粉体表面に、浸漬法に由来する、結合材及び
/又は焼結助剤でなる物質の被覆膜を設けてなる被覆ダ
イヤモンド粉体を、体積で1%〜99.9%、残部が、
金属又は化合物の粉体表面に金属又は化合物の少なくと
も一種類からなる被覆を設けてなる被覆粉体を、体積で
99%〜0.1%を混合せしめてなる混合粉体を、粉末
状で、若しくは型押し成形後、2000MPa以上の超
高圧力・高温下で焼結せしめることを特徴とするか、ダ
イヤモンド粉体表面に、浸漬法に由来する、結合材及び
/又は焼結助剤でなる物質の被覆膜を設けてなる被覆ダ
イヤモンド粉体を、体積で50%〜99.9%、残部
が、短径が500μm以下で、当該短径に対する長径と
の比が2以上でなる形状の金属又は化合物の少なくとも
一種類からなる繊維状物質を、体積で50%〜0.1%
を混合せしめてなる混合物を、その儘で、若しくは型押
し成形後、2000MPa以上の超高圧力・高温下で焼
結せしめることを特徴とする。
Alternatively, a coated diamond powder having a coating film of a substance, which is derived from the dipping method and is composed of a binder and / or a sintering aid, is provided on the surface of the diamond powder in an amount of 1% by volume.
An ultra-high powder of 2000 MPa or more is obtained by powder-mixing a mixed powder made by mixing 99% to 0.1% by volume of a powder of 99.9% with the balance being metal or a compound, and then pressing. Coated diamond powder characterized by being sintered under pressure and high temperature, or provided with a coating film of a substance consisting of a binder and / or a sintering aid derived from an immersion method on the surface of the diamond powder The body is 1% to 99.9% by volume, the balance is
A mixed powder obtained by mixing 99% to 0.1% by volume of a coated powder in which a coating made of at least one kind of a metal or a compound is provided on the surface of a powder of a metal or a compound in a powder form, Alternatively, it is characterized by being sintered at an ultrahigh pressure of 2000 MPa or higher and at a high temperature after embossing, or a substance derived from an immersion method on the surface of a diamond powder, which is composed of a binder and / or a sintering aid. The coated diamond powder provided with the coating film of 50% to 99.9% by volume, the balance being a metal having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. Alternatively, a fibrous substance composed of at least one kind of compound is added in an amount of 50% to 0.1% by volume.
It is characterized in that the mixture obtained by mixing the above is sintered at the same time or after embossing and molding under an ultrahigh pressure of 2000 MPa or higher and a high temperature.

【0011】或は、ダイヤモンド粉体表面に、浸漬法に
由来する、結合材及び/又は焼結助剤なる物質の被覆膜
を設けてなる被覆ダイヤモンド粉体を、体積で50%〜
99.9%、残部が、短径が500μm以下で、当該短
径に対する長径との比が2以上でなる形状の金属又は化
合物の少なくとも一種類からなる繊維状物質の表面に、
金属又は化合物の少なくとも一種類からなる被覆を設け
てなる被覆繊維状物質を、体積で50%〜0.1%を混
合せしめてなる混合物を、その儘で、若しくは型押し成
形後、2000MPa以上の超高圧力・高温下で焼結せ
しめることを特徴とするか、ダイヤモンド粉体表面に、
浸漬法に由来する、結合材及び/又は焼結助剤なる物質
の被覆膜を設けてなる被覆ダイヤモンド粉体を、体積で
1%〜99.9%、残部が、短径が500μm以下で、
当該短径に対する長径との比が2以上でなる形状の金属
又は化合物の少なくとも一種類からなる繊維状物質と金
属又は化合物の粉体の比が体積で0.1:100〜10
0:0.1でなる混合物を、体積で99%〜0.1%を
混合せしめてなる混合物を、粉末状で、若しくは型押し
成形後、2000MPa以上の超高圧力・高温下で焼結
せしめることを特徴とするか、ダイヤモンド粉体表面
に、浸漬法に由来する、結合材及び/又は焼結助剤なる
物質の被覆膜を設けてなる被覆ダイヤモンド粉体を、体
積で1%〜99.9%、残部が、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
金属又は化合物の少なくとも一種類からなる繊維状物質
と、金属又は化合物の粉体の表面に金属又は化合物の少
なくとも一種類からなる被覆を設けてなる被覆粉体の比
が体積で0.1:100〜100:0.1でなる混合物
を、体積で99%〜0.1%を混合せしめてなる混合物
を、粉末状で、若しくは型押し成形後、2000MPa
以上の超高圧力・高温下で焼結せしめることを特徴とす
るか、ダイヤモンド粉体表面に、浸漬法に由来する、結
合材及び/又は焼結助剤なる物質の被覆膜を設けてなる
被覆ダイヤモンド粉体を、体積で1%〜99.9%、残
部が、短径が500μm以下で、当該短径に対する長径
との比が2以上でなる形状の金属又は化合物の少なくと
も一種類からなる繊維状物質の表面に金属又は化合物の
少なくとも一種類からなる被覆を設けてなる被覆繊維状
物質と金属又は化合物の粉体の比が体積で0.1:10
0〜100:0.1でなる混合物を、体積で99%〜
0.1%を混合せしめてなる混合物を、粉末状で、若し
くは型押し成形後、2000MPa以上の超高圧力・高
温下で焼結せしめることを特徴とするか、若しくは、ダ
イヤモンド粉体表面に、浸漬法に由来する、結合材及び
/又は焼結助剤なる物質の被覆膜を設けてなる被覆ダイ
ヤモンド粉体を、体積で1%〜99.9%、残部が、短
径が500μm以下で、当該短径に対する長径との比が
2以上でなる形状の金属又は化合物の少なくとも一種類
からなる繊維状物質の表面に金属又は化合物の少なくと
も一種類からなる被覆を設けてなる被覆繊維状物質と、
金属又は化合物の粉体の表面に金属又は化合物の少なく
とも一種類からなる被覆を設けてなる被覆粉体の比が体
積で0.1:100〜100:0.1でなる混合物を、
体積で99%〜0.1%を混合せしめてなる混合物を、
粉末状で、若しくは型押し成形後、2000MPa以上
の超高圧力・高温下で焼結せしめることを特徴とするも
のである。
Alternatively, a coated diamond powder having a coating film of a substance which is a binder and / or a sintering aid derived from the dipping method is provided on the surface of the diamond powder in an amount of 50% to 50% by volume.
99.9%, the balance being 500 μm or less in minor axis, and the ratio of the major axis to the minor axis is 2 or more on the surface of the fibrous substance made of at least one kind of metal or compound,
A mixture of 50% to 0.1% by volume of a coated fibrous material provided with a coating made of at least one kind of metal or compound is used at the same time or after embossing to obtain a mixture of 2000 MPa or more. Characterized by sintering under ultra high pressure and high temperature, or on the diamond powder surface,
The coated diamond powder, which is derived from the dipping method and is provided with a coating film of a substance that serves as a binder and / or a sintering aid, has a volume of 1% to 99.9%, and the balance of 500 mm or less in minor axis ,
The volume ratio of the fibrous substance made of at least one kind of metal or compound and the powder of metal or compound in the ratio of the major axis to the minor axis of 2 or more is 0.1: 100 to 10 by volume.
The mixture of 0: 0.1 is mixed with 99% to 0.1% by volume, and the mixture is pulverized or is pressed and then sintered under ultrahigh pressure and high temperature of 2000 MPa or more. 1% to 99% by volume of coated diamond powder, which is characterized in that a coating film of a binder and / or a sintering aid derived from an immersion method is provided on the surface of the diamond powder. .9%, the balance being a fibrous substance made of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and a powder of the metal or the compound. A mixture having a coating powder of at least one kind of metal or compound on the surface thereof in a volume ratio of 0.1: 100 to 100: 0.1 is added in an amount of 99% to 0.1%. Mix the resulting mixture in powder form, After stamping molding, 2000MPa
Characterized by being sintered under the ultra-high pressure and high temperature described above, or by coating the surface of diamond powder with a coating film of a substance that is a binder and / or a sintering aid derived from an immersion method. The coated diamond powder has a volume of 1% to 99.9%, and the balance is at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. The ratio of the coated fibrous substance to the powder of the metal or compound is 0.1: 10 by volume, in which the surface of the fibrous substance is coated with at least one kind of metal or compound.
The mixture consisting of 0-100: 0.1 is 99% by volume.
A mixture obtained by mixing 0.1% is characterized in that it is powdered, or after stamping and molding, it is sintered under ultrahigh pressure and high temperature of 2000 MPa or more, or on the diamond powder surface, The coated diamond powder, which is derived from the dipping method and is provided with a coating film of a substance that serves as a binder and / or a sintering aid, has a volume of 1% to 99.9%, and the balance is 500 μm or less in minor axis. A coated fibrous substance comprising a fibrous substance made of at least one kind of metal or compound in a shape in which the ratio of the major axis to the minor axis is 2 or more, and a coating made of at least one kind of metal or compound is provided on the surface of the fibrous substance. ,
A mixture comprising a powder of a metal or a compound, the surface of which is provided with a coating of at least one kind of a metal or a compound, and the ratio of the coated powder is 0.1: 100 to 100: 0.1 by volume,
A mixture formed by mixing 99% to 0.1% by volume,
It is characterized in that it is sintered in a powder form or after embossing at an ultrahigh pressure of 2000 MPa or higher and a high temperature.

【0012】以上を、より好適には、ダイヤモンドの熱
力学的安定領域で、且つ2000MPa以上の超高圧力
・高温下で焼結せしめる。
The above is more preferably sintered in the thermodynamically stable region of diamond and under ultrahigh pressure and high temperature of 2000 MPa or more.

【0013】また、本発明のダイヤモンド焼結体は、上
記方法により焼結せしめてなることを特徴とするダイヤ
モンド焼結体であり、原料のダイヤモンド粉体の粒子一
個一個の表面に、浸漬法に由来する、結合材及び/又は
焼結助剤でなる物質からなる被覆膜を均一に設けてなる
被覆ダイヤモンド粉体の粒子を焼結することにより、当
該被覆膜を押し破って、ダイヤモンドの粒子同志が直接
接して結合している所以外は、必ず当該結合材及び/又
は焼結助剤が存在する、当該ダイヤモンド焼結体中のダ
イヤモンドの粒子表面の少なくとも一部以上に当該結合
材及び/又は焼結助剤が接して存在してなる均一で、緻
密で、且つ強固に焼結された、高性能な高密度ダイヤモ
ンド焼結体であることを特徴とするものである。
Further, the diamond sintered body of the present invention is a diamond sintered body characterized by being sintered by the above-mentioned method, and the surface of each particle of the raw material diamond powder is subjected to the dipping method. By sintering the particles of the coated diamond powder obtained by uniformly providing a coating film made of a substance consisting of a binder and / or a sintering aid, which is derived from the diamond, Except where the particles are directly contacted and bonded, the binder and / or the sintering aid is always present, and the binder and / or the binder is present on at least a part of the particle surface of the diamond in the diamond sintered body. And / or a high-performance, high-density diamond sintered body in which a sintering aid is present in contact, is uniformly, densely, and strongly sintered.

【0014】[0014]

【手段の説明】以下、課題を解決するための手段をより
詳しく説明する。
Description of Means The means for solving the problems will be described in more detail below.

【0015】ここに、本発明における浸漬法とは、一般
に溶融塩浴に上記ダイヤモンド粉体を浸漬し、表面被膜
を形成させる方法である。また、不均化反応とは、一般
に、不同変化ともいい、一種類の物質が2分子或はそれ
以上で相互に酸化、還元その他の反応を行った結果、2
種類以上の物質を生ずることである。
Here, the dipping method in the present invention is generally a method in which the diamond powder is dipped in a molten salt bath to form a surface coating. In addition, the disproportionation reaction is also generally called an asymmetric change, and as a result of mutual oxidation, reduction or other reaction of two molecules or more of one type of substance,
To produce more than one type of substance.

【0016】本発明に係る浸漬法は、例えば、前記不均
化反応を伴う浸漬法であり、当該浸漬法に由来する、結
合材及び/又は焼結助剤でなる物質の被覆膜を設けてな
る被覆ダイヤモンド粉体が、ダイヤモンド粉体表面に浸
漬法により目的とする金属の炭化物、ホウ化物、窒化物
及び珪化物の少なくとも一種類からなる被膜を形成する
方法により得られるもので、目的とする金属を含有する
溶融塩浴を調製し、次いで、処理すべきダイヤモンド粉
体を適宜時間当該浸漬浴に浸漬することにより製造され
ることを特徴とするものである。
The dipping method according to the present invention is, for example, a dipping method involving the above-mentioned disproportionation reaction, and a coating film of a substance derived from the dipping method which is a binder and / or a sintering aid is provided. The coated diamond powder is obtained by a method of forming a coating film of at least one kind of a target metal carbide, boride, nitride and silicide on the surface of the diamond powder by an immersion method. It is manufactured by preparing a molten salt bath containing a metal, and then immersing the diamond powder to be treated in the dipping bath for an appropriate period of time.

【0017】溶融塩浴は、例えば、アルカリ金属及びア
ルカリ土類金属の塩化物の少なくとも一種から成り、ま
た、フッ化物がアルカリ金属及びアルカリ土類金属のフ
ッ化物の少なくとも一種から成る。又は、別法として、
前記溶融塩が、フッ化物含有溶融シュウ化物浴、フッ化
物含有溶融ヨウ化物浴或はフッ化物含有溶融フッ化物浴
であって、上記の目的とする金属の酸化物、ハロゲン化
物又は単体金属或は合金を添加して前記浸漬浴を調製す
るようにしてもよい。この場合には、フッ化物及びシュ
ウ化物若しくはヨウ化物は、好ましくは、前記のよう
に、アルカリ金属及びアルカリ土類金属のフッ化物及び
シュウ化物若しくはヨウ化物から選択すればよい。
The molten salt bath comprises, for example, at least one kind of chloride of alkali metal and alkaline earth metal, and the fluoride comprises at least one kind of fluoride of alkali metal and alkaline earth metal. Or, alternatively,
The molten salt is a fluoride-containing molten oxalate bath, a fluoride-containing molten iodide bath or a fluoride-containing molten fluoride bath, which is an oxide, halide or elemental metal or a metal of the above-mentioned object. The immersion bath may be prepared by adding an alloy. In this case, the fluoride and oxalide or iodide may preferably be selected from the alkali metal and alkaline earth metal fluorides and oxaides or iodides as described above.

【0018】又は、前記溶融塩浴は、溶融ハロゲン化物
浴であってもよい。若しくは、炭酸塩、リン酸塩、鉄酸
塩、アルミン酸塩、ケイ酸塩からなる群から選択された
少なくとも一種類の溶融塩であってもよい。或は、前記
溶融塩は、フッ化物含有ハロゲン化物浴であってもよ
い。また、前記溶融塩浴は、フッ化物含有の、炭酸塩、
リン酸塩、鉄酸塩、アルミン酸塩、ケイ酸塩からなる群
から選択された少なくとも一種類の溶融塩であってもよ
い。
Alternatively, the molten salt bath may be a molten halide bath. Alternatively, it may be at least one kind of molten salt selected from the group consisting of carbonate, phosphate, ferrate, aluminate and silicate. Alternatively, the molten salt may be a fluoride containing halide bath. The molten salt bath is a fluoride-containing carbonate.
It may be at least one kind of molten salt selected from the group consisting of phosphate, ferrate, aluminate and silicate.

【0019】具体的な代表例としては、KCl−BaC
を基本組成とし、これにフッ化物として、例えはN
aFを添加したものが挙げられる。その他、溶融塩化物
浴としては、代表的には、NaCl、LiCl、CaC
等が例示される。また、フッ化物としては、前記N
aFを初め、KF、LiF、CaF、BaF等が挙
げられる。好適には、アルカリ金属塩化物−アルカリ土
類金属塩化物−アルカリ金属フッ化物から成る浴組成が
選択される。例えば、具体的な組成比を示すと、KCl
−BaCl−NaF系の場合、KClは5〜95モル
%、BaClは5〜95モル%、NaFは、5〜50
モル%である。
As a concrete representative example, KCl-BaC
1 2 as a basic composition, and as a fluoride, for example, N 2
The thing which added aF is mentioned. Other typical molten chloride baths include NaCl, LiCl, and CaC.
l 2 and the like are exemplified. Further, as the fluoride, the N
In addition to aF, KF, LiF, CaF 2 , BaF 2 and the like can be mentioned. The alkali metal chloride-alkaline earth metal chloride-alkali metal fluoride bath composition is preferably selected. For example, the specific composition ratio is KCl
In the case of a —BaCl 2 —NaF system, KCl is 5 to 95 mol%, BaCl 2 is 5 to 95 mol%, and NaF is 5 to 50 mol%.
Mol%.

【0020】変更例としては、前記溶融塩浴において、
前記塩化物に代えてシュウ化物或はヨウ化物若しくはフ
ッ化物を使用してもよく、その場合にあってもシュウ化
物又はヨウ化物或はフッ化物としてアルカリ金属及びア
ルカリ土類金属のそれぞれシュウ化物又はヨウ化物或は
フッ化物から適宜選択すればよい。その他、前記溶融塩
浴は、炭酸塩、リン酸塩、鉄酸塩、アルミン酸塩、又は
ケイ酸塩の溶融塩浴であってもよい。これらの場合にあ
っても、アルカリ金属若しくはアルカリ土類金属の塩が
好適である。従って、炭酸塩では、アルカリ金属又はア
ルカリ土類金属の炭酸塩として、例えば、Li
、KCO、NaCO、SrCO、BaC
が好適である。リン酸塩では、アルカリ金属又はア
ルカリ土類金属のリン酸塩として、例えば、NaP
、KPO、LiPO、KHPO、KHP
、NaHPO、Sr(PO、Ca(PO
、BaHPOが好適である。また、鉄酸塩で
は、アルカリ金属又はアルカリ土類金属の鉄酸塩とし
て、例えば、KFe、CaFe が好適
である。或は、アルミン酸塩では、同様に、アルカリ金
属又はアルカリ土類金属のアルミン酸塩として、K
、NaAlO、BaAlが好適であ
る。若しくは、ケイ酸塩では、同じくアルカリ金属又は
アルカリ土類金属のケイ酸塩として、例えば、CaSi
、NaSiO、LiSiO、BaSi
、MgSiが好適である。
As a modification, in the molten salt bath,
In place of the chloride, oxalate, iodide, or fluoride may be used. Even in that case, the oxalate, iodide, or fluoride of alkali metal and alkaline earth metal, respectively, may be used. It may be appropriately selected from iodide or fluoride. In addition, the molten salt bath may be a molten salt bath of carbonate, phosphate, ferrate, aluminate, or silicate. Even in these cases, salts of alkali metals or alkaline earth metals are preferable. Therefore, in the case of carbonate, as a carbonate of an alkali metal or an alkaline earth metal, for example, Li 2 C
O 3 , K 2 CO 3 , Na 2 CO 3 , SrCO 3 , BaC
O 3 is preferred. As the phosphate, as a phosphate of an alkali metal or an alkaline earth metal, for example, NaP
O 3 , KPO 3 , LiPO 3 , KH 2 PO 4 , K 2 HP
O 4 , NaHPO 4 , Sr 3 (PO 4 ) 2 , Ca (PO
4 ) 2 and BaHPO 4 are preferred. In addition, as the ferrate, as the ferrate of an alkali metal or an alkaline earth metal, for example, K 2 Fe 2 O 4 and CaFe 2 O 4 are suitable. Alternatively, in the case of aluminate, similarly, as an aluminate of alkali metal or alkaline earth metal, K 2 A
l 2 O 4 , NaAlO 2 and BaAl 2 O 4 are preferred. Alternatively, in the case of silicate, the same silicate of alkali metal or alkaline earth metal, such as CaSi
O 3 , Na 2 SiO 3 , Li 2 SiO 3 , BaSi
O 3 and Mg 2 Si 3 O 8 are suitable.

【0021】本発明に係る被覆ダイヤモンド粉体は、浸
漬法に由来する結合材及び/又は焼結助剤でなる物質の
被覆膜を設けるために、必要に応じて、浸漬処理を行う
前に、ダイヤモンド粉体表面に事前に物質の被覆を施し
てもよい。例えば、ダイヤモンド粉体表面に、目的とす
る金属の炭化物からなる被覆膜を厚く形成する場合、炭
素を被覆したダイヤモンド粉体を使用するのが好まし
い。事前に物質を被覆する方法は、特に制限するもので
はないが、例えは、電気メッキ法、無電解メッキ法、ク
ラッド法、物理蒸着法(スパッタリング法、イオンプレ
ーティング法等)や化学蒸着法等が好適である。しかし
ながら、ダイヤモンド粉体をその儘浸漬処理を行うと、
化学反応により、炭化物の被覆膜が形成される。
The coated diamond powder according to the present invention may, if necessary, be provided before the dipping treatment in order to form a coating film of a substance consisting of a binder and / or a sintering aid derived from the dipping method. Alternatively, the diamond powder surface may be coated with a substance in advance. For example, when forming a thick coating film made of a target metal carbide on the surface of diamond powder, it is preferable to use diamond powder coated with carbon. The method of coating the substance in advance is not particularly limited, but for example, electroplating method, electroless plating method, clad method, physical vapor deposition method (sputtering method, ion plating method, etc.), chemical vapor deposition method, etc. Is preferred. However, when the diamond powder is subjected to the soaking treatment,
A coating film of carbide is formed by the chemical reaction.

【0022】このような浸漬処理は、別種の目的とする
金属を利用することにより、2回以上繰り返してもよ
い。
Such an immersion treatment may be repeated two or more times by using another kind of target metal.

【0023】また別の態様によれば、フッ化物含有溶融
ハロゲン化物浴にボロン(B)の酸化物及びボロンを含
む合金若しくはボロンを含む炭化物(例えば、B
等)を添加して浸漬浴を調製し、次いで、ダイヤモンド
粉体、又はTi、Cr、V、W、Mo、Zr、Hf、N
b、Ta、Ni及びそれらの合金から選択した金属又は
金属化合物で被覆した、ダイヤモンド粉体を適宜時間浸
漬浴に浸漬することを特徴とする、表面にボロン化合物
層を形成した被覆ダイヤモンド粉体を製造する方法によ
ってもよい。
According to another embodiment, an oxide of boron (B) and an alloy containing boron or a carbide containing boron (for example, B 4 C) is used in the fluoride-containing molten halide bath.
Etc.) to prepare an immersion bath, and then diamond powder or Ti, Cr, V, W, Mo, Zr, Hf, N
A coated diamond powder having a boron compound layer formed on the surface thereof, characterized in that the diamond powder coated with a metal or a metal compound selected from b, Ta, Ni and alloys thereof is immersed in an immersion bath for an appropriate time. It may also depend on the manufacturing method.

【0024】尚、上記、Ti、Cr、V、W、Mo、Z
r、Hf、Nb、Ta、Ni及びそれらの合金から選択
した金属又は金属化合物で被覆したダイヤモンド粉体の
当該被覆手段は、特に制限するものではないが、例え
ば、従来の電気メッキ法、無電解メッキ法、クラッド
法、物理蒸着法(スパッタリング法、イオンプレーティ
ング法等)や化学蒸着法等が使用可能である。
The above Ti, Cr, V, W, Mo, Z
The coating means of the diamond powder coated with a metal or a metal compound selected from r, Hf, Nb, Ta, Ni and alloys thereof is not particularly limited, but for example, conventional electroplating method, electroless method, etc. A plating method, a clad method, a physical vapor deposition method (a sputtering method, an ion plating method, etc.), a chemical vapor deposition method, or the like can be used.

【0025】目的とする金属化合物の金属の種類は、本
発明の、結合材及び/又は焼結助剤として適用可能の範
囲であれば特に制限されないが、従来より被覆膜形成が
困難とされていた金属、例えば、Si、Cr、V、B、
W、Mo、Ti、Zr、Hf、Nb、Ta等周期律表第
4a、5a、6a族遷移金属等が好適な例として挙げら
れる。
The type of metal of the target metal compound is not particularly limited as long as it is within the range applicable to the binder and / or the sintering aid of the present invention, but it has been considered difficult to form a coating film as compared with the prior art. Existing metals such as Si, Cr, V, B,
Preferred examples include transition metals of groups 4a, 5a and 6a of the periodic table such as W, Mo, Ti, Zr, Hf, Nb and Ta.

【0026】当該、従来より被覆膜形成が困難とされて
いた金属、例えば、Si、Cr、V、B、W、Mo、T
i、Zr、Hf、Nb、Ta等周期律表第4a、5a、
6a族遷移金属等が上記浸漬処理に由来する化学反応
で、これらの化合物を形成せずに遊離した場合、更に、
当該被覆膜を設けてなるダイヤモンド粉体を焼結して、
化合物を形成する場合、或は、焼結した後、当該遊離金
属が未反応の儘存在した場合のいずれの場合も結合材及
び/又は焼結助剤として有効に作用する。
The metal, which has been conventionally difficult to form a coating film, such as Si, Cr, V, B, W, Mo or T.
i, Zr, Hf, Nb, Ta, etc. Periodic Table 4a, 5a,
When a group 6a transition metal or the like is released without forming these compounds in the chemical reaction derived from the above immersion treatment,
Sintering the diamond powder provided with the coating film,
In either case of forming a compound or after the sintering, when the free metal remains unreacted, it effectively acts as a binder and / or a sintering aid.

【0027】本発明に係る、ダイヤモンド粉体表面に、
浸漬法に由来する、結合材及び/又は焼結助剤でなる物
質の被覆膜を設けてなる被覆ダイヤモンド粉体用のダイ
ヤモンド原料には、天然及び/又は人工のダイヤモンド
粉体を用いる。当該ダイヤモンド粉体は、特に粒子径に
制限はないが、微細で均質な組織を望む場合には、例え
は、1μm位の粒子径を有するダイヤモンド粉体を使用
し、当該ダイヤモンド粉体を浸漬法に供すればよい。
On the diamond powder surface according to the present invention,
A natural and / or artificial diamond powder is used as the diamond raw material for the coated diamond powder, which is provided with a coating film of a substance that is derived from the dipping method and that is composed of a binder and / or a sintering aid. The diamond powder is not particularly limited in particle size, but when a fine and uniform structure is desired, for example, a diamond powder having a particle size of about 1 μm is used, and the diamond powder is dipped by a dipping method. You can use it.

【0028】本発明に係る、ダイヤモンド粉体表面に被
覆してなる、浸漬法に由来する、結合材及び/又は焼結
助剤でなる物質の添加量は、例えば、浸漬処理温度や浸
漬処理時間等の浸漬処理条件により制御されるが、同一
浸漬処理条件下の場合、当該粉体の粒子径に依存して添
加量が変化し、例えば、当該粒子径が小さい場合には、
相対的に添加量が増す。従って、以上の点を考慮して、
微量から多量までの任意の量を添加せしめる。
According to the present invention, the amount of the substance, which is derived from the dipping method and is a binder and / or a sintering aid, which is coated on the surface of the diamond powder, is, for example, the dipping temperature or dipping time. Although controlled by the immersion treatment conditions such as, under the same immersion treatment conditions, the addition amount changes depending on the particle size of the powder, for example, when the particle size is small,
The amount of addition increases relatively. Therefore, considering the above points,
An arbitrary amount from a trace amount to a large amount is added.

【0029】本発明に係る、ダイヤモンド粉体表面に、
浸漬法に由来する、結合材及び/又は焼結助剤でなる物
質の被覆膜を設けてなる被覆ダイヤモンド粉体に混合せ
しめる金属又は化合物の粉体は、周期律表第2a、3
a、4a、5a、6a、7a、8族遷移金属、希土類金
属、B、Si、Al、又はこれらの内の一種類以上を含
む化合物の少なくとも一種類からなる粉体を用いる。よ
り具体的には、周期律表第2a、3a、4a、5a、6
a、7a、8族遷移金属、希土類金属、B、Si、A
l、又はこれらの炭化物、酸化物、窒化物、酸炭化物、
酸窒化物、炭窒化物、酸炭窒化物、硼化物、珪化物の少
なくとも一種類からなる粉体を使用する。好適には、C
(ダイヤモンド)、SiC、BC、Cr、Ti
C、ZrC、WC、WC、HfC、NbC、TaC、
TaC、VC、MoC、Si、TiN、Zr
N、SiO、AlN、HfN、VN(x=1−
3)、NbN、TaN、TaN、TiB、TiB
ZrB、VB、V、VB、NbB、Nb
B、TaB、TaB、MoB、MOB、MoB
MoB、WB、W、WB、LaB、BP、
13、MoSi、Al、ZrO(Y
、MgO又はCaO安定剤を添加した部分安定化ジ
ルコニア:PSZ、又は正方晶ジルコニア多結晶体:T
ZP)、MgAl(スピネル)、AlSiO
(ムライト)の少なくとも一種類からなる粉体が選択さ
れる。
On the diamond powder surface according to the present invention,
Powders of metals or compounds which are derived from the dipping method and which are mixed with a coated diamond powder provided with a coating film of a substance consisting of a binder and / or a sintering aid are represented by Periodic Tables 2a, 3 and 3.
Powders of at least one of a, 4a, 5a, 6a, 7a, group 8 transition metals, rare earth metals, B, Si, Al, or a compound containing one or more of these are used. More specifically, the periodic table 2a, 3a, 4a, 5a, 6
a, 7a, 8 group transition metal, rare earth metal, B, Si, A
l, or their carbides, oxides, nitrides, oxycarbides,
A powder made of at least one of oxynitride, carbonitride, oxycarbonitride, boride, and silicide is used. Preferably C
(Diamond), SiC, B 4 C, Cr 3 C 2 , Ti
C, ZrC, WC, W 2 C, HfC, NbC, TaC,
Ta 2 C, VC, Mo 2 C, Si 3 N 4 , TiN, Zr
N, Si 2 N 2 O, AlN, HfN, V X N (x = 1-
3), NbN, TaN, Ta 2 N, TiB, TiB 2 ,
ZrB 2 , VB, V 3 B 2 , VB 2 , NbB 2 , Nb
B, TaB 2 , TaB, MoB, MOB 4 , MoB 2 ,
Mo 2 B, WB, W 2 B 5 , WB 4 , LaB 6 , BP,
B 13 P 2, MoSi 2, Al 2 O 3, ZrO 2 (Y 2
O 3, MgO or CaO stabilizer was added partially stabilized zirconia: PSZ, or tetragonal zirconia polycrystals: T
ZP), MgAl 2 O 4 (spinel), Al 2 SiO 5
A powder consisting of at least one type of (mullite) is selected.

【0030】或は、前記粉体の表面に、周期律表第2
a、3a、4a、5a、6a、7a、8族遷移金属、希
土類金属、B、Si、Al、又はこれらの内の一種類以
上を含む化合物の少なくとも一種類からなる被覆を設け
てなる被覆粉体を用いる。より具体的には、前記粉体の
表面に、周期律表第2a、3a、4a、5a、6a、7
a、8族遷移金属、希土類金属、B、Si、Al、又は
これらの炭化物、酸化物、窒化物、酸炭化物、酸窒化
物、炭窒化物、酸炭窒化物、硼化物、珪化物の少なくと
も一種類からなる被覆を設けてなる被覆粉体を使用す
る。好適には、前記粉体の表面に、B、Ti、Zr、H
f、Ta、Nb、V、Si、Mo、SiC、TiC、Z
rC、BC、WC、HfC、TaC、NbC、Si
、TiN、ZrN、AlN、HfN、TaN、Ti
B、TiB、ZrB、LaB、MOSi、B
P、Alの少なくとも一種類からなる被覆を設け
てなる被覆粉体を選択する。当該被覆を設けるための被
覆法は、浸漬法を初め、電気メッキ法、無電界メッキ
法、クラッド法、物理蒸着法(例えば、スパッタリング
法、イオンプレーティング法等)、化学蒸着法等により
行うことが出来る。或は、前記粉体が、当該粉体を酸化
雰囲気中で、酸化してなることにより、当該粉体の表面
に、酸化被膜を設けてなる被覆粉体を選択出来る。
Alternatively, on the surface of the powder, the second periodic table
a, 3a, 4a, 5a, 6a, 7a, Group 8 transition metal, rare earth metal, B, Si, Al, or a coating powder provided with a coating of at least one of compounds containing one or more of these Use the body. More specifically, the periodic table Nos. 2a, 3a, 4a, 5a, 6a, 7 are formed on the surface of the powder.
a, at least Group 8 transition metal, rare earth metal, B, Si, Al, or their carbides, oxides, nitrides, oxycarbides, oxynitrides, carbonitrides, oxycarbonitrides, borides, and silicides A coated powder provided with a coating of one type is used. Preferably, B, Ti, Zr, H is added to the surface of the powder.
f, Ta, Nb, V, Si, Mo, SiC, TiC, Z
rC, B 4 C, WC, HfC, TaC, NbC, Si 3
N 4 , TiN, ZrN, AlN, HfN, TaN, Ti
B, TiB 2 , ZrB 2 , LaB 6 , MOSi 2 , B
A coating powder provided with a coating of at least one of P and Al 2 O 3 is selected. The coating method for providing the coating may be an immersion method, an electroplating method, an electroless plating method, a clad method, a physical vapor deposition method (for example, a sputtering method, an ion plating method, etc.), a chemical vapor deposition method, or the like. Can be done. Alternatively, the powder can be selected by coating the powder with an oxide film on the surface of the powder by oxidizing the powder in an oxidizing atmosphere.

【0031】本発明に係る、ダイヤモンド粉体表面に、
浸漬法に由来する、結合材及び/又は焼結助剤でなる物
質の被覆膜を設けてなる被覆ダイヤモンド粉体に混合せ
しめる、短径が500μm以下で、当該短径に対する長
径との比が2以上でなる形状の金属又は化合物の少なく
とも一種類からなる繊維状物質は、本発明において、短
径が500μm以下で、当該短径に対する長径との比が
2以上でなる形状の棒状物質及び/又は融解紡糸して繊
維形状にする連続繊維でなる長繊維及び/又は結晶自体
が繊維形状をとる自形繊維でなる短繊維及び/又は一方
向に結晶成長させて繊維形状にしてなるウィスカー(w
isker)からなる。当該ウィスカー(ヒゲ結晶)
は、その形成においては、相変化や体積全体に及ぼす化
学反応という現象は起こらないものと定義されている真
性のウィスカー及び/又は相変化とか体積全体に及ぶ化
学変化によって生成する結晶の一つの結晶面のみを成長
させることにより、長い針状晶となった単結晶を指す広
義のウィスカー及び/又は断面積が8×10−5in
以下で、長さが平均直径の10倍以上の単結晶であるウ
ィスカーからなる。
On the diamond powder surface according to the present invention,
The minor diameter is 500 μm or less, and the ratio of the major diameter to the minor diameter is 500 μm or less, which is mixed with the coated diamond powder provided with the coating film of the substance that is derived from the dipping method and is composed of the binder and / or the sintering aid. In the present invention, a fibrous substance composed of at least one kind of metal or compound having a shape of 2 or more is a rod-like material having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and / or Alternatively, long fibers made of continuous fibers by melt-spinning to form a fiber and / or short fibers made of self-shaped fibers in which crystals themselves have a fiber shape and / or whiskers (w) formed by unidirectionally crystal growing into a fiber shape
isker). The whisker (beard crystal)
Is a true crystal that is defined by the fact that in its formation, the phenomenon of a phase change or a chemical reaction affecting the entire volume does not occur, and / or a crystal of a crystal produced by a phase change or a chemical change affecting the entire volume. By growing only the plane, a whisker in a broad sense indicating a single crystal that has become a long needle-like crystal and / or a cross-sectional area of 8 × 10 −5 in 2
In the following, the whiskers are single crystals having a length of 10 times or more the average diameter.

【0032】前記繊維状物質として、周期律表第2a、
3a、4a、5a、6a、7a、8族遷移金属、希土類
金属、B、Si、Al、又はこれらの内の一種類以上を
含む化合物の少なくとも一種類からなる、短径が500
μm以下で、当該短径に対する長径との比が2以上でな
る形状の繊維状物質を用いる。より具体的には、周期律
表第2a、3a、4a、5a、6a、7a、8族遷移金
属、希土類金属、B、Si、Al、又はこれらの炭化
物、酸化物、窒化物、酸炭化物、酸窒化物、炭窒化物、
酸炭窒化物、硼化物、珪化物の少なくとも一種類からな
る、短径が500μm以下で、当該短径に対する長径と
の比が2以上でなる形状の繊維状物質を使用する。好適
には、例えば、Ta、Zr、Cr、Si、C、W、B、
Mo、Nb、V、Al、FeC、BC、Si
C、TiC、FeC、TaC、NbC、Si
、CrN、AlN、SiON、TiNの少なく
とも一種類からなる、短径が500μm以下で、当該短
径に対する長径との比が2以上でなる形状の繊維状物質
が選択される。
As the fibrous substance, the periodic table 2a,
3a, 4a, 5a, 6a, 7a, Group 8 transition metal, rare earth metal, B, Si, Al, or at least one kind of a compound containing one or more kinds thereof, and a minor axis of 500.
A fibrous substance having a shape of not more than μm and having a ratio of the major axis to the minor axis of 2 or more is used. More specifically, the periodic table group 2a, 3a, 4a, 5a, 6a, 7a, 8 group transition metal, rare earth metal, B, Si, Al, or their carbides, oxides, nitrides, oxycarbides, Oxynitride, carbonitride,
A fibrous substance made of at least one kind of oxycarbonitride, boride, and silicide and having a short diameter of 500 μm or less and a ratio of the long diameter to the short diameter of 2 or more is used. Suitably, for example, Ta, Zr, Cr, Si, C, W, B,
Mo, Nb, V, Al 2 O 3 , Fe 2 C, B 4 C, Si
C, TiC, Fe 3 C, Ta 2 C, Nb 2 C, Si 3 N
4 , a fibrous substance made of at least one kind of Cr 2 N, AlN, Si 2 ON 2 and TiN, and having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is selected. .

【0033】或は、前記短径が500μm以下で、当該
短径に対する長径との比が2以上でなる形状の被覆繊維
状物質が、前記繊維状物質の表面に、周期律表第2a、
3a、4a、5a、6a、7a、8族遷移金属、希土類
金属、B、Si、Al、又はこれらの内の一種類以上を
含む化合物の少なくとも一種類からなる被覆を設けてな
る、短径に対する長径との比が2以上でなる形状の被覆
物質を用いる。より具体的には、前記短径が500μm
以下で、当該短径に対する長径との比が2以上でなる形
状の被覆繊維状物質が、前記繊維状物質の表面に、周期
律表第2a、3a、4a、5a、6a、7a、8族遷移
金属、希土類金属、B、Si、Al、又はこれらの炭化
物、酸化物、窒化物、酸炭化物、酸窒化物、炭窒化物、
酸炭窒化物、硼化物、珪化物の少なくとも一種類からな
る、被覆を設けてなる、短径が500μm以下で、当該
短径に対する長径との比が2以上でなる形状の被覆物質
を使用する。好適には、前記繊維状物質の表面に、例え
ば、B、Ti、Zr、Hf、Ta、Nb、V、SiC、
TiC、ZrC、BC、WC、HfC、TaC、Nb
C、Si、TiN、ZrN、AlN、HfN、T
aN、TiB、TiB、ZrB、LaB、MoS
、BP、Alの少なくとも一種類からなる被
覆を設けてなる、短径が500μm以下で、当該短径に
対する長径との比が2以上でなる形状の被覆繊維状物質
を選択する。当該被覆を設けるための被覆法は、浸漬法
を初め、電気メッキ法、無電界メッキ法、クラッド法、
物理蒸着法(例えは、スパッタリング法、イオンプレー
ティング法等)、化学蒸着法等により行うことが出来
る。或は、前記短径が500μm以下で、当該短径に対
する長径との比が2以上でなる形状の被覆繊維状物質
が、前記繊維状物質を酸化雰囲気中で、酸化してなるこ
とにより、前記繊維状物質の表面に、酸化被膜を設けて
なる、短径が500μm以下で、当該短径に対する長径
との比が2以上でなる形状の被覆繊維状物質を選択出来
る。
Alternatively, a coated fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is formed on the surface of the fibrous substance by periodic table 2a,
3a, 4a, 5a, 6a, 7a, Group 8 transition metal, rare earth metal, B, Si, Al, or a coating made of at least one kind of a compound containing one or more of these, for a minor axis A coating material having a shape having a ratio to the major axis of 2 or more is used. More specifically, the minor axis is 500 μm
In the following, the coated fibrous material having a shape in which the ratio of the major axis to the minor axis is 2 or more is formed on the surface of the fibrous material by the periodic table groups 2a, 3a, 4a, 5a, 6a, 7a and 8 groups. Transition metal, rare earth metal, B, Si, Al, or their carbides, oxides, nitrides, oxycarbides, oxynitrides, carbonitrides,
A coating material is used which is made of at least one of oxycarbonitride, boride, and silicide, and which has a coating and has a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. . Suitably, for example, B, Ti, Zr, Hf, Ta, Nb, V, SiC, on the surface of the fibrous substance,
TiC, ZrC, B 4 C, WC, HfC, TaC, Nb
C, Si 3 N 4 , TiN, ZrN, AlN, HfN, T
aN, TiB, TiB 2 , ZrB 2 , LaB 6 , MoS
A coated fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, which is provided with a coating composed of at least one of i 2 , BP, and Al 2 O 3 is selected. . The coating method for providing the coating includes dipping, electroplating, electroless plating, cladding,
Physical vapor deposition (eg, sputtering, ion plating, etc.), chemical vapor deposition, etc. can be used. Alternatively, the coated fibrous substance having a shape in which the minor axis is 500 μm or less and the ratio of the major axis to the minor axis is 2 or more is obtained by oxidizing the fibrous material in an oxidizing atmosphere. A coated fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, in which an oxide film is provided on the surface of the fibrous substance, can be selected.

【0034】また、別の態様によれば、前記ダイヤモン
ド粉体の表面に、浸漬法に由来する、結合材及び/又は
焼結助剤でなる物質の被覆膜を設けてなる被覆ダイヤモ
ンド粉体の粒子一個一個の表面には、前記、結合材及び
/又は焼結助剤でなる物質が均一に被覆されているの
で、当該被覆ダイヤモンド粉体の粒子を、結合材及び/
又は焼結助剤でなる物質の被覆を設けないダイヤモンド
粉体の粒子一個一個の周りに接するように適量混合せし
めれば、前記の通り、ダイヤモンド粉体の粒子一個一個
に確実に、結合材及び/又は焼結助剤を分布させること
が出来るので好適である。当該、結合材及び/又は焼結
助剤でなる物質の被覆を設けないダイヤモンド粉体は、
前記ダイヤモンド粉体の表面に、浸漬法に由来する、結
合材及び/又は焼結助剤でなる物質の被覆膜を設けてな
る被覆ダイヤモンド粉体に対し、相対的に、粉体粒子径
が大きければ、比較的多量添加しても、前記のように、
ダイヤモンド粉体粒子の周りに接するように結合材及び
/又は焼結助剤を分布可能である。より具体的には、当
該被覆ダイヤモンド粉体を、体積で50%〜99.9
%、残部が、ダイヤモンド粉体を、体積で50%〜0.
1%を混合せしめる。より好適には、当該被覆ダイヤモ
ンド粉体を、体積で60%〜99.5%、残部が、ダイ
ヤモンド粉体を、体積で40%〜0.5%を混合せしめ
てもよい。
According to another aspect, a coated diamond powder obtained by providing a coating film of a substance made of a dipping method, the substance being a binder and / or a sintering aid, on the surface of the diamond powder. Since the surface of each of the particles is uniformly coated with the above-mentioned substance consisting of the binder and / or the sintering aid, the particles of the coated diamond powder are
Or, if a proper amount is mixed so as to come into contact with the circumference of each particle of the diamond powder without providing the coating of the substance consisting of the sintering aid, as described above, it is sure that each particle of the diamond powder has the binder and It is preferable that the sintering aid can be distributed. The diamond powder not provided with the coating of the substance made of the binder and / or the sintering aid is
The particle diameter of the diamond powder is relatively large with respect to the coated diamond powder obtained by forming a coating film of a substance made of a binder and / or a sintering aid on the surface of the diamond powder by the dipping method. If it is large, even if a relatively large amount is added, as described above,
Binders and / or sintering aids can be distributed around the diamond powder particles. More specifically, the coated diamond powder is 50% to 99.9% by volume.
%, The balance being 50% to 0.
Mix 1%. More preferably, 60% to 99.5% by volume of the coated diamond powder and 40% to 0.5% by volume of the remaining diamond powder may be mixed.

【0035】而して、ダイヤモンド粉体表面に、浸漬法
に由来する、結合材及び/又は焼結助剤でなる物質の被
覆膜を設けてなる被覆ダイヤモンド粉体を単独で、又
は、当該被覆ダイヤモンド粉体と、残部が、前記粉体及
び/又は前記被覆粉体及び/又は前記短径が500μm
以下で、当該短径に対する長径との比が2以上でなる形
状の繊維状物質及び/又は前記短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
被覆繊維状物質を混合せしめてなる混合物を、粉末状
で、若しくは型押し成形後、2000MPa以上の超高
圧力・高温下で適宜時間焼結する。
Thus, the coated diamond powder, which is provided with a coating film of a substance consisting of a binder and / or a sintering aid, which is derived from the dipping method, on the surface of the diamond powder is used alone or Coated diamond powder and the rest is the powder and / or the coated powder and / or the minor axis is 500 μm
In the following, a fibrous substance having a shape in which the ratio of the major axis to the minor axis is 2 or more and / or the coated fibrous material having a shape in which the minor axis is 500 μm or less and the ratio of the major axis to the minor axis is 2 or more. The mixture obtained by mixing the substances is powdered, or after stamping and molding, it is sintered for an appropriate period of time at an ultrahigh pressure of 2000 MPa or higher and a high temperature.

【0036】超高圧力装置は、キュービック型、テトラ
型、ガードル型、ベルト型等が適用可能で、特に、制限
はない。
As the ultrahigh pressure device, a cubic type, a tetra type, a girdle type, a belt type and the like can be applied, and there is no particular limitation.

【0037】再現性良く試料を加圧するための圧力は、
前記キュービック型超高圧力装置を初めとする、超高圧
力装置を使用するので、2000MPa以上とする。焼
結温度は、ダイヤモンドから黒鉛への相転移に対して触
媒作用のない物質を結合材及び/又は焼結助剤とする場
合には、前記ダイヤモンドの熱力学的安定領域から若干
外れた条件でも差し支えない。
The pressure for pressurizing the sample with good reproducibility is
Since an ultrahigh pressure device such as the cubic type ultrahigh pressure device is used, the pressure is 2000 MPa or more. Even if the sintering temperature is slightly out of the thermodynamically stable region of the diamond, when a material that does not catalyze the phase transition from diamond to graphite is used as the binder and / or the sintering aid. It doesn't matter.

【0038】しかし、より好適には、ダイヤモンドの熱
力学的安定領域で2000MPa以上の超高圧力・高温
下で焼結せしめる。
However, more preferably, it is sintered in a thermodynamically stable region of diamond under ultrahigh pressure and high temperature of 2000 MPa or more.

【0039】一例として、キュービック型超高圧力装置
による、ダイヤモンド焼結体の製造について説明する
と、先ず、ダイヤモンド粉体表面に浸漬法により、結合
材及び/又は焼結助剤でなる物質の被覆膜を設けてなる
被覆ダイヤモンド粉体を、ベレット状に型押し成形し、
これをジルコニウム箔で包み、その外側に六方晶窒化硼
素(h−BN)成形体で囲って、更にその外側に黒鉛管
ヒータを配置する。このヒータの外側には、700℃で
加熱処理することにより結晶水を除去したパイロフィラ
イトを固体圧力媒体として配置する。このようにして構
成した試料を、キュービック型超高圧力装置に配置し、
所定の圧力まで昇圧し、その後、所定の温度まで昇温し
て、適宜時間焼結する。焼結後、降温し、そして降圧す
る。キュービック型超高圧力装置から圧力媒体を取り出
し、当該圧力媒体から試料を取り出す。このようにし
て、結合材及び/又は焼結助剤の分布が制御された、均
一で緻密な微組織を有する、特徴的な高密度のダイヤモ
ンド焼結体を得る。
As an example, the production of a diamond sintered body using a cubic type ultra-high pressure apparatus will be described. First, the surface of the diamond powder is coated with a binder and / or a sintering aid by a dipping method. The coated diamond powder provided with the film is embossed into a pellet shape,
This is wrapped with zirconium foil, surrounded by a hexagonal boron nitride (h-BN) molded body, and a graphite tube heater is arranged on the outer side. Outside the heater, pyrophyllite from which water of crystallization has been removed by heat treatment at 700 ° C. is arranged as a solid pressure medium. The sample thus constructed is placed in a cubic type ultra high pressure device,
The pressure is increased to a predetermined pressure, then the temperature is raised to a predetermined temperature, and sintering is performed for an appropriate time. After sintering, the temperature is lowered and the pressure is reduced. The pressure medium is taken out from the cubic type ultrahigh pressure device, and the sample is taken out from the pressure medium. In this way, a characteristic high-density diamond sintered body having a uniform and fine microstructure in which the distribution of the binder and / or the sintering aid is controlled is obtained.

【0040】[0040]

【実施例】以下、本発明の好適な実施例を示す。The preferred embodiments of the present invention will be described below.

【0041】[0041]

【第1実施例】浸漬浴として、KCl、BaCl、N
aFを基塩とし、これにKTiF及びTi金属を添
加して溶融混合塩浴を調製し、この浴中に粒径0〜1μ
mの、焼結体用原料でなる微細なダイヤモンド粉体を投
入して、900℃、2時間の条件で、不均化反応を伴う
浸漬処理を行い、ダイヤモンド粉体表面に、浸漬法に由
来して、ダイヤモンドとTi金属の化学反応により、図
1の粉末X線回折パターンに示したように、TiCの被
覆膜を形成した。この粉体を蒸留水で洗浄した後、真空
乾燥して被覆ダイヤモンド粉体を得た。
[First Embodiment] As a dipping bath, KCl, BaCl 2 , N
aF is used as a base salt, and K 2 TiF 6 and Ti metal are added thereto to prepare a molten mixed salt bath.
The fine diamond powder, which is the raw material for the sintered body, of m, was put in, and subjected to a dipping treatment accompanied by a disproportionation reaction under the condition of 900 ° C. for 2 hours. Then, a chemical reaction between diamond and Ti metal formed a TiC coating film as shown in the powder X-ray diffraction pattern of FIG. The powder was washed with distilled water and then vacuum dried to obtain a coated diamond powder.

【0042】[0042]

【図1】[Figure 1]

【0043】一般に、ダイヤモンドは、導電性がないの
で、その儘電子顕微鏡観察に供するとチャージアップ
し、導電性物質の蒸着等を施さなければ当該被覆膜が形
成されていない部分は白く光って観察不可能となる。し
かし、第1実施例で被覆したTiCは導電性があるの
で、当該被覆ダイヤモンド粉体をその儘電子顕微鏡観察
することにより、当該被覆膜がどのように分布している
のかが容易に分かる。図2は、被覆ダイヤモンド粉体の
電子顕微鏡写真(×5000)であり、当該被覆ダイヤ
モンド粉体を電子顕微鏡で観察するための導電性物質の
蒸着等を全く行っていない。図2に示したように、チャ
ージアップしている部分は全く無く、極めて鮮明な像が
観察され、しかも、当該被覆ダイヤモンド粉体の個々の
粒子は、いずれも、緻密で、且つ滑らかな被覆膜に覆わ
れていることが分かる。
Generally, since diamond is not conductive, it is charged up when it is observed under a free electron microscope, and unless the conductive material is vapor-deposited, the portion where the coating film is not formed shines white. It becomes unobservable. However, since the TiC coated in the first embodiment is conductive, it is easy to see how the coating film is distributed by observing the coated diamond powder with a scanning electron microscope. FIG. 2 is an electron micrograph (× 5000) of the coated diamond powder, in which vapor deposition of a conductive substance for observing the coated diamond powder with an electron microscope is not performed at all. As shown in FIG. 2, there was no charge-up part, and a very clear image was observed. Moreover, each of the individual particles of the coated diamond powder had a dense and smooth coating. It can be seen that it is covered with a film.

【0044】[0044]

【図2】[Fig. 2]

【0045】当該被覆ダイヤモンド粉体を外径6mm、
高さ2mmに型押し成形し、これをジルコニウム(Z
r)箔で包み、更にその外側に六方晶窒化硼素(h−B
N)成形体を配置した圧力媒体に埋め込み、200℃、
10−3torrで一昼夜真空乾燥して、低沸点不純物
を除去した。これをキュービック型超高圧装置にセット
し、先ず、室温で5.5GPaまで昇圧し、その後15
00℃に昇温し、30分保持後に降温し、圧力を下げ
た。
The coated diamond powder has an outer diameter of 6 mm,
Molded to a height of 2 mm, and stamped with zirconium (Z
r) Wrap with foil, and then hexagonal boron nitride (hB
N) Embedded in a pressure medium in which the molded body is placed,
Vacuum drying was carried out at 10 −3 torr for one day to remove low boiling point impurities. This was set in a cubic type ultra-high pressure device, and the pressure was first raised to 5.5 GPa at room temperature, then 15
The temperature was raised to 00 ° C., the temperature was kept for 30 minutes, and then the temperature was lowered to lower the pressure.

【0046】得られた焼結体をX線回折で調べたとこ
ろ、図3に示すように、組成は、被覆ダイヤモンド粉体
と変化なく、ダイヤモンドとTiCが認められたのみで
あった。当該焼結体は、X線定量分折によれば、ダイヤ
モンド及びTiCの体積割合は、それぞれ約50%及び
50%であった。
When the obtained sintered body was examined by X-ray diffraction, as shown in FIG. 3, the composition was the same as that of the coated diamond powder, and only diamond and TiC were found. According to X-ray quantitative analysis, the sintered body had a volume ratio of diamond and TiC of about 50% and 50%, respectively.

【0047】[0047]

【図3】[Figure 3]

【0048】得られた焼結体の表面をダイヤモンドペー
ストで研磨し、ピッカース微小硬度を測定した。本発明
の第1実施例で得られた焼結体のHv(0.5/10)
は、約4000と高硬度であった。しかも、第1実施例
の焼結体の硬度は、当該焼結体の硬度測定面全般に渡っ
て一定であり、ばらつきは殆どなかった。
The surface of the obtained sintered body was polished with a diamond paste, and the Pickers microhardness was measured. Hv (0.5 / 10) of the sintered body obtained in the first embodiment of the present invention
Was as high as about 4000. Moreover, the hardness of the sintered body of the first example was constant over the entire hardness measurement surface of the sintered body, and there was almost no variation.

【0049】第1実施例の焼結体の研摩面に、観察のた
めの通常の金蒸着を施してなる当該研摩面の電子顕微鏡
写真(×5000)を図4及に示す。図4から明らかな
ように、焼結体中には、気孔が全く存在せず、相対密度
100%に焼結出来た。しかも、未焼結な部分が全然か
った。当該焼結体中のダイヤモンド粒子は特に微細なた
め、ダイヤモンドとTiCが明瞭には区別して見えない
が、TiCが一様に分布し、緻密で、均一な、制御され
た焼結助剤分布を有する特徴的な焼結体であることが容
易に分かる。しかも、ダイヤモンド粒子は、原料のダイ
ヤモンド粉体と比べ、粒成長がなく、且つ、ダイヤモン
ドと溶融塩浴中のTiが化学反応して被覆膜を形成する
ため、焼結体中のダイヤモンド粒子は、むしろ被覆前の
原料時に比べ、細かくなっているという特徴もある。こ
のことは、焼結体の機械的特性に極めて好都合となって
おり、理想的である。これらの特徴を、図5に示した、
市販の代表的なダイヤモンド焼結体切削工具の研摩面
に、観察のための通常の金蒸着を施してなる当該研摩面
の電子顕微鏡写真(×5000)と比べると、当該市販
のダイヤモンド焼結体切削工具においては、焼結助剤や
結合材の欠乏しているところが少なからず存在し、そこ
に未焼結な部分が見受けられる。更に、当該切削工具の
ダイヤモンド粒子が極めて粗いこと等が本発明の第1実
施例と大きく異なる点であることが明確に分かる。
FIG. 4 shows an electron micrograph (× 5000) of the polished surface obtained by subjecting the polished surface of the sintered body of the first embodiment to ordinary gold vapor deposition for observation. As is clear from FIG. 4, there were no pores in the sintered body, and it was possible to sinter to a relative density of 100%. Moreover, there were no unsintered parts. Since the diamond particles in the sintered body are particularly fine, diamond and TiC cannot be clearly distinguished from each other, but TiC is uniformly distributed, and a dense, uniform and controlled sintering aid distribution is obtained. It can be easily seen that the sintered body has a characteristic. Moreover, the diamond particles do not grow as compared with the diamond powder as the raw material, and the diamond and Ti in the molten salt bath chemically react with each other to form a coating film. However, there is also a feature that it is finer than the raw material before coating. This is very convenient for the mechanical properties of the sintered body and is ideal. These features are shown in FIG.
Compared with an electron micrograph (× 5000) of the polished surface obtained by subjecting the polished surface of a typical commercially available diamond sintered body cutting tool to ordinary gold vapor deposition for observation, the commercially available diamond sintered body In the cutting tool, there are many deficient sintering aids and binders, and unsintered parts are found there. Further, it is clearly understood that the diamond particles of the cutting tool are extremely coarse, which is a big difference from the first embodiment of the present invention.

【0050】以上のように、ダイヤモンドは、本来極め
て難焼結性であるにもかかわらず、本発明の被覆ダイヤ
モンド粉体粒子は、超高圧力・高温下において、恰も比
較的焼結し易い粒子のごとくふるまい、緻密で強固、且
つ高硬度な組織を形成した。
As described above, although diamond is originally extremely difficult to sinter, the coated diamond powder particles of the present invention are particles that are relatively easy to sinter under ultrahigh pressure and high temperature. It behaved like a fine, dense, strong, and highly hard structure.

【0051】[0051]

【図4】[Figure 4]

【0052】[0052]

【図5】[Figure 5]

【0053】[0053]

【第2実施例】第1実施例と同様の条件で浸漬処理を行
って得た、TiCを被覆した被覆ダイヤモンド粉体を体
積で90%、残部が、被覆を施さないダイヤモンド粉体
(粒径0〜1μm)を体積で10%を、乳鉢を用いて、
アセトン中、湿式で混合し、その後、真空乾燥して混合
粉体を得た。当該混合粉体を外径6mm、高さ2mmに
型押し成形し、第1実施例と同様に、キュービック型超
高圧装置にセットし、先ず、室温で5.3GPaまで昇
圧し、その後1480℃に昇温し、30分保持後に降温
し、圧力を下げた。得られた焼結体の表面をダイヤモン
ドペーストで研磨し、ビッカース微小硬度を測定したと
ころHv(0.5/10)が約4500と高硬度であっ
た。この焼結体の結晶相を粉末X線回折により調べたと
ころ、第1実施例と同様、ダイヤモンド及びTiCが認
められたのみであった。また、図示してないが、第2実
施例においても焼結体は、第1実施例の焼結体の研摩面
と同様に気孔が全く存在せず、相対密度100%に焼結
出来、しかも、未焼結の部分が全然なかったことから、
緻密で、均一な焼結助剤の分布が成立し、被覆を施さな
いダイヤモンド粒子が凝集することなく、被覆ダイヤモ
ンド粒子間に均一に分散した焼結体が得られた。第2実
施例では、被覆ダイヤモンド粒子が見掛けの母材として
機能した。従って、被覆を施さないダイヤモンド粉体を
適量添加することによって、より細かな添加量の微調整
がこの簡便な方法により可能となった。尚、異種の粒
径、例えば、より大きな粒子径の当該被覆を施さないダ
イヤモンド粉体を使用すれば、当該被覆を施さないダイ
ヤモンド粉体の体積分率を大きく出来ることは言うまで
もない。
[Second Embodiment] 90% by volume of coated diamond powder coated with TiC, which is obtained by performing the dipping treatment under the same conditions as in the first embodiment, and the balance is diamond powder not coated (particle size). 0-1 μm) by volume 10% using a mortar,
The mixture was wet-mixed in acetone and then vacuum dried to obtain a mixed powder. The mixed powder was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and was set in a cubic type ultra-high pressure apparatus as in the first embodiment. First, the pressure was increased to 5.3 GPa at room temperature and then to 1480 ° C. The temperature was raised, the temperature was maintained for 30 minutes, and then the temperature was lowered to lower the pressure. The surface of the obtained sintered body was polished with diamond paste, and the Vickers microhardness was measured. As a result, Hv (0.5 / 10) was about 4500, which was a high hardness. When the crystal phase of this sintered body was examined by powder X-ray diffraction, only diamond and TiC were found as in the first example. Also, although not shown, in the second embodiment as well, the sintered body does not have any pores like the polished surface of the sintered body of the first embodiment and can be sintered to a relative density of 100%. , Because there was no unsintered part at all,
A dense and uniform distribution of the sintering aid was established, and the uncoated diamond particles were not aggregated, and a sintered body uniformly dispersed between the coated diamond particles was obtained. In the second example, the coated diamond particles functioned as an apparent base material. Therefore, by adding an appropriate amount of uncoated diamond powder, fine adjustment of the added amount can be performed by this simple method. Needless to say, the volume fraction of uncoated diamond powder can be increased by using uncoated diamond powder having a different particle size, for example, a larger particle size.

【0054】[0054]

【第3実施例】浸漬処理時間を1時間とした外は、第1
実施例と同様の条件で浸漬処理を行って得た、TiCを
被覆した被覆ダイヤモンド粉体を体積で80%、残部
が、アルミナ粉体(Al;平均粒径0.2μm、
純度99.99%)を体積で20%を、乳鉢を用いて、
アセトン中、湿式で混合し、その後、真空乾燥して混合
粉体を得た。当該混合粉体を外径6mm、高さ2mmに
型押し成形し、第1実施例と同様に、キュービック型超
高圧装置にセットし、先ず、室温で5.0GPaまで昇
圧し、その後1450℃に昇温し、30分保持後に降温
し、圧力を下げた。得られた焼結体において、X線定量
分析によれば、ダイヤモンド、TiC及びAl
は、それぞれ約60%、20%及び20%であった。
当該焼結体の表面を,ダイヤモンドペーストで研磨し、
ビッカース微小硬度を測定したところHv(0.5/1
0)が約4800と高硬度であった。この焼結体の結晶
相を粉末X線回折により調べたところ、Al以外
は、第1実施例と同様、ダイヤモンド及びTiCが認め
られたのみであった。第3実施例においても焼結体は、
緻密で、均一で、且つ被覆ダイヤモンド粒子が見掛けの
母材として機能し、前記Al粒子が凝集すること
なく、被覆ダイヤモンド粒子間に均一に分散した複合焼
結体が得られた。
[Third Embodiment] The first embodiment is the same as the first embodiment except that the immersion treatment time is 1 hour.
80% by volume of the coated diamond powder coated with TiC, which was obtained by performing the dipping treatment under the same conditions as in the example, the balance being alumina powder (Al 2 O 3 ; average particle size 0.2 μm,
Purity 99.99%) 20% by volume using a mortar,
The mixture was wet-mixed in acetone and then vacuum dried to obtain a mixed powder. The mixed powder was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and was set in a cubic type ultra-high pressure apparatus as in the first embodiment. First, the pressure was increased to 5.0 GPa at room temperature and then to 1450 ° C. The temperature was raised, the temperature was maintained for 30 minutes, and then the temperature was lowered to lower the pressure. In the obtained sintered body, according to the X-ray quantitative analysis, diamond, TiC and Al 2 O
3 was about 60%, 20% and 20%, respectively.
The surface of the sintered body is polished with diamond paste,
When the Vickers microhardness was measured, it was Hv (0.5 / 1
0) had a high hardness of about 4,800. When the crystal phase of this sintered body was examined by powder X-ray diffraction, only diamond and TiC were found as in the first example except for Al 2 O 3 . Also in the third embodiment, the sintered body is
A dense and uniform composite sintered body was obtained in which the coated diamond particles functioned as an apparent base material, and the Al 2 O 3 particles were not aggregated and were uniformly dispersed between the coated diamond particles.

【0055】[0055]

【第4実施例】第3実施例と同様に浸漬処理を行って得
た、TiCを被覆した被覆ダイヤモンド粉体を体積で8
0%、残部が、炭化ケイ素粉体(SiC;平均粒径1μ
m、純度99%)を体積で20%を、乳鉢を用いて、ア
セトン中、湿式で混合し、その後、真空乾燥して混合粉
体を得た。当該混合粉体を外径6mm、高さ2mmに型
押し成形し、第1実施例と同様に、キュービック型超高
圧装置にセットし、先ず、室温で5.5GPaまで昇圧
しその後1500℃に昇温し、30分保持後に降温し、
圧力を下げた。得られた焼結体において、X線定量分析
によれば、ダイヤモンド、TiC及びSiCは、それぞ
れ約60%、20%及び20%であった。当該焼結体の
表面をダイヤモンドペーストで研磨し、ビッカース微小
硬度を測定したところHv(0.5/10)が約500
0と高硬度であった。この焼結体の結晶相を粉末X線回
折により調べたところ、SiC以外は、第1実施例と同
様、ダイヤモンド及びTiCが検出されたのみであっ
た。第4実施例においても焼結体は、緻密で、均一で、
且つ被覆ダイヤモンド粒子が見掛けの母材として機能
し、前記SiC粒子が凝集することなく、被覆ダイヤモ
ンド粒子間に均一に分散した複合焼結体が得られた。
[Fourth Embodiment] The coated diamond powder coated with TiC, which is obtained by performing the dipping treatment in the same manner as the third embodiment, has a volume of 8
0%, balance is silicon carbide powder (SiC; average particle size 1μ
m, purity 99%) by volume, 20% by volume was wet-mixed in acetone using a mortar and then vacuum-dried to obtain a mixed powder. The mixed powder was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and was set in a cubic type ultra-high pressure apparatus as in the first embodiment. First, the pressure was raised to 5.5 GPa at room temperature and then raised to 1500 ° C. Warm up, hold for 30 minutes, then cool down,
Reduced pressure. According to the X-ray quantitative analysis, diamond, TiC and SiC in the obtained sintered body were about 60%, 20% and 20%, respectively. The surface of the sintered body was polished with diamond paste, and the Vickers microhardness was measured, and Hv (0.5 / 10) was about 500.
The hardness was 0 and high. When the crystal phase of this sintered body was examined by powder X-ray diffraction, only diamond and TiC were detected as in the first example except for SiC. Also in the fourth embodiment, the sintered body is dense, uniform,
Moreover, the coated diamond particles functioned as an apparent base material, and a composite sintered body was obtained in which the SiC particles were not aggregated and were uniformly dispersed between the coated diamond particles.

【0056】[0056]

【第5実施例】第1実施例と同様の条件で浸漬処理を行
って得た、TiCを被覆した被覆ダイヤモンド粉体を体
積で90%、残部が、炭化ケイ素ウィスカー(SiC;
短径0.1μm、平均長さ5μm) を体積で10%
を、乳鉢を用いて、アセトン中、湿式で混合し、その
後、真空乾燥して混合粉体を得た。当該混合粉体を外径
6mm、高さ2mmに型押し成形し、第1実施例と同様
に、キュービック型超高圧装置にセットし、先ず、室温
で5.5GPaまで昇圧し、その後1500℃に昇温
し、30分保持後に降温し、圧力を下げた。得られた焼
結体において、X線定量分析によれば、ダイヤモンド、
TiC及びSiCは、それぞれ約45%、45%及び1
0%であった。当該焼結体の表面をダイヤモンドペース
トで研磨し、ビッカース微小硬度を測定したところHv
(0.5/10)が約4000と高硬度であった。この
焼結体の結晶相を粉末X線回折により調べたところ、第
4実施例と同様、ダイヤモンド、TiC及びSiCが認
められたのみてあった。第5実施例においても焼結体
は、緻密で、均一で、且つ被覆ダイヤモンド粒子が見掛
けの母材として機能し、前記SiCウィスカーが凝集す
ることなく、被覆ダイヤモンド粒子間に均一に分散した
複合焼結体が得られた。
Fifth Embodiment 90% by volume of coated diamond powder coated with TiC, obtained by immersion treatment under the same conditions as in the first embodiment, the balance being silicon carbide whiskers (SiC;
Minor axis 0.1 μm, average length 5 μm) 10% by volume
Was wet-mixed in acetone using a mortar and then vacuum-dried to obtain a mixed powder. The mixed powder was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and was set in a cubic type ultra-high pressure apparatus in the same manner as in the first embodiment. First, the pressure was raised to 5.5 GPa at room temperature, and then 1500 ° C. The temperature was raised, the temperature was maintained for 30 minutes, and then the temperature was lowered to lower the pressure. In the obtained sintered body, according to the X-ray quantitative analysis, diamond,
TiC and SiC are about 45%, 45% and 1 respectively.
It was 0%. The surface of the sintered body was polished with a diamond paste, and the Vickers microhardness was measured.
(0.5 / 10) was a high hardness of about 4000. When the crystal phase of this sintered body was examined by powder X-ray diffraction, diamond, TiC and SiC were all found, as in the fourth example. Also in the fifth embodiment, the sintered body is a dense and uniform composite sintered body in which the coated diamond particles function as an apparent base material, and the SiC whiskers do not agglomerate and are uniformly dispersed between the coated diamond particles. A unity was obtained.

【0057】[0057]

【発明の効果】以上に、詳述した本発明のダイヤモンド
焼結体及びその製造法によれば、微量から多量までの任
意の量の結合材及び/又は焼結助剤の物質をダイヤモン
ド粉体の粒子一個一個の表面に均一に被覆してなる被覆
ダイヤモンド粉体を単独で、又は、当該被覆ダイヤモン
ド粉体と、残部が、前記粉体及び/又は前記被覆粉体及
び/又は前記短径が500μm以下で、当該短径に対す
る長径との比が2以上でなる形状の繊維状物質及び/又
は前記短径が500μm以下で、当該短径に対する長径
との比が2以上でなる形状の被覆繊維状物質を混合せし
めてなる混合物を、粉末状で、若しくは型押し成形後、
2000MPa以上の超高圧力・高温下で焼結せしめる
ことを特徴とするダイヤモンド焼結体の製造法、及び当
該ダイヤモンド焼結体の製造法により製造してなること
を特徴とする、均一で、緻密で、且つ強固に焼結され
た、高性能な高密度ダイヤモンド焼結体を、しかも簡便
で、且つ安価な手段により、提供出来る。当該ダイヤモ
ンド焼結体は、性能が飛躍的に向上するので、例えば、
多様性のある高硬度焼結体としての適用範囲が大幅に拡
大する。従って、本発明は、当業界の発展に寄与すると
ころが非常に大きい。
As described above, according to the diamond sintered body and the method for producing the same of the present invention, which have been described in detail above, the diamond powder is used as the binder and / or the sintering aid substance in an arbitrary amount from a trace amount to a large amount. The coated diamond powder obtained by uniformly coating the surface of each of the particles is used alone or with the coated diamond powder, and the remainder is the powder and / or the coated powder and / or the short diameter. A fibrous substance having a shape of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and / or the coated fiber having a shape of the minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. The mixture formed by mixing the substances in powder form, or after embossing,
Uniform and dense, characterized by being manufactured by a method for manufacturing a diamond sintered body characterized by being sintered under an ultrahigh pressure of 2000 MPa or higher and a high temperature, and a method for manufacturing the diamond sintered body. It is possible to provide a high-performance, high-density, high-density diamond sintered body that is strongly sintered by a simple and inexpensive means. Since the diamond sintered body has dramatically improved performance, for example,
The range of application as a variety of high-hardness sintered bodies will be greatly expanded. Therefore, the present invention greatly contributes to the development of the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸漬法に由来するTiCを被覆したダイヤモン
ド粉体のX線回折パターン図である。
FIG. 1 is an X-ray diffraction pattern diagram of TiC-coated diamond powder derived from an immersion method.

【図2】浸漬法に由来するTiCを被覆したダイヤモン
ド粉体の粒子構造を示す図面代用電子顕微鏡写真(x5
000)である。
FIG. 2 is a drawing-substitute electron micrograph (x5) showing the particle structure of TiC-coated diamond powder derived from the dipping method.
000).

【図3】浸漬法に由来するTiCを被覆したダイヤモン
ド粉体を超高圧力・高温下で焼結したダイヤモンド焼結
体のX線回折パターン図である。
FIG. 3 is an X-ray diffraction pattern diagram of a diamond sintered body obtained by sintering TiC-coated diamond powder derived from an immersion method under ultrahigh pressure and high temperature.

【図4】本発明のダイヤモンド焼結体の研磨面における
粒子構造を示す図面代用電子顕微鏡写真(x5000)
である。
FIG. 4 is a drawing-substitute electron micrograph (x5000) showing a grain structure on a polished surface of a diamond sintered body of the present invention.
Is.

【図5】比較例としての、代表的な、市販のダイヤモン
ド焼結体切削工具の研磨面における粒子構造を示す図面
代用電子顕微鏡写真(x5000)である。
FIG. 5 is a drawing-substitute electron micrograph (x5000) showing a particle structure on a polished surface of a typical commercially available diamond sintered body cutting tool as a comparative example.

Claims (37)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、粉末状で、若しく
は型押し成形後、2000MPa以上の超高圧力・高温
下て焼結せしめることを特徴とするダイヤモンド焼結体
の製造法。
1. A coated diamond powder, which is obtained by immersing a coating film of a substance consisting of a binder and / or a sintering aid on the surface of the diamond powder, in the form of powder or embossing. After the forming, a method for producing a diamond sintered body, which comprises sintering at an ultrahigh pressure of 2000 MPa or higher and a high temperature.
【請求項2】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、金属又は化合物の粉体を、体積で9
9%〜0.1%を混合せしめてなる混合粉体を、粉末状
で、若しくは型押し成形後、2000MPa以上の超高
圧力・高温下で焼結せしめることを特徴とするダイヤモ
ンド焼結体の製造法。
2. A coated diamond powder, which comprises a coating film of a substance consisting of a binder and / or a sintering aid, which is derived from a dipping method and is provided on the surface of the diamond powder in a volume of 1% to 9%.
9.9%, the balance being powder of metal or compound, 9% by volume
A mixed powder of 9% to 0.1% is mixed in powder form or after embossing, and then sintered under ultrahigh pressure and high temperature of 2000 MPa or more. Manufacturing method.
【請求項3】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、金属又は化合物の粉体の表面に金属
又は化合物の少なくとも一種類からなる被覆を設けてな
る被覆粉体を、体積で99%〜0.1%を混合せしめて
なる混合粉体を、粉末状で、若しくは型押し成形後、2
000MPa以上の超高圧力・高温下で焼結せしめるこ
とを特徴とするダイヤモンド焼結体の製造法。
3. A coated diamond powder having a coating film of a substance made of a binder and / or a sintering aid, which is derived from an immersion method, provided on the surface of the diamond powder, the volume of 1% to 9%.
9.9%, the balance being 99% to 0.1% by volume of coated powder in which a coating of at least one kind of metal or compound is provided on the surface of powder of metal or compound Mix powders in powder form or after stamping 2
A method for producing a diamond sintered body, which comprises sintering under an ultrahigh pressure of 000 MPa or more and a high temperature.
【請求項4】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で50%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質を、体積で5
0%〜0.1%を混合せしめてなる混合物を、その儘
で、若しくは型押し成形後、2000MPa以上の超高
圧力・高温下で焼結せしめることを特徴とするダイヤモ
ンド焼結体の製造法。
4. A coated diamond powder comprising a coating film of a substance made of a binder and / or a sintering aid, which is derived from an immersion method, provided on the surface of the diamond powder in a volume of 50% to 9%.
9.9%, the balance is a fibrous substance consisting of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more by volume.
A method for producing a diamond sintered body, characterized in that a mixture obtained by mixing 0% to 0.1% is sintered at the same time or after embossing at an ultrahigh pressure of 2000 MPa or higher and a high temperature. .
【請求項5】 前記混合物が、ダイヤモンド粉体表面
に、浸漬法に由来する、結合材及び/又は焼結助剤でな
る物質の被覆膜を設けてなる被覆ダイヤモンド粉体を、
体積で60%〜99.5%、残部が、短径が500μm
以下で、当該短径に対する長径との比が2以上でなる形
状の金属又は化合物の少なくとも一種類からなる繊維状
物質を、体積で40%〜0.5%を混合してなる混合物
でなることを特徴とする請求項4に記載のダイヤモンド
焼結体の製造法。
5. A coated diamond powder, wherein the mixture is provided on the surface of the diamond powder with a coating film of a substance that is derived from an immersion method and that is composed of a binder and / or a sintering aid,
60% to 99.5% by volume, the balance is 500 μm in minor axis
In the following, the mixture is formed by mixing 40% to 0.5% by volume of a fibrous substance composed of at least one kind of metal or compound having a shape in which the ratio of the major axis to the minor axis is 2 or more. The method for producing a diamond sintered body according to claim 4, wherein.
【請求項6】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で50%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質の表面に、金
属又は化合物の少なくとも一種類からなる被覆を設けて
なる被覆繊維状物質を、体積で50%〜0.1%を混合
せしめてなる混合物を、その儘で、若しくは型押し成形
後、2000MPa以上の超高圧力・高温下で焼結せし
めることを特徴とするダイヤモンド焼結体の製造法。
6. A coated diamond powder, which comprises a coating film of a substance made of a binder and / or a sintering aid, which is derived from an immersion method, on the surface of the diamond powder, the volume of the coated diamond powder being 50% to 9%.
9.9%, with the balance being 500 μm or less in the minor axis, and the ratio of the major axis to the minor axis in the ratio of 2 or more, the surface of the fibrous substance made of at least one kind of the metal or the compound, the metal or the compound A mixture of 50% to 0.1% by volume of a coated fibrous substance provided with a coating of at least one kind is used at the same time or after embossing, and an ultrahigh pressure of 2000 MPa or more. A method for producing a diamond sintered body, which comprises sintering at a high temperature.
【請求項7】 前記混合物が、ダイヤモンド粉体表面
に、浸漬法に由来する、結合材及び/又は焼結助剤でな
る物質の被覆膜を設けてなる被覆ダイヤモンド粉体を、
体積で60%〜99.5%、残部が、短径が500μm
以下で、当該短径に対する長径との比が2以上でなる形
状の金属又は化合物の少なくとも一種類からなる繊維状
物質の表面に、金属又は化合物の少なくとも一種類から
なる被覆を設けてなる被覆繊維状物質を、体積で40%
〜0.5%を混合してなる混合物でなることを特徴とす
る請求項6に記載のダイヤモンド焼結体の製造法。
7. A coated diamond powder, wherein the mixture is provided on the surface of the diamond powder with a coating film of a substance derived from an immersion method and comprising a binder and / or a sintering aid,
60% to 99.5% by volume, the balance is 500 μm in minor axis
In the following, a coated fiber in which a coating made of at least one kind of metal or compound is provided on the surface of a fibrous substance made of at least one kind of metal or compound in a shape in which the ratio of the major axis to the minor axis is 2 or more. 40% by volume of substances
7. The method for producing a diamond sintered body according to claim 6, wherein the mixture is formed by mixing 0.5% to 0.5%.
【請求項8】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質と金属又は化
合物の粉体の比が体積で0.1:100〜100:0.
1でなる混合物を、体積で99%〜0.1%を混合せし
めてなる混合物を、粉末状で、若しくは型押し成形後、
2000MPa以上の超高圧力・高温下で焼結せしめる
ことを特徴とするダイヤモンド焼結体の製造法。
8. A coated diamond powder, comprising a coating film of a substance made of a binder and / or a sintering aid, which is derived from a dipping method, provided on the surface of the diamond powder in a volume of 1% to 9%.
9.9%, with the balance being a fibrous substance consisting of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and a powder of the metal or the compound. The ratio is 0.1: 100 to 100: 0 by volume.
The mixture obtained by mixing 99% to 0.1% by volume of the mixture consisting of
A method for producing a diamond sintered body, which comprises sintering at an ultrahigh pressure of 2000 MPa or more and a high temperature.
【請求項9】 ダイヤモンド粉体表面に、浸漬法に由来
する、結合材及び/又は焼結助剤でなる物質の被覆膜を
設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質と、金属又は
化合物の粉体の表面に金属又は化合物の少なくとも一種
類からなる被覆を設けてなる被覆粉体の比が体積で0.
1:100〜100:0.1でなる混合物を、体積で9
9%〜0.1%を混合せしめてなる混合物を、粉末状
で、若しくは型押し成形後、2000MPa以上の超高
圧力・高温下で焼結せしめることを特徴とするダイヤモ
ンド焼結体の製造法。
9. A coated diamond powder having a coating film of a substance made of a binder and / or a sintering aid, which is derived from an immersion method, provided on the surface of the diamond powder, the volume of 1% to 9%.
9.9%, the balance is a fibrous substance made of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and metal or compound powder The ratio of the coated powder in which the coating of at least one kind of metal or compound is provided on the surface of 0.
A mixture consisting of 1: 100 to 100: 0.1 is mixed with 9 by volume.
A method for producing a diamond sintered body, characterized in that a mixture obtained by mixing 9% to 0.1% is sintered in powder form or after embossing under ultrahigh pressure and high temperature of 2000 MPa or more. .
【請求項10】 ダイヤモンド粉体表面に、浸漬法に由
来する、結合材及び/又は焼結助剤でなる物質の被覆膜
を設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質の表面に金属
又は化合物の少なくとも一種類からなる被覆を設けてな
る被覆繊維状物質と金属又は化合物の粉体の比が体積で
0.1:100〜100:0.1でなる混合物を、体積
で99%〜0.1%を混合せしめてなる混合物を、粉末
状で、若しくは型押し成形後、2000MPa以上の超
高圧力・高温下で焼結せしめることを特徴とするダイヤ
モンド焼結体の製造法。
10. A coated diamond powder having a coating film of a substance made of a binder and / or a sintering aid, which is derived from an immersion method, provided on the surface of the diamond powder, the volume of 1% to 9%.
9.9%, the balance being at least 500 μm in minor axis, and at least a metal or compound on the surface of a fibrous substance made of at least one kind of metal or compound in a ratio of the major axis to the minor axis of 2 or more. 99% to 0.1% by volume of a mixture in which the ratio of the coated fibrous substance provided with a coating of one kind and the powder of metal or compound is 0.1: 100 to 100: 0.1 by volume A method for producing a diamond sintered body, characterized in that the mixture obtained by mixing is mixed in powder form or after embossing, and then sintered under ultrahigh pressure and high temperature of 2000 MPa or more.
【請求項11】 ダイヤモンド粉体表面に、浸漬法に由
来する、結合材及び/又は焼結助剤でなる物質の被覆膜
を設けてなる被覆ダイヤモンド粉体を、体積で1%〜9
9.9%、残部が、短径が500μm以下で、当該短径
に対する長径との比が2以上でなる形状の金属又は化合
物の少なくとも一種類からなる繊維状物質の表面に金属
又は化合物の少なくとも一種類からなる被覆を設けてな
る被覆繊維状物質と、金属又は化合物の粉体の表面に金
属又は化合物の少なくとも一種類からなる被覆を設けて
なる被覆粉体の比が体積で0.1:100〜100:
0.1でなる混合物を、体積で99%〜0.1%を混合
せしめてなる混合物を、粉末状で、若しくは型押し成形
後、2000MPa以上の超高圧力・高温下で焼結せし
めることを特徴とするダイヤモンド焼結体の製造法。
11. A coated diamond powder comprising a coating film of a substance, which is derived from an immersion method and is composed of a binder and / or a sintering aid, provided on the surface of the diamond powder, the volume of 1% to 9%.
9.9%, the balance being at least 500 μm in minor axis, and at least a metal or compound on the surface of a fibrous substance made of at least one kind of metal or compound in a ratio of the major axis to the minor axis of 2 or more. The ratio of the coated fibrous substance provided with a coating made of one type to the coated powder provided with a coating made of at least one type of metal or compound on the surface of the powder of metal or compound is 0.1: by volume. 100-100:
By mixing 99% to 0.1% by volume of the mixture of 0.1, a mixture in the form of powder or after embossing may be sintered at an ultrahigh pressure of 2000 MPa or higher and at a high temperature. A method for producing a characteristic diamond sintered body.
【請求項12】 前記被覆ダイヤモンド粉体が、ダイヤ
モンド粉体表面に、浸漬法に由来する、結合材及び/又
は焼結助剤でなる物質からなる被覆膜を、特開平1−2
07380号の製造法により設けてなる被覆ダイヤモン
ド粉体でなることを特徴とする、請求項1、請求項2、
請求項3、請求項4、請求項5、請求項6、請求項7、
請求項8、請求項9、請求項10又は請求項11に記載
のダイヤモンド焼結体の製造法。
12. A coating film comprising a substance consisting of a binder and / or a sintering aid, which is derived from an immersion method, on the surface of the diamond powder, wherein the coated diamond powder is formed by a dipping method.
A coated diamond powder provided by the manufacturing method of No. 07380, claim 1, claim 2,
Claim 3, Claim 4, Claim 5, Claim 6, Claim 7,
The method for manufacturing a diamond sintered body according to claim 8, claim 9, claim 10, or claim 11.
【請求項13】 前記被覆ダイヤモント粉体が、ダイヤ
モンド粉体に、浸漬法に由来する、結合材及び/又は焼
結助剤でなる物質からなる被覆膜を、特開平1−234
168号の製造法により設けてなる被覆ダイヤモンド粉
体でなることを特徴とする、請求項1、請求項2、請求
項3、請求項4、請求項5、請求項6、請求項7、請求
項8、請求項9、請求項10又は請求項11に記載のダ
イヤモンド焼結体の製造法。
13. A coating film, wherein the coated diamond powder is a diamond powder, which is derived from an immersion method and is made of a substance consisting of a binder and / or a sintering aid.
Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, characterized by comprising coated diamond powder provided by the manufacturing method of No. 168. The method for producing a diamond sintered body according to claim 8, claim 9, claim 10, or claim 11.
【請求項14】 前記、浸漬法に由来する、結合材及び
/又は焼結助剤でなる物質が、浸漬法に由来する目的金
属の化合物でなることを特徴とする、請求項1、請求項
2、請求項3、請求項4、請求項5、請求項6、請求項
7、請求項8、請求項9、請求項10請求項11、請求
項12又は請求項13に記載のダイヤモンド焼結体の製
造法。
14. The method according to claim 1, wherein the substance that is derived from the immersion method and that is a binder and / or a sintering aid is a compound of a target metal that is derived from the immersion method. 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, claim 12, or claim 13 Body manufacturing method.
【請求項15】 前記被覆ダイヤモンド粉体が、ダイヤ
モンド粉体表面に、浸漬法に由来する目的金属の炭化
物、硼化物、窒化物、及び珪化物の少なくとも一種類か
らなる被覆膜を設けてなる被覆ダイヤモンド粉体でなる
ことを特徴とする、請求項1、請求項2、請求項3、請
求項4、請求項5、請求項6、請求項7、請求項8、請
求項9、請求項10、請求項11、請求項12、請求項
13又は請求項14に記載のダイヤモンド焼結体の製造
法。
15. The coated diamond powder is provided with a coating film made of at least one of carbide, boride, nitride and silicide of a target metal derived from an immersion method on the surface of the diamond powder. Claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, characterized in that they consist of coated diamond powder. The method for producing a diamond sintered body according to claim 10, claim 11, claim 12, claim 13 or claim 14.
【請求項16】 前記被覆ダイヤモンド粉体が、ダイヤ
モンド粉体表面に浸漬法により目的とする金属の炭化
物、硼化物、及び窒化物の少なくとも一種類からなる被
覆膜を形成する方法が、目的とする金属を含有する溶融
塩からなる浸漬浴を調製し、処理すべきダイヤモンド粉
体を適宜時間当該浸漬浴に浸漬する方法でなる製造法に
より、当該ダイヤモンド粉体表面に、目的とする金属の
炭化物、硼化物、及び窒化物の少なくとも一種類からな
る被覆膜を設けてなる被覆ダイヤモンド粉体でなること
を特徴とする、請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6、請求項7、請求項8、請求項
9、請求項10、請求項11、請求項12、請求項14
又は請求項15に記載のダイヤモンド焼結体の製造法。
16. A method for forming a coating film comprising at least one of a target metal carbide, boride, and nitride on the diamond powder surface by an immersion method, the method comprising: By preparing a dipping bath composed of a molten salt containing a metal, and dipping the diamond powder to be treated in the dipping bath for an appropriate time, a carbide of the desired metal is formed on the diamond powder surface. Claim 1, Claim 2, Claim 3, Claim 4, and Claim 4 which consist of coated diamond powder which provides a coating film which consists of at least 1 sort (s) of this, a boride, and a nitride. 5, claim 6, claim 7, claim 8, claim 9, claim 10, claim 11, claim 12, claim 14
Alternatively, the method for producing a diamond sintered body according to claim 15.
【請求項17】 前記被覆ダイヤモンド粉体が、ダイヤ
モンド粉体表面に浸漬法により目的とする金属の炭化
物、硼化物、窒化物、及び珪化物の少なくとも一種類か
らなる被覆膜を形成する方法が、溶融塩浴に目的とする
金属の単体金属又は合金、ハロゲン化物、及び酸化物の
少なくとも一種類を添加することにより浸漬浴を調製
し、当該浸漬浴に、ダイヤモンド粉体を浸漬して目的金
属の化合物により、当該ダイヤモンド粉体表面を被覆す
る方法でなる製造法により、当該ダイヤモンド粉体表面
に、目的とする金属の炭化物、硼化物、窒化物及び珪化
物の少なくとも一種類からなる被覆膜を設けてなる被覆
ダイヤモンド粉体でなることを特徴とする、請求項1、
請求項2、請求項3、請求項4、請求項5、請求項6、
請求項7、請求項8、請求項9、請求項10、請求項1
1、請求項13、請求項14又は請求項15に記載のダ
イヤモンド焼結体の製造法。
17. A method of forming a coating film of the coated diamond powder on the surface of the diamond powder by a dipping method, the coating film comprising at least one kind of carbide, boride, nitride and silicide of a target metal. , A dipping bath is prepared by adding at least one of a simple substance metal or alloy of the intended metal, a halide, and an oxide to the molten salt bath, and dipping diamond powder into the dipping bath to obtain the target metal. A coating film made of at least one kind of carbide, boride, nitride and silicide of a target metal on the surface of the diamond powder by a manufacturing method comprising coating the surface of the diamond powder with the compound of 2. A coated diamond powder comprising:
Claim 2, Claim 3, Claim 4, Claim 5, Claim 6,
Claim 7, Claim 8, Claim 9, Claim 10, Claim 1
The method for producing a diamond sintered body according to claim 1, claim 13, claim 14, or claim 15.
【請求項18】 前記、浸漬法に由来する、結合材及び
/又は焼結助剤でなる物質が、浸漬法に由来する化合物
及び/又は金属でなることを特徴とする、請求項1、請
求項2、請求項3、請求項4、請求項5、請求項6、請
求項7、請求項8、請求項9、請求項10、請求項1
1、請求項12、請求項13、請求項14、請求項1
5、請求項16又は請求項17に記載のダイヤモンド焼
結体の製造法。
18. The method according to claim 1, wherein the substance that is derived from the immersion method and that is a binder and / or a sintering aid is a compound and / or metal that is derived from the immersion method. Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, Claim 10, Claim 1
1, claim 12, claim 13, claim 14, claim 1
The method for producing a diamond sintered body according to claim 5, claim 16 or claim 17.
【請求項19】 前記浸漬法が、一種類の物質が2分子
或はそれ以上で相互に酸化、還元その他の反応を行った
結果、2種類以上の物質を生じてなる不均化反応を伴う
浸漬法でなることを特徴とする、請求項1、請求項2、
請求項3、請求項4、請求項5、請求項6、請求項7、
請求項8、請求項9、請求項10請求項11、請求項1
2、請求項13、請求項14、請求項15、請求項1
6、請求項17又は請求項18に記載のダイヤモンド焼
結体の製造法。
19. The dipping method involves a disproportionation reaction in which two or more substances are produced as a result of mutual oxidation, reduction or other reaction of one substance with two molecules or more. It is a dipping method, It is characterized by the above-mentioned.
Claim 3, Claim 4, Claim 5, Claim 6, Claim 7,
Claim 8, Claim 9, Claim 10, Claim 11, Claim 1
2, claim 13, claim 14, claim 15, claim 1
The method for producing a diamond sintered body according to claim 6, claim 17, or claim 18.
【請求項20】 前記残部の粉体が、周期律表第2a、
3a、4a、5a、6a、7a、8族遷移金属、希土類
金属、B、Si、Al、又はこれらの内の一種類以上を
含む化合物の少なくとも一種類からなる粉体でなること
を特徴とする請求項2、請求項3、請求項8、請求項
9、請求項10又は請求項11に記載のダイヤモンド焼
結体の製造法。
20. The balance of the powder is the periodic table No. 2a,
3a, 4a, 5a, 6a, 7a, a Group 8 transition metal, a rare earth metal, B, Si, Al, or a powder containing at least one kind of a compound containing one or more kinds thereof, The method for producing a diamond sintered body according to claim 2, claim 3, claim 8, claim 9, claim 10 or claim 11.
【請求項21】 前記残部の粉体が、周期律表第2a、
3a、4a、5a、6a、7a、8族遷移金属、希土類
金属、B、Si、Al、又はこれらの炭化物、酸化物、
窒化物、酸炭化物、酸窒化物、炭窒化物、酸炭窒化物、
硼化物、珪化物の少なくとも一種類からなる粉体でなる
ことを特徴とする請求項2、請求項3、請求項8、請求
項9、請求項10又は請求項11に記載のダイヤモンド
焼結体の製造法。
21. The balance of the powder is the periodic table No. 2a,
3a, 4a, 5a, 6a, 7a, Group 8 transition metals, rare earth metals, B, Si, Al, or their carbides, oxides,
Nitride, oxycarbide, oxynitride, carbonitride, oxycarbonitride,
A diamond sintered body according to claim 2, claim 3, claim 8, claim 9, claim 10 or claim 11, characterized in that it is a powder of at least one of boride and silicide. Manufacturing method.
【請求項22】 前記残部の被覆粉体が、前記粉体の表
面に、周期律表第2a、3a、4a、5a、6a、7
a、8族遷移金属、希土類金属、B、Si、Al、又は
これらの内の一種類以上を含む化合物の少なくとも一種
類からなる被覆を設けてなる被覆粉体でなることを特徴
とする請求項3、請求項9又は請求項11に記載のダイ
ヤモンド焼結体の製造法。
22. The remaining coated powder is formed on the surface of the powder by the periodic table Nos. 2a, 3a, 4a, 5a, 6a and 7 of the periodic table.
A coated powder comprising a coating of at least one of a, a Group 8 transition metal, a rare earth metal, B, Si, Al, or a compound containing one or more of these. 3. The method for manufacturing a diamond sintered body according to claim 9 or claim 11.
【請求項23】 前記残部の被覆粉体が、前記粉体の表
面に、周期律表第2a、3a、4a、5a、6a、7
a、8族遷移金属、希土類金属、B、Si、Al、又は
これらの炭化物、酸化物、窒化物、酸炭化物、酸窒化
物、炭窒化物、酸炭窒化物、硼化物、珪化物の少なくと
も一種類からなる被覆を設けてなる被覆粉体でなること
を特徴とする請求項3、請求項9又は請求項11に記載
のダイヤモンド焼結体の製造法。
23. The balance of the coated powder is formed on the surface of the powder by means of Periodic Table Nos. 2a, 3a, 4a, 5a, 6a, and 7a.
a, at least Group 8 transition metal, rare earth metal, B, Si, Al, or their carbides, oxides, nitrides, oxycarbides, oxynitrides, carbonitrides, oxycarbonitrides, borides, and silicides The method for producing a diamond sintered body according to claim 3, claim 9 or claim 11, wherein the method comprises a coated powder comprising a coating of one kind.
【請求項24】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
繊維状物質が、周期律表第2a、3a、4a、5a、6
a、7a、8族遷移金属、希土類金属、B、Si、A
l、又はこれらの内の一種類以上を含む化合物の少なく
とも一種類からなる、短径が500μm以下で、当該短
径に対する長径との比が2以上でなる形状の繊維状物質
でなることを特徴とする請求項4、請求項5、請求項
6、請求項7、請求項8、請求項9、請求項10又は請
求項11に記載のダイヤモンド焼結体の製造法。
24. The remaining fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is a periodic table 2a, 3a, 4a, 5a, 6
a, 7a, 8 group transition metal, rare earth metal, B, Si, A
or a fibrous substance having a shape with a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, which is composed of at least one compound containing 1 or more of these. The method for producing a diamond sintered body according to claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11.
【請求項25】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
繊維状物質が、周期律表第2a、3a、4a、5a、6
a、7a、8族遷移金属、希土類金属、B、Si、A
l、又はこれらの炭化物、酸化物、窒化物、酸炭化物、
酸窒化物、炭窒化物、酸炭窒化物、硼化物、珪化物の少
なくとも一種類からなる、短径が500μm以下で、当
該短径に対する長径との比が2以上でなる形状の繊維状
物質でなることを特徴とする請求項4、請求項5、請求
項6、請求項7、請求項8、請求項9、請求項10又は
請求項11に記載のダイヤモンド焼結体の製造法。
25. The remaining fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is a periodic table 2a, 3a, 4a, 5a, 6
a, 7a, 8 group transition metal, rare earth metal, B, Si, A
l, or their carbides, oxides, nitrides, oxycarbides,
A fibrous substance made of at least one kind of oxynitride, carbonitride, oxycarbonitride, boride, and silicide and having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. The method for producing a diamond sintered body according to claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10 or claim 11, characterized in that
【請求項26】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
繊維状物質が、前記繊維状物質の表面に、周期律表第2
a、3a、4a、5a、6a、7a、8族遷移金属、希
土類金属、B、Si、Al、又はこれらの内の一種類以
上を含む化合物の少なくとも一種類からなる被覆を設け
てなる、短径が500μm以下で、当該短径に対する長
径との比が2以上でなる形状の被覆繊維状物質でなるこ
とを特徴とする請求項6、請求項7、請求項10又は請
求項11に記載のダイヤモンド焼結体の製造法。
26. The remaining fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is formed on the surface of the fibrous substance according to Table 2 of the periodic table.
a, 3a, 4a, 5a, 6a, 7a, a Group 8 transition metal, a rare earth metal, B, Si, Al, or a coating containing at least one kind of a compound containing one or more of these, The coated fibrous material having a diameter of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. 12. The claim 6, claim 7, claim 10 or claim 11. Manufacturing method of diamond sintered body.
【請求項27】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
被覆繊維状物質が、前記繊維状物質の表面に、周期律表
第2a、3a、4a、5a、6a、7a、8族遷移金
属、希土類金属、B、Si、Al、又はこれらの炭化
物、酸化物、窒化物、酸炭化物、酸窒化物、炭窒化物、
酸炭窒化物、硼化物、珪化物の少なくとも一種類からな
る被覆を設けてなる被覆繊維状物質でなることを特徴と
する請求項6、請求項7、請求項10又は請求項11に
記載のダイヤモンド焼結体の製造法。
27. A coated fibrous material having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more in the remaining portion is provided on the surface of the fibrous material in Periodic Table 2a. 3a, 4a, 5a, 6a, 7a, Group 8 transition metal, rare earth metal, B, Si, Al, or their carbides, oxides, nitrides, oxycarbides, oxynitrides, carbonitrides,
The coated fibrous material provided with a coating made of at least one of oxycarbonitride, boride, and silicide, and the coated fibrous material according to claim 6, claim 7, claim 10, or claim 11. Manufacturing method of diamond sintered body.
【請求項28】 前記混合粉体が、ダイヤモンド粉体表
面に、浸漬法に由来する、結合材及び/又は焼結助剤で
なる物質の被覆膜を設けてなる被覆ダイヤモンド粉体
を、体積で50%〜99.9%、残部が、ダイヤモンド
の粉体を、体積で50%〜0.1%を混合せしめてなる
混合粉体でなることを特徴とする請求項2、請求項8、
請求項10、請求項20又は請求項21に記載のダイヤ
モンド焼結体の製造法。
28. A volume of coated diamond powder, wherein said mixed powder is provided with a coating film of a substance made of a dipping method and comprising a binder and / or a sintering aid on the surface of diamond powder. 50% to 99.9%, and the balance is a mixed powder obtained by mixing 50% to 0.1% by volume of diamond powder by volume.
A method for manufacturing a diamond sintered body according to claim 10, claim 20 or claim 21.
【請求項29】 前記混合粉体が、ダイヤモンド粉体表
面に、浸漬法に由来する、結合材及び/又は焼結助剤で
なる物質の被覆膜を設けてなる被覆ダイヤモンド粉体
を、体積で60%〜99.5%、残部が、ダイヤモンド
の粉体を、体積で40%〜0.5%を混合せしめてなる
混合粉体でなることを特徴とする請求項2、請求項8、
請求項10、請求項20、請求項21又は請求項28に
記載のダイヤモンド焼結体の製造法。
29. A volume of coated diamond powder, wherein said mixed powder has a coating film of a substance, which is derived from an immersion method and is composed of a binder and / or a sintering aid, provided on the surface of said diamond powder. 60% to 99.5% by weight, and the balance being a mixed powder obtained by mixing 40% to 0.5% by volume of diamond powder by volume.
A method for manufacturing a diamond sintered body according to claim 10, claim 20, claim 21 or claim 28.
【請求項30】 前記残部の粉体が、SiC、TiC、
ZrC、BC、WC、HfC、TaC、NbC、Si
、TiN、ZrN、AlN、HfN、TaN、T
iB、TiB、BP、Al、AlSiO
(ムライト)、ZrO(Y、MgO又はCa
O安定剤を添加したジルコニア:PSZ又は正方晶ジル
コニア多結晶体:TZP)、MgAl(スピネ
ル)の少なくとも一種類からなる粉体でなることを特徴
とする請求項2、請求項3、請求項8、請求項9、請求
項10、請求項11、請求項20、請求項21、請求項
22又は請求項23に記載のダイヤモンド焼結体の製造
法。
30. The remaining powder is SiC, TiC,
ZrC, B 4 C, WC, HfC, TaC, NbC, Si
3 N 4 , TiN, ZrN, AlN, HfN, TaN, T
iB, TiB 2 , BP, Al 2 O 3 , Al 2 SiO
5 (mullite), ZrO 2 (Y 2 O 3 , MgO or Ca)
A zirconia: PSZ or tetragonal zirconia polycrystal: TZP) added with an O stabilizer and a powder comprising at least one kind of MgAl 2 O 4 (spinel). The method for manufacturing a diamond sintered body according to claim 8, claim 9, claim 10, claim 11, claim 20, claim 21, claim 22 or claim 23.
【請求項31】 前記残部の被覆粉体が、前記粉体の表
面に、B、Ti、Zr、Hf、Ta、Nb、V、Si、
Mo、SiC、TiC、ZrC、BC、WC、Hf
C、TaC、NbC、Si、TiN、ZrN、A
lN、HfN、TaN、TiB、TiB、ZrB
LaB、MoSi、BP、Alの少なくとも
一種類からなる被覆を設けてなる被覆粉体でなることを
特徴とする請求項3、請求項9、請求項11、請求項2
2又は請求項23に記載のダイヤモンド焼結体の製造
法。
31. The balance of the coated powder, B, Ti, Zr, Hf, Ta, Nb, V, Si, on the surface of the powder.
Mo, SiC, TiC, ZrC, B 4 C, WC, Hf
C, TaC, NbC, Si 3 N 4 , TiN, ZrN, A
1N, HfN, TaN, TiB, TiB 2 , ZrB 2 ,
A coated powder comprising a coating made of at least one of LaB 6 , MoSi 2 , BP, and Al 2 O 3 , which is characterized in that it is a coated powder.
The method for manufacturing a diamond sintered body according to claim 2 or claim 23.
【請求項32】 前記残部の被覆粉体が、前記粉体を酸
化雰囲気中で、酸化してなることにより、当該粉体の表
面に、酸化被膜を設けてなる被覆粉体でなることを特徴
とする請求項3、請求項9、請求項11、請求項22又
は請求項23に記載のダイヤモンド焼結体の製造法。
32. The remaining coated powder is a coated powder in which an oxide film is provided on the surface of the powder by oxidizing the powder in an oxidizing atmosphere. The method for producing a diamond sintered body according to claim 3, claim 9, claim 11, claim 22 or claim 23.
【請求項33】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
繊維状物質が、SiC、TiC、BC、Si
AlN、TiN、Al、C、W、B、Mo、N
b、Ta、V、Zrの少なくとも一種類からなる、短径
が500μm以下で、当該短径に対する長径との比が2
以上でなる形状の繊維状物質でなることを特徴とする請
求項4、請求項5、請求項6、請求項7、請求項8、請
求項9、請求項10、請求項11、請求項24、請求項
25、請求項26又は請求項27に記載のダイヤモンド
焼結体の製造法。
33. The remaining fibrous material having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is SiC, TiC, B 4 C, Si 3 N 4 ,
AlN, TiN, Al 2 O 3 , C, W, B, Mo, N
b, Ta, V, or Zr, having a minor axis of not more than 500 μm and a ratio of major axis to minor axis of 2
The fibrous substance having the above-mentioned shape is formed, claim 5, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, claim 11, and claim 24. The method for producing a diamond sintered body according to claim 25, claim 26 or claim 27.
【請求項34】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
被覆繊維状物質が、前記繊維状物質の表面に、B、T
i、Zr、Hf、Ta、Nb、V、SiC、TiC、Z
rC、BC、WC、HfC、TaC、NbC、Si
、TiN、ZrN、AlN、HfN、TaN、Ti
B、TiB、ZrB、LaB、MoSi、B
P、Alの少なくとも一種類からなる被覆を設け
てなる、短径が500μm以下で、当該短径に対する長
径との比が2以上でなる形状の被覆繊維状物質でなるこ
とを特徴とする請求項6、請求項7、請求項10、請求
項11、請求項26又は請求項27に記載のダイヤモン
ド焼結体の製造法。
34. A coated fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more in the remaining portion is B or T on the surface of the fibrous substance.
i, Zr, Hf, Ta, Nb, V, SiC, TiC, Z
rC, B 4 C, WC, HfC, TaC, NbC, Si 3
N 4 , TiN, ZrN, AlN, HfN, TaN, Ti
B, TiB 2 , ZrB 2 , LaB 6 , MoSi 2 , B
A coated fibrous substance having a short diameter of 500 μm or less and a ratio of the long diameter to the short diameter of 2 or more, which is provided with a coating made of at least one of P and Al 2 O 3. The method for producing a diamond sintered body according to claim 6, claim 7, claim 10, claim 11, claim 26 or claim 27.
【請求項35】 前記残部の、短径が500μm以下
で、当該短径に対する長径との比が2以上でなる形状の
被覆繊維状物質が、前記繊維状物質を酸化雰囲気中で、
酸化してなることにより、当該繊維状物質の表面に、酸
化被膜を設けてなる、短径が500μm以下で、当該短
径に対する長径との比が2以上でなる形状の被覆繊維状
物質でなることを特徴とする請求項6、請求項7、請求
項10、請求項11、請求項26又は請求項27に記載
のダイヤモンド焼結体の製造法。
35. A coated fibrous material having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more in the remaining part, wherein the fibrous material is in an oxidizing atmosphere,
Oxidation results in a coated fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, in which an oxide film is provided on the surface of the fibrous substance. The method for producing a diamond sintered body according to claim 6, claim 7, claim 10, claim 11, claim 26 or claim 27.
【請求項36】 前記ダイヤモンド焼結体の製造法が、
ダイヤモンドの熱力学的安定領域で2000MPa以上
の超高圧力・高温下で焼結せしめることを特徴とする請
求項1、請求項2、請求項3、請求項4、請求項5、請
求項6、請求項7、請求項8、請求項9、請求項10、
請求項11、請求項12、請求項13、請求項14、請
求項15、請求項16、請求項17、請求項18、請求
項19、請求項20、請求項21、請求項22、請求項
23、請求項24、請求項25、請求項26、請求項2
7、請求項28、請求項29、請求項30、請求項3
1、請求項32、請求項33、請求項34又は請求項3
5に記載のダイヤモンド焼結体の製造法。
36. A method for manufacturing the diamond sintered body,
Claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, characterized in that they are sintered under ultrahigh pressure of 2000 MPa or higher and high temperature in the thermodynamically stable region of diamond. Claim 7, Claim 8, Claim 9, Claim 10,
Claim 11, Claim 12, Claim 13, Claim 14, Claim 15, Claim 16, Claim 17, Claim 18, Claim 19, Claim 20, Claim 21, Claim 22, Claim. 23, claim 24, claim 25, claim 26, claim 2
7, claim 28, claim 29, claim 30, claim 3
1, claim 32, claim 33, claim 34 or claim 3
5. The method for producing a diamond sintered body according to item 5.
【請求項37】 請求項1、請求項2、請求項3、請求
項4、請求項5、請求項6、請求項7、請求項8、請求
項9、請求項10、請求項11、請求項12、請求項1
3、請求項14、請求項15、請求項16、請求項1
7、請求項18、請求項19、請求項20、請求項2
1、請求項22、請求項23、請求項24、請求項2
5、請求項26、請求項27、請求項28、請求項2
9、請求項30、請求項31、請求項32、請求項3
3、請求項34、請求項35又は請求項36に記載のダ
イヤモンド焼結体の製造法により製造してなることを特
徴とするダイヤモンド焼結体。
37. Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, Claim 10, Claim 11, and Claim. Item 12, claim 1
3, claim 14, claim 15, claim 16, claim 1
7, claim 18, claim 19, claim 20, claim 2
1, claim 22, claim 23, claim 24, claim 2
5, claim 26, claim 27, claim 28, claim 2
9, claim 30, claim 31, claim 32, claim 3
3. A diamond sintered body manufactured by the method for manufacturing a diamond sintered body according to claim 3, claim 34, claim 35 or claim 36.
JP3213270A 1991-05-18 1991-05-18 Diamond sintered body and method for producing the same Expired - Lifetime JP2847173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213270A JP2847173B2 (en) 1991-05-18 1991-05-18 Diamond sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213270A JP2847173B2 (en) 1991-05-18 1991-05-18 Diamond sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0632655A true JPH0632655A (en) 1994-02-08
JP2847173B2 JP2847173B2 (en) 1999-01-13

Family

ID=16636326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213270A Expired - Lifetime JP2847173B2 (en) 1991-05-18 1991-05-18 Diamond sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2847173B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714695A2 (en) 1994-11-30 1996-06-05 Sumitomo Electric Industries, Ltd. Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof
US7381200B2 (en) 2003-05-06 2008-06-03 Asahi Intecc Co., Ltd. Infusion device
US7442184B2 (en) 2002-03-05 2008-10-28 Osamu Katoh Medicinal liquid injection catheter
CN115073182A (en) * 2022-06-24 2022-09-20 中国人民解放军空军工程大学 Ultrahigh-temperature material and preparation method thereof
CN115677364A (en) * 2022-09-07 2023-02-03 西安交通大学 Multilayer zirconium carbide reinforced carbon-based composite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738376A (en) * 1980-08-13 1982-03-03 Kuratomi Tatsuro Manufacture of diamond nitride composite solidified body
JPH01172270A (en) * 1987-12-25 1989-07-07 Toshiba Tungaloy Co Ltd Sintered body of cubic boron nitride having high strength
JPH02252660A (en) * 1989-03-24 1990-10-11 Takeo Oki Calcined compact of hardly calcinable powder, its abrasive grain and grindstone and production thereof
JPH0328172A (en) * 1989-06-26 1991-02-06 Kobe Steel Ltd High toughness-and high hardness-sintered material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738376A (en) * 1980-08-13 1982-03-03 Kuratomi Tatsuro Manufacture of diamond nitride composite solidified body
JPH01172270A (en) * 1987-12-25 1989-07-07 Toshiba Tungaloy Co Ltd Sintered body of cubic boron nitride having high strength
JPH02252660A (en) * 1989-03-24 1990-10-11 Takeo Oki Calcined compact of hardly calcinable powder, its abrasive grain and grindstone and production thereof
JPH0328172A (en) * 1989-06-26 1991-02-06 Kobe Steel Ltd High toughness-and high hardness-sintered material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714695A2 (en) 1994-11-30 1996-06-05 Sumitomo Electric Industries, Ltd. Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof
US5759216A (en) * 1994-11-30 1998-06-02 Sumitomo Electric Industries, Ltd. Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof
US7442184B2 (en) 2002-03-05 2008-10-28 Osamu Katoh Medicinal liquid injection catheter
US7381200B2 (en) 2003-05-06 2008-06-03 Asahi Intecc Co., Ltd. Infusion device
CN115073182A (en) * 2022-06-24 2022-09-20 中国人民解放军空军工程大学 Ultrahigh-temperature material and preparation method thereof
CN115677364A (en) * 2022-09-07 2023-02-03 西安交通大学 Multilayer zirconium carbide reinforced carbon-based composite material and preparation method and application thereof
CN115677364B (en) * 2022-09-07 2023-09-26 西安交通大学 Multilayer zirconium carbide reinforced carbon-based composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2847173B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Dong et al. Characterization of nearly stoichiometric SiC ceramic fibres
HUT52013A (en) Process for production of chemical products with selfcarrying structure
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
WO2007089261A2 (en) Nanostructured titanium monoboride monolithic material and associated methods
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
JPS5913475B2 (en) Ceramic throw-away chips and their manufacturing method
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
HUT63131A (en) Process for producing self-carrying ceramic body of composite material and ceramic body of composite material
JP2847173B2 (en) Diamond sintered body and method for producing the same
JP2662578B2 (en) High pressure type boron nitride sintered body and method for producing the same
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JP4186545B2 (en) Mold for molding
JP3841825B2 (en) High temperature composites formed from nanostructured powders
JP2004307239A (en) Wear-resistant aluminum oxide member with layered structure and preparation method therefor
JP2782685B2 (en) High hardness high density composite sintered body containing diamond and method for producing the same
CN101511748A (en) Aluminum oxide-based composite sintered material and cutting insert
KR20010003819A (en) Ceramics-aluminum composite and its preparation method
JP2860394B2 (en) High hardness high density composite sintered body containing coated diamond and method for producing the same
JP2794079B2 (en) High-pressure high-hardness high-density composite sintered body containing boron nitride and method for producing the same
JPS62138377A (en) Silicon carbide base composite material
JPH05139844A (en) Coated high-pressure type boron nitride-containing high-density complex sintered compact having high hardness and its production
JPH01215761A (en) Production of silicon nitride sintered form
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPH07115927B2 (en) SiC-based ceramics and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term