JPS63109139A - Titanium carbide sintered alloy for cutting tool parts - Google Patents

Titanium carbide sintered alloy for cutting tool parts

Info

Publication number
JPS63109139A
JPS63109139A JP25276386A JP25276386A JPS63109139A JP S63109139 A JPS63109139 A JP S63109139A JP 25276386 A JP25276386 A JP 25276386A JP 25276386 A JP25276386 A JP 25276386A JP S63109139 A JPS63109139 A JP S63109139A
Authority
JP
Japan
Prior art keywords
hard phase
sintered alloy
titanium carbide
phase
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25276386A
Other languages
Japanese (ja)
Other versions
JPH0450373B2 (en
Inventor
Takeshi Saito
武志 斉藤
斉藤 豪
Mitsuo Ueki
植木 光生
Keiichi Kobori
小堀 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP25276386A priority Critical patent/JPS63109139A/en
Publication of JPS63109139A publication Critical patent/JPS63109139A/en
Publication of JPH0450373B2 publication Critical patent/JPH0450373B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled sintered alloy excellent in thermal shock resistance, wear resistance, etc., by specifying the proportion of a binding phase composed principally of Ni or Co to a hard phase with a specific grain size having a specific composition consisting of TiC, TiN, and carbides of group VIa metals. CONSTITUTION:The sintered alloy has a composition consisting of, by weight, 5-25% binding phase composed principally of Ni and/or Co and the balance hard phase containing 20-65% TiC, 18-40% TiN, and 15-40% of one or more kinds among the carbides of the metals of group VIa of the periodic table with inevitable impurities. Further, the above-mentioned hard phase is regulated so that average grain size is 1.0-2.0mum and the grains of <=0.5mum grain size comprise 1-10vol% of the total hard phase. On the other hand, the lattice constant of the above binding phase is regulated to 3.56-3.61Angstrom . Moreover, if necessary, the carbides or nitrides of the metals of group Va of the periodic table can be substituted for 5-31% of the above TiC in the above hard phase, or the carbides or nitrides of Zr of Hf can be substituted for 0.5-8% of the above TiC. In this way, the SiC sintered alloy for cutting tool parts excellent in thermal shock resistance, wear resistance, resistance to thermoplastic deformation, and breaking resistance at high temp. can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、従来の炭化チタン系焼結合金から゛炭化タン
グステン系焼結合金までの使用領域で用いることが可ず
距なms衝撃性、耐摩耗性、耐熱塑性変形性及び高温に
おける耐欠損性にすぐれた切削工具部品用炭化チタン系
焼結合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention aims to improve the ms impact resistance, which cannot be used in the range of applications ranging from conventional titanium carbide-based sintered alloys to tungsten carbide-based sintered alloys. The present invention relates to a titanium carbide-based sintered alloy for cutting tool parts that has excellent wear resistance, thermoplastic deformation resistance, and fracture resistance at high temperatures.

(従来の技術) 炭化チタン系焼結合金は、TiC−Mo2C−Ni系焼
結合金に代表される炭化物系の合金が最初に開発された
が、炭化タングステン系焼結合金に比咬して、耐熱塑性
変形性及び耐欠損性が著しく劣るために切削工具部品の
領域の中でも高速仕上切削用に1部実用化されてきたも
のである。
(Prior art) As for titanium carbide-based sintered alloys, carbide-based alloys represented by TiC-Mo2C-Ni-based sintered alloys were first developed, but compared to tungsten carbide-based sintered alloys, Because of its extremely poor thermoplastic deformation resistance and chipping resistance, it has been put to practical use in some cutting tool parts for high-speed finishing cutting.

この炭化物系合金にTiN又はTi(C,N)を添加し
、硬質相の粒成長を抑制させて微細化することにより、
耐熱e性変形性及び耐欠損性の向上を達成させたものに
窒素を含有させた炭化チタン系焼結合金がある。
By adding TiN or Ti(C,N) to this carbide alloy to suppress grain growth of the hard phase and refine it,
Titanium carbide-based sintered alloys containing nitrogen have achieved improvements in heat resistance, deformability, and fracture resistance.

窒素を含有させた炭化チタン系焼結合金は、多数提案さ
れており、その内、例えば熱間圧延?を置部材用として
開示されている特開昭53−119205号公報及び耐
摩j@用として開示されている特開昭57−2860号
公報の他は、一般にはTiN又はTi(C,N)の粒成
長抑制効果を利用して硬質相を微細にし、強度を高めて
いるものであり、特に切削工具部品用としての窒素を含
有させた炭化チタン系焼結合、金は、平均粒径が1〜2
#Lmの出発原料粉末を用いて混合粉砕し、そして窒素
源として添加したTiN又はTi(C,N)の粒成長抑
制効果により、焼結後は硬質相の平均粒径がlμm以下
になっているものである。
Many nitrogen-containing titanium carbide sintered alloys have been proposed. In addition to JP-A No. 53-119205, which discloses TiN for mounting members, and JP-A No. 57-2860, which discloses it for wear-resistant J@, TiN or Ti(C,N) is generally used. The grain growth suppressing effect is used to make the hard phase finer and increase the strength.In particular, nitrogen-containing titanium carbide sintered bond and gold for cutting tool parts have an average grain size of 1 to 1. 2
#Lm starting material powder was mixed and ground, and due to the grain growth suppressing effect of TiN or Ti(C,N) added as a nitrogen source, the average particle size of the hard phase was 1 μm or less after sintering. It is something that exists.

実際に、切削工具部品用としての窒素含有の炭化チタン
系焼結合金の内で、焼結合金の硬質相の粒径を規定して
いるものの、代表的なものとして特開昭50−1025
08号公報がある。
In fact, among nitrogen-containing titanium carbide-based sintered alloys for cutting tool parts, the grain size of the hard phase of the sintered alloy is specified, but a representative example is JP-A-50-1025.
There is a publication No. 08.

(発明が解決しようとする問題点) 特開昭50−102508号公報は、炭化チタンと窒化
チタンとの合計量の5〜40%の窒化チタンを含有し、
W 、 M o 、 T a及びNbから成る群から選
んだ少なくとも1種を炭化物量として15〜40%含有
し、鉄族金属3〜30%で結合され、しかも合金中の炭
化物ないし窒化物結晶の大部分が14m以下の粒径を有
することを特徴とする焼結合金が開示されている。この
特開昭50−102508号公報の焼結合金は、窒素を
含有してない炭化チタン系焼結合金に比較して、耐熱衝
撃性、耐摩耗性及び耐熱塑性変形性にすぐれているもの
であるが、切削工具部品として最も多く、かつ広範に利
用されている炭化タングステン系焼結合金、所謂超硬合
金に比較すると上述の合金特性が充分とはいい難く、特
に激しい断続切削で大きな熱衝撃の加わる条件において
は、熱亀裂に基因する欠損により短寿命になり実用化で
きないという問題がある。
(Problems to be Solved by the Invention) JP-A-50-102508 contains titanium nitride in an amount of 5 to 40% of the total amount of titanium carbide and titanium nitride,
The alloy contains at least one selected from the group consisting of W, Mo, Ta, and Nb in an amount of 15 to 40% as a carbide, is combined with 3 to 30% of iron group metal, and has no carbide or nitride crystals in the alloy. A sintered alloy is disclosed which is characterized in that the majority has a grain size of 14 m or less. The sintered alloy of JP-A-50-102508 has superior thermal shock resistance, abrasion resistance, and thermoplastic deformation resistance compared to titanium carbide-based sintered alloys that do not contain nitrogen. However, compared to tungsten carbide-based sintered alloys, so-called cemented carbides, which are the most common and widely used cutting tool parts, the alloy properties described above cannot be said to be sufficient, and they are susceptible to large thermal shocks, especially during severe interrupted cutting. Under such conditions, there is a problem that the life of the product is shortened due to defects caused by thermal cracking, making it impossible to put it into practical use.

本発明は、切削工具部品用としての炭化チタン系焼結合
金の特性改善が、従来は合金の窒素含有量を多くシ、そ
れにより硬質相を微細化することに基づいて行なわれ、
結果として超硬合金に指摘する性能を得ることが出来な
かったのに対し、窒素含有量を多くし、しかも硬質相粒
径を比較的粗粒側で制御し、さらに結合相を強化するこ
とにより、上述の問題点を解決したものであり、具体的
には、窒素源としての窒化チタンが18〜40重量%を
含む硬質相の平均粒径が1.0μm〜2.0μmにあり
、かつ0.5#Lm以下の粒径の硬質相が全硬質相中の
1−10体積%にして、耐熱衝撃性、耐摩耗性及び耐熱
塑性変形性を著しく高め、超硬合金の使用領域までカバ
ーすることができた焼結合金の提供を目的とするもので
ある。
The present invention improves the properties of titanium carbide-based sintered alloys for use in cutting tool parts, based on the conventional method of increasing the nitrogen content of the alloy and thereby refining the hard phase.
As a result, it was not possible to achieve the performance that cemented carbides deserve, but by increasing the nitrogen content, controlling the hard phase grain size to a relatively coarse grain size, and further strengthening the binder phase, , which solves the above-mentioned problems. Specifically, the hard phase containing 18 to 40% by weight of titanium nitride as a nitrogen source has an average particle size of 1.0 μm to 2.0 μm, and The hard phase with a grain size of .5#Lm or less accounts for 1-10% by volume of the total hard phase, significantly increasing thermal shock resistance, wear resistance, and thermoplastic deformation resistance, and covering the range of use of cemented carbide. The purpose of this invention is to provide a sintered alloy that can

(問題点を解決するための手段) 本発明者らは、窒素を含む炭化チタン系焼結合金の耐熱
衝撃性及び耐8塑性変形性を向上させるには、硬質相の
粒径をある程度粗くし、しかも結合相量を増加させるこ
とにより結合相の平均自由行程゛を大きくする必要があ
るという観点から出発し、調査を行なった所、確かに上
述の方法で結合相の平均自由行程を大きくすると耐熱衝
撃性は向上するが、今度は耐熱塑性変形性が低下し、熱
塑性変形による欠損を惹起するという筒題が生じた0、
そこで、窒素を含む炭化チタン系焼結合金を硬質相と結
合相の両方に分けて、それぞれを検討した所、次の(1
)〜(4)の知見を得るに至ったものである。
(Means for Solving the Problem) The present inventors have discovered that in order to improve the thermal shock resistance and plastic deformation resistance of a nitrogen-containing titanium carbide-based sintered alloy, the grain size of the hard phase should be coarsened to some extent. Moreover, starting from the viewpoint that it is necessary to increase the mean free path of the bonded phase by increasing the amount of the bonded phase, we conducted an investigation and found that it was indeed possible to increase the mean free path of the bonded phase using the method described above. Although the thermal shock resistance is improved, the thermoplastic deformation resistance is decreased, resulting in the problem of causing defects due to thermoplastic deformation0.
Therefore, we divided the nitrogen-containing titanium carbide-based sintered alloy into both the hard phase and the binder phase and examined each.
) to (4) were obtained.

(1)#熱衝撃性を向上させるためには、結合相量を増
加させることが必要であり、結合相量を増加させても焼
結合金の耐熱塑性変形性を損わないためには、結合相の
高温強度を強化させることが肝要である。そのために、
焼結合金中の含有窒素量がT i Nで換算して18%
以上、かつ周期律表の6a族金属の炭化物が15%以上
含有させ、しかも結合相の格子定数を3.56Å〜3.
61人にさせた場合、炭化チタン系焼結合金の結合相は
、著しく高温強度がすぐれるようになること。
(1) #In order to improve thermal shock resistance, it is necessary to increase the amount of binder phase, and in order not to impair the thermoplastic deformability of the sintered alloy even if the amount of binder phase is increased, It is important to enhance the high temperature strength of the binder phase. for that,
The nitrogen content in the sintered alloy is 18% in terms of T i N.
In addition, the carbide of group 6a metal of the periodic table is contained in an amount of 15% or more, and the lattice constant of the bonded phase is 3.56 Å to 3.56 Å.
When exposed to 61 people, the binder phase of the titanium carbide-based sintered alloy has significantly superior high-temperature strength.

(2)  出発原料粉末の粒径の制御と混合粉砕から焼
結条件までの製造条件の制御とにより、焼結合金の硬質
相の平均粒径を1.oμm〜2.Oμmにし、かつ0.
5μm以下の粒径の硬質相が全硬質相中の1〜10体積
%にすると窒素を含む炭化チタン系焼結合金は、熱亀裂
の進展速度が遅くなり、耐熱衝撃性が著しくすぐれるこ
と。
(2) By controlling the particle size of the starting raw material powder and controlling the manufacturing conditions from mixing and pulverization to sintering conditions, the average particle size of the hard phase of the sintered alloy can be adjusted to 1. oμm~2. Oμm and 0.
When the hard phase with a grain size of 5 μm or less accounts for 1 to 10% by volume of the total hard phase, the nitrogen-containing titanium carbide-based sintered alloy slows down the growth rate of thermal cracks and exhibits significantly excellent thermal shock resistance.

(3)炭化チタンの1部を、Tiを除く周期律表の4a
族金届の炭化物又は窒化物で置換すると窒素を含む炭化
チタン系焼結合金は、耐熱塑性変形性が一層向上するよ
うになること。
(3) Part of titanium carbide is 4a of the periodic table excluding Ti.
When nitrogen-containing titanium carbide-based sintered alloys are replaced with carbides or nitrides listed in the group metal notification, the thermoplastic deformation resistance is further improved.

(4)  炭化チタンの1部を、周期律表の5a族金属
の炭化物又は窒化物で置換すると窒素を含む炭化チタン
系焼結合金は、#熱衝撃性が一層向上するようになるこ
と。
(4) When part of the titanium carbide is replaced with a carbide or nitride of a group 5a metal in the periodic table, the thermal shock resistance of the nitrogen-containing titanium carbide sintered alloy is further improved.

以上、(1)〜(4)の知見に基づいて本発明を完成す
るに至ったものである。
The present invention has been completed based on the findings (1) to (4) above.

本発明の切削工具部品用炭化チタン系焼結合金は、NI
及び/又はCOを主成分とする結合相5〜25重量%と
、残り炭化チタン20〜65重量%、窒化チタン18〜
40重量%、周期律表の6a族金属の炭化物の少なくと
も1!115〜40重量%を含む硬質相と不可避不純物
とからなる焼結合金において、該硬質相はモ均粒径が1
.0部m〜2.0JLmにあり、かつ0.5gm以下の
粒径の硬質相が全硬質相中の1−10体積%であること
、並びに前記結合相は格子定数が3.56Å〜3.61
人であることを特徴とするものである。
The titanium carbide-based sintered alloy for cutting tool parts of the present invention is made of NI
and/or a binder phase mainly composed of CO, 5 to 25% by weight, the remainder being 20 to 65% by weight of titanium carbide, and 18 to 18% of titanium nitride.
In a sintered alloy consisting of a hard phase containing 40% by weight and at least 115 to 40% by weight of carbides of group 6a metals of the periodic table and unavoidable impurities, the hard phase has an average grain size of 1.
.. 0 part m to 2.0 JLm, and the hard phase with a particle size of 0.5 gm or less accounts for 1 to 10% by volume of the total hard phase, and the bonded phase has a lattice constant of 3.56 Å to 3.5 gm. 61
It is characterized by being human.

本発明の切削工具部品用炭化チタン系焼結合金における
結合相は、Ni及び/又はCoを主成分とし、その地峡
質相を形成している周期律表の4a、5a、6a族金属
及び窒素、炭素の中の少なくとも1種がNi及び/又は
CO中へ固溶しで、結合相を強化する役割を果たしてい
るものであり、特に周期律表の6a族金のNi及び/又
はCO中への固溶が多くなり、耐熱塑性変形性を著しく
向上させているものである。
The binder phase in the titanium carbide-based sintered alloy for cutting tool parts of the present invention is mainly composed of Ni and/or Co, and includes metals from groups 4a, 5a, and 6a of the periodic table forming the isthmus phase, and nitrogen. , at least one kind of carbon is dissolved in Ni and/or CO and plays a role of strengthening the binder phase, and in particular, in Ni and/or CO of group 6a metal of the periodic table. The amount of solid solution increases, and the thermoplastic deformation resistance is significantly improved.

Ni及び/又はCoを主成分とする結合相中に固溶され
る上述の溶質原子の総量を現わす目安としての結合相の
格子定数が、特に3.56Å〜3.61人であると、耐
欠損性及び耐熱塑性変形性がすぐれるのである。この結
合相の格子定数は、特に合金中の炭素量の多少により制
御され、具体的には、出発原料粉末の総炭素量及び焼結
時の雰囲気によって制御されるものである。
In particular, when the lattice constant of the bonded phase is 3.56 Å to 3.61 as a guideline representing the total amount of the above-mentioned solute atoms dissolved in the bonded phase containing Ni and/or Co as the main component, It has excellent fracture resistance and thermoplastic deformation resistance. The lattice constant of this binder phase is particularly controlled by the amount of carbon in the alloy, and specifically by the total carbon amount of the starting material powder and the atmosphere during sintering.

Ni及び/又はCoは、5重量%未満では著しく靭性に
不足し、逆に25重量%を越えると著しく耐摩耗性が低
下して好ましくない、従って、Ni及び/又はCoは、
5〜25重量%と定めたものである。
If Ni and/or Co is less than 5% by weight, the toughness will be significantly insufficient, and if it exceeds 25% by weight, the wear resistance will be significantly lowered, which is undesirable.
The content is set at 5 to 25% by weight.

本発明の切削工具部品用炭化チタン系焼結合金における
硬質相は、炭化チタンの芯部を周期律表の4a、5a、
6a族金属の中の2種以上(出発原料で用いた化合物中
の金属元素からなる)の炭窒化物固溶体の外周部で包囲
してなる第1有芯硬買相、又はチタンと6a族金属の少
なくとも1種との炭化物の芯部を周期律表の4a、5a
、6a族金属の中の2種以上(出発原料で用いた化合物
中の金属元素からなる)の炭窒化物固溶体の外周部で包
囲してなる第2有芯硬質相、もしくは周期律表の4a、
5a、6a族金属の中の2種以上(出発原料で用いた化
合物中の金属元素からなる)の炭窒化物固溶体からなり
、Ti及びNに富む炭窒化物固溶体の芯部をWやMoの
6a族金居に富みNに乏しい外周部で包囲してなる第3
有芯硬賀相、あるいは炭窒化チタンの芯部を周期律表の
4a、sa、sa族金属の中の2種以上(出発原料で用
いた化合物中の金属元素からなる)の炭窒化物固溶体の
外周部で包囲してなる第4有芯硬質相、さらには窒化チ
タンの芯部を周期律表の4a、5a、Sa族金属の中の
2種以上(出発原料で用いた化合物中の金属元素からな
る)の炭窒化物固溶体の外周部で包囲してなる第5有芯
硬質相、その他芯部と外周部とが均質構造でなる硬質相
などである。ここで述べてきた周期律表の4a、5a、
6a族金属の2種以上の炭窒化物固溶体は、合金M1織
中に非平衡状態で残留し、その具体的な成分構造として
は、例えば (Ti 、W)(C、N)。
The hard phase in the titanium carbide-based sintered alloy for cutting tool parts of the present invention is composed of titanium carbide cores 4a, 5a of the periodic table,
A first cored hard phase surrounded by the outer periphery of a carbonitride solid solution of two or more of Group 6a metals (consisting of the metal elements in the compound used as the starting material), or titanium and Group 6a metal. 4a and 5a of the periodic table.
, a second cored hard phase formed by surrounding the outer periphery of a carbonitride solid solution of two or more of Group 6a metals (consisting of the metal elements in the compound used as the starting material), or 4a of the periodic table. ,
Consisting of a carbonitride solid solution of two or more of group 5a and 6a metals (consisting of the metal elements in the compound used as the starting material), the core of the carbonitride solid solution rich in Ti and N is treated with W or Mo. The third region is surrounded by an outer periphery rich in 6a metal deposits and poor in N.
The cored Koga phase, or the core of titanium carbonitride, is a carbonitride solid solution of two or more metals from groups 4a, sa, and sa of the periodic table (consisting of the metal elements in the compound used as the starting material). The fourth cored hard phase is surrounded by the outer periphery of the titanium nitride, and furthermore, the core of titanium nitride is surrounded by two or more metals from groups 4a, 5a, and Sa of the periodic table (metals in the compound used as the starting material). These include a fifth cored hard phase surrounded by the outer periphery of a carbonitride solid solution (consisting of elements), and other hard phases in which the core and outer periphery have a homogeneous structure. 4a, 5a of the periodic table mentioned here,
The carbonitride solid solution of two or more group 6a metals remains in the non-equilibrium state in the alloy M1 weave, and its specific component structure is, for example, (Ti, W) (C, N).

(Ti 、Mo)(C、N)。(Ti, Mo) (C, N).

(Ti、Cr)(C,N) (Ti 、W、Mo)(C,N)。(Ti, Cr) (C, N) (Ti, W, Mo) (C, N).

(Ti 、W、Cr)(C、N)。(Ti, W, Cr) (C, N).

(Ti 、W、Ta)(C,N)。(Ti, W, Ta) (C, N).

(Ti 、W、Mo 、Ta)(C,N)。(Ti, W, Mo, Ta) (C, N).

(Ti、W、Ta、Zr)(C,N)。(Ti, W, Ta, Zr) (C, N).

(Ti、W、Mo、Ta、Zr)(C,N)(Ti、W
、Mo、Ta、Nb、Zr)(C、N) などを挙げることができる。
(Ti, W, Mo, Ta, Zr) (C, N) (Ti, W
, Mo, Ta, Nb, Zr) (C, N), and the like.

本発明の切削工具部品用炭化チタン系焼結合金における
主として硬質相を構成している炭化チタンは、#摩耗性
を向上させるものであり、炭化チタンが20ffr量%
未満では、切削工具部品として実用化できるだけの耐摩
耗性が得られず、逆に65重量%を越えて含有させると
、耐熱衝撃性が低下して好ましくない、従って、焼結合
金中に含有させる炭化チタンは、20〜65重量%と定
めたものである。
Titanium carbide, which mainly constitutes the hard phase in the titanium carbide-based sintered alloy for cutting tool parts of the present invention, improves wear resistance, and titanium carbide contains 20 ffr amount%.
If the content is less than 65% by weight, the wear resistance will not be sufficient for practical use as cutting tool parts, and if the content exceeds 65% by weight, the thermal shock resistance will decrease, which is undesirable. The content of titanium carbide is determined to be 20 to 65% by weight.

主として硬質相を構成している窒化チタンは、18重量
%未満では、結合相の強化が達成できず、逆に40重漬
浸を越えて含有させると、難焼結性で巣孔が生じやすく
なり、l耐摩J[性の低下となる。従って、焼結合金中
に含有させる窒化チタンは、18〜40重量%と定めた
ものである。
Titanium nitride, which mainly constitutes the hard phase, cannot strengthen the binder phase if it is less than 18% by weight, and on the other hand, if it is contained in excess of 40 times, it is difficult to sinter and pores are likely to occur. This results in a decrease in wear resistance. Therefore, the amount of titanium nitride to be contained in the sintered alloy is determined to be 18 to 40% by weight.

主として硬質相を構成している周期律表の6a族金属の
炭化物は、15重量%未満では結合相の強化が達成でき
ず、#欠損性が劣り、逆に40重量%を越えて含有させ
ると、高温における耐摩耗性、耐溶着性及び耐酸化性が
低下して好ましくない、従って、焼結合金中に含有させ
る周期律表の6a族金属の炭化物は、15〜40重量%
と定めたものである。
Carbides of group 6a metals in the periodic table, which mainly constitute the hard phase, cannot strengthen the binder phase if it is less than 15% by weight and have poor defectiveness, and conversely if it is contained in an amount exceeding 40% by weight. , the wear resistance, welding resistance, and oxidation resistance at high temperatures decrease, which is undesirable. Therefore, the carbide of group 6a metal of the periodic table to be included in the sintered alloy is 15 to 40% by weight.
This is what has been established.

本発明の切削工具部品用炭化チタン系焼結合金は、硬質
相と結合相とを構成している、それぞれの成分組成の他
に、硬質相の粒径が非常に大きな役割を果たしており、
この硬質相の平均粒径が1gm未満では結合相の平均自
由行程が小さくなりすぎ、熱亀裂の伝播抵抗が小さくな
って耐熱衝撃性が低下し、逆に2gmを越えて大きくな
ると、8亀裂が硬質相粒内を進展し易くなり、耐欠損性
が低下する。従って、硬質相の平均粒径は、1.0μm
〜2.0gmと定めたものである。また、硬質相全体に
対して、0.5uLm以下の粒径の硬質相が10体積%
を越えて存在すると、結合相の平均自由行程を小ならし
め、8亀裂の進展を助長させ、耐熱衝撃性を低下させる
。逆に、硬質相全体に対して、0.5μm以下の粒径の
硬質相を1体積%未満に抑えるためには、焼結時の粒成
長(オストワルド成長)を活発に行なわせる以外に方法
がなく、そうすると硬質相の粒成長が著しくなり、靭性
の低下を招くことになる。従って。
In the titanium carbide-based sintered alloy for cutting tool parts of the present invention, in addition to the respective component compositions that constitute the hard phase and the binder phase, the particle size of the hard phase plays a very important role.
If the average particle size of this hard phase is less than 1 gm, the mean free path of the binder phase becomes too small, which reduces the propagation resistance of thermal cracks and reduces thermal shock resistance.On the other hand, if the average particle size of the hard phase exceeds 2 gm, the 8-crack It becomes easier to propagate within the hard phase grains, reducing fracture resistance. Therefore, the average particle size of the hard phase is 1.0 μm.
~2.0gm. In addition, the hard phase with a particle size of 0.5 uLm or less is 10% by volume based on the entire hard phase.
If the amount exceeds 100%, the mean free path of the binder phase becomes small, promoting the propagation of cracks, and reducing thermal shock resistance. On the other hand, in order to suppress the hard phase with a grain size of 0.5 μm or less to less than 1% by volume with respect to the entire hard phase, there is no other way than to actively promote grain growth (Ostwald growth) during sintering. Otherwise, the grain growth of the hard phase will become significant, leading to a decrease in toughness. Therefore.

0.5Bm以下の粒径の硬質相は、硬質相全体に対して
1〜lo9aM%に定めたものである。
The hard phase having a particle size of 0.5 Bm or less is determined to be 1 to 9 aM% with respect to the entire hard phase.

上述の硬質相に含まれている炭化チタンの5〜31重量
%を周期律表の5a族金属の炭化物又は窒化物の少なく
とも1種で置換すると、硬質相粒内のクラック伝播を阻
止し、耐熱衝撃性を向上させるので、必要に応じてて検
することは好ましいことである。また、硬質相に含まれ
ている炭化チタンの0.5〜8重量%をZr又はHfの
炭化物もしくは窒化物の少なくとも1種で置換すると、
耐熱塑性変形性を向上させるので、必要に応じて置換す
ることは好ましいことである。
When 5 to 31% by weight of the titanium carbide contained in the above-mentioned hard phase is replaced with at least one carbide or nitride of a group 5a metal in the periodic table, crack propagation within the hard phase grains is inhibited and heat resistance is improved. Since it improves impact resistance, it is preferable to perform inspection as necessary. Furthermore, when 0.5 to 8% by weight of titanium carbide contained in the hard phase is replaced with at least one carbide or nitride of Zr or Hf,
Since it improves thermoplastic deformability, it is preferable to replace it as necessary.

本発明の切削工具部品用炭化チタン系焼結合金を製造す
る場合、その製造工程の多くは、従来の粉末冶金法に準
するが、硬質相の粒径を制御する必要があるため、出発
原料粉末の粒径の選択、混合粉砕工程及び焼結条件に特
別な配慮をする必来がある。
When producing the titanium carbide-based sintered alloy for cutting tool parts of the present invention, most of the production processes are based on conventional powder metallurgy methods, but since it is necessary to control the particle size of the hard phase, the starting material Special consideration must be given to the selection of powder particle size, mixing and grinding process, and sintering conditions.

まず、出発原料粉末の内、上述の有芯硬質相の芯部及び
均質な硬質相を形成するための出発原料粉末は、出来る
だけ粒度分布の狭いものを選択し、その平均粒径は、後
工程である混合粉砕工程を考慮すると好ましくは、目的
とする硬質相のV均粒径の約2倍の大きさ1例えば平均
粒径2〜3gmのものを選定するのがよい、また、炭化
チタン及び窒化チタンの1部又は全部を炭窒化チタンの
固溶体粉末、又は炭化チタン及び炭化タングステンの1
部又は全部を炭化チタン・タングステンの固溶体粉末な
どを出発原料として用いることもよい、さらに、周期律
表の6a族金属の炭化物は1例えば炭化タングステン粉
末を出発原料とする場合にはその1部を必要に応じてタ
ングステン粉末とカーボン粉末として加えることにより
、結合相の格子定数の値をコントロールすることが可能
である。結合相の主成分となるNi及び/又はCOの粉
末は、可能な限り微細な、例えば平均粒径1μm以下の
ものを用いるか、あるいは容易に粉砕が可能な酸化ニッ
ケル及び/又は酸化コバルトを出発原料粉末として用い
ることもできる。
First, among the starting raw material powders, those for forming the core of the cored hard phase and the homogeneous hard phase described above are selected to have as narrow a particle size distribution as possible, and the average particle size is determined later. Considering the mixing and pulverizing process, it is preferable to select particles with a size that is approximately twice the average particle size of the target hard phase (1, for example, an average particle size of 2 to 3 gm). and a part or all of the titanium nitride into a solid solution powder of titanium carbonitride, or one of titanium carbide and tungsten carbide.
It is also possible to use part or all of a solid solution powder of titanium carbide/tungsten as a starting material.Furthermore, carbides of group 6a metals of the periodic table may be 1. For example, if tungsten carbide powder is used as a starting material, part of it may be used as a starting material. By adding tungsten powder and carbon powder as necessary, it is possible to control the value of the lattice constant of the binder phase. The Ni and/or CO powder, which is the main component of the binder phase, should be as fine as possible, for example, with an average particle size of 1 μm or less, or it should be started from easily pulverized nickel oxide and/or cobalt oxide. It can also be used as a raw material powder.

混合粉砕は、出来るだけ短時間で行ない、微細粉末の量
が増加しないようにすることが好ましく、混合粉砕後の
硬質相を形成するための粉末の平均粒径により、焼結合
金の硬質相の粒径が決定されるといってよいぐらいに混
合粉砕方法及び時間を重要視する必要がある。実際には
、出発原料粉末の平均粒径と混合粉砕方法を組合わせて
、前もって処理時間の検討を行なって後、実用化条件を
決定するのが好ましいことである。
It is preferable to carry out mixing and pulverization in as short a time as possible so as not to increase the amount of fine powder. It is necessary to place importance on the mixing and pulverizing method and time to the extent that the particle size can be said to be determined. In reality, it is preferable to combine the average particle size of the starting material powder and the mixing and pulverizing method, and to study the processing time in advance before determining the conditions for practical use.

焼結°条件は、0.57tm以下の微細硬質相粒子を減
少させるために、通常よりも高温又は長時間の条件で焼
結を行なうことが好ましいことである。高温焼結を行な
う場合は、通常の真空焼結を行なうと脱窒が生じるため
、最初は、真空又は還元性ガス雰囲気中で液相出現温度
まで昇温し、その後、液相出現後は、上述の脱窒を抑制
するために1〜20torrの窒素雰囲気中で焼結する
ことが好ましい。
Regarding the sintering conditions, it is preferable to perform sintering at a higher temperature or for a longer time than usual in order to reduce fine hard phase particles of 0.57 tm or less. When performing high-temperature sintering, since denitrification occurs when performing normal vacuum sintering, the temperature is first raised to the temperature at which the liquid phase appears in a vacuum or reducing gas atmosphere, and then, after the liquid phase appears, In order to suppress the above-mentioned denitrification, it is preferable to sinter in a nitrogen atmosphere of 1 to 20 torr.

以上のような方法で得た焼結合金を窒素ガス又は不活性
ガス雰囲気中、1300℃以上の温度、1000気圧以
上の圧力で熱間静水圧(HIP)処理を施すと、−層常
温における強度が向上し、好ましいことである。
When the sintered alloy obtained by the above method is subjected to hot isostatic pressure (HIP) treatment at a temperature of 1,300°C or higher and a pressure of 1,000 atm or higher in a nitrogen gas or inert gas atmosphere, the strength of the layer at room temperature decreases. This is a good thing.

(作用) 本発明の切削工具部品用炭化チタン系焼結合金は、硬質
相の粒界に結合相が存在し、硬質相を形成している炭化
チタンが耐摩耗性を向上させる作用をし、炭化チタンが
周期律表の6a族金属を結合相中へ固溶促進させて、結
合相を強化させる作用をしているものである。また、硬
質相の粒径を制御することにより、結合相の平均自由行
程が小さくならないようにし、これにより耐熱衝撃性を
向上させる作用をしているものである。さらに、必要に
応じて、硬質相に含有させる周期律表の5a族金属の炭
化物又は窒化物は、硬質相の強度を向」ニさせ、硬質相
粒内のクラック伝播を阻止し、硬質相の粒径と共に耐熱
衝撃性を向上させる作用をし、Zr又はHfの炭化物又
は窒化物は耐8塑性変形性を向上させる作用をしている
ものである。
(Function) The titanium carbide-based sintered alloy for cutting tool parts of the present invention has a binder phase in the grain boundaries of the hard phase, and the titanium carbide forming the hard phase has the effect of improving wear resistance. Titanium carbide acts to promote solid solution of group 6a metals in the periodic table into the binder phase, thereby strengthening the binder phase. Furthermore, by controlling the particle size of the hard phase, the mean free path of the binder phase is prevented from becoming small, thereby improving thermal shock resistance. Furthermore, if necessary, carbides or nitrides of Group 5a metals of the periodic table may be added to the hard phase to improve the strength of the hard phase, prevent crack propagation within the hard phase grains, and improve the strength of the hard phase. The carbide or nitride of Zr or Hf has the effect of improving the thermal shock resistance along with the grain size, and the carbide or nitride of Zr or Hf has the effect of improving the plastic deformation resistance.

(実施例) 実施例1 平均粒径2〜3gm内にある各種の炭化物粉末、窒化物
粉末、炭窒化物固溶体粉末及び炭化物粉末と平均粒径1
.oμmのNi及びCoの各種出発原料粉末を用いて、
第1表に示すような組成に配合し、アセトンと超硬合金
製ポールの入った混合容器中で混合粉砕した。混合粉砕
条件は、炭化チタン粉末及び固溶体粉末を除く他の粉末
を最初に45時間混合した後、炭化チタン粉末及び/又
は各固溶体粉末を追加配合し、さらに5時間混合した。
(Example) Example 1 Various carbide powders, nitride powders, carbonitride solid solution powders, and carbide powders with an average particle size of 2 to 3 gm and an average particle size of 1
.. Using various starting material powders of Ni and Co of 0μm,
The compositions were blended as shown in Table 1 and mixed and pulverized in a mixing container containing acetone and a cemented carbide pole. The mixing and pulverizing conditions were such that the titanium carbide powder and other powders except the solid solution powder were first mixed for 45 hours, then the titanium carbide powder and/or each solid solution powder were additionally blended, and the mixture was further mixed for 5 hours.

こうして得た混合粉末を所定の形状にプレスし、粉末成
形体を得た0次いで、 5X 102t o r rノ真空中で1400℃まテ
57温し、1400℃後は5torrの窒素雰囲気中に
し、この雰囲気中で焼結温度まで昇温及び保持して焼結
し、本発明の焼結合金と比較の焼結合金を得た。ただし
、いずれの試料もWC又はMO2Cの1部をWとC又は
MOとCに置換、あるいは微量のカーボン粉末のみ添加
することにより結合相の格子定数を制御させた。°第1
表に、本発明品と比較品の配合組成及び焼結条件を示し
た。こうして得た本発明品(+)〜(13)と比較品(
1)〜(11)を走査型゛電子類a鏡で5000倍に拡
大した写真を撮り、硬質相の平均粒径及び硬質相中に存
在する0、5μm以rの粒径の硬質相の体j!i率を求
めた。また、各合金の表面の硬質相を溶解除去後、X線
回析により結合相の格子定数を求めた。さらに、各合金
の抗折力強度及びカタサを測定した。これらの結果を第
2表に併記した。
The mixed powder thus obtained was pressed into a predetermined shape to obtain a powder compact.Then, it was heated to 1400°C in a vacuum of 5X 102 torr for 57 days, and after 1400°C, it was placed in a nitrogen atmosphere of 5 torr. In this atmosphere, the temperature was raised to the sintering temperature and held, and sintered to obtain a sintered alloy of the present invention and a comparative sintered alloy. However, in each sample, the lattice constant of the binder phase was controlled by replacing part of WC or MO2C with W and C or MO and C, or by adding only a small amount of carbon powder. °1st
The table shows the compounding composition and sintering conditions of the inventive product and the comparative product. Inventive products (+) to (13) thus obtained and comparative product (
1) - (11) were photographed with a 5000x magnification using a scanning type electronic type A mirror. j! The i rate was calculated. Furthermore, after dissolving and removing the hard phase on the surface of each alloy, the lattice constant of the bonded phase was determined by X-ray diffraction. Furthermore, the transverse rupture strength and sag of each alloy were measured. These results are also listed in Table 2.

以下余白 実施例2 実施例1で得た本発明品及び比較品と市販のJ I S
’規格P30相当の超硬合金を加えて、下記の(a)条
件の連続旋削による切削試験を行ない、平均逃げ面摩耗
徹、クレータ摩耗量及び熱塑性変形量を測定比較した。
The following margin is Example 2 The present invention product and comparative product obtained in Example 1 and commercially available JIS
A cutting test was conducted by continuous turning under the following conditions (a) by adding a cemented carbide equivalent to standard P30, and the average flank wear throughput, crater wear amount, and thermoplastic deformation amount were measured and compared.

また、同じく各試料を用いて、下記の(b)条件の断続
転削・による切削試験を行ない、欠損するまでの時間を
比較した。
In addition, using each sample, a cutting test was conducted by intermittent rolling under the following condition (b), and the time until breakage was compared.

これらの(a)条件及び(b)条件における切削試験結
果を第3表に示した。
The cutting test results under these conditions (a) and (b) are shown in Table 3.

(a)条件(耐摩耗性及び酎、!!11塑性変形性)被
削材   SN0M439 (Hs 230)250a
+mφ チップ形状 5PGN422 (0,lX−30°直線ホーニング) 切削速度  160 m/win 切込み縫  1 、5+w層 送り速度  0 、3 m+m/rev切削時間  3
m1n(乾式) %式%) チップ形状 5PGN422 (0,lX−30°直線ホーニング) 切削速度  160 m/sin 切込み量  1.5鵬層 送り速度  0.14m5/刃 (1枚刃、乾式、中心削り) 以下余白 (発明の効果) 以上の結果、本発明の切削工具部品用炭化チタン系焼結
合金は、従来の炭化チタン系焼結合金と比較すると、特
に結合相が同量のもので比較すると、耐摩耗性及び耐熱
塑性変形性が略同等であるが、耐欠損性が2.3倍から
5.8倍もすぐれるという効果がある。また、従来の炭
化チタン系焼結合金は、超硬合金の使用領域で用いたと
してもせいぜいJIS規格のPO5からPIOの1部で
使える程度であったのが、本発明の切削工具部品用炭化
チタン系焼結合金は、JIS規格のP30a硬合金と比
較すると、耐クレータ摩耗性及び耐熱塑性変形性が同等
で、耐欠損性が同等、もしくは約16%すぐれており、
耐逃げ面摩耗性が約2倍すぐれるという効果がある。こ
れらのことから、本発明の切削工具部品用炭化チタン系
焼結合金は、産業玉非常に有用な材料である。
(a) Conditions (wear resistance and hardness,!!11 plastic deformability) Work material SN0M439 (Hs 230) 250a
+mφ Chip shape 5PGN422 (0, lX-30° linear honing) Cutting speed 160 m/win Cut stitch 1, 5 + W layer feed speed 0, 3 m + m/rev cutting time 3
m1n (dry type) % type %) Chip shape 5PGN422 (0,l ) The following margin (effects of the invention) As a result of the above, the titanium carbide-based sintered alloy for cutting tool parts of the present invention has a higher performance when compared with conventional titanium carbide-based sintered alloys, especially when compared with the same amount of binder phase. Although the wear resistance and thermoplastic deformation resistance are approximately the same, the fracture resistance is 2.3 to 5.8 times better. Furthermore, even if conventional titanium carbide-based sintered alloys were used in the area where cemented carbide is used, they could only be used for a portion of PO5 to PIO according to the JIS standard. Compared to JIS standard P30a hard alloy, titanium-based sintered alloy has the same crater wear resistance and thermoplastic deformation resistance, and the same or about 16% better fracture resistance.
The effect is that the flank wear resistance is approximately twice as good. For these reasons, the titanium carbide-based sintered alloy for cutting tool parts of the present invention is a very useful material for industrial use.

Claims (3)

【特許請求の範囲】[Claims] (1)Ni及び/又はCoを主成分とする結合相5〜2
5重量%と、残り炭化チタン20〜65重量%、窒化チ
タン18〜40重量%、周期律表の6a族金属の炭化物
の少なくとも1種15〜40重量%を含む硬質相と不可
避不純物とからなる焼結合金において、該硬質相は、平
均粒径が1.0μm〜2.0μmにあり、かつ0.5μ
m以下の粒径の硬質相が全硬質相中の1〜10体積%で
あること、並びに前記結合相は格子定数が3.56Å〜
3.61Åであることを特徴とする切削工具部品用炭化
チタン系焼結合金。
(1) Bonded phase 5 to 2 mainly composed of Ni and/or Co
5% by weight, remaining 20 to 65% by weight of titanium carbide, 18 to 40% by weight of titanium nitride, a hard phase containing 15 to 40% by weight of at least one carbide of group 6a metal of the periodic table, and inevitable impurities. In the sintered alloy, the hard phase has an average grain size of 1.0 μm to 2.0 μm and 0.5 μm.
The hard phase with a particle size of m or less is 1 to 10% by volume of the total hard phase, and the bonded phase has a lattice constant of 3.56 Å to
A titanium carbide-based sintered alloy for cutting tool parts, characterized by having a thickness of 3.61 Å.
(2)上記硬質相は、上記炭化チタンの5〜31重量%
が周期律表の5a族金属の炭化物又は窒化物の少なくと
も1種で置換されたものを含むことを特徴とする特許請
求の範囲第1項記載の切削工具部品用炭化チタン系焼結
合金。
(2) The hard phase is 5 to 31% by weight of the titanium carbide.
2. The titanium carbide-based sintered alloy for cutting tool parts according to claim 1, wherein the titanium carbide-based sintered alloy contains at least one carbide or nitride of a group 5a metal of the periodic table.
(3)上記硬質相は、上記炭化チタンの0.5〜8重量
%がZr又はHfの炭化物もしくは窒化物の少なくとも
1種で置換されたものを含むことを特徴とする特許請求
の範囲第1項又は第2項記載の切削工具部品用炭化チタ
ン系焼結合金。
(3) The hard phase is characterized in that 0.5 to 8% by weight of the titanium carbide is replaced with at least one carbide or nitride of Zr or Hf. The titanium carbide-based sintered alloy for cutting tool parts according to item 1 or 2.
JP25276386A 1986-10-23 1986-10-23 Titanium carbide sintered alloy for cutting tool parts Granted JPS63109139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25276386A JPS63109139A (en) 1986-10-23 1986-10-23 Titanium carbide sintered alloy for cutting tool parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25276386A JPS63109139A (en) 1986-10-23 1986-10-23 Titanium carbide sintered alloy for cutting tool parts

Publications (2)

Publication Number Publication Date
JPS63109139A true JPS63109139A (en) 1988-05-13
JPH0450373B2 JPH0450373B2 (en) 1992-08-14

Family

ID=17241953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25276386A Granted JPS63109139A (en) 1986-10-23 1986-10-23 Titanium carbide sintered alloy for cutting tool parts

Country Status (1)

Country Link
JP (1) JPS63109139A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010090A1 (en) * 1989-02-22 1990-09-07 Sumitomo Electric Industries, Ltd. Nitrogen-containing cermet
JP2013504688A (en) * 2009-09-11 2013-02-07 エレメント シックス リミテッド Polycrystalline diamond composite compact
WO2019159781A1 (en) 2018-02-13 2019-08-22 三菱マテリアル株式会社 Tin-based sintered body and cutting tool made of tin-based sintered body
JP2020037731A (en) * 2018-09-06 2020-03-12 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
US11389878B2 (en) 2018-02-13 2022-07-19 Mitsubishi Materials Corporation TiN-based sintered body and cutting tool made of TiN-based sintered body
KR20230019161A (en) 2020-10-09 2023-02-07 니혼텅스텐 가부시키가이샤 Absence of grinding/agitation/mixing/kneading machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321016A (en) * 1976-08-11 1978-02-27 Hitachi Metals Ltd Superhard alloy showing superior resistance to oxidation and highhtemperature hardness
JPS5391007A (en) * 1977-01-24 1978-08-10 Nippon Shinkinzoku Kk High strength sintered alloy belonging to titanium nitride
JPS59229431A (en) * 1983-05-20 1984-12-22 Mitsubishi Metal Corp Production of cermet having high toughness for cutting tool
JPS602647A (en) * 1983-06-20 1985-01-08 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for cutting tool
JPS6173857A (en) * 1984-09-19 1986-04-16 Mitsubishi Metal Corp Cermet for cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321016A (en) * 1976-08-11 1978-02-27 Hitachi Metals Ltd Superhard alloy showing superior resistance to oxidation and highhtemperature hardness
JPS5391007A (en) * 1977-01-24 1978-08-10 Nippon Shinkinzoku Kk High strength sintered alloy belonging to titanium nitride
JPS59229431A (en) * 1983-05-20 1984-12-22 Mitsubishi Metal Corp Production of cermet having high toughness for cutting tool
JPS602647A (en) * 1983-06-20 1985-01-08 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for cutting tool
JPS6173857A (en) * 1984-09-19 1986-04-16 Mitsubishi Metal Corp Cermet for cutting tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010090A1 (en) * 1989-02-22 1990-09-07 Sumitomo Electric Industries, Ltd. Nitrogen-containing cermet
US5186739A (en) * 1989-02-22 1993-02-16 Sumitomo Electric Industries, Ltd. Cermet alloy containing nitrogen
JP2013504688A (en) * 2009-09-11 2013-02-07 エレメント シックス リミテッド Polycrystalline diamond composite compact
WO2019159781A1 (en) 2018-02-13 2019-08-22 三菱マテリアル株式会社 Tin-based sintered body and cutting tool made of tin-based sintered body
US11389878B2 (en) 2018-02-13 2022-07-19 Mitsubishi Materials Corporation TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2020037731A (en) * 2018-09-06 2020-03-12 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
KR20230019161A (en) 2020-10-09 2023-02-07 니혼텅스텐 가부시키가이샤 Absence of grinding/agitation/mixing/kneading machine
DE112021005360T5 (en) 2020-10-09 2023-07-20 Nippon Tungsten Co., Ltd. PULVERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT

Also Published As

Publication number Publication date
JPH0450373B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US4769070A (en) High toughness cermet and a process for the production of the same
KR100231267B1 (en) Hard alloy and production thereof
KR101090490B1 (en) Sintered alloy having gradient composition and method of producing the same
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
KR20180075502A (en) Sintered body and manufacturing method thereof
JP2622131B2 (en) Alloys for cutting tools
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JP2006144089A (en) Hard metal made of superfine particle
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JP2502322B2 (en) High toughness cermet
JP2514088B2 (en) High hardness and high toughness sintered alloy
KR102584679B1 (en) Cemented carbide for cutting tools and method for manufacturing the same
JPH09227981A (en) Cemented carbide
JPS61201750A (en) Sintered hard alloy
JP2002029845A (en) Super-hard sintered compact
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JPH0564695B2 (en)
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JPS634618B2 (en)
JPS609850A (en) Sintered hard alloy for cutting
JPH01215947A (en) Sintered hard alloy for machining or cutting tool member

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term