JPS602376B2 - Sintered material for cutting tools with excellent high-temperature properties - Google Patents

Sintered material for cutting tools with excellent high-temperature properties

Info

Publication number
JPS602376B2
JPS602376B2 JP16255081A JP16255081A JPS602376B2 JP S602376 B2 JPS602376 B2 JP S602376B2 JP 16255081 A JP16255081 A JP 16255081A JP 16255081 A JP16255081 A JP 16255081A JP S602376 B2 JPS602376 B2 JP S602376B2
Authority
JP
Japan
Prior art keywords
cutting
phase
content
resistance
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16255081A
Other languages
Japanese (ja)
Other versions
JPS5864340A (en
Inventor
泰次郎 杉澤
寛範 吉村
賢一 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP16255081A priority Critical patent/JPS602376B2/en
Priority to KR1019820003330A priority patent/KR840000663A/en
Publication of JPS5864340A publication Critical patent/JPS5864340A/en
Publication of JPS602376B2 publication Critical patent/JPS602376B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、すぐれた高温特性を有し、特にこれらの特
性が要求される高速切削や高送り切削に切削工具として
使用した場合にすぐれた性能を発揮する鱗結材料に関す
るものである。
[Detailed Description of the Invention] The present invention provides a scale material that has excellent high-temperature properties and exhibits excellent performance when used as a cutting tool particularly in high-speed cutting and high-feed cutting that require these properties. It is related to.

一般に、鋼の切削加工に際して、切削速度を速くしたり
、送り量を多くしたりすると、切削工具の刃先温度が上
昇し、刃先が摩耗よりは、むしろ高温に原因する塑性変
形によって使用寿命に至る場合が多く、近年の高速切削
化および高能率切削化によって、この懐向は増々強くな
っている。
Generally, when cutting steel, when the cutting speed is increased or the feed rate is increased, the temperature of the cutting tool's cutting edge increases, and the cutting tool reaches the end of its useful life due to plastic deformation caused by the high temperature rather than wear. In many cases, this preference is becoming stronger due to the recent advances in high-speed cutting and high-efficiency cutting.

しかしながら、現在実用に供されている分散相が主とし
てW炭化物やTi炭化物で構成され、一方結合相が主と
して鉄族金属で構成された超硬合金やサーメットは、刃
先温度が1000午Cを越えると急激に軟化するように
なるため、これらの超硬合金やサーメツトは勿論のこと
、これらの表面に硬質被覆層を形成した表面被覆超硬合
金や表面被覆サーメツトにおいても、その使用条件は刃
先温度1000qoを若干上廻る程度に制限されている
。一方、AI酸化物を主成分としたセラミックは、高温
において高硬度とすぐれた耐酸化性を示すことから、高
速切削工具として実用に供されているが、このセラミッ
クでも刃先は高温安定性に欠け、信頼性の不十分なもの
であるため、高速切削に際しては低い送り量で使用され
ているのが実情である。また、近年、高速切削や高送り
切削用の切削工具材料として、WあるいはMoなどの高
融点金属からなるマトリックス中に、WおよびTiの炭
化物を層状に分散させた組織を有する鋳造合金が提案さ
れ(例えば米国特許第3690962号明細書参照)、
注目されたが、この鋳造合金は、融点が2700℃と著
しく高く、かつ鋳造合金のために形状付与が困難であり
、しかも耐酸化性および耐衝撃性も不十分なために広く
実用化されるまでには至らないものであった。
However, in the cemented carbides and cermets currently in practical use whose dispersed phase is mainly composed of W carbide or Ti carbide, while the binder phase is mainly composed of iron group metals, when the cutting edge temperature exceeds 1000 °C, Because they soften rapidly, not only these cemented carbide and cermets, but also surface-coated cemented carbide and surface-coated cermets with a hard coating layer formed on their surfaces must be used at a cutting edge temperature of 1000 qo. It is limited to slightly more than that. On the other hand, ceramics containing AI oxide as a main component exhibit high hardness and excellent oxidation resistance at high temperatures, and are therefore used in practical applications as high-speed cutting tools.However, even with this ceramic, the cutting edge lacks high-temperature stability. However, due to insufficient reliability, the current situation is that low feed rates are used during high-speed cutting. In addition, in recent years, cast alloys having a structure in which carbides of W and Ti are dispersed in layers in a matrix of high-melting point metals such as W or Mo have been proposed as cutting tool materials for high-speed cutting and high-feed cutting. (See, for example, US Pat. No. 3,690,962),
However, this cast alloy has a significantly high melting point of 2,700°C, is difficult to shape because it is a cast alloy, and has insufficient oxidation resistance and impact resistance, so it is not widely put into practical use. It was something that could not be reached.

そこで、本発明者等は、上述のような観点から、高速切
削や高送り切削が可能な、すぐれた耐摩耗性、耐塑性変
形性、耐酸化性、および耐衝撃性、すなわちすぐれた高
温特性を有する切削工具用材料を得べ〈研究を行なった
結果、鱗結材料を、Ti:10〜35%、ZrおよびH
fのうちの1種または2種:5〜30%、NbおよびT
aのうちの1種または2種:5〜30%、C:20〜4
0%、Re:5〜20%を含有し、残りがWと不可避不
純物(ただしW:20〜60%含有)からなる組成(以
上原子%)で構成し、かつその焼結工程で暁精温度を高
温にして前記構成成分を完全に園溶し、凝結温度から急
袷すると、分散相が、TiとCを主成分とする化合物相
と、Zrおよびmのうちの1種または2種とCを主成分
とする化合物相との微細硬質相からなり、一方結合相が
、WとReを主成分とする高融点合金相からなる組織を
もつようになり、この結果の暁結材料においては、結合
相のWとReを主成分とする高融点合金相によって耐衝
撃性が著しく向上するようになるほか、すぐれた耐塑性
変形性および耐酸化性をもつようになり、前記微細硬質
相からなる分散相のもつすぐれた耐摩耗性と相まって、
これを切削工具として高速切削や高送り切削に使用した
場合には著しくすぐれた切削性能を発揮するという知見
を得るに至ったのである。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a technology that enables high-speed cutting and high-feed cutting, and has excellent wear resistance, plastic deformation resistance, oxidation resistance, and impact resistance, that is, excellent high-temperature properties. As a result of research, it was found that scale materials with Ti: 10-35%, Zr and H
One or two of f: 5-30%, Nb and T
One or two of a: 5-30%, C: 20-4
0%, Re: 5-20%, and the remainder is W and unavoidable impurities (however, W: 20-60%). When the components are completely dissolved at a high temperature and the temperature is increased rapidly from the condensation temperature, the dispersed phase consists of a compound phase mainly composed of Ti and C, one or two of Zr and m, and C. The resulting material consists of a fine hard phase with a compound phase mainly composed of W and Re, while the binder phase has a structure consisting of a high melting point alloy phase mainly composed of W and Re. In addition to significantly improving impact resistance due to the high melting point alloy phase mainly composed of W and Re as the binder phase, it also has excellent plastic deformation resistance and oxidation resistance, and is composed of the fine hard phase. Coupled with the excellent wear resistance of the dispersed phase,
They have come to the knowledge that when used as a cutting tool for high-speed cutting or high-feed cutting, it exhibits extremely excellent cutting performance.

この発明は上記知見にもとづいてなされたものであって
、以下に成分組成範囲を上記の通りに限定した理由を説
明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

‘aー Ti Tiは、TiとCを主成分とする化合物相を形成して材
料に高硬度を付与せしめ、もって耐摩耗性を向上させる
作用があるが、その含有量が10原子%未満では齢結工
程における固溶状態からの冷却過程で所望の量の微細な
TiとCを主成分とする化合物相を析出させることがで
きず、この結果耐摩耗性の低いものとなり、一方35原
子%を越えて含有させると相対的に結合相に対して分散
相が多くなりすぎて耐衝撃性が劣化するようになること
から、その含有量を10〜35原子%と定めた。
'a-Ti Ti forms a compound phase mainly composed of Ti and C, giving the material high hardness and thereby improving wear resistance, but if its content is less than 10 at%, During the cooling process from the solid solution state in the aging process, the desired amount of fine compound phase mainly composed of Ti and C cannot be precipitated, resulting in low wear resistance. If the content exceeds 10%, the amount of dispersed phase becomes too large relative to the binder phase, resulting in deterioration of impact resistance. Therefore, the content was set at 10 to 35 at%.

‘b} ZrおよびHf これらの成分もTiと同機にZrおよびHfの1種また
は2種とCを主成分とする化合物相を析出形成して耐摩
耗性を向上させる作用をもつが、その含有量が5原子%
未満ではTiと同様に所望の高硬度および高耐摩耗性を
確保することができず、一方30原子%を越えて含有さ
せると同様に相対的に分散相が多くなりすぎて耐衝撃性
が劣化するようになることから、その含有量を5〜30
原子%と定めた。
'b} Zr and Hf These components also have the effect of precipitating a compound phase containing one or two of Zr and Hf and C as main components to improve wear resistance, but their content The amount is 5 atomic%
If the content is less than 30 atomic %, the desired high hardness and high wear resistance cannot be achieved like with Ti, while if the content exceeds 30 atomic %, the dispersed phase becomes too large and the impact resistance deteriorates. The content is 5 to 30%.
Defined as atomic percent.

‘c)NbおよびTa これらの成分は、それぞれTi、公、mと、Cを主成分
とする化合物相中に拡散して耐酸化性を向上させる作用
があるが、その含有量が5原子%未満では前記作用に所
望の効果が得られず、一方30原子%を越えて含有させ
ると、耐摩耗性が低下するようになることから、その含
有量を5〜30原子%と定めた。
'c) Nb and Ta These components have the effect of improving oxidation resistance by diffusing into the compound phase whose main components are Ti, Nb, m, and C, respectively, but their content is 5 at%. If the content is less than 30 atomic %, the desired effect cannot be obtained, whereas if the content exceeds 30 atomic %, the wear resistance decreases. Therefore, the content was set at 5 to 30 atomic %.

{d} C C成分は、上記の遜りTi、Zr、Hf、Nb、および
Ta、場合によってはWと結合して微細な硬質相からな
る分散相を形成し、材料の耐摩耗性を向上させる作用を
もつが、その含有量が20原子%未満では分散相の量が
相対的に少なすぎて所望の耐摩耗性を確保することがで
きず、一方40原子%を越えて含有させると、結合相に
対する分散相の量が多くなりすぎて、材料の耐衝撃性が
劣化するようになることから、その含有量を20〜40
原子%と定めた。
{d} C The C component combines with Ti, Zr, Hf, Nb, Ta, and W in some cases to form a dispersed phase consisting of a fine hard phase, improving the wear resistance of the material. However, if the content is less than 20 at%, the amount of the dispersed phase is relatively too small to ensure the desired wear resistance, while if the content exceeds 40 at%, If the amount of dispersed phase relative to the binder phase becomes too large, the impact resistance of the material will deteriorate, so the content should be reduced to 20-40%.
Defined as atomic percent.

【e’Re Re成分には、Wと共に結合相たる鯖融点合金相を形成
して、材料の耐塑性変形性、耐酸化性、および耐衝撃性
を著しく向上させる作用があるが、その含有量が5原子
%未満では前記作用に所望の効果が得られず、一方20
原子%を越えて含有させると相対的に結合相が多くなり
すぎて材料の耐摩耗性が劣化するようになることから、
その含有量を5〜20原子%と定めた。
[e'Re The Re component has the effect of forming a melting point alloy phase as a binder phase with W, and significantly improving the plastic deformation resistance, oxidation resistance, and impact resistance of the material, but its content is is less than 5 at%, the desired effect cannot be obtained;
If the content exceeds atomic %, the binder phase becomes too large and the wear resistance of the material deteriorates.
Its content was determined to be 5 to 20 at%.

‘f’ VVW成分は、その一部が主としてTiおよび
Cと結合して分散相を形成し、残りの主要部分がReと
共に結合相たる高融点合金相を形成して、材料の耐塑性
変形性、耐酸化性、および耐衝撃性を向上させる作用を
もつが、その含有量が20原子%未満では結合相が相対
的に少なくなり、かつReに対する割合も低くなって前
記作用に所望の効果が得られず、一方60原子%を蓬え
て含有させると耐摩耗性および耐酸化性が劣化するよう
になることから、その含有量を20〜60原子%と定め
た。
'f' The VVW component mainly combines with Ti and C to form a dispersed phase, and the remaining main part forms a high melting point alloy phase as a binder phase with Re, improving the plastic deformation resistance of the material. , has the effect of improving oxidation resistance and impact resistance, but if its content is less than 20 at %, the binder phase will be relatively small and the ratio to Re will also be low, so that the desired effect will not be achieved. On the other hand, if 60 atomic % is contained, the wear resistance and oxidation resistance will deteriorate, so the content was set at 20 to 60 atomic %.

なお、この発明の塚結材料は、不可避不純物として酸素
、窒素、Fe、Co、Ni、Cr、Mo、AIなどのう
ちの1種以上を含有するが、合量で5原子%以下の含有
であれば、この凝結材料のもつ特性が何ら損なわれるも
のではない。
Note that the Tsukatai material of the present invention contains one or more of oxygen, nitrogen, Fe, Co, Ni, Cr, Mo, AI, etc. as inevitable impurities, but the total content is 5 atomic % or less. If present, the properties of this coagulated material will not be impaired in any way.

つぎに、この発明の暁緒材料を実施例により具体的に説
明する。
Next, the material of the present invention will be specifically explained with reference to Examples.

実施例 1 原料粉末として、平均粒径1.0仏肌を有する炭化チタ
ン粉末「同1.5一肌の炭化ジルコニウム粉末、同1.
5山肌の炭化ハフニウム粉末、同1.0山の炭化タンタ
ル粉末、同0.8仏肌のW粉末、および同1.0ム仇の
Re粉末を用意し、これら原料粉末をそれぞれ第1表に
示される配合組成に配合し、ボールミルにて7幼時間湿
式混合し、乾燥した後、15k9/桝の圧力でプレス成
形して庄粉体とし、ついでこの圧粉体を10‐ltor
rの真空中、温度:2100℃に1時間保持の条件で暁
結した後、暁縞温度から1000qoまでの温度範囲を
400℃′hrの冷却速度で冷却することによって、実
質的に配合組成と同一の最終成分組成をもった本発明焼
結材料1〜5および比鮫焼縞材料1〜6をそれぞれ製造
した。
Example 1 Titanium carbide powder having an average particle size of 1.0 mm, zirconium carbide powder with an average particle size of 1.5 mm, and 1.5 mm particle diameter were used as raw material powders.
Prepare hafnium carbide powder of 5 mounds, tantalum carbide powder of 1.0 m2, W powder of 0.8 m2, and Re powder of 1.0 m2, and prepare these raw powders as shown in Table 1. The composition shown is mixed, wet-mixed in a ball mill for 7 hours, dried, and then press-molded at a pressure of 15k9/m2 to form a compacted powder.
After freezing at a temperature of 2100°C for 1 hour in a vacuum of Sintered materials 1 to 5 of the present invention and Hisame baked striped materials 1 to 6 having the same final component composition were produced, respectively.

第1表なお、比較暁給材料1〜6は、いずれも構成成分
のうちのいずれかの成分(第1表には※印で表示)が本
発明範囲から外れた組成をもつものである。
Table 1 Comparative Dawn Supply Materials 1 to 6 all have a composition in which one of the components (indicated by * in Table 1) is outside the scope of the present invention.

ついで、この結果得られた本発明嬢結材料1〜5および
比較暁結材料1〜6から、SNP432の形状をもった
切削チップを作製し、被削材:JIS・SNCM−8(
硬さ:HB250)、切削速度:250の′min、送
り:0.3肋/rev、切込み:2肋、切削時間:10
分の条件での連続切削試験、並びに被削材:JIS・S
NCM−8(硬さ:HB280)、切削速度:140仇
′min、送り:0.3肋、切込み:2肌、切削時間:
3分の条件での断続切削試験を行ない、上記の連続切削
試験では、チップ切刃におけるフランク摩耗深さとクレ
ータ摩耗深さを測定し、また上記の断続切削試験では、
試験切刃数10個のうち欠損した切刃数を測定した。
Next, a cutting tip having a shape of SNP432 was prepared from the resultant fastening materials 1 to 5 of the present invention and comparative fastening materials 1 to 6, and the cutting tip was prepared using the following materials: JIS/SNCM-8 (
Hardness: HB250), Cutting speed: 250'min, Feed: 0.3 ribs/rev, Depth of cut: 2 ribs, Cutting time: 10
Continuous cutting test under conditions of 10 minutes, and work material: JIS/S
NCM-8 (Hardness: HB280), Cutting speed: 140min, Feed: 0.3mm, Depth of cut: 2mm, Cutting time:
An interrupted cutting test was conducted under conditions of 3 minutes, and in the above continuous cutting test, the flank wear depth and crater wear depth on the chip cutting edge were measured, and in the above interrupted cutting test,
The number of broken cutting edges among the 10 tested cutting edges was measured.

これらの測定結果を第1表に合せて示した。なお、第1
表には、比較の目的で、いずれも市販の酸化アルミニウ
ムを主成分とするセラミックス製切削チップ(以下従来
切削チップ1という)、および炭化タングステン基超硬
合金基体の表面に炭化チタンおよぴ酸化アルミニウムの
2層からなる硬質層を被覆したものからなる表面被覆超
硬合金製切削チップ(以下従来切削チップ2という)の
同一条件での切削試験結果も示した。第1表に示される
ように、本発明凝結材料1〜5で製造された切削チップ
は、いずれも蓮鏡および断続切削試験において、比較麟
結材料1〜6の切削チップおよび従来切削チップ1、2
に比して一段とすぐれた切削性能を示すことが明らかで
ある。
These measurement results are also shown in Table 1. In addition, the first
For comparison purposes, the table includes a commercially available ceramic cutting tip mainly composed of aluminum oxide (hereinafter referred to as conventional cutting tip 1), and a tungsten carbide-based cemented carbide substrate with titanium carbide and oxide. The results of a cutting test under the same conditions for a surface-coated cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 2), which is coated with a hard layer consisting of two layers of aluminum, are also shown. As shown in Table 1, the cutting chips manufactured using the inventive cohesive materials 1 to 5 were tested in the lotus mirror and interrupted cutting tests, as well as the cutting chips made from the comparative cohesive materials 1 to 6 and the conventional cutting chips 1, 2, and 3. 2
It is clear that the cutting performance is much better than that of the previous one.

実施例 2 原料粉末として、実施例1で用いたのと同じ原料粉末の
ほかに、さらに平均粒径1.2山肌を有する炭化ニオブ
粉末を用意し、これら原料粉末を第2表に示される配合
組成に配合する以外は、実施例1におけると同一の条件
にて、本発明暁結材料6〜9および比鮫焼縞材料7〜1
2をそれぞれ製造した。
Example 2 As raw material powders, in addition to the same raw material powders used in Example 1, niobium carbide powder having an average particle size of 1.2 mounds was prepared, and these raw material powders were blended as shown in Table 2. The Akatsuki Materials 6 to 9 of the present invention and the Bisame Yakistriped Materials 7 to 1 were prepared under the same conditions as in Example 1 except that they were added to the composition.
2 were produced respectively.

ついで、この結果得られた本発明煉結材料6〜9および
比較燈緒材料7〜12から、それぞれSNP432の形
状をもった切削チップを作製し、被削材:JIS・SN
CM−8(硬さ:HB250)、切削速度:100仇/
min、送り:0.7肋′rev、切込み:8肋、切削
時間:1の分の条件での連続切削試験と、被削材:SN
CM−8(硬さ:HB280)、切削速度:100の′
min、送り:0.4側′rev、切込み:3肋、切削
時間:3分の条件での断続切削試験を行ない、実施例1
におけると同様に上記連続切削試験ではフランク摩耗深
さとクレータ摩耗深さを、また上記断続切削試験ではl
q固の切刃のうちの欠損数を測定した。
Next, cutting tips each having a shape of SNP432 were prepared from the resulting brined materials 6 to 9 of the present invention and comparative lamp materials 7 to 12, and the work material was JIS/SN.
CM-8 (hardness: HB250), cutting speed: 100/
Continuous cutting test under the conditions of min, feed: 0.7 ribs'rev, depth of cut: 8 ribs, cutting time: 1 minute, and work material: SN.
CM-8 (hardness: HB280), cutting speed: 100'
An intermittent cutting test was conducted under the following conditions: min, feed: 0.4 side'rev, depth of cut: 3 ribs, cutting time: 3 minutes, Example 1
Similarly, in the above continuous cutting test, flank wear depth and crater wear depth were measured, and in the above interrupted cutting test, l
The number of defects among the q-hard cutting edges was measured.

この測定結果を第2表に合せて示した。第2表 また、第2表には、比較の目的で、いずれも市販の炭化
タングステン基超硬合金基体の表面に炭化チタンの硬質
層を被覆したものからなる表面被覆超硬合金製切削チッ
プ(以下従来切削チップ3という)、およびP30の炭
化タングステン基超硬合金製切削チップ(以下従釆切削
チップ4という)の同一条件での切削試験結果も示した
The measurement results are also shown in Table 2. Table 2 Also, for comparison purposes, Table 2 shows surface-coated cemented carbide cutting tips (all of which are made of a commercially available tungsten carbide-based cemented carbide substrate coated with a hard layer of titanium carbide). The cutting test results under the same conditions for a P30 tungsten carbide-based cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 4) are also shown.

Claims (1)

【特許請求の範囲】[Claims] 1 Ti:10〜35%、ZrおよびHfのうちの1種
または2種:5〜30%、NbおよびTaのうちの1種
または2種:5〜30%、C:20〜40%、Re:5
〜20%含有し、残りがWと不可避不純物(ただしW:
20〜60%含有)からなる組成(以上原子%)を有し
、かつ、分散相が、TiとCとを主成分とする化合物相
と、ZrおよびHfのうちの1種または2種とCとを主
成分とする化合物相との微細硬質相からなり、一方結合
相が、WおよびReを主成分とする高融点合金相からな
る組織を有することを特徴とする高温特性のすぐれた切
削工具用焼結材料。
1 Ti: 10-35%, one or two of Zr and Hf: 5-30%, one or two of Nb and Ta: 5-30%, C: 20-40%, Re :5
~20%, and the rest is W and unavoidable impurities (however, W:
20 to 60%), and the dispersed phase is a compound phase containing Ti and C as main components, one or two of Zr and Hf, and C. A cutting tool with excellent high-temperature properties characterized by having a structure consisting of a fine hard phase with a compound phase mainly composed of sintered material.
JP16255081A 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties Expired JPS602376B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16255081A JPS602376B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties
KR1019820003330A KR840000663A (en) 1981-10-12 1982-07-26 Sintering material for cutting tools with high temperature characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16255081A JPS602376B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties

Publications (2)

Publication Number Publication Date
JPS5864340A JPS5864340A (en) 1983-04-16
JPS602376B2 true JPS602376B2 (en) 1985-01-21

Family

ID=15756715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16255081A Expired JPS602376B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties

Country Status (1)

Country Link
JP (1) JPS602376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645315B2 (en) * 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
US8361178B2 (en) * 2008-04-21 2013-01-29 Smith International, Inc. Tungsten rhenium compounds and composites and methods for forming the same

Also Published As

Publication number Publication date
JPS5864340A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
JPS602376B2 (en) Sintered material for cutting tools with excellent high-temperature properties
JPH01183310A (en) Surface covering carbonization tungsten group cemented carbide made throw away tip for milling cutter
JPS60106938A (en) Tough cermet
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS602377B2 (en) Sintered material for cutting tools with excellent high-temperature properties
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP4364990B2 (en) Cutting tool and manufacturing method thereof
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JPS6245290B2 (en)
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS6022059B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
JPS6021352A (en) Cermet for tool and its production
JPH08290308A (en) Coating cutting tool for turning and its production
JPS63157873A (en) Surface coated tungsten carbide-base sintered super hard alloy for milling
JPS5852552B2 (en) Tough cermet for cutting tools
JPS6017016B2 (en) Cutting tool material with excellent high temperature properties
JPH0230405A (en) Cutting tool made of surface-coated tungsten carbide radical cemented carbide
JPS601379B2 (en) Cutting tool material with excellent high temperature properties
JPS58130245A (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
KR890004538B1 (en) Material for cutting tool with superior characteristic at high temperature
JPS58151448A (en) Sintered material for cutting tool with superior characteristic at high temperature and its manufacture
JPS5816050A (en) Material for cutting tool with superior characteristic at high temperature
JPS601942B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties
JPS58130246A (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
JPS6245291B2 (en)