JPS602377B2 - Sintered material for cutting tools with excellent high-temperature properties - Google Patents

Sintered material for cutting tools with excellent high-temperature properties

Info

Publication number
JPS602377B2
JPS602377B2 JP16255181A JP16255181A JPS602377B2 JP S602377 B2 JPS602377 B2 JP S602377B2 JP 16255181 A JP16255181 A JP 16255181A JP 16255181 A JP16255181 A JP 16255181A JP S602377 B2 JPS602377 B2 JP S602377B2
Authority
JP
Japan
Prior art keywords
cutting
phase
content
atomic
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16255181A
Other languages
Japanese (ja)
Other versions
JPS5864341A (en
Inventor
泰次郎 杉澤
寛範 吉村
賢一 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP16255181A priority Critical patent/JPS602377B2/en
Priority to KR1019820003330A priority patent/KR840000663A/en
Publication of JPS5864341A publication Critical patent/JPS5864341A/en
Publication of JPS602377B2 publication Critical patent/JPS602377B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、すぐれた高温特性を有し、特にこれらの特
性が要求される高速切削や高送り切削に切削工具として
使用した場合にすぐれた性能を発揮する暁結材料に関す
るものである。
[Detailed Description of the Invention] The present invention provides a material that exhibits excellent high-temperature properties and exhibits excellent performance when used as a cutting tool in high-speed cutting and high-feed cutting that particularly require these properties. It is related to.

一般に、鋼の切削加工に際して、切削速度を速くしたり
、送り量を多くくしたりすると、切削工具の刃先温度が
上昇し、刃先が摩耗よりは、むしろ高温に原因する塑性
変形によって使用寿命に至る場合が多く、近年の高速切
削化および高能率切削化によって、この懐向は増々強く
なっている。
Generally, when cutting steel, when the cutting speed is increased or the feed rate is increased, the temperature of the cutting tool's cutting edge increases, and the cutting tool reaches the end of its useful life due to plastic deformation caused by the high temperature rather than wear. In many cases, this preference is becoming stronger due to the recent advances in high-speed cutting and high-efficiency cutting.

しかしながら、現在実用に供されている分散相が主とし
てW炭化物やTi炭化物で構成され、一方結合相が主と
して鉄族金属で構成された超硬合金やサーメットは、刃
先温度が1000qoを越えると急激に軟化するように
なるため、これらの超硬合金やサーメットは勿論のこと
、これらの表面に硬質被覆層を形成した表面被覆超硬合
金や表面被覆サーメットにおいても、その使用条件は刃
先温度が1000℃を若干上廻る程度に制限されている
。一方、AI酸化物を主成分としたセラミックは、高温
において高硬度とすぐれた耐酸化性を示すことから、高
速切削工具として実用に供されているが、このセラミッ
クでも刃先は高温安定性に欠け、信頼性の不十分なもの
であるため、高速切削に際しては低い送り量で使用され
ているのが実情である。また、近年、高速切削や高送り
切削用の切削工具材料として、WあるいはMoなどの高
融点金属からなるマトリックス中に、WおよびTiの炭
化物を層状に分散させた組織を有する鋳造合金が提案さ
れ(例えば米国特許第3690962号明細書参照)、
注目されたが、この鋳造合金は、融点が270ぴ0と著
しく高く、かつ鋳造合金のために形状付与が困難であり
、しかも耐酸化性および耐衝撃性も不十分なために広く
実用化されるまでには至らないものであった。
However, the cemented carbides and cermets currently in practical use whose dispersed phase is mainly composed of W carbide or Ti carbide, while the binder phase is mainly composed of iron group metals, rapidly deteriorate when the cutting edge temperature exceeds 1000 qo. Because of this, not only these cemented carbide and cermet, but also surface-coated cemented carbide and surface-coated cermet, which have a hard coating layer formed on their surface, must be used at a cutting edge temperature of 1000°C. It is limited to slightly more than that. On the other hand, ceramics containing AI oxide as a main component exhibit high hardness and excellent oxidation resistance at high temperatures, and are therefore used in practical applications as high-speed cutting tools.However, even with this ceramic, the cutting edge lacks high-temperature stability. However, due to insufficient reliability, the current situation is that low feed rates are used during high-speed cutting. In addition, in recent years, cast alloys having a structure in which carbides of W and Ti are dispersed in layers in a matrix of high-melting point metals such as W or Mo have been proposed as cutting tool materials for high-speed cutting and high-feed cutting. (See, for example, US Pat. No. 3,690,962),
However, this cast alloy has a significantly high melting point of 270 mm, is difficult to shape, and has insufficient oxidation resistance and impact resistance, so it has not been widely put into practical use. However, it did not reach the point where it was possible to do so.

そこで、本発明者等は、上述のような観点から、高速切
削や高送り切削が可能な、すぐれた耐摩耗性、耐塑性変
形性、耐酸化性、および耐衝撃性、すなわちすぐれた高
温特性を有する切削工具用材料を得べく研究を行なった
結果、嫌縞材料を、Ti:10〜35%、ZrおよびH
fのうちの1種または2種:5〜30%、NbおよびT
aのうちの1種または2種:5〜30%、C:20〜4
0%、Si:1〜10%を含有し「残りがWと不可避不
純物(ただしW:20〜60%含有)からなる組成(以
上原子%)で構成し、かつその焼鯖工程で雛結温度を高
温にして前記構成成分を完全に固落し、嫌緒温度から急
袷すると、分散相が、TiとCを主成分とする化合物相
と、ZrおよびHfのうちの1種または2種とCを主成
分とする化合物相と、SiとCを主成分とする化合物相
との微細硬質相からなり、一方結合相が、WとSiを主
成分とする高融点合金相からなる組織をもつようになり
、この結果の凝結材料においては、Siの含有によって
暁綾性が向上し、巣や小孔などの材料欠陥が著しく低減
するようになることから、材料の耐衝撃性が向上するよ
うになり、かつ結合相のWとSi(Wけし、化物)を主
成分とする高融点合金相によって、すぐれた耐塑性変形
性、耐酸化性、および耐摩耗性をもつようになり、前記
微細硬質相からなる分散相のもつすぐれた耐摩耗性と相
まって、これを切削工具として高速切削や高送り切削に
使用した場合には著しくすぐれた切削性能を発揮すると
いう知見を得るに至ったのである。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a technology that enables high-speed cutting and high-feed cutting, and has excellent wear resistance, plastic deformation resistance, oxidation resistance, and impact resistance, that is, excellent high-temperature properties. As a result of research to obtain materials for cutting tools having
One or two of f: 5-30%, Nb and T
One or two of a: 5-30%, C: 20-4
0%, Si: 1 to 10%, and the remainder consists of W and unavoidable impurities (however, W: 20 to 60%) (at %), and the broiling temperature in the sintering process is is heated to a high temperature to completely solidify the constituent components, and when the temperature is lowered to a lower temperature, the dispersed phase consists of a compound phase containing Ti and C as main components, one or two of Zr and Hf, and C. It consists of a fine hard phase consisting of a compound phase whose main components are W and a compound phase whose main components are Si and C, while the binder phase has a structure consisting of a high melting point alloy phase whose main components are W and Si. In the resultant condensed material, the inclusion of Si improves the thermal resistance and significantly reduces material defects such as cavities and small holes, which improves the impact resistance of the material. The high melting point alloy phase mainly composed of W and Si (W poppy, compound) as a binder phase provides excellent plastic deformation resistance, oxidation resistance, and wear resistance, and the fine hardness Coupled with the excellent wear resistance of the dispersed phase, they found that when used as a cutting tool for high-speed cutting or high-feed cutting, it exhibits extremely excellent cutting performance.

この発明は上記知見にもとづいてなされたものであって
、以下に成分組成範囲を上記の通りに限定した理由を説
明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

{a’Ti Tiは、TiとCを主成分とする化合物相を形成して材
料に高硬度を付与せしめ、もって耐摩耗性を向上させる
作用があるが、その含有量が10原子%未満では焼結工
程における固溶状態からの冷却過程で所望の量の微細な
TiとCを主成分とする化合物相を析出させることがで
きず、この結果耐摩耗性の低いものとなり、一方35原
子%を越えて含有させると相対的に結合相に対して分散
相が多くなりすぎて耐衝撃性が劣化するようになること
から、その含有量を10〜35原子%と定めた。
{a'Ti Ti forms a compound phase mainly composed of Ti and C, giving the material high hardness and thereby improving wear resistance, but if its content is less than 10 at% During the cooling process from the solid solution state in the sintering process, the desired amount of fine compound phase mainly composed of Ti and C could not be precipitated, resulting in poor wear resistance; If the content exceeds 10%, the amount of dispersed phase becomes too large relative to the binder phase, resulting in deterioration of impact resistance. Therefore, the content was set at 10 to 35 at%.

【b} ZrおよびHf これらの成分もTiと同様にZrおよびHfの1種また
は2種とCを主成分とする化合物相を析出形成して耐摩
耗性を向上させる作用をもつが、その含有量が5原子%
未満ではTiと同様に所望の高硬度および高耐摩耗性を
確保することができず、一方30原子%を越えて含有さ
せると同様に相対的に分散相が多くなりすぎて耐衝撃性
が劣化するようになることから、その含有量を5〜30
原子%と定めた。
[b} Zr and Hf Similar to Ti, these components also have the effect of precipitating and forming a compound phase mainly composed of one or two of Zr and Hf and C to improve wear resistance. The amount is 5 atomic%
If the content is less than 30 atomic %, the desired high hardness and high wear resistance cannot be achieved like with Ti, while if the content exceeds 30 atomic %, the dispersed phase becomes too large and the impact resistance deteriorates. The content is 5 to 30%.
Defined as atomic percent.

‘cー NbおよびTa これらの成分は、それぞれTi「Zr、批と、Cを主成
分とする化合物相中に拡散して耐酸化性を向上させる作
用があるが、その含有量が5原子%未満では前記作用に
所望の効果が得られず、一方30原子%を越えて含有さ
せると、耐摩耗性が低下するようになることから、その
含有量を5〜30原子%と定めた。
'c-Nb and Ta These components have the effect of improving oxidation resistance by diffusing into the compound phase whose main components are Ti, Zr, and C, respectively, but their content is 5 at%. If the content is less than 30 atomic %, the desired effect cannot be obtained, whereas if the content exceeds 30 atomic %, the wear resistance decreases. Therefore, the content was set at 5 to 30 atomic %.

(d’C C成分は、上記の通りTi、Zr、m、Nb、Ta、お
よびSi、場合によってはWと結合して微細な硬質相か
らなる分散相を形成し、材料の耐摩耗性を向上させる作
用をもつが、その含有量が20原子%未満では分散相の
量が相対的に少なすぎて所望の耐摩耗性を確保すること
ができず、一方40原子%を越えて含有させると、結合
相に対する分散相の量が多くなりすぎて、材料の耐衝撃
性が劣化するようになることから、その含有量を20〜
40原子%と定めた。
(As mentioned above, the C component combines with Ti, Zr, m, Nb, Ta, and Si, and in some cases W, to form a dispersed phase consisting of a fine hard phase, which improves the wear resistance of the material.) However, if the content is less than 20 at%, the amount of dispersed phase is relatively too small to ensure the desired wear resistance, while if the content exceeds 40 at% , the amount of dispersed phase relative to the binder phase becomes too large and the impact resistance of the material deteriorates.
It was set at 40 atom%.

{cー Si Si成分には、上記の通り焼結性を向上させることによ
って材料にすぐれた耐衝撃性を付与し、かつWおよび遊
離したCと反応してそれぞれWけし、化物およびSi炭
化物を形成し、材料の耐摩耗性を著しく向上させる作用
があるが、その含有量が1原子%未満では前記作用に所
望の効果が得られず、一方10原子%を越えて含有させ
ると、Wけし、化物およびSi炭化物の量が多くなりす
ぎて、耐衝撃性が低下するようになることから、その含
有量を1〜10原子%と定めた。
{c-Si The Si component imparts excellent impact resistance to the material by improving sinterability as described above, and also reacts with W and free C to form W poppy, compound, and Si carbide, respectively. When the content is less than 1 atomic %, the desired effect cannot be obtained; on the other hand, when the content exceeds 10 atomic %, W poppy has the effect of significantly improving the wear resistance of the material. , carbide and Si carbide become too large, resulting in a decrease in impact resistance, so their content was determined to be 1 to 10 at %.

‘f’WW成分は、その一部が主としてTiおよびCと
結合して分散相を形成し、残りの主要部分がSiと共に
結合相たる高融点合金相を形成して、材料の耐塑性変形
性、耐酸化性、および耐衝撃性を向上させる作用をもつ
が、その含有量が20原子%未満では結合相が相対的に
少なくなり、かつSiに対する割合も低くなって前記作
用に所望の効果が得られず、一方60原子%を越えて含
有させると耐摩耗性および耐酸化性が劣化するようにな
ることから、その含有量を20〜60原子%と定めた。
A part of the 'f' WW component mainly combines with Ti and C to form a dispersed phase, and the remaining main part forms a high melting point alloy phase as a binder phase with Si, thereby improving the plastic deformation resistance of the material. , has the effect of improving oxidation resistance and impact resistance, but if its content is less than 20 at %, the binder phase will be relatively small and the proportion to Si will also be low, so that the desired effect will not be achieved. On the other hand, if the content exceeds 60 atomic %, the wear resistance and oxidation resistance will deteriorate, so the content was set at 20 to 60 atomic %.

なお、この発明の焼縞材料は、不可避不純物として酸素
、窒素、Fe、Co、Ni、Cr、Mo、AIなどのう
ちの1種以上を含有するが、合量で5原子%以下の含有
であれば、この凝結材料のもつ特性が何ら損なわれるも
のではない。
The fried stripe material of the present invention contains one or more of oxygen, nitrogen, Fe, Co, Ni, Cr, Mo, AI, etc. as inevitable impurities, but the total content is 5 atomic % or less. If present, the properties of this coagulated material will not be impaired in any way.

つぎに、この発明の暁続材料を実施例により具体的に説
明する。
Next, the advanced material of the present invention will be explained in detail with reference to Examples.

実施例 1 原料粉末として、平均粒径1.0仏肌を有する炭化チタ
ン粉末、同1.5〃肌の炭化ジルコニウム粉末、同1.
5〆肌の炭化ハフニウム粉末、同1.0ム仇の炭化タン
タル粉末、同0.8rmのW粉末、および同1.5r凧
のSi粉末を用意し、これら原料粉末をそれぞれ第1表
に示される配合組成に配合し、ボールミルにて7幼時間
湿式混合し、乾燥した後、1.5k9′協の圧力でプレ
ス成形して圧粉体とし、ついでこの氏粉体を10‐1℃
rrの真空中、温度:2100℃に1時間保持の条件で
暁結した後、競縞温度から1000qoまでの温度範囲
を400℃/hrの冷却速度で冷却することによって、
実質的に配合組成と同一の最終成分組成をもった本発明
競績材料1〜5および比鮫焼縞材料1〜6をそれぞれ製
造した。
Example 1 As raw material powders, titanium carbide powder with an average particle size of 1.0 mm, zirconium carbide powder with an average particle size of 1.5 mm, and 1.5 mm particle size were used.
5. Prepare hafnium carbide powder of 1.0 μm, tantalum carbide powder of 1.0 rm, W powder of 0.8 rm, and Si powder of 1.5 rm, and these raw material powders are shown in Table 1. The mixture was wet-mixed in a ball mill for 7 hours, dried, and then press-molded at a pressure of 1.5k9' to form a green compact.Then, this powder was heated at 10-1℃.
After freezing at a temperature of 2100°C for 1 hour in a vacuum of RR, cooling the temperature range from the competitive fringe temperature to 1000qo at a cooling rate of 400°C/hr,
Competitive materials 1 to 5 of the present invention and Hisame baked striped striped materials 1 to 6 having substantially the same final component composition as the blended composition were produced, respectively.

なお、比鮫焼結材料1〜6は、いずれも構成成分のうち
のいずれかの成分(第1表には※印で表示)が本発明範
囲から外れた組成をもつものである。ついで、この結果
得られた本発明競結材料1〜5および比較屍続材料1〜
6から、SNP432の形状をもった切削チップを作製
し、被削材:JIS・SNCM一8(硬さ:HB250
)、切削速度:250肌′min、送り:0.3側′r
ev、切込み:2肋、切削時間:10分の条件での連続
切削試験、並びに被削村:JIS・SNCM−8(硬さ
:HB280)、切削速度:140机′min、送り0
.3肌、切込み:2柵、切削時間:3分の条件での断続
切削試験を行ない、上記の連続切削試験では、チップ切
刃におけるフランク摩耗深さとクレータ摩耗深さを測定
し、また上記の断続切削試験では、謎験切刃数lq固の
うち欠損した切刃数を測定した。
It should be noted that Hisame Sintered Materials 1 to 6 each have a composition in which one of the constituent components (indicated by * in Table 1) is outside the scope of the present invention. Next, the resulting composite materials 1 to 5 of the present invention and comparative cadaver materials 1 to 5 were prepared.
6, a cutting tip with the shape of SNP432 was prepared, and the workpiece material: JIS/SNCM-8 (hardness: HB250
), Cutting speed: 250 skin'min, Feed: 0.3 side'r
Continuous cutting test under the conditions of ev, depth of cut: 2 ribs, cutting time: 10 minutes, and workpiece density: JIS/SNCM-8 (hardness: HB280), cutting speed: 140 machine'min, feed 0
.. An intermittent cutting test was conducted under the conditions of 3 skins, depth of cut: 2 fences, and cutting time: 3 minutes.In the above continuous cutting test, the flank wear depth and crater wear depth on the chip cutting edge were measured. In the cutting test, the number of missing cutting edges out of the number of cutting edges 1q was measured.

これらの測定結果を第1表に合せて示した。なお、第1
表には、比較の目的で、いずれも市販の酸化アルミニウ
ムを主成分とするセラミックス製切削チップ(以下従来
切削チップ1という)、および炭化タングステン基超硬
合金基体の表面に炭化チタンおよび酸化アルミニウムの
2層からなる硬質層を被覆したものからなる表面被覆超
硬合金製切削チップ(以下従来切削チップ2という)の
同一条件での切削試験結果も示した。第1表 第1表に示されるように、本発明焼続材料1〜5で製造
された切削チップは、いずれも連続および断続切削試験
において、比較焼緒材料1〜6の切削チップおよび従来
切削チップ1、2に比して一段とすぐれた切削性能を示
すことが明らかである。
These measurement results are also shown in Table 1. In addition, the first
For comparison purposes, the table shows a commercially available ceramic cutting tip whose main component is aluminum oxide (hereinafter referred to as conventional cutting tip 1), and a tungsten carbide-based cemented carbide substrate with titanium carbide and aluminum oxide on the surface. The results of a cutting test under the same conditions for a surface-coated cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 2), which is coated with two hard layers, are also shown. Table 1 As shown in Table 1, the cutting inserts manufactured using the inventive sintering materials 1 to 5 were evaluated in continuous and interrupted cutting tests as compared to the cutting chips manufactured using the comparative sintering materials 1 to 6. It is clear that the cutting performance is much better than that of chips 1 and 2.

実施例 2 原料粉末として、実施例1で用いたのと同じ原料粉末の
ほかに、さらに平均粒径1.2ム肌を有する炭化ニオブ
粉末を用意し、これら原料粉末を第2表に示される配合
組成に配合する以外は、実施例1におけると同一の条件
にて、本発明焼緒材料6〜9および比較暁綾材料7〜1
2をそれぞれ製造した。
Example 2 In addition to the same raw material powder used in Example 1, niobium carbide powder having an average particle size of 1.2 mm was prepared as raw material powder, and these raw material powders were prepared as shown in Table 2. The present invention Aya materials 6 to 9 and the comparative Akio Aya materials 7 to 1 were prepared under the same conditions as in Example 1 except that they were added to the blending composition.
2 were produced respectively.

ついで、この結果得られた本発明暁続材料6〜9および
比較腕緒材料7〜12から、それぞれSNP432の形
状をもった切削チップを作製し、被削材:JIS・SN
CM−8(硬さ:HB250)、切削速度:100の/
min、送り:0.7肌/rev、切込み:8風、切削
時間:1び分の条件での連続切削試験と、被削材:SN
CM−8(硬さ:HB280)、切削速度:100の/
min、送り:0.4柳/rev、切込み:3肋、切削
時間:3分の条件での断続切削試験を行ない、実施例1
におけると同機に上記連続切削論l険ではフランク摩耗
深さとクレータ摩耗深さを、また上記断続切削試験では
1の固の切刃のうちの欠損数を測定した。
Next, cutting tips each having a shape of SNP432 were prepared from the obtained Akatsuki Materials 6 to 9 of the present invention and Comparative Materials 7 to 12, respectively, and the work material was JIS/SN.
CM-8 (hardness: HB250), cutting speed: 100/
Continuous cutting test under the conditions of min, feed: 0.7 skin/rev, depth of cut: 8 winds, cutting time: 1 minute, work material: SN
CM-8 (hardness: HB280), cutting speed: 100/
Example 1 An intermittent cutting test was conducted under the conditions of min, feed: 0.4 Yanagi/rev, depth of cut: 3 ribs, and cutting time: 3 minutes.
In the continuous cutting test, the flank wear depth and crater wear depth were measured on the same machine, and in the interrupted cutting test, the number of chips in one hard cutting edge was measured.

この測定結果を第2表に合せて示した。第2表 また、第2表には、比較の目的で、いずれも市販の炭化
タングステン基超硬合金基体の表面に炭化チタンの硬質
層を被覆したものからなる表面被覆超硬合金製切削チッ
プ(以下従来切削チップ3という)、およびP30の炭
化タングステン基超懐冶金製切削チップ(以下従来切削
チップ4とい.う)の同一条件での切削試験結果も示し
た。
The measurement results are also shown in Table 2. Table 2 Also, for comparison purposes, Table 2 shows surface-coated cemented carbide cutting tips (all of which are made of a commercially available tungsten carbide-based cemented carbide substrate coated with a hard layer of titanium carbide). Also shown are cutting test results under the same conditions for a P30 tungsten carbide-based super metallurgical cutting tip (hereinafter referred to as conventional cutting tip 4).

Claims (1)

【特許請求の範囲】[Claims] 1 Ti:10〜35%、ZrおよびHfのうちの1種
または2種:5〜30%、NbおよびTaのうちの1種
または2種:5〜30%、C:20〜40%、Si:1
〜10%を含有し、残りがWと不可避不純物(ただしW
:20〜60%含有)からなる組成(以上原子%)を有
し、かつ、分散相が、TiとCを主成分とする化合物相
と、ZrおよびHfのうちの1種または2種とCを主成
分とする化合物相と、SiとCを主成分とする化合物相
との微細硬質相からなり、一方結合相が、WおよびSi
を主成分とする高融点合金相からなる組織を有すること
を特徴とする高温特性のすぐれた切削工具用焼結材料。
1 Ti: 10-35%, one or two of Zr and Hf: 5-30%, one or two of Nb and Ta: 5-30%, C: 20-40%, Si :1
~10%, and the rest is W and unavoidable impurities (however, W
:20 to 60% content) (at least atomic %), and the dispersed phase is a compound phase containing Ti and C as main components, one or two of Zr and Hf, and C. It consists of a fine hard phase consisting of a compound phase whose main components are W and Si and a compound phase whose main components are W and Si.
A sintered material for cutting tools with excellent high-temperature properties, characterized by having a structure consisting of a high melting point alloy phase whose main component is
JP16255181A 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties Expired JPS602377B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16255181A JPS602377B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties
KR1019820003330A KR840000663A (en) 1981-10-12 1982-07-26 Sintering material for cutting tools with high temperature characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16255181A JPS602377B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties

Publications (2)

Publication Number Publication Date
JPS5864341A JPS5864341A (en) 1983-04-16
JPS602377B2 true JPS602377B2 (en) 1985-01-21

Family

ID=15756735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16255181A Expired JPS602377B2 (en) 1981-10-12 1981-10-12 Sintered material for cutting tools with excellent high-temperature properties

Country Status (1)

Country Link
JP (1) JPS602377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011619A (en) * 2007-07-06 2009-01-22 Dainippon Jochugiku Co Ltd Gel-like aromatic and its use method

Also Published As

Publication number Publication date
JPS5864341A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
JPS602377B2 (en) Sintered material for cutting tools with excellent high-temperature properties
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5914534B2 (en) Tough cermet with a softened surface layer
JPS602376B2 (en) Sintered material for cutting tools with excellent high-temperature properties
JPS597349B2 (en) Coated cemented carbide tools
KR890004489B1 (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
JPS6245290B2 (en)
JPS6022059B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS5928542A (en) Manufacture of sintered hard material for cutting tool
JPS585981B2 (en) Tough cermet containing titanium nitride
JPS6343454B2 (en)
JPS6022057B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
JPS5915970B2 (en) Tough cermet with a softened surface layer
JPS6146542B2 (en)
JPS5852552B2 (en) Tough cermet for cutting tools
JPS601942B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties
JPS6245293B2 (en)
JPS6022058B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
JP2002187005A (en) Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JPS601380B2 (en) Cutting tool material with excellent high temperature properties
JPS58189345A (en) Manufacture of tough cermet
JPS6017016B2 (en) Cutting tool material with excellent high temperature properties
JPS5918459B2 (en) Sintered hard alloy parts