JPS6022057B2 - Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method - Google Patents

Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method

Info

Publication number
JPS6022057B2
JPS6022057B2 JP57012639A JP1263982A JPS6022057B2 JP S6022057 B2 JPS6022057 B2 JP S6022057B2 JP 57012639 A JP57012639 A JP 57012639A JP 1263982 A JP1263982 A JP 1263982A JP S6022057 B2 JPS6022057 B2 JP S6022057B2
Authority
JP
Japan
Prior art keywords
cutting
temperature
phase
powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012639A
Other languages
Japanese (ja)
Other versions
JPS58130245A (en
Inventor
泰次郎 杉澤
寛範 吉村
賢一 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57012639A priority Critical patent/JPS6022057B2/en
Priority to KR8204657A priority patent/KR890004488B1/en
Publication of JPS58130245A publication Critical patent/JPS58130245A/en
Publication of JPS6022057B2 publication Critical patent/JPS6022057B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、すぐれた高温特性を有し、特に高温性が要
求される高速切削や高送り切削に切削工具として使用し
た場合にすぐれた切削性能を発揮する競結材料およびそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a bonding material that has excellent high temperature properties and exhibits excellent cutting performance when used as a cutting tool for high-speed cutting or high-feed cutting that particularly requires high-temperature properties. and its manufacturing method.

一般に、鋼の切削加工に際して、切削速度を速くしたり
、送り量を多くしたりすると、切削工具の刃先温度が上
昇し、刃先が摩耗よりは、むしろ高温に原因する塑性変
形によって使用寿命に至る場合が多く、この頃向は、近
年の高速切削化および高能率切削化によって増々強くな
りつつある。
Generally, when cutting steel, when the cutting speed is increased or the feed rate is increased, the temperature of the cutting tool's cutting edge increases, and the cutting tool reaches the end of its useful life due to plastic deformation caused by the high temperature rather than wear. In many cases, this trend is becoming stronger due to recent advances in high-speed cutting and high-efficiency cutting.

しかしながら、現在実用に供されている、分散相が主と
してW炭化物やTi炭化物で構成され、一方結合相が主
として鉄族金属で構成されている超硬合金やサーメット
は、刃先温度が1000℃を越えると急激に軟化するよ
うになるために、これらの超硬合金やサーメツトは勿論
のこと、これらの表面に硬質被覆相を形成した表面被覆
超硬合金や表面被覆サーメツトにおいても、その使用条
件は刃先温度が1000qoを若干上廻る程度に制限さ
れている。一方、N酸化物を主成分とするセラミックは
、高温において高硬度とすぐれた耐酸化性を示すことか
ら、高速切削用の切削工具として実用に供されてはいる
が、その刃先は耐衝撃性に欠け、信頼性の不十分なもの
であるため、高速切削に際しては低い送り量で使用され
ているのが現状である。また、近年、高速切削や高送り
切削用の切削工具材料として、WあるいはMoなどの高
藤点金属からなるマトリックス中に、WおよびTiの炭
化物を層状に分散させた組織を有する鋳造合金(例えば
米国特許第3690962号明細書参照)が提案され、
注目されたが、この鋳造合金は、融点が2700℃を著
しく高く、しかも鋳造合金であるために形状付与が困難
であるばかりでなく、耐酸化性および耐衝撃性も不十分
であることから、広く実用化されるには至っていない。
However, the cutting edge temperatures of cemented carbides and cermets currently in practical use, where the dispersed phase is mainly composed of W carbide or Ti carbide and the binder phase is mainly composed of iron group metals, have a cutting edge temperature of over 1000°C. Because of this, not only these cemented carbides and cermets, but also surface-coated cemented carbide and surface-coated cermets with a hard coating phase formed on their surfaces, must be used under certain conditions at the cutting edge. The temperature is limited to slightly above 1000 qo. On the other hand, ceramics whose main component is N oxide exhibit high hardness and excellent oxidation resistance at high temperatures, so they are used as cutting tools for high-speed cutting, but their cutting edges are not impact resistant. Because of this lack of reliability and insufficient reliability, it is currently used at low feed rates for high-speed cutting. In addition, in recent years, cast alloys (for example, US (See Patent No. 3690962 specification) was proposed,
However, this cast alloy has a significantly high melting point of 2,700°C, and since it is a cast alloy, it is difficult to give it a shape, and it also has insufficient oxidation resistance and impact resistance. It has not yet been widely put into practical use.

そこで、本発明者等は、上述のような観点から、高速切
削や高送り切削が可能なすぐれた高温特性を有する切削
工具用材料、すなわち耐摩耗性、耐塑性変形性、耐酸化
性、および耐衝撃曲こすぐれた切削工具を粉末冶金法を
用い製造すべく研究を行なった結果、原料粉末として、
金属炭化物粉末、金属棚化物粉末、金属炭棚化物粉末、
およびW粉末を用意し、これら原料粉末のうちの2種以
上を用いて所定の配合組成に配合し、通常の条件で混合
し、プレス成形し、ついでこの結果の圧粉体を、非酸化
性雰囲気中、温度:2000〜2700℃の温度、すな
わち完全固溶体化温度で煉結し、この焼結温度から冷却
して温度:1000〜160000で化合物析出処理を
行ない、原子%で、Ti:5〜25%、ZrおよびHf
のうち1種または2種:5〜20%、NbおよびTaの
うちの1種または2種:5〜20%、C:15〜40%
、B:1〜10%を含有し、残りがWと不可避不純物(
ただしW:20〜55%含有)からなる組成を有し、か
つ分散層が、TiとCとBとを主成分とする化合物相と
、ZrおよびHfのうちの1種または2種とCとBとを
主成分とする化合物相との微細硬質相からなり、一方結
合相がWを主成分とするW基合金からなる組織を有する
鱗結合金を製造すると、この結果の嫌結材料は、すぐれ
た耐摩耗性、耐塑性変形性、耐酸化性、および耐衝撃性
を有し、したがってこれらの高温特性が要求される高速
切削や高送に切削に切削工具として使用した場合に著し
くすぐれた切削性能を発揮するという知見を得たのであ
る。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material for cutting tools that has excellent high-temperature properties that enable high-speed cutting and high-feed cutting, that is, wear resistance, plastic deformation resistance, oxidation resistance, and As a result of research to manufacture cutting tools with excellent impact resistance and bending using powder metallurgy, we found that as a raw material powder,
metal carbide powder, metal shelving powder, metal carbon shelving powder,
and W powder are prepared, two or more of these raw material powders are blended into a predetermined composition, mixed under normal conditions, press-molded, and the resulting green compact is made into a non-oxidizing powder. In an atmosphere, it is sintered at a temperature of 2,000 to 2,700°C, that is, the complete solid solution temperature, and then cooled from this sintering temperature and subjected to a compound precipitation treatment at a temperature of 1,000 to 160,000. 25%, Zr and Hf
One or two of these: 5-20%, One or two of Nb and Ta: 5-20%, C: 15-40%
, B: 1 to 10%, the rest being W and inevitable impurities (
However, the dispersion layer has a composition consisting of a compound phase mainly composed of Ti, C, and B, one or two of Zr and Hf, and C. When a scale alloy is produced which has a structure consisting of a fine hard phase with a compound phase mainly composed of B and a W-based alloy whose binder phase is mainly composed of W, the resulting anti-binding material is It has excellent wear resistance, plastic deformation resistance, oxidation resistance, and impact resistance, and is therefore extremely effective when used as a cutting tool for high-speed cutting and high-feed cutting that require these high-temperature properties. They obtained the knowledge that it exhibits excellent cutting performance.

この発明は上記知見にもとづいてなされたものであって
、以下に材料の成分組成範囲および煉結温度を上記の通
りに限定した理由を説明する。‘aー TiTi成分は
、素地中に微細な硬質相として分散するTiとCと8を
主成分とする化合物相を形成して材料に高硬度を付与せ
しめ、もって材料の耐摩耗性を向上させる作用をもつが
、その含有量が5%未満では化合物析出処理工程で所望
の量の前記化合物を析出させることができず、この結果
所望の耐摩耗性を確保することができないものとなり、
一方25%を越えて含有させると相対的に結合相に比し
て前記分散相を形成する化合物が多くなりすぎて材料の
耐衝撃性が劣化するようになることから、その含有量を
5〜25%と定めた。
This invention has been made based on the above findings, and the reason why the composition range of the material and the brining temperature are limited as described above will be explained below. 'a- TiTi component forms a compound phase mainly composed of Ti, C, and 8, which is dispersed as a fine hard phase in the base material, imparting high hardness to the material, thereby improving the wear resistance of the material. However, if the content is less than 5%, the desired amount of the compound cannot be precipitated in the compound precipitation treatment step, and as a result, the desired wear resistance cannot be ensured.
On the other hand, if the content exceeds 25%, the amount of the compound forming the dispersed phase becomes too large compared to the binder phase, and the impact resistance of the material deteriorates. It was set at 25%.

{bー ZrおよびHfこの両成分もTiと同様にZr
およびHfのうちの1種または2種とCとBとを主成分
とし、かつ素地中に微細な硬質相として分散する化合物
相を形成して材料の耐摩耗性を向上させる作用をもつが
、その含有量が5%未満ではTiと同様に高硬度、すな
わち高耐摩耗性を確保することができず、一方20%を
越えて含有させると同様に前記分散相を形成する化合物
相が多くなりすぎ、材料の耐衝撃性が劣化するようにな
ることから、その含有量を5〜20%と定めた。
{b- Zr and Hf Both components are Zr as well as Ti.
The main components are one or two of Hf and C and B, and have the effect of improving the wear resistance of the material by forming a compound phase that is dispersed as a fine hard phase in the matrix. If the content is less than 5%, high hardness, that is, high wear resistance, similar to Ti, cannot be ensured, while if the content exceeds 20%, the compound phase that forms the dispersed phase increases as well. If too much, the impact resistance of the material deteriorates, so the content was set at 5 to 20%.

‘c} NbおよびTa この両成分には、上記の2種の化合物相中に拡散し、か
つ素地に固溶した材料の耐酸化性を向上させる作用があ
るが、その含有量が5%未満では前記作用に所望の効果
が得られず、一方20%を越えて含有させると、材料の
耐摩耗性に劣化傾向が現われるようになることから、そ
の含有量を5〜20%と定めた。
'c} Nb and Ta These two components have the effect of improving the oxidation resistance of the material that is diffused into the above two compound phases and dissolved in the base material, but if their content is less than 5% However, if the content exceeds 20%, the wear resistance of the material tends to deteriorate, so the content was set at 5 to 20%.

(d)C C成分には、上記のように2種の化合物相を形成し、材
料の耐摩耗性を向上させる作用があるが、その含有量が
15%未満では硬質分散相の量が相対的に少なすぎて所
望の耐摩耗性を確保することができず、一方40%を越
えて含有させると、結合相に対する前記化合物相の割合
が多くなりすぎて材料の耐衝撃性が劣化するようになる
ことから、その含有量を15〜40%と定めた。
(d) C The C component forms two types of compound phases as described above and has the effect of improving the wear resistance of the material, but if its content is less than 15%, the amount of the hard dispersed phase is relatively low. If the content is too small, it is not possible to secure the desired wear resistance, while if the content exceeds 40%, the ratio of the compound phase to the binder phase becomes too large, leading to deterioration of the impact resistance of the material. Therefore, the content was determined to be 15 to 40%.

{e} B B成分には、上記のように素地中に均一に分散する硬質
の化合物相をより硬化して材料の耐摩耗性を向上させる
作用があるから、その含有量が1%未満では所望の耐摩
耗性が得られず、一方10%を越えて含有させると材料
の耐衝撃性が劣化するようになることから、その含有量
を1〜10%と定めた。
{e} B As mentioned above, the B component has the effect of hardening the hard compound phase uniformly dispersed in the base material and improving the wear resistance of the material, so if its content is less than 1%, The desired wear resistance cannot be obtained, and if the content exceeds 10%, the impact resistance of the material deteriorates, so the content was set at 1 to 10%.

‘f】W W成分は、その一部が上記の化合物相中に拡散するが、
残りの大部分は素地の結合相を構成し、この結合相は上
記の分散相を構成する成分が固溶したW基合金からなる
ので、材料はすぐれた耐塑性変形性、および耐衝撃性を
もったものになる。
'f] W A part of the W component diffuses into the above compound phase, but
Most of the remainder constitutes the binder phase of the base material, and this binder phase consists of a W-based alloy in which the components constituting the dispersed phase described above are dissolved, so the material has excellent plastic deformation resistance and impact resistance. It becomes valuable.

しかし、その含有量が20%未満では、相対的に上記結
合相の量が少なすぎて、特に耐衝撃性が劣化するように
なり、一方55%を越えて含有させると相対的に分散相
が少なくなりすぎて材料の耐摩耗性が低下するようにな
ることから、その含有量を20〜55%と定めた。なお
、この発の結材料は、不可避不純物して、Fe,Ni,
Co,Cr,Mo,Si,Nおよび白金族金属(Pt,
Pd,Rh,R山 lr,瓜)のうちの1種または2種
以上を含有しても、その合計含有量が2%以下であれば
、この焼結材料のもつ特性が何ら損なわれるものではな
い。
However, if the content is less than 20%, the amount of the binder phase is relatively too small, resulting in particularly poor impact resistance, while if the content exceeds 55%, the amount of the dispersed phase is relatively small. If the amount is too low, the wear resistance of the material will deteriorate, so the content is set at 20 to 55%. Note that the resulting binder contains unavoidable impurities such as Fe, Ni,
Co, Cr, Mo, Si, N and platinum group metals (Pt,
Even if it contains one or more of Pd, Rh, R mountain lr, melon), as long as the total content is 2% or less, the properties of this sintered material will not be impaired in any way. do not have.

‘gー 暁結温度 200び0未満の競結温度では暁綾時の組織が完全団溶
体とならず、この結果暁結後の化合物析出処理工程で、
W基合金素地に微細な硬質化合物相が均一に分散した楓
織を得ることができず、この結果所望の耐摩耗性および
耐衝撃性を確保することができないものとなり、一方2
700qoを越えた暁結温度にすると、液相が出現する
ようになって形状保持が困難となることから、暁結温度
を2000〜2700℃と定めた。
'g- Dawning temperature At competitive temperatures below 200 and 0, the structure at dawn does not become a complete collective solution, and as a result, in the compound precipitation process after dawning,
It is not possible to obtain a maple fabric in which a fine hard compound phase is uniformly dispersed in a W-based alloy base, and as a result, it is not possible to secure the desired wear resistance and impact resistance.
If the dawning temperature exceeds 700 qo, a liquid phase will appear and it will be difficult to maintain the shape, so the dawning temperature was set at 2000 to 2700°C.

‘h} 化合物析出処理温度 その温度が100000未満では、分解析出する化合物
の星が少なすぎて、微細な硬質化合物が均一に分散した
組織を得ることができず、一方その温度が160ぴ0を
越えると、分解析出が起らず、このように化合物析出処
理温度が1000〜1600℃の温度範囲から外れると
所望の耐摩耗性および耐衝撃性を確保することができな
いものであり、かかる点から化合物析出処理温度を10
00〜1600午0と定めた。
'h} Compound Precipitation Processing Temperature If the temperature is less than 100,000, too few compounds will be separated out, making it impossible to obtain a structure in which fine hard compounds are uniformly dispersed; If the temperature exceeds 1000°C to 1600°C, no separation will occur, and if the compound precipitation temperature falls outside the temperature range of 1000 to 1600°C, it will not be possible to secure the desired wear resistance and impact resistance. The compound precipitation treatment temperature is increased from the point to 10
It was set as 00:00 to 1600:00.

つぎに、この発明の暁結材料およびその製造法を実施例
により具体的に説明する。実施例 1 原料粉末として、平均粒径:1.0×mを有するTIC
粉末、同1.2〆mの(Tio.強Wo.舵)C粉末、
同1.5〆mのZrC粉末、同1.0〆mの(日ら.4
5N〜.母)C粉末、同1.2仏mのTaC粉末、同1
.叫mのTiB2粉末、および同0.8ムmのW粉末を
用意し、これら原料粉末のうちの2種以上を適宜組合せ
て所定組成に配合し、ボールミルにて7幼時間湿式混合
し、乾燥した後、15k9ノリの圧力にてプレス成形し
て圧粉体とし、ついで、この圧粉体を比気流中、温度:
800℃に1時間保持して予備焼結処理した後、10‐
ltonの真空中、温度:260000に1時間保持の
条件で競結し、暁結終了後、この焼緒温度から1500
00までの温度範囲を700oo/hrの冷却速度で冷
却し、1500qoに3時間保持の条件で化合物析出処
理を行なうことによって、第1表に示される成分組成を
もった本発明暁結材料1〜6および比較嬢結材料1〜6
をそれぞれ製造した。
Next, the dawning material of the present invention and its manufacturing method will be specifically explained with reference to Examples. Example 1 TIC having an average particle size of 1.0×m as a raw material powder
Powder, 1.2m of (Tio. Strong Wo. Rudder) C powder,
1.5 m of ZrC powder, 1.0 m of (Japan et al. 4)
5N~. Mother) C powder, 1.2 fm TaC powder, 1
.. Prepare TiB2 powder of 0.8 mm and W powder of 0.8 mm, mix two or more of these raw material powders to a predetermined composition, wet mix in a ball mill for 7 hours, and dry. After that, it is press-molded at a pressure of 15k9 to form a green compact, and then this green compact is heated in a specific air flow at a temperature of:
After pre-sintering by holding at 800℃ for 1 hour, 10-
The temperature was maintained at 260,000 for 1 hour in a vacuum of 200,000 ton.
By performing compound precipitation treatment under the conditions of cooling at a cooling rate of 700oo/hr and holding at 1500qo for 3 hours in the temperature range up to 6 and comparison materials 1 to 6
were manufactured respectively.

なお、比鮫焼結材料1〜6は、いずれも構成成分のうち
のいずれかの成分含有量(第1表に※印第1表を付した
もの)がこの発明の範囲から外れた組成をもつものであ
る。
In addition, Hisame Sintered Materials 1 to 6 all have compositions in which the content of any one of the constituent components (those marked with * in Table 1) is outside the scope of this invention. It is something that we have.

ついで、この結果得られた本発明焼給材料1〜6および
比鮫焼結材料1〜6のそれぞれから、SNP432の形
状をもった切削チップを作製し、被削材:JIS・SN
CM−8(硬さ:HB260)、切削速度:20肌/m
in、送り:0.3肋/rev、切込み:2肋、切削時
間:1び分の条件での連続高速切削試験、並びに被削材
:JIS・SNCM−8(硬さ:HB280)、切削速
度、180肌/min、送り:0.2側、切込み:2肋
、切削時間:3分の条件での断続高速切削試験を行ない
、連続高速切削試験では、チップ切刃におけるフランク
摩耗深さとクレータ摩耗深さを測定し、また断続高速切
削試験では、試験切刃数IN固のうちの欠損発生切刃数
を測定した。
Next, a cutting tip having a shape of SNP432 was prepared from each of the fired materials 1 to 6 of the present invention and Hisame sintered materials 1 to 6 obtained as a result, and the work material was JIS/SN.
CM-8 (hardness: HB260), cutting speed: 20 skin/m
continuous high-speed cutting test under the conditions of in, feed: 0.3 ribs/rev, depth of cut: 2 ribs, cutting time: 1 minute, work material: JIS/SNCM-8 (hardness: HB280), cutting speed , 180 skin/min, feed rate: 0.2 side, depth of cut: 2 ribs, and cutting time: 3 minutes. Intermittent high-speed cutting tests were conducted under the conditions of , 180 skin/min, feed: 0.2 side, cutting depth: 2 ribs, and cutting time: 3 minutes.In the continuous high-speed cutting tests, flank wear depth and crater wear on the chip cutting edge were measured. The depth was measured, and in the intermittent high-speed cutting test, the number of cutting edges in which breakage occurred out of the number of cutting edges tested was measured.

これらの測定結果を第1表に合せて示した。なお、第1
表には、比較の目的で山酸化物を主成分とするセラミッ
クス切削チップ、およびW炭化物を主成分とする超硬合
金基体の表面に化学蒸着法によりTi炭化物(TIC)
およびAI酸化物(山203)を7仏のの合計平均層厚
で被覆してなる表面被覆超硬合金切削チップ(従来切削
チップ1,2という)の同一条件での切削試験結果も示
した。第1表に示される結果から明らかなように、従来
切削チップ1は、特に耐衝撃性に劣るために試験切刃全
数に欠損が発生し、また従来切削チップ2はすぐれた耐
衝撃性をもつので断続高速切削試験では本発明焼結材料
と同等のすぐれた切削性能を示すものの、耐摩耗性に劣
るために連続高速切削試験では摩耗の大きなものとなっ
ている。
These measurement results are also shown in Table 1. In addition, the first
For comparison purposes, the table shows a ceramic cutting tip whose main component is mountain oxide, and Ti carbide (TIC) produced by chemical vapor deposition on the surface of a cemented carbide substrate whose main component is W carbide.
Also shown are cutting test results under the same conditions for surface-coated cemented carbide cutting tips (referred to as conventional cutting tips 1 and 2) coated with AI oxide (Mountain 203) with a total average layer thickness of 7 mm. As is clear from the results shown in Table 1, conventional cutting tip 1 had particularly poor impact resistance, resulting in fractures on all of the test cutting edges, and conventional cutting tip 2 had excellent impact resistance. Therefore, although it shows excellent cutting performance equivalent to the sintered material of the present invention in an intermittent high-speed cutting test, it suffers from large wear in a continuous high-speed cutting test due to inferior wear resistance.

これに対して、本発明齢緒材料1〜6は、断続および連
続高速切削試験のいずれにおいてもすぐれた高速切削性
能を発揮することが明らかである。さらに比鮫焼結材料
1〜6に見られるように、構成成分のうちのいずれかの
成分含有量がこの発明の範囲から外れると、連続および
断続高速切削試験の少なくともいずれかにおいて劣った
切削試験結果を示すようになるのである。実施例 2 実施例1で用いた原料粉末に加えて、さらに平均粒径:
1.かのの(Tio.58Wo.42)CO.短粉末、
および同1.0w仇のTIC岬馬.5粉末を用意し、こ
れら原料粉末を適宜組合せて用いて所定組成に配合し、
この配合粉末を実施例1におけると同一の条件で混合し
、プレス成形し、さらに予楠焼結処理した後、10‐2
tonの真空中、温度:2100℃に2時間保持して暁
結し、煉結後、固溶体組織を保持している前記競結温度
から1200q0までの温度範囲を700qo/hrの
冷却速度で冷却し、1200qoに5時間保持して化合
物析出処理を行なうことによって第2表に示される成分
組成をもった本発明暁結材料7〜10、および同じく構
成成分のうちのいずれかの成分含量(第2表に※印を付
したもの)がこの発明の範囲から外れた組成を有する比
鮫焼結材料7〜11をそれぞれ製造した。
On the other hand, it is clear that the aged materials 1 to 6 of the present invention exhibit excellent high-speed cutting performance in both intermittent and continuous high-speed cutting tests. Furthermore, as seen in Hisame Sintered Materials 1 to 6, when the content of any one of the constituent components falls outside the scope of the present invention, the cutting test is inferior in at least one of the continuous and intermittent high-speed cutting tests. It will show you the results. Example 2 In addition to the raw material powder used in Example 1, the average particle size:
1. Kanono (Tio.58Wo.42) CO. short powder,
And the same 1.0w enemy TIC Misaki horse. 5 powders are prepared, and these raw material powders are appropriately combined and used to form a predetermined composition,
This blended powder was mixed under the same conditions as in Example 1, press-molded, and pre-sintered, then 10-2
ton of vacuum at a temperature of 2,100°C for 2 hours, and after brining, it was cooled at a cooling rate of 700 qo/hr in the temperature range from the competitive coalescence temperature to 1,200 qo while maintaining a solid solution structure. , 1200 qo for 5 hours to perform a compound precipitation treatment, the present invention materials 7 to 10 having the component compositions shown in Table 2, and the content of any one of the constituent components (second Hisame sintered materials 7 to 11 (those marked with * in the table) having compositions outside the scope of the present invention were manufactured, respectively.

ついで、上記本発明焼結材料7〜10および比鮫焼縞材
料7〜1 1から、それぞれSNP432の形状をもっ
た切削チップを作成し、被削材:JIS・SNCM−8
(硬さ:HB250)、切削速度:80の/min、送
り:0.75肋/rev、切込み:8肌、切削時間:1
ぴ分の条件で連続高送り切削試験を行なし、、フランク
摩耗深さとクレータ摩耗深さを測定した。
Next, cutting chips each having a shape of SNP432 were prepared from the above-mentioned sintered materials 7 to 10 of the present invention and Hisame sintered striped materials 7 to 11.
(hardness: HB250), cutting speed: 80/min, feed: 0.75 ribs/rev, depth of cut: 8 skins, cutting time: 1
A continuous high-feed cutting test was conducted under perfect conditions, and flank wear depth and crater wear depth were measured.

この測定結果を第2表に示した。また、第2表には、比
較の目的で、いずれも市販のW炭化物を主成分とする錨
硬合金基体の表面に化学蒸着法により6Amの平均層厚
でTi炭化物の硬質層を被覆したものからなる表面被覆
超硬合金切削チップ、およびP30のW炭化物を主成分
とする超硬合金切削チップ(以下従来切削チップ3,4
という)の同一条件での切削試験結果も示した。
The measurement results are shown in Table 2. Table 2 also shows, for the purpose of comparison, a hard layer of Ti carbide coated with an average layer thickness of 6 Am by chemical vapor deposition on the surface of a commercially available anchor hard alloy substrate mainly composed of W carbide. surface-coated cemented carbide cutting tips consisting of P30 W carbide as a main component (hereinafter referred to as conventional cutting tips 3 and 4).
The results of cutting tests under the same conditions are also shown.

第2表に示されるように、実施例1におけると同様の結
果を示し、本発明焼緒材料7〜10で作製された切削チ
ップは、いずれも従釆切削チップ3,4および比較暁結
材料7〜11で作製された切削チップに比して一段とす
ぐれた切削性能を発揮することが明らかである。
As shown in Table 2, the results were similar to those in Example 1, and the cutting tips made with the inventive sintering materials 7 to 10 were the same as the cutting tips 3 and 4 of the subordinate cutting tips 3 and 4 and the comparative sintering materials. It is clear that the cutting performance is much superior to that of the cutting tips prepared in Examples 7 to 11.

上述のように、この発明によれば、高温特性、第2表す
なわち耐摩耗性、耐塑性変形性、耐酸化性、および耐衝
撃性にすぐれた焼結材料を通常の粉末治金法を用いて製
造することができ、したがって、この結果の暁結材料を
、前記の高温特性が要求される高速切削や高送り切削に
切削工具として用いた場合に著しくすぐれた切削性能を
発揮するのである。
As described above, according to the present invention, a sintered material with excellent high-temperature properties, Table 2, that is, wear resistance, plastic deformation resistance, oxidation resistance, and impact resistance is produced using a conventional powder metallurgy method. Therefore, when the resulting material is used as a cutting tool for high-speed cutting or high-feed cutting that requires the above-mentioned high-temperature properties, it exhibits extremely excellent cutting performance.

Claims (1)

【特許請求の範囲】 1 Ti:5〜25%、ZrおよびHfのうちの1種ま
たは2種:5〜20%、NbおよびTaのうちの1種ま
たは2種:5〜20%、C:15〜40%、B:1〜1
0%を含有し、残りがWと不可避不純物(ただしW:2
0〜55%含有)からなる組成(以上原子%)を有し、
かつ分散相が、TiとCとBとを主成分とする化合物相
と、ZrおよびHfのうちの1種または2種とCとBと
を主成分とする化合物相との微細硬質相からなり、一方
結合相が、Wを主成分とするW基合金からなる組織を有
することを特徴とする高温特性のすぐれた切削工具用焼
結材料。 2 原料粉末として、金属炭化物粉末、金属硼化物粉末
、金属炭硼化物粉末、およびW粉末を用意し、これら原
料粉末のうちの2種以上を用いて所定配合組成に配合し
、通常の条件で混合し、プレス成形し、ついでこの結果
の圧粉体を、非酸化性雰囲気中、温度:2000〜27
00℃の高温で完全固溶体化焼結した後、非酸化性雰囲
気中温度:1000〜1600℃で化合物析出処理を行
ない、Ti:5〜25%、ZrおよびHfのうち1種ま
たは2種:5〜20%、NbおよびTaのうちの1種ま
たは2種:5〜20%、C:15〜40%、B:1〜1
0%を含有し、残りがWと不可避不純物(ただしW:2
0〜55%含有)からなる組成(以上原子%)を有し、
かつ分散相が、TiとCとBとを主成分とする化合物相
と、ZrおよびHfのうちの1種または2種とCとBと
を主成分とする化合物相との微細硬質相からなり、一方
結合相が、Wを主成分とするW基合金からなる組織を有
する焼結材料を製造することを特徴とする高温特性のす
ぐれた切削工具用焼結材料の製造法。
[Claims] 1 Ti: 5-25%, one or two of Zr and Hf: 5-20%, one or two of Nb and Ta: 5-20%, C: 15-40%, B: 1-1
0%, and the rest is W and unavoidable impurities (however, W: 2
0 to 55%) (in atomic %),
and the dispersed phase consists of a fine hard phase consisting of a compound phase mainly composed of Ti, C and B, and a compound phase mainly composed of one or two of Zr and Hf and C and B. , on the other hand, a sintered material for cutting tools having excellent high-temperature properties, characterized in that the binder phase has a structure consisting of a W-based alloy containing W as a main component. 2. Prepare metal carbide powder, metal boride powder, metal carboride powder, and W powder as raw material powders, mix two or more of these raw material powders to a predetermined composition, and mix under normal conditions. The resulting green compact is mixed and press-molded in a non-oxidizing atmosphere at a temperature of 2000 to 27
After complete solid solution sintering at a high temperature of 00°C, compound precipitation treatment is performed at a temperature of 1000 to 1600°C in a non-oxidizing atmosphere, Ti: 5 to 25%, one or two of Zr and Hf: 5 ~20%, one or two of Nb and Ta: 5-20%, C: 15-40%, B: 1-1
0%, and the rest is W and unavoidable impurities (however, W: 2
0 to 55%) (in atomic %),
and the dispersed phase consists of a fine hard phase consisting of a compound phase mainly composed of Ti, C and B, and a compound phase mainly composed of one or two of Zr and Hf and C and B. A method for producing a sintered material for a cutting tool with excellent high-temperature properties, characterized in that the binder phase produces a sintered material having a structure consisting of a W-based alloy containing W as a main component.
JP57012639A 1982-01-29 1982-01-29 Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method Expired JPS6022057B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57012639A JPS6022057B2 (en) 1982-01-29 1982-01-29 Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
KR8204657A KR890004488B1 (en) 1982-01-29 1982-10-15 Sintered material for cutting tool having excellent high temperature characteristics and its priduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012639A JPS6022057B2 (en) 1982-01-29 1982-01-29 Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS58130245A JPS58130245A (en) 1983-08-03
JPS6022057B2 true JPS6022057B2 (en) 1985-05-30

Family

ID=11810937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012639A Expired JPS6022057B2 (en) 1982-01-29 1982-01-29 Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6022057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030430B2 (en) * 2003-08-15 2006-04-18 Intel Corporation Transition metal alloys for use as a gate electrode and devices incorporating these alloys

Also Published As

Publication number Publication date
JPS58130245A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
JP6439975B2 (en) Cermet manufacturing method
JP2710934B2 (en) Cermet alloy
JP4069749B2 (en) Cutting tool for roughing
JPS6022057B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
KR890004489B1 (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS6022058B2 (en) Sintered material for cutting tools with excellent high-temperature properties and its manufacturing method
JPH01228703A (en) Surface coated cutting tip provided with al or al alloy cutting breaker
JPS58130247A (en) Sintered material for cutting tool having excellent high temperature characteristics and its production
JPS6245290B2 (en)
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JPS6067638A (en) Cermet for cutting tool and hot processing tool
KR890004488B1 (en) Sintered material for cutting tool having excellent high temperature characteristics and its priduction
JPS6248408A (en) Cermet-make cutting tool having excellent wear and abrasion resistance and toughness
JP2710937B2 (en) Cermet alloy
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPS6245291B2 (en)
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS6067637A (en) Cermet for cutting tool or hot processing tool
JPS6021352A (en) Cermet for tool and its production
JPS60228634A (en) Manufacture of tungsten-base sintered material
JPS602377B2 (en) Sintered material for cutting tools with excellent high-temperature properties
JPS5864340A (en) Sintered material for cutting tool with superior characteristic at high temperature
KR20100018997A (en) Alloy stuff and manufacturing process thereof for cutting tool