JPS60106941A - Tough cermet - Google Patents

Tough cermet

Info

Publication number
JPS60106941A
JPS60106941A JP21479983A JP21479983A JPS60106941A JP S60106941 A JPS60106941 A JP S60106941A JP 21479983 A JP21479983 A JP 21479983A JP 21479983 A JP21479983 A JP 21479983A JP S60106941 A JPS60106941 A JP S60106941A
Authority
JP
Japan
Prior art keywords
alloy
cermet
cutting
phase
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21479983A
Other languages
Japanese (ja)
Other versions
JPS6343460B2 (en
Inventor
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Carbide Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Carbide Tools Ltd filed Critical Hitachi Carbide Tools Ltd
Priority to JP21479983A priority Critical patent/JPS60106941A/en
Publication of JPS60106941A publication Critical patent/JPS60106941A/en
Publication of JPS6343460B2 publication Critical patent/JPS6343460B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide high-toughness cermet having excellent resistance to plastic deformation and thermal cracking by making an alloy consisting of the dispersion phase composed of WC, TiC, TaC, NbC, Mo2C and TiN and the bond phase such as Ni non-magnetic. CONSTITUTION:An alloy consisting of 5-50wt% WC, 10-60% TiC, 5-30% TaC, 0.5-20% Mo2C and 5-30% TiN as the components for forming a dispersion phase and consisting of 5-20% Ni in addition to unavoidable impurities as a bond phase is formed a solid solution with the bond phase of about 20-25% W so as to make the coercive force of the alloy 0Oe by which the highly wear- resistant high-toughness cermet having excellent resistance to plastic deformation and thermal cracking is obtd. A part or the whole of said TaC can be substed. with NbC. The cutting tool consisting of the above-mentioned cermet has a long life and exhibits stable performance in interrupted cutting and exhibits stable performance under the cutting conditions of high speed and high feed.

Description

【発明の詳細な説明】 本発明は切削用工具材料として用いられるサーメットに
関するもので切削特性の中で、特に従来のサーメットの
弱点である耐塑性変形性、耐熱クランク性に優れた強靭
性サーメットを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cermet used as a cutting tool material, and is a tough cermet that has excellent cutting properties, particularly plastic deformation resistance and heat crank resistance, which are the weak points of conventional cermets. This is what we provide.

従来、炭化チタン(以下’l’icと略す)1、窒化チ
タンを含む炭化チタン(以下T1CNと略す)分散型サ
ーメットは、主成分であるTiCの性質上WCC超超硬
合金比べ熱伝導性が悪く刃先が高温になり塑性変形を生
ずるとか、熱クランクが生じ易い欠点があった。
Conventionally, titanium carbide (hereinafter abbreviated as 'l'ic) 1 and titanium carbide (hereinafter abbreviated as T1CN) dispersed cermets containing titanium nitride have lower thermal conductivity than WCC cemented carbide due to the properties of TiC, which is the main component. Unfortunately, the cutting edge becomes hot, causing plastic deformation and thermal cranking.

このことに対し、 AIを添加し析出強化により結合相
の耐熱化を図ることが提案されているが。
In response to this, it has been proposed to increase the heat resistance of the binder phase through precipitation strengthening by adding AI.

結合相自体の延性が乏しくなり合金の靭性が劣化する欠
点がある。また、結合相の固溶強化も提案されているが
、従来の手法ではW、 Moの固溶量が限られており完
全とはいえない。
There is a drawback that the ductility of the binder phase itself becomes poor and the toughness of the alloy deteriorates. Solid solution strengthening of the binder phase has also been proposed, but conventional methods cannot be said to be perfect because the amount of solid solution of W and Mo is limited.

本発明者らは上記従来技術の欠点を改良し1合金の靭性
を劣化することなく耐塑性変形性、耐熱クラック性を向
上させた強靭性サーメント會得べく研究を重ねた結果 (at1合金保磁力は第1図に示す様に結合相中に固溶
するW量と相関があり、固溶WCが20憾を越えるとは
ぼ0(Oe)Kなる。この様に保磁力が0〜3(Hue
)になる程度に結合相中にwl固溶せしめると合金の高
温での強度が著しく向上することと見出した。この理由
は結合相が著しく固溶強化され高温で合金が塑性変形す
る原因である結合相の塑性変形が抑制されることによる
と考えられる。この結果実際の切削においても耐塑性変
形性に優れることが認められた。
The present inventors have conducted repeated research to improve the drawbacks of the above-mentioned prior art and to create a strong cerment with improved plastic deformation resistance and heat cracking resistance without deteriorating the toughness of the AT1 alloy (at1 alloy coercive force As shown in Figure 1, there is a correlation with the amount of W dissolved in the binder phase, and when the solid solute WC exceeds 20 (Oe) K, it becomes approximately 0 (Oe) K. Hue
) It has been found that the strength of the alloy at high temperatures is significantly improved by solidly dissolving wl in the binder phase to the extent that wl is dissolved in the binder phase. The reason for this is thought to be that the binder phase undergoes significant solid solution strengthening and plastic deformation of the binder phase, which is the cause of plastic deformation of the alloy at high temperatures, is suppressed. As a result, it was confirmed that the material had excellent plastic deformation resistance even in actual cutting.

本発明の特徴である保磁力を0〜30(Oe)にするた
めにはW固溶量を20〜25チ とすることが必要であ
るがW固溶量を15〜25チとすることは合金のWC組
成及びψN比の調整で可能であることを第2図に示す。
In order to achieve a coercive force of 0 to 30 (Oe), which is a feature of the present invention, it is necessary to set the W solid solution amount to 20 to 25 inches, but it is not possible to set the W solid solution amount to 15 to 25 inches. Figure 2 shows what is possible by adjusting the WC composition and ψN ratio of the alloy.

第2図よりCZN比2においては合金のWC量が10%
以上、′ンN比3においては合金のWC量が25−以上
において結合相中のW量は 15チ以上となることを見
い出した。
From Figure 2, at CZN ratio 2, the WC content of the alloy is 10%.
As described above, it has been found that when the WC content of the alloy is 25 or more when the N ratio is 3, the W content in the binder phase is 15 or more.

また、NbCは合金の高温特性、と9わけ耐熱性変形性
と寄与する事実を見い出した。これは粒子をある程度成
長せしめ、結合相中の転位の上昇運動を阻止し、結合相
の変形抵抗を増すためでおる。
We have also discovered that NbC contributes to the high-temperature properties of the alloy, including its heat resistance and deformability. This is to allow the particles to grow to some extent, to prevent the upward movement of dislocations in the bonded phase, and to increase the deformation resistance of the bonded phase.

結合相中のW固溶量を増すにあたっては通常の原料を使
用した場合は、WC含有量を増加しても結合相中に固溶
するW量は15〜25チまでは到達しない。従って安定
して15%を越える量を固溶せしめるには、前述のL/
N比とWC含有量の調整の他1次の方法を用いなければ
ならない。この方法とはWCを含有した( W ’l 
t ) L N+ (嶌TiMo ) CN等の原料を
用いることであシ、この理由は、炭窒化原料中にWが前
もって含有されていないと、冷却中に結合相中に固溶し
ているWが炭窒化物に拡散固溶していく量が多いため、
結合相中に残るW量が減るためである。
When ordinary raw materials are used to increase the amount of W dissolved in the binder phase, even if the WC content is increased, the amount of W solid dissolved in the binder phase does not reach 15 to 25 T. Therefore, in order to stably dissolve more than 15% in solid solution, the above-mentioned L/
In addition to adjusting the N ratio and WC content, the following method must be used. This method contained WC (W'l
The reason for this is that if W is not previously included in the carbonitriding raw material, W will be dissolved in solid solution in the binder phase during cooling. Because there is a large amount of diffused solid solution into carbonitrides,
This is because the amount of W remaining in the bonding phase is reduced.

lbl熱クラックに対しては従来あまシ検討されていな
いが、熱クラツクの伝播経路を注意深く観察すると、炭
化物−結合相の界面を伝播する事実をつかんだ。そこで
界面強度を向上せしめれば熱クラツクの伝播抵抗は高め
られるとの観点に立ち、結合相組成との関連と研究した
結果9次の結果を得た。
IBL thermal cracks have not been studied extensively in the past, but by carefully observing the propagation path of thermal cracks, we found that they propagate through the carbide-bond phase interface. Therefore, from the viewpoint that the resistance to thermal crack propagation can be increased by improving the interfacial strength, we studied the relationship with the binder phase composition and obtained the following result.

界面強度の測定は困難であるため界面強度を表わす炭化
物−結合相のぬれ角を測定したと仁ろ保磁力が0〜30
(Oe)となるような結合相中の冑量が15%以上でほ
とんど0′となることを見い出した。これによりぬれ性
もよく炭化物結合相界面強度も高く熱クラツクが伝播し
にくいものと考えられる。
Since it is difficult to measure the interfacial strength, we measured the wetting angle of the carbide-bond phase, which represents the interfacial strength.
It has been found that (Oe) becomes almost 0' when the amount of iron in the binder phase is 15% or more. This is thought to result in good wettability and high carbide-bonded phase interface strength, making it difficult for thermal cracks to propagate.

以上(alおよび(blの効果により、析出型の合金よ
り靭性劣化が少なく、高温で変形しにくくかつ熱クラツ
クがほとんど生じないサーメットが得られることを見い
出したのである。
It has been discovered that due to the effects of (al and (bl), a cermet can be obtained that has less deterioration in toughness than precipitation type alloys, is less deformable at high temperatures, and has almost no thermal cracks.

次に、この発明の強靭性サーメットにおいて前述の数値
限定した理由について述べる。
Next, the reason for the above-mentioned numerical limitations in the tough cermet of the present invention will be described.

(1)炭化タングステン 炭化タングステンが5−未満では実質上結合相中にWを
209b〜25チ固溶せしめることが不可能であり、s
owを越すと耐摩耗性が著しく劣化すること、およびス
ケルトンの量が増し靭性も劣化するため5〜50%とし
た。中でも20〜40チがもっとも望ましいと思われる
(1) Tungsten carbide If the tungsten carbide content is less than 5%, it is virtually impossible to solidly dissolve 209b to 25% of W in the binder phase, and s
If it exceeds ow, the wear resistance will be significantly deteriorated, and the amount of skeleton will increase and the toughness will also deteriorate, so it was set at 5 to 50%. Among them, 20 to 40 inches seems to be the most desirable.

(2)炭化チタン ’l’icが10%以下ではサーメットとしての所望の
耐摩耗性が得られなく、また60チ以上では1lliC
の靭性不足が合金特性に現れ9合金の靭性が低下するた
め10〜60チとした。また’ri(:は(1’i、W
) ON (Ti MoW)UN (T i、 Ta、
 W ) UN等ノ形テ添加スルツカ好ましい。
(2) If the titanium carbide 'l'ic is less than 10%, the desired wear resistance as a cermet cannot be obtained, and if the titanium carbide is more than 60%, it is 1lliC.
Since the lack of toughness of alloy 9 appears in the alloy properties and the toughness of alloy 9 decreases, it was set to 10 to 60 inches. Also 'ri(:ha(1'i, W
) ON (Ti MoW) UN (T i, Ta,
W) Addition of TE in the form of UN is preferred.

(3)炭化タンタル Ta eは組織の微粒化0合金の高温特性の向上に寄与
するが、5チ以下では炭化物粒子が異状成長すること3
0%以上では靭性が劣化する傾向にあるため5〜30%
とした。
(3) Tantalum carbide (Ta e) contributes to improving the high-temperature properties of 0-alloy with a finer grained structure, but carbide particles grow abnormally when the structure is less than 5 mm.
5 to 30% since toughness tends to deteriorate when it is more than 0%.
And so.

(4)炭化ニオブ TaCのNbCへのおきかえはその置換量が増すに伴な
い合金の高温強度は増し耐塑性変形性は向上する。しか
し一般にNb(、’は靭性を落とす傾向におるが本研死
ではTa Cの全部、つまり最大30チまでNbeで置
換しても靭性の大きな劣化は認められなかったため、′
1”aCの1部または全部置換が可能である。
(4) When replacing niobium carbide TaC with NbC, as the amount of substitution increases, the high temperature strength of the alloy increases and the plastic deformation resistance improves. However, in general, Nb(,' tends to reduce toughness, but in this research, no major deterioration in toughness was observed even when all of TaC, up to 30 pieces, was replaced with Nbe.
Partial or complete substitution of 1"aC is possible.

(5)炭化モリブデン Mo2 Cは、炭化物に周辺組織を形成し結合相とのぬ
れ性向上に寄与するものであるが。
(5) Molybdenum carbide Mo2C forms a peripheral structure around the carbide and contributes to improving wettability with the binder phase.

0.5%以下では所望の効果が認められず。At 0.5% or less, the desired effect is not observed.

また20%以上では元来Mo2Cは低硬度のため合金の
耐摩耗性を劣化させるため0.5〜20チとした。
In addition, if Mo2C exceeds 20%, the wear resistance of the alloy deteriorates due to the low hardness of Mo2C.

(6)窒化チタン TiNの添加により合金の高温強度の向上および靭性の
向上が認められているが、5チ未満では所望の効果は認
められなく、また30チ含越すと、結合相とのぬれ性の
低下をきたすため5〜30チとした。
(6) The addition of titanium nitride (TiN) has been shown to improve the high-temperature strength and toughness of the alloy; however, the desired effect is not observed when the content is less than 50%, and when the content exceeds 30%, wetting with the binder phase The thickness was set at 5 to 30 inches to avoid deterioration in performance.

(7)結合相 結合相が5%以下だと靭性が不足ぎみであり 20%を
越すと高温での強度が弱まり本発明の対象である耐熱性
のある強靭性サーメットとして所望の特性を得ることが
できないため5〜20チとした。切削用としては中でも
8〜15%が望ましいと思われる。
(7) Binding Phase If the binding phase content is less than 5%, the toughness is insufficient, and if it exceeds 20%, the strength at high temperatures will be weakened, so that the desired properties can be obtained as a tough cermet with heat resistance, which is the object of the present invention. Since it is not possible to do so, it was set at 5 to 20 inches. For cutting purposes, 8 to 15% is considered to be particularly desirable.

(8)保磁力 保磁力が30(Oe)以上であると結合相中に固溶する
W量は少なく所望の炭化物−結合相ぬれ性が得られない
ため0〜300e とした。
(8) Coercive force If the coercive force is 30 (Oe) or more, the amount of W dissolved in solid solution in the binder phase is small and the desired carbide-bond phase wettability cannot be obtained, so it was set to 0 to 300e.

つぎに本発明強靭性サーメットを実施例により具体的に
その特性を説明する。
Next, the characteristics of the tough cermet of the present invention will be specifically explained using examples.

実施例1、 まずC/N原子比が1以上の(TiW)UN、 (’l
’iTa W) UN、および(Ti Mo W ) 
UN の組成をもった分散相形成のための原料粉末を市
販のTie(平均粒度1.311 ) Ti Co、s
 NO,! (同2.04 )TiN(同1.2μ) 
we (同1.0μ) MO2C(同1.5μ)および
Tag(同1.4μ)の粉末を用い適当量。
Example 1 First, (TiW)UN with a C/N atomic ratio of 1 or more, ('l
'iTa W) UN, and (Ti Mo W)
The raw material powder for forming the dispersed phase with the composition of
NO,! (2.04) TiN (1.2μ)
we (1.0μ) MO2C (1.5μ) and Tag (1.4μ) powder in appropriate amounts.

ボールミル混合後、真空中1600〜1900℃で2時
間反応させ固溶処理をし、冷却後ボールミルで平均粒d
 1.0μに粉砕することによって調整した。
After mixing in a ball mill, react in vacuum at 1,600 to 1,900°C for 2 hours to perform solid solution treatment, and after cooling, use a ball mill to reduce the average particle size to d.
It was adjusted by grinding to 1.0μ.

結合相形成のための原料粉末としてはNi(同1.0μ
)CO(同1.0μ)W(同0,5μ)の粉末を使用し
た。
The raw material powder for forming the binder phase was Ni (1.0μ
) CO (1.0μ) and W (0.5μ) powders were used.

従って本発明の強靭性サーメットの製造に関しては、上
述の(Ti W)UN (Ti Ta W)UN(’l
’ i Mo W ) (、:Nの少なくとも1種と結
合相を形成する粉末を用い、残りは必要に応じ上述のW
C,’l’a C等を単独に用いボールミルで配合を行
ない、′)いて前記混合粉末を乾燥後、プレスして圧粉
体を成形し、さらに前記圧粉体を10−”〜10−’ 
wag の真空中で1時間焼成して本発明サーメツ)1
〜6を製造した。前記本発明サーメツl−1〜6の成分
組成が第1表に示されている。なお第1表には合金組成
および結合相組成を変える以外は上記本発明サーメット
製造条件と同一の条件で製造した比較サーメツ)A−B
が0F記されている。
Therefore, regarding the production of the tough cermet of the present invention, the above-mentioned (Ti W)UN (Ti Ta W)UN('l
' i Mo W ) (,: Using a powder that forms a binder phase with at least one type of N, the rest is the above-mentioned W as necessary.
C, 'l'a C, etc. are used alone and blended in a ball mill.') After drying the mixed powder, it is pressed to form a green compact. '
The thermets of the present invention are baked for 1 hour in the vacuum of a wag) 1
-6 were produced. The component compositions of the thermets 1-1 to 1-6 of the present invention are shown in Table 1. Table 1 shows comparative cermets A-B manufactured under the same manufacturing conditions as the cermet of the present invention described above except for changing the alloy composition and binder phase composition.
is marked 0F.

ついで上記本発明サーメツ)1.2.3.4および6と
比較サーメツ) B、 C,i)およびBに関し、以下
に示す切削条件で連続および断続切削、熱クラツク比較
切削試験を行ない仁の結果も併記されている。
Next, regarding the above-mentioned inventive thermets) 1.2.3.4 and 6 and the above-mentioned inventive thermets) B, C, i) and B, continuous and intermittent cutting and thermal crack comparison cutting tests were conducted under the cutting conditions shown below, and the results were as follows. is also listed.

■連続切削条件(刃先のダレ測定) 切削材 8部M440 ()ls40)切り込み 2.
0− 送り速度 0.7ms/rev 切削速度 200m/= 切削時間 30秒 ■断続切削条件 被削材 aCM440 ()is 40 )切り込み 
2.〇− 切削速度 100m/sm 切削時間 6送91− ■熱クラック切削条件 被削材 aCM440(Hs40) 被削材形状 5X300X200 切削速度 150m/ヨ 送り速度 0.3諺/刃 切り込み 2− 切削時間 15゜ 第1表から明らかなように本発明サーメットは耐熱クラ
ンク性、耐塑性変形性が格段に優れていることがわかる
上、靭性の劣化も認められない。
■Continuous cutting conditions (measurement of sag on cutting edge) Cutting material 8 parts M440 ()ls40) Depth of cut 2.
0- Feed rate 0.7ms/rev Cutting speed 200m/= Cutting time 30 seconds ■ Intermittent cutting conditions Work material aCM440 ()is 40 ) Depth of cut
2. 〇- Cutting speed 100m/sm Cutting time 6 feeds 91- ■Thermal crack Cutting conditions Work material aCM440 (Hs40) Work material shape 5X300X200 Cutting speed 150m/Y feed rate 0.3mm/blade depth of cut 2- Cutting time 15゜As is clear from Table 1, the cermets of the present invention have extremely excellent heat crank resistance and plastic deformation resistance, and no deterioration in toughness is observed.

実施例2 実施例1において使用したと同じ原料粉末と平均粒径1
.5μのNi −AI (Ni : 70%、Al:3
0チ)合金粉末を用い、同様な製造条件によって本発明
サーメット7.8と比較サーメッ)F−Ht−製造した
。これら両サーメットの成分、結合相成分9合金物性、
実施例1と同一の切削試験結果が第2表に示されている
。第2表から明らかなように本発明サーメットはγ′相
析出型サーメットと同程度の耐塑性変形性と有し、かつ
、耐欠損性耐熱クラック性は格段に俊れていることが認
められる。
Example 2 Same raw material powder and average particle size 1 as used in Example 1
.. 5 μ of Ni-AI (Ni: 70%, Al: 3
Comparison cermet 7.8 and cermet 7.8 of the present invention were manufactured using alloy powder and under similar manufacturing conditions. The components of these cermets, the physical properties of the binder phase component 9 alloy,
The same cutting test results as in Example 1 are shown in Table 2. As is clear from Table 2, the cermets of the present invention have plastic deformation resistance comparable to that of the γ' phase precipitated cermets, and are far superior in chipping resistance and heat cracking resistance.

実施例3 例1と同一条件で本発明サーメット9〜12比較サーメ
ツ)l−Kを作製した。両サーメットの組成結合相組成
、物性、切削試験結果が第3表に示されている。
Example 3 Under the same conditions as in Example 1, cermets 9 to 12 of the present invention (comparative cermets) l-K were produced. The composition, binder phase composition, physical properties, and cutting test results of both cermets are shown in Table 3.

第3表から明らかなようにNbCの添加は。As is clear from Table 3, the addition of NbC.

合金の高温での耐塑性変形性に著しく効果があることが
認められる。
It is recognized that this has a significant effect on the plastic deformation resistance of the alloy at high temperatures.

上述のように本発明サーメットは ■炭火物−結合相界面強度が曖れ極めて熱クラツクが発
生しにくいうえ靭性も優れるため〔従来サーメットが不
得意であった〕熱サイクルが生ずるフライス断続切削に
おいて著しく長寿命であるに加え。
As mentioned above, the cermet of the present invention has a weak interfacial strength between the charcoal material and the binder phase, is extremely resistant to thermal cracking, and has excellent toughness [which conventional cermets were not good at], so it is extremely effective in interrupted milling cutting where thermal cycles occur. In addition to having a long lifespan.

送り量の大きい断続重切削において特に安定した性能を
示す。
Shows particularly stable performance in intermittent heavy cutting with large feed rates.

■)結合相固溶強化、耐塑性変形性、耐摩耗性に優れる
ため、高速、高送りの切削条件下で安定した性能を示す
■) It exhibits stable performance under high-speed, high-feed cutting conditions due to its excellent binder phase solid solution strengthening, plastic deformation resistance, and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結合相中に固溶するWg度と合金の保磁力の
関係を示したものであり、第2図は合金のWC量と結合
相中のW固溶量の関係を示したものである。 出願人 日立超硬株式会社 手続補正書 特許庁長官殿 1 手作の表示 昭和58年特許願第214799号 3、補正をする者 手性との関係 特許出願人 4、補正命令の日付 昭和59年2月8日(発送日 昭和59年2月28日)
5、補正の対称
Figure 1 shows the relationship between the degree of Wg dissolved in the binder phase and the coercive force of the alloy, and Figure 2 shows the relationship between the amount of WC in the alloy and the amount of W solid dissolved in the binder phase. It is something. Applicant: Hitachi Choukou Co., Ltd. Procedural amendments to the Commissioner of the Japan Patent Office 1 Handwritten indication Patent Application No. 214799 of 1983 3 Relationship with the nature of the person making the amendments Patent applicant 4 Date of amendment order 1988 February 8th (Shipping date: February 28th, 1982)
5. Symmetry of correction

Claims (2)

【特許請求の範囲】[Claims] (1)分散相形成成分として1重量比で炭化タングステ
ン5〜50%炭化チタン10〜6i、i化タンタル5〜
30 %、炭化モリブデン0.5〜20%窒化チタン5
〜30%からなり、結合相とし。 不可避不純物の他ニッケル5〜20%からなる合金にお
いて9合金の保磁力を0(Oe)にならしめたことを特
徴とする強靭性サーメット。
(1) As dispersed phase forming components, 1 weight ratio of tungsten carbide is 5 to 50%, titanium carbide is 10 to 6i, and tantalum i-ide is 5 to 50%.
30%, molybdenum carbide 0.5-20% titanium nitride 5
~30% as the bonded phase. A tough cermet characterized by having a coercive force of 9 alloys equal to 0 (Oe) in an alloy consisting of 5 to 20% nickel in addition to unavoidable impurities.
(2)上記特許請求範囲第1項記載の強靭性サーメット
において炭化タンタルの1部または全部を炭化ニオブに
おきかえたことを特徴とする強靭性サーメット。
(2) A tough cermet according to claim 1, characterized in that part or all of the tantalum carbide is replaced with niobium carbide.
JP21479983A 1983-11-14 1983-11-14 Tough cermet Granted JPS60106941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21479983A JPS60106941A (en) 1983-11-14 1983-11-14 Tough cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21479983A JPS60106941A (en) 1983-11-14 1983-11-14 Tough cermet

Publications (2)

Publication Number Publication Date
JPS60106941A true JPS60106941A (en) 1985-06-12
JPS6343460B2 JPS6343460B2 (en) 1988-08-30

Family

ID=16661711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21479983A Granted JPS60106941A (en) 1983-11-14 1983-11-14 Tough cermet

Country Status (1)

Country Link
JP (1) JPS60106941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203712A (en) * 1986-02-28 1987-09-08 Kyocera Corp Thermet solid end mill
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
JPS63203743A (en) * 1987-02-20 1988-08-23 Yoshida Kogyo Kk <Ykk> Titanium nitride cermet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193711A (en) * 1975-02-14 1976-08-17 Setsusakuyochokogokin
JPS5468814A (en) * 1977-11-14 1979-06-02 Mitsubishi Metal Corp Oxygenncontaining tough thermet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193711A (en) * 1975-02-14 1976-08-17 Setsusakuyochokogokin
JPS5468814A (en) * 1977-11-14 1979-06-02 Mitsubishi Metal Corp Oxygenncontaining tough thermet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203712A (en) * 1986-02-28 1987-09-08 Kyocera Corp Thermet solid end mill
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
JPS63203743A (en) * 1987-02-20 1988-08-23 Yoshida Kogyo Kk <Ykk> Titanium nitride cermet

Also Published As

Publication number Publication date
JPS6343460B2 (en) 1988-08-30

Similar Documents

Publication Publication Date Title
TW201026858A (en) Metal powder
JPS60106938A (en) Tough cermet
JPS61195950A (en) Cermet for cutting tool having high hardness and toughness
JPS60106941A (en) Tough cermet
JPH0273946A (en) Sintered hard alloy and duplex coated sintered hard alloy composed by forming film on surface of same alloy
US6892490B2 (en) Fishing hook
JPH01183310A (en) Surface covering carbonization tungsten group cemented carbide made throw away tip for milling cutter
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPS60106939A (en) Tough cermet
JP2004330314A (en) Coated cemented carbide tool
JPS602647A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPS60106940A (en) Tough cermet
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPS609850A (en) Sintered hard alloy for cutting
JPH08253836A (en) Wear resistant tungsten carbide-base cemented carbide having excellent toughness
JPH01116050A (en) Cermet alloy
JPS63227739A (en) High toughness cermet and its production
JPS5852552B2 (en) Tough cermet for cutting tools
JPS58213843A (en) Manufacture of high strength cermet
JPS63262443A (en) Tungsten carbide based cemented carbide for cutting tool
JPS61210150A (en) Sintered hard alloy
JPH0617532B2 (en) Cermet member for cutting tools
JPS599140A (en) Production of sintered material for cutting tool having excellent high-temperature characteristic
JPS6043459A (en) Sintered hard alloy for cutting
JPS5976850A (en) Manufacture of tough cermet