JPH02277746A - Wear-resistant low thermal expansion sintered alloy and its manufacture - Google Patents

Wear-resistant low thermal expansion sintered alloy and its manufacture

Info

Publication number
JPH02277746A
JPH02277746A JP3017189A JP3017189A JPH02277746A JP H02277746 A JPH02277746 A JP H02277746A JP 3017189 A JP3017189 A JP 3017189A JP 3017189 A JP3017189 A JP 3017189A JP H02277746 A JPH02277746 A JP H02277746A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
wear
low thermal
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017189A
Other languages
Japanese (ja)
Inventor
Yoichi Mochida
洋一 持田
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3017189A priority Critical patent/JPH02277746A/en
Publication of JPH02277746A publication Critical patent/JPH02277746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the sintered alloy having low thermal expansion properties and excellent wear resistance and strength in which carbide such as NbC is uniformly and finely dispersed into a matrix alloy phase constituted of an invar alloy by subjecting alloy powder obtd. from an alloy molten metal having prescribed compsn. to pressure sintering. CONSTITUTION:At first, alloy powder of which one or more kinds of MC-type carbide among NbC, TaC, TiC, ZrC and HfC are uniformly and finely dispersed into a matrix constituted of a well-known invar alloy is manufactured by subjecting a molten metal having prescribed compsn. to rapid solidifying treatment by a gas atomizing method or the like. At this time, as for the amounts of carbide-forming elements (such as Nb) and carbon, the amounts determined stoichiometrically so as to be present as MC-type carbide in the alloy are regulated as the standard. Next, the above alloy powder is subjected to pressure sintering to manufacture the above sintered alloy. Furthermore, as for the manufacture of the alloy powder, rapid solidifying treatment having about >=10<3> deg.C/sec cooling rate is preferably executed, and, as for the pressure sintering, HIP is preferably executed. Moreover, the average grain size of the carbide is preferably regulated to about <=5mum and the amt. of the carbide to about 2 to 10 volume.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、精密機械、機器の部品等低熱膨張でかつ耐摩
耗性が要求されるものに最適な焼結合金およびその製造
方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sintered alloy that is optimal for precision machinery, equipment parts, etc. that require low thermal expansion and wear resistance, and a method for producing the same. be.

〔従来の技術〕[Conventional technology]

周知のように多くの金属1合金は温度が上昇するにつれ
て体積が膨張し、この熱膨張率が大きいものは、温度変
化に伴う体積膨張、収縮が大きい。
As is well known, many metal 1 alloys expand in volume as the temperature rises, and those with a large coefficient of thermal expansion have large volumetric expansions and contractions as the temperature changes.

精密機械、機器などの部品にはその信頼性から、室温付
近での熱膨張係数が極めて小さい。いわゆるインバー型
合金が用いられることが多い。
Due to their reliability, parts for precision machinery and equipment have extremely low coefficients of thermal expansion near room temperature. A so-called invar type alloy is often used.

インバー型合金の代表例としては、ニッケルー鉄合金で
ある、36%Ni−Fe合金、31%N i−5% G
 o−F e 合金(スーパーインバー)、ステンレス
系インバー合金である54%Co−10%Cr−Fe合
金等が知られている。また、上記以外にもN1−Co−
Or−Fe系の合金において特定組成範囲で低熱膨張特
性が得られることが知られている。
Typical examples of invar type alloys include nickel-iron alloy, 36% Ni-Fe alloy, 31% Ni-5% G
O-F e alloy (super invar), 54% Co-10% Cr-Fe alloy, which is a stainless steel invar alloy, and the like are known. In addition to the above, N1-Co-
It is known that low thermal expansion characteristics can be obtained in a specific composition range in Or-Fe alloys.

以上のインバー型合金は、熱膨張特性の面からは精密機
械、機器部品の要求特性を満足するが。
The above-mentioned invar type alloys satisfy the requirements for precision machinery and equipment parts in terms of thermal expansion properties.

耐摩耗性、あるいは機械的強度が不足するという問題点
があった。
There was a problem that wear resistance or mechanical strength was insufficient.

耐摩耗性等向上のためには、従来のインバー合金に炭化
物生成元素を添加することも考えられるが、低熱膨張特
性を著しく害する結果となる。
In order to improve wear resistance, etc., it is possible to add carbide-forming elements to conventional Invar alloys, but this results in a significant deterioration of the low thermal expansion properties.

以上に対し、Ni (あるいはNiとCo)の含有量を
特定な範囲に規制することにより、炭化物生成元素を添
加しても低熱膨張特性が維持されること、具体的には、
N i 26.5−28.5%、 Co 13−15%
、 CrO,S−t%、G O,45−0,55%、V
 O,4−0,6%、 Mo O,8−1,2%、 M
n 0.3%以下、SLo、3%以下、残部実質的にF
eからなる鋳造合金が特開昭50−30728号に、ま
た同様な合金が特開昭55−122855号、同55−
128565号等に開示されている。
In view of the above, by regulating the content of Ni (or Ni and Co) within a specific range, low thermal expansion characteristics can be maintained even when carbide-forming elements are added.
Ni 26.5-28.5%, Co 13-15%
, CrO, S-t%, GO, 45-0,55%, V
O,4-0,6%, Mo O,8-1,2%, M
n 0.3% or less, SLo, 3% or less, remainder substantially F
A cast alloy consisting of E is disclosed in JP-A No. 50-30728, and similar alloys are disclosed in JP-A-55-122855 and JP-A-55-122855.
No. 128565 and the like.

またニッケルー鉄系低熱膨張鋳鉄中に黒鉛を析出させて
、低熱膨張特性と耐摩耗性等とを兼備させることが種々
提案されている(例えば、精密工学会誌、第51巻第5
号別刷「鉄−ニッケル合金」昭和60年5月5日発行、
特開昭62−284038号、同62−284039号
等)。
In addition, various proposals have been made to precipitate graphite in nickel-iron-based low thermal expansion cast iron to provide both low thermal expansion characteristics and wear resistance (for example, Journal of Precision Engineering, Vol. 51, No. 5).
Special issue of “Iron-Nickel Alloy” published on May 5, 1985,
JP-A-62-284038, JP-A No. 62-284039, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記の低熱膨張鋳鉄は鋳物であり、結晶粒が大き
く、組織が粗いため、熱膨張特性は滴定しても、耐摩耗
特性および強度において不十分であり、−層の改善が望
まれていた。
However, the above-mentioned low thermal expansion cast iron is a cast iron with large crystal grains and a coarse structure, so even if the thermal expansion characteristics are titrated, the wear resistance and strength are insufficient, and improvement of the layer has been desired. .

本発明は、低熱膨張特性とすぐれた耐摩耗性および強度
を有する耐摩耗低熱膨張合金を提供するものである。
The present invention provides a wear-resistant, low thermal expansion alloy having low thermal expansion characteristics and excellent wear resistance and strength.

[ilに厘を解決するための手段〕 本発明者は、炭化物を分散させることによりインバー合
金の耐摩耗性を向上することを検討した。
[Means for solving the problem] The present inventors have considered improving the wear resistance of Invar alloys by dispersing carbides.

ここで問題となるのは、前述の如く炭化物生成元素が基
地中に固溶すると低熱膨張特性が害されることである。
The problem here is that, as mentioned above, if the carbide-forming element is solidly dissolved in the matrix, the low thermal expansion characteristics will be impaired.

しかしこの一方、炭化物形成元素が基地中に固溶せずに
炭化物として合金中に存在した場合には低熱膨張特性を
維持することができる。
However, on the other hand, if the carbide-forming element does not form a solid solution in the base but exists in the alloy as a carbide, low thermal expansion characteristics can be maintained.

本発明者は1以上の点につき種々検討したところ、炭化
物生成自由エネルギーが低い、すなわち炭化物を作りや
すい炭化物生成元素であれば基地中に固溶するよりも優
先的に炭化物を形成し、基地の低熱膨張特性を維持でき
ることを知見した。
The present inventor conducted various studies on one or more points and found that if a carbide-forming element has a low carbide formation free energy, that is, it is easy to form a carbide, it will preferentially form a carbide rather than form a solid solution in the base. It was found that low thermal expansion characteristics can be maintained.

本発明は以上の知見に基づいてなされたもので。The present invention was made based on the above findings.

インバー合金からなる基地合金相に、NbC,TaCt
 T x Cy Z r C+ Hf Cの1種又は2
種以上のMC型炭化物が均一微細に分散していることを
特徴とする耐摩耗低熱膨張焼結合金である。
In the base alloy phase consisting of Invar alloy, NbC, TaCt
One or two of T x Cy Z r C+ Hf C
This is a wear-resistant, low thermal expansion sintered alloy characterized by having more than one type of MC type carbide uniformly and finely dispersed.

以下1本発明の詳細な説明する。The present invention will be explained in detail below.

本発明合金に分散される炭化物は、NbC。The carbide dispersed in the alloy of the present invention is NbC.

TaCrTictZrCtHfCの1種又は2種以上か
ら選択される。これはNb、 Ta、 Ti、 Zr、
 Hfが他の炭化物生成元素として知られるV、Cr等
に比べて炭化物生成自由エネルギーが小さく、低熱膨張
特性に悪影響を与えないからである。
It is selected from one or more of TaCrTictZrCtHfC. This includes Nb, Ta, Ti, Zr,
This is because Hf has a smaller free energy of carbide formation than V, Cr, etc., which are known as other carbide forming elements, and does not adversely affect the low thermal expansion characteristics.

上記炭化物生成元素のなかでもNbは、炭化物が生成し
やすいこと、炭化物自体の熱膨張係数が小さいこと、お
よび炭化物が基地に固溶しにくいことから1本発明合金
の炭化物形成元素としてもっとも望ましい。
Among the carbide-forming elements mentioned above, Nb is the most desirable as a carbide-forming element in the alloy of the present invention because it easily forms carbides, the coefficient of thermal expansion of the carbide itself is small, and the carbide is difficult to form a solid solution in the matrix.

基地中に分散される炭化物の含有量は、多すぎると材料
が脆化し加工が難しくなり、少なすぎると耐摩耗性が不
十分となる。以上を考慮した場合、体積雲で2−10%
とすることが望ましい。
If the content of carbide dispersed in the matrix is too large, the material will become brittle and difficult to process, and if it is too small, the wear resistance will be insufficient. Considering the above, 2-10% for volumetric clouds.
It is desirable to do so.

また、炭化物の大きさは小さいほど耐摩耗性、強度向上
に望ましく、平均粒径を5μI以下とすることが望まし
い。
Further, the smaller the size of the carbide, the better for improving wear resistance and strength, and it is desirable that the average particle size is 5 μI or less.

なお、上記のような炭化物生成自由エネルギーが小さい
炭化物生成元素を用いた場合でも微量が基地中に固溶す
ることは不可避であり、本発明は基地中に全く炭化物生
成元素が固溶していないことを意味するものでない。し
かし炭化物形成元素は極力基地に固溶させずに、炭化物
として分散させることが肝要である。
In addition, even when using a carbide-forming element with a small carbide-forming free energy as described above, it is inevitable that a small amount of the carbide-forming element will be solid-dissolved in the base, and in the present invention, no carbide-forming element is dissolved in the base at all. It does not mean that. However, it is important that the carbide-forming elements are dispersed as carbides without being dissolved in the base as much as possible.

基地となるインバー合金としては、従来から公知のイン
バー合金を広く適用することができる。
As the base Invar alloy, a wide variety of conventionally known Invar alloys can be used.

特に好適な合金としては。As a particularly suitable alloy.

(1)重量%でNi 32〜39%、残部実質的にFe
からなる合金、 (2)重量%でNi 29−38%、 Co 10%以
下、残部実質的にFeからなる合金、 (3)重量%でCo 54−59%、Cr 8−11%
以下、残部実質的にFeからなる合金、 が掲げられる。以上の合金に本発明で採用する炭化物を
分散させれば、熱膨張係数を4X10’/’C以下と精
密機械、機器として十分な熱膨張特性を得ることができ
る。
(1) 32 to 39% Ni by weight, the balance being substantially Fe
(2) an alloy consisting of 29-38% Ni, 10% or less Co, and the balance substantially Fe; (3) an alloy consisting of 54-59% Co, 8-11% Cr by weight;
Hereinafter, an alloy in which the remainder substantially consists of Fe is mentioned. By dispersing the carbide employed in the present invention in the above alloy, it is possible to obtain a thermal expansion coefficient of 4X10'/'C or less, which is sufficient for precision machinery and equipment.

(1)の合金においては、36%Ni−Fe、また(2
)の合金においては、31%Ni−5%Co−Feにな
るように成分配合を行なうと、最も熱膨張係数を小さく
することができる。(3)の合金は耐食性を要求される
用途に有効である。
In the alloy (1), 36% Ni-Fe and (2
), the coefficient of thermal expansion can be minimized by blending the ingredients to 31%Ni-5%Co-Fe. The alloy (3) is effective for applications requiring corrosion resistance.

なお、(1)〜(3)の合金の組成を限定する理由は。The reason why the compositions of the alloys (1) to (3) are limited is as follows.

いずれも上記範囲外だと所望する低熱膨張特性を満足す
ることができなくなるからである。
This is because if any of them is outside the above range, it will not be possible to satisfy the desired low thermal expansion characteristics.

また、合金の加工特性を向上させる目的でM n。In addition, Mn is added for the purpose of improving the processing characteristics of the alloy.

Sl、Se、Moを少量基地に固溶させることは低熱膨
張特性を満足する範囲内で許容される。
It is permissible to incorporate a small amount of Sl, Se, and Mo into a solid solution as long as low thermal expansion characteristics are satisfied.

以上よりなる本発明合金は、所定組成の合金溶湯から得
られた予備合金粉末を加圧焼結することによって製造す
るのが最も適している。
The alloy of the present invention as described above is most suitably produced by pressurizing and sintering a preliminary alloy powder obtained from a molten alloy having a predetermined composition.

すなわち、いわゆる溶製法、あるいはインバー合金粉末
と炭化物粉末とを混合した後加圧焼結する方法によって
も本発明と同等組成の合金を製造することは可能である
が1両者共に基地に分散される炭化物を十分に微細化す
ることができないのに対し、ガスアトマイズ法等によれ
ば極めて微細均一な炭化物が分散した予備合金粉末が得
られ、これを焼結した合金の炭化物形態も極めて均一微
細となるからである。
That is, although it is possible to produce an alloy with the same composition as the present invention by a so-called melting method or a method in which invar alloy powder and carbide powder are mixed and then pressure sintered, both of them are dispersed in the base. While it is not possible to sufficiently refine carbides, gas atomization methods yield a pre-alloy powder in which extremely fine and uniform carbides are dispersed, and the carbide morphology of the alloy produced by sintering this powder also becomes extremely uniform and fine. It is from.

以下、具体的に本発明合金の製造方法を説明する。The method for manufacturing the alloy of the present invention will be specifically described below.

まず、インバー型合金からなる基地中にMC型炭化物(
具体的にはNbC,TaC,TiC,ZrC,HfCの
1種又は2種以上)が均一微細に分散された予備合金粉
末が準備される。
First, MC type carbide (
Specifically, a preliminary alloy powder in which one or more of NbC, TaC, TiC, ZrC, and HfC is uniformly and finely dispersed is prepared.

この予備合金粉末は、所定組成の合金溶湯を急冷凝固処
理することによって製造される。
This preliminary alloy powder is produced by rapidly solidifying a molten alloy having a predetermined composition.

炭化物の平均粒径を5μm以下とするためには。In order to make the average particle size of carbide 5 μm or less.

合金溶湯を103℃/see以上の冷却速度を有する急
冷凝固処理方法を適用する必要がある。
It is necessary to apply a rapid solidification treatment method that has a cooling rate of 103° C./see or higher for the molten alloy.

これに該当する急冷凝固処理の方法としては、不活性ガ
スアトマイズ法、水アトマイズ法1回転ロール法等、従
来から広く知られた金属粉末製造方法が掲げられる。
Examples of the rapid solidification treatment methods include inert gas atomization, water atomization, single-rotation roll method, and other widely known metal powder manufacturing methods.

以上の急冷凝固処理により得られた合金粉末のうちでも
微粒のものを使用することが望まれる。
Among the alloy powders obtained by the above rapid solidification treatment, it is desirable to use fine-grained ones.

これは、微粒なほど凝固冷却速度が速くなり炭化物粒径
が微細になっているからである。
This is because the finer the particles, the faster the solidification cooling rate and the finer the carbide particle size.

本発明者の検討によると、100mesh以下であれば
十分微細な炭化物粒径の合金を得ることができる。
According to the studies of the present inventors, an alloy with a sufficiently fine carbide grain size can be obtained if the mesh size is 100 mesh or less.

次に加圧焼結の方法としては、熱間静水圧プレス(HI
 P)、ホットプレス、熱間バック圧延、熱間バック鍛
造等が適用できる。これらのうちでは、HIPが焼結密
度等の観点から最も望ましい6HIPの場合、ガス圧5
00気圧以上、加熱温度1000〜1300℃の条件で
実施されるが、具体的条件は合金組成等によって設定さ
れるべきであることは言うまでもない。
Next, as a method of pressure sintering, hot isostatic pressing (HI
P), hot pressing, hot back rolling, hot back forging, etc. can be applied. Among these, HIP is the most desirable from the viewpoint of sintering density, etc. In the case of 6HIP, the gas pressure is 5
It is carried out under the conditions of 00 atm or more and a heating temperature of 1000 to 1300°C, but it goes without saying that the specific conditions should be set depending on the alloy composition, etc.

また、HIP終了後に更に熱間鍛造、圧延等の熱間加工
を施してもよい。
Further, after HIP is completed, hot working such as hot forging or rolling may be further performed.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

実施例1 本実施例は、基地合金相&36%Ni−Fe合金とし、
炭化物としてNbCを選択しその量を変化させたもので
ある。
Example 1 In this example, the base alloy phase & 36% Ni-Fe alloy were used.
NbC is selected as the carbide and its amount is varied.

第1表に示す成分の合金粉末(試料(1)〜(4))を
ガスアトマイズ法により製造した。炭化物生成元素(N
b)と炭素量は、合金中でMC型炭化物として存在する
よう化学量論的に決められた量を基準とした。
Alloy powders (samples (1) to (4)) having the components shown in Table 1 were produced by a gas atomization method. Carbide-forming element (N
b) and the amount of carbon were based on the amount stoichiometrically determined to exist as MC type carbide in the alloy.

得られた合金粉末は、100mesh以下に分級し、カ
プセルに充填後、1100℃、 l0QO気圧で熱間静
水圧プレスし圧密化した。この焼結体を、t too℃
の温度で熱間鍛造した後、試験片を切り出し、熱膨張係
数、強度、耐摩耗性、ミクロ組織を調べた。
The obtained alloy powder was classified to 100 mesh or less, filled into capsules, and then hot isostatically pressed at 1100° C. and 10 QO atmospheric pressure to compact it. This sintered body is heated to t too°C
After hot forging at a temperature of , test pieces were cut out and their thermal expansion coefficient, strength, wear resistance, and microstructure were examined.

各特性値を第3表に示す。Table 3 shows each characteristic value.

第1図Aに試料(1)、Bに試料(2)の光学顕微鏡に
よるミクロ組織写真(倍率400倍)、第2図Aに試料
(1)、 Bに試料(2)の走査型電子顕微鏡によるミ
クロ組織写真(倍率1000倍)を示すが、平均粒径お
よそIμIのNbCが基地に均一に分散していることが
確認できた。
Figure 1: A is a microstructure photograph (400x magnification) of sample (1), B is a microstructure photograph (400x magnification) of sample (2), and Figure 2 is a scanning electron microscope photograph of sample (1) (A) and sample (2) (B). A microstructure photograph (magnification: 1000 times) is shown, and it was confirmed that NbC with an average particle size of approximately IμI was uniformly dispersed in the matrix.

比較材として第2表に示している、インゴットを鍛造し
て製造した36Ni−Fe合金(試料(5))、本発明
の合金(試料(2))と同組成であって溶製法による合
金(試料(6))、および黒鉛を析出分散させた36N
i−Fe合金の鋳造品(試料(7))を準備して同様の
評価を行ない1本発明合金との特性を比較した。
Comparative materials shown in Table 2 include a 36Ni-Fe alloy (sample (5)) manufactured by forging an ingot, and an alloy (sample (2)) that has the same composition as the alloy of the present invention (sample (2)) and is produced by an ingot process. Sample (6)) and 36N with graphite precipitated and dispersed
A cast product of i-Fe alloy (sample (7)) was prepared and evaluated in the same manner, and its properties were compared with that of the alloy of the present invention.

第3表 ×熱膨張率は25〜150℃における値とする※摩耗特
性は、以下の条件で大越式摩耗試験を行なった時の比摩
耗量を示す。
Table 3 × Coefficient of thermal expansion is the value at 25 to 150°C *Wear characteristics indicate the specific wear amount when the Okoshi type wear test was conducted under the following conditions.

試験機:大越式迅速摩耗試験機 相手材: JIS SK4相当材(硬さHRC56)摩
擦荷重: 6.8kg 摩擦距離: 400m 摩擦速度: 1.96m/see 第3表に示す試料(1)−(4)より本発明合金は、炭
化物量が増加するに従い1強度、耐摩耗特性が向上する
傾向が見られるが、炭化物量が増加すると熱膨張係数も
高くなる傾向にある。また炭化物量が2vo1%より少
ないと、比較材としてあげた従来の材料をしのいだ強度
、耐摩耗特性が得られなくなるものと推測される。
Testing machine: Okoshi type rapid wear tester Compatible material: JIS SK4 equivalent material (Hardness HRC56) Friction load: 6.8kg Friction distance: 400m Friction speed: 1.96m/see Sample (1) shown in Table 3 4) In the alloy of the present invention, as the amount of carbides increases, the strength and wear resistance properties tend to improve, but as the amount of carbides increases, the coefficient of thermal expansion also tends to increase. Furthermore, if the amount of carbide is less than 2vol%, it is presumed that the strength and wear resistance properties superior to those of the conventional materials used as comparative materials cannot be obtained.

熱膨張特性は、炭化物量の増加と共に熱膨張係数が増加
する傾向が見られるが、本発明合金では、いずれも熱膨
張係数が4X10−’/’C以下の低熱膨張合金となっ
た。
Regarding the thermal expansion characteristics, there is a tendency for the coefficient of thermal expansion to increase as the amount of carbide increases, but the alloys of the present invention were all low thermal expansion alloys with a coefficient of thermal expansion of 4X10-'/'C or less.

本発明合金(2)と同じ狙い成分の合金を、インゴット
を鍛造して製造した試料(6)のミクロ組織を観察した
ところ、炭化物の大きさは、10μm位の大きさで偏析
が見られた。この試料(6)の強度、耐摩耗特性は微小
炭化物が均一微細に分散した本発明合金(2)に比べは
るかに劣っている。
When we observed the microstructure of sample (6) produced by forging an ingot of an alloy with the same targeted components as the alloy of the present invention (2), we found that the carbide size was approximately 10 μm and segregation was observed. . The strength and wear resistance properties of this sample (6) are far inferior to the alloy of the present invention (2) in which fine carbides are uniformly and finely dispersed.

また、本発明合金は一般のインバー合金である試料(5
)に比べ、はるかに強度、耐摩耗性が向上しており、さ
らにインバー合金に球状黒鉛鋳鉄を分散させた合金であ
る試料(7)に比べても、低熱膨張特性、強度、耐摩耗
特性で優れている。
In addition, the alloy of the present invention is a sample (5) which is a general invar alloy.
), it has much improved strength and wear resistance, and even compared to sample (7), which is an alloy made of invar alloy with spheroidal graphite cast iron dispersed, it has lower thermal expansion characteristics, strength, and wear resistance. Are better.

実施例2 本実施例は、実施例1の試料(2)の合金をベースとし
、NiまたはC含有量を変化させ、その影響を調査した
ものである。
Example 2 This example uses the alloy of sample (2) of Example 1 as a base, changes the Ni or C content, and investigates the effects thereof.

第4表に用いた合金の化学組成等を示す。なお、製造方
法は実施例1と同様である。
Table 4 shows the chemical composition etc. of the alloys used. Note that the manufacturing method is the same as in Example 1.

第5表に実施例1と同様に各種特性を調査した結果を示
す。
Table 5 shows the results of investigating various characteristics in the same manner as in Example 1.

第5表 ×摩耗特性は、以下の条件で大越式摩耗試験を行なった
時の比摩耗量を示す。
Table 5 × Wear characteristics shows the specific wear amount when the Okoshi type wear test was conducted under the following conditions.

試験機:大越式迅速摩耗試験機 相手材: JIS SKA相当材(硬さHRC56)摩
擦荷重: 6.8kg 摩擦距離: 400m 摩擦速度: 1.96m/see 第5表の試料(8)ないしく10)の結果より、NbC
を5Vo1%分散させた本発明合金では、熱膨張係数が
4X10”/’C以下という低熱膨張特性をを得るため
には基地の合金のNi量をおよそ36〜39%の範囲と
する必要があると考えられる。
Testing machine: Okoshi type rapid wear tester Compatible material: JIS SKA equivalent material (hardness HRC56) Friction load: 6.8kg Friction distance: 400m Friction speed: 1.96m/see Samples (8) or 10 in Table 5 ), NbC
In the present alloy in which 5Vo1% is dispersed, in order to obtain a low thermal expansion property with a thermal expansion coefficient of 4X10''/'C or less, the Ni content of the base alloy must be in the range of approximately 36 to 39%. it is conceivable that.

また、試料(11)および(12)の結果より、化学量
論的に計算されたC量よりC′h<0.2%少ない合金
(試料(11))は、熱膨張係数が上昇する傾向にある
が、Cが0.2%多い合金(試料(12))にはほぼ熱
膨張係数に変動がないと言える。
In addition, from the results of samples (11) and (12), the thermal expansion coefficient of the alloy (sample (11)) with C'h<0.2% less than the stoichiometrically calculated C content tends to increase. However, it can be said that the alloy containing 0.2% more C (sample (12)) has almost no variation in the coefficient of thermal expansion.

これは、C量が少ない合金においてはNbCとしてCと
結合できないNbが基地中に固溶し基地の低熱膨張特性
を害したためと考えられるのにだいし、C量が多い合金
においてはNbと結合できないCが基地中に固溶するも
ののCはNbと比較して熱膨張特性に害を与えないため
、0.2%程度の増量では熱膨張係数に変動がないもの
と考えられる。これは1通常のインバー合金が0.1%
程度のCを含有していることからも推測される。
This is thought to be because Nb, which cannot combine with C as NbC in alloys with a small amount of C, becomes solid solution in the matrix and impairs the low thermal expansion characteristics of the matrix, but in alloys with a large amount of C, it cannot combine with Nb. Although C forms a solid solution in the base, C does not harm the thermal expansion characteristics compared to Nb, so it is thought that an increase of about 0.2% will not cause any change in the thermal expansion coefficient. This is 1 normal invar alloy is 0.1%
This is also inferred from the fact that it contains a certain amount of C.

なお、基地中のCが増加することにより機械的強度が増
加するため、機械的強度が要求される用途にはCを化学
量論的量より増加させて対応すればよい。
Incidentally, since the mechanical strength increases as the amount of C in the base increases, applications requiring mechanical strength may be handled by increasing the amount of C from the stoichiometric amount.

実施例3 本実施例は、実施例1および実施例2が炭化物としてN
bCを用いたのに対し、HfC等他の炭化物を用いたも
のである。
Example 3 In this example, Example 1 and Example 2 contain N as a carbide.
While bC was used, other carbides such as HfC were used.

第6表に用いた合金の化学組成等を示す。なお。Table 6 shows the chemical compositions of the alloys used. In addition.

製造方法は実施例1と同様である。The manufacturing method is the same as in Example 1.

第7表に実施例1と同様に各種特性を調査した結果を示
す。
Table 7 shows the results of various characteristics investigated in the same manner as in Example 1.

第7表より、Hf、Ta、TiまたはZrを炭化物元素
として用いた場合にも、Nbを炭化物として用いたもの
と同等の特性が得られることがわかる。
From Table 7, it can be seen that even when Hf, Ta, Ti, or Zr is used as the carbide element, properties equivalent to those using Nb as the carbide can be obtained.

第7表 X熱膨張率は25−150℃における値とする×摩耗特
性は、以下の条件で大館式摩耗試験を行なった時の比摩
耗量を示す。
Table 7 X Thermal expansion coefficient is the value at 25-150° C. × Abrasion characteristics shows the specific wear amount when the Odate type abrasion test was conducted under the following conditions.

試験機:大館式迅速摩耗試験機 相手材: JIS SK4相当材(硬さ[1RC56)
摩擦荷重: 6.8kg 摩擦距離: 400m 摩擦速度: 1.96m/see 実施例4 本実施例は、実施例工ないし実施例3基地合金相として
36 N i−F e合金を用いたのにだいし、その他
のインバー型合金を用いて評価したものである。
Testing machine: Odate type rapid abrasion tester Compatible material: JIS SK4 equivalent material (hardness [1RC56)
Friction load: 6.8 kg Friction distance: 400 m Friction speed: 1.96 m/see Example 4 This example differs from Example Work to Example 3 in that 36N i-Fe alloy was used as the base alloy phase. , which was evaluated using other invar type alloys.

第8表に用いた合金の化学組成等を示す、なお、製造方
法は実施例1と同様である。
Table 8 shows the chemical composition of the alloy used, and the manufacturing method is the same as in Example 1.

また、第9表に示す組成からなる合金を溶製法により得
て比較材とした。
In addition, alloys having the compositions shown in Table 9 were obtained by a melting process and used as comparative materials.

第10表に実施例1と同様に各種特性を調査した結果を
示す。
Table 10 shows the results of various characteristics investigated in the same manner as in Example 1.

第10表より1本発明合金は低熱膨張特性を大きく劣化
させること無く、従来の溶製法による合金に比べ耐摩耗
性、強度等を格段に向上させることができるのがわかる
From Table 10, it can be seen that the alloy of the present invention can significantly improve wear resistance, strength, etc., compared to alloys produced by conventional melting methods, without significantly deteriorating the low thermal expansion properties.

第9表 X熱膨張率は25〜150℃における値とする×摩耗特
性は、以下の条件で大館式摩耗試験を行なった時の比摩
耗量を示す。
Table 9 X Thermal expansion coefficients are values at 25 to 150° C. × Wear characteristics indicate the specific wear amount when the Odate type wear test was conducted under the following conditions.

試験機:大館式迅速摩耗試験機 相手材: JIS SK4相当材(硬さ)IRC56)
摩擦荷重: 6.8kg 摩擦距離: 400m 摩擦速度: 1,96m/sec 〔発明の効果〕 以上説明のように、本発明合金は部品の熱膨張をきらう
精密機械などの分野において、従来、強度や耐摩耗特性
が不足するため低熱膨張合金を使用ではなかった可動部
品等に使用することができる。
Testing machine: Odate type rapid abrasion tester Compatible material: JIS SK4 equivalent material (hardness: IRC56)
Friction load: 6.8 kg Friction distance: 400 m Friction speed: 1,96 m/sec [Effects of the invention] As explained above, the alloy of the present invention has been used in the field of precision machinery where thermal expansion of parts is avoided. It can be used for moving parts, etc., where low thermal expansion alloys cannot be used due to their lack of wear resistance.

本合金を使用することにより、精密機械の精度向上と寿
命向上が期待できる。
By using this alloy, it is expected that the accuracy and life of precision machinery will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bはそれぞれ実施例中の試料(1)および試
料(2)の光学顕微鏡による金属ミクロ組織写真(倍率
400倍)、第2図A、Bはそれぞれ実施例中の試料(
1)および試料(2)の走査型電子顕微鏡による金属ミ
クロ組織写真(倍率1000倍)である。
Figures 1A and B are photos of metal microstructures (400x magnification) taken with an optical microscope of sample (1) and sample (2) in the example, respectively, and Figures 2A and B are photos of the sample (400x) in the example, respectively.
1) and sample (2) taken with a scanning electron microscope (1000x magnification).

Claims (1)

【特許請求の範囲】 1、インバー合金からなる基地合金相に、NbC、Ta
C、TiC、ZrC、HfCの1種又は2種以上のMC
型炭化物が均一微細に分散していることを特徴とする耐
摩耗低熱膨張焼結合金。 2、炭化物の平均粒径が5μm以下、炭化物量が体積%
で2〜10%である請求項1記載の耐摩耗低熱膨張焼結
合金。 3、基地合金相が、重量%でNi32〜39%、残部実
質的にFeからなる合金であり、室温から150℃まで
の熱膨張係数が4×10^−^6/℃以下である請求項
1記載の耐摩耗低熱膨張焼結合金。 4、基地合金相が、重量%でNi29〜38%、Co1
0%以下、残部実質的にFeからなる合金であり、室温
から150℃までの熱膨張係数が4×10^−^6℃以
下である請求項1記載の耐摩耗低熱膨張焼結合金。 5、基地合金相が、重量%でCo54〜59%、Cr8
〜11%以下、残部実質的にFeからなる合金であり、
室温から150℃までの熱膨張係数が4×10^−^6
/℃以下である請求項1記載の耐摩耗低熱膨張焼結合金
。 6、請求項1乃至請求項4記載の耐摩耗低熱膨張焼結合
金の製造方法であって、最終組成になるように調整され
た合金溶湯から合金粉末を製造し、ついで合金粉末を加
圧焼結することを特徴とする耐摩耗低熱膨張焼結合金の
製造方法。 7、合金粉末の製造が、10^3℃/sec以上の冷却
速度を有する急冷凝固処理である請求項6記載の耐摩耗
低熱膨張焼結合金の製造方法。 8、加圧焼結が熱間静水圧プレス処理である請求項6記
載の耐摩耗低熱膨張焼結合金の製造方法。 9、熱間静水圧プレス処理後に熱間加工する請求項6記
載の耐摩耗低熱膨張焼結合金の製造方法。
[Claims] 1. In the base alloy phase consisting of an invar alloy, NbC, Ta
One or more MCs of C, TiC, ZrC, and HfC
A wear-resistant, low thermal expansion sintered alloy characterized by uniform and finely dispersed carbides. 2. Average grain size of carbide is 5 μm or less, amount of carbide is volume %
2. The wear-resistant, low thermal expansion sintered alloy according to claim 1, wherein the wear-resistant, low thermal expansion sintered alloy has a content of 2 to 10%. 3. A claim in which the base alloy phase is an alloy consisting of 32 to 39% Ni by weight and the remainder substantially Fe, and has a coefficient of thermal expansion from room temperature to 150°C of 4 x 10^-^6/°C or less. The wear-resistant, low thermal expansion sintered alloy according to item 1. 4. The base alloy phase is Ni29-38% by weight%, Co1
2. The wear-resistant, low thermal expansion sintered alloy according to claim 1, which is an alloy consisting of 0% or less and the remainder substantially Fe, and has a coefficient of thermal expansion from room temperature to 150°C of 4×10^-^6°C or less. 5. Base alloy phase is Co54-59%, Cr8 in weight%
~11% or less, the balance substantially consisting of Fe,
Thermal expansion coefficient from room temperature to 150℃ is 4 x 10^-^6
2. The wear-resistant, low thermal expansion sintered alloy according to claim 1, wherein the wear-resistant, low thermal expansion sintered alloy has a temperature of at most /°C. 6. A method for producing a wear-resistant, low thermal expansion sintered alloy according to claims 1 to 4, wherein an alloy powder is produced from a molten alloy adjusted to have a final composition, and then the alloy powder is pressure sintered. A method for producing a wear-resistant, low thermal expansion sintered alloy characterized by the following: 7. The method for producing a wear-resistant, low thermal expansion sintered alloy according to claim 6, wherein the production of the alloy powder is a rapid solidification treatment having a cooling rate of 10^3°C/sec or more. 8. The method for producing a wear-resistant, low thermal expansion sintered alloy according to claim 6, wherein the pressure sintering is hot isostatic pressing. 9. The method for producing a wear-resistant, low thermal expansion sintered alloy according to claim 6, wherein hot working is carried out after hot isostatic pressing.
JP3017189A 1988-12-06 1989-02-09 Wear-resistant low thermal expansion sintered alloy and its manufacture Pending JPH02277746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017189A JPH02277746A (en) 1988-12-06 1989-02-09 Wear-resistant low thermal expansion sintered alloy and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-308443 1988-12-06
JP30844388 1988-12-06
JP3017189A JPH02277746A (en) 1988-12-06 1989-02-09 Wear-resistant low thermal expansion sintered alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH02277746A true JPH02277746A (en) 1990-11-14

Family

ID=26368469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017189A Pending JPH02277746A (en) 1988-12-06 1989-02-09 Wear-resistant low thermal expansion sintered alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH02277746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000395A1 (en) * 1990-06-29 1992-01-09 Kabushiki Kaisha Toshiba Iron-nickel alloy
GB2361935A (en) * 2000-01-31 2001-11-07 Smith International Cermets with low coefficient of thermal expansion
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
EP4074434A4 (en) * 2019-12-13 2022-12-21 Mitsubishi Electric Corporation Alloy, wire, and alloy powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000395A1 (en) * 1990-06-29 1992-01-09 Kabushiki Kaisha Toshiba Iron-nickel alloy
GB2361935A (en) * 2000-01-31 2001-11-07 Smith International Cermets with low coefficient of thermal expansion
GB2361935B (en) * 2000-01-31 2004-07-28 Smith International Low coefficient of thermal expansion cermet compositions
US8956438B2 (en) 2000-01-31 2015-02-17 Smith International, Inc. Low coefficient of thermal expansion cermet compositions
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
EP4074434A4 (en) * 2019-12-13 2022-12-21 Mitsubishi Electric Corporation Alloy, wire, and alloy powder

Similar Documents

Publication Publication Date Title
EP3611282B1 (en) Cobalt based alloy powder
US5482670A (en) Cemented carbide
US5778301A (en) Cemented carbide
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
JP4439591B2 (en) Stainless steel powder and products made by powder metallurgy from the powder
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
JP2013508546A (en) Cemented carbide and method for producing the same
KR20050021753A (en) Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure
JPH055152A (en) Hard heat resisting sintered alloy
JPH05179373A (en) Preparation of carburized nitride alloy based on titanium of ultrafine particle
TWI652352B (en) Eutectic porcelain gold material
JP2023518477A (en) Cobalt-free tungsten carbide cemented carbide material
JPH07508312A (en) Extremely fine-grained sintered titanium-based carbonitride alloy with improved toughness and/or wear resistance
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
GB2298869A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US4198234A (en) Sintered metal articles
GB2065710A (en) Production of high density sintered bodies
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JPH0114985B2 (en)
JP3603318B2 (en) Double boride based sintered alloy
JPH05222481A (en) New high chromium-nickel mechanical alloy and its production