JPH0114985B2 - - Google Patents

Info

Publication number
JPH0114985B2
JPH0114985B2 JP58147569A JP14756983A JPH0114985B2 JP H0114985 B2 JPH0114985 B2 JP H0114985B2 JP 58147569 A JP58147569 A JP 58147569A JP 14756983 A JP14756983 A JP 14756983A JP H0114985 B2 JPH0114985 B2 JP H0114985B2
Authority
JP
Japan
Prior art keywords
alloy
sintering
carbide
volume
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58147569A
Other languages
Japanese (ja)
Other versions
JPS6039149A (en
Inventor
Masayuki Iijima
Hidetoshi Akutsu
Masahiro Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14756983A priority Critical patent/JPS6039149A/en
Publication of JPS6039149A publication Critical patent/JPS6039149A/en
Publication of JPH0114985B2 publication Critical patent/JPH0114985B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐摩耗性および自己潤滑
性を有し、かつ耐熱性および耐食性にすぐれ、特
にこれらの特性が要求されるバルブシート、バル
ブガイド、ロツカーアーム、タペツト、および軸
受などの耐摩耗部品の製造に用いた場合にすぐれ
た性能を発揮するFe基焼結合金の製造法に関す
るものである。 従来、一般に、上記の耐摩耗部品の製造には、
ステンレス鋼、耐熱鋼、あるいは合金工具鋼など
の成分組成に相当する組成をもつたFe基焼結合
金が用いられている。 これらのFe基焼結合金は、すぐれた耐熱性お
よび耐食性を有し、かつ素地中にビツカース硬さ
で700以上の炭化物が均一微細に分散した組織を
もつので、実用に際してはすぐれた耐摩耗性を示
すが、一方硬質であるために相手攻撃性が著しく
高いという問題をもつものであつた。 そこで、本発明者等は、上述のような従来耐摩
耗部品のもつ問題点を解決すべく研究を行なつた
結果、 Cr:1〜25%、C:1.3〜6%、Si:0.5〜5
%、 Mo、W、およびNb(以下、これらを総称して
炭化物形成成分という)のうちの1種または2種
以上(合量で):0.1〜20%、 を含有し、さらに必要に応じて、 PおよびBうちの1種または2種(合量で):
0.05〜2%、 を含有し、残りがFeと不可避不純物からなる配
合組成を有する圧粉体を、 圧力:10-1torr以下の真空中、1020〜1200℃の
範囲内の所定温度で焼結した後、 少なくとも焼結温度から変態点までの範囲を2
〜40℃/minの速度で冷却することによつて製造
され、かつ素地中に、ビツカース硬さで700以上
を有する炭化物:3〜40容量%および遊離黒鉛:
3〜20容量%が均一に分散した組織を有するFe
基焼結合金は、その素地によつてすぐれた耐熱性
と耐食性が確保され、かつ素地中に微細均一に分
散する炭化物によつてすぐれた耐摩耗性が、さら
に同じく遊離黒鉛によつてすぐれた自己潤滑性が
確保されるようになるという知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成、製造条件および組
織を上記の通りに限定した理由を説明する。 A 成分組成 (a) Cr Cr成分には、素地に固溶して、これを強
化すると共に耐熱性および耐食性を向上さ
せ、さらにC成分と結合してビツカース硬さ
で700以上の高硬度を有するCr炭化物を形成
し、かつ炭化物形成成分とさらに一段と高い
硬さをもつた複炭化物を形成して合金の耐摩
耗性を向上させる作用があるが、その含有量
が1%未満では前記作用に所望の効果が得ら
れず、一方25%を越えて含有させると、合金
の脆化が著しくなることから、その含有量を
1〜25%と定めた。 (b) C C成分には、素地に固溶して、これを強化
すると共に、上記のようにCrや炭化物形成
成分と結合してビツカース硬さで700以上の
高硬度を有するCr炭化物や、これとの複炭
化物を形成して合金の耐摩耗性を向上させ、
さらに焼結後の徐冷過程で均一微細に分散し
た遊離黒鉛として析出して合金の自己潤滑性
を向上させる作用があるが、その含有量が
1.3%未満では所望のすぐれた耐摩耗性およ
び自己潤滑性を確保することができず、一方
6%を越えて含有させると、合金の強度およ
び靭性の低下が著しくなることから、その含
有量を1.3〜6%と定めた。 (c) Si Si成分には、素地に固溶して、焼結性を著
しく改善し、もつて合金を緻密化するほか、
素地に固溶したC成分の解離反応を大きくし
て、C成分の析出を促進する作用があるが、
その含有量が0.5%未満では前記作用に所望
の効果が得られず、一方5%を越えて含有さ
せると、合金の靭性が低下するようになるば
かりでなく、焼結時の液相量が多くなりすぎ
て形状変形が生ずるようになることから、そ
の含有量を0.5〜5%と定めた。 (d) PおよびB これらの成分には、焼結性を改善して合金
を緻密化し、かつ素地に固溶して合金の強度
を向上させる作用があるので、特にこれらの
特性が要求される場合に応じて含有させる
が、その含有量が0.05%未満では前記作用に
所望の向上効果が得られず、一方2%を越え
て含有させると、焼結時の液相量が多くなり
すぎて形状変形を起し易くなるばかりでな
く、合金の強度低下の原因ともなることか
ら、その含有量を0.05〜2%と定めた。 (e) 炭化物形成成分 これらの成分には、素地に固溶して、これ
を強化するほか、C成分と結合して高硬度を
有する炭化物および複炭化物を形成し、もつ
て合金の耐摩耗性を一段と向上させる作用が
あるが、その含有量が0.1%未満では前記作
用に所望の向上効果が得られず、一方20%を
越えて含有させると、合金に脆化傾向が現わ
れるようになることから、その含有量を0.1
〜20%と定めた。 B 組織 (a) 炭化物 炭化物の量が、素地中に占める割合で3容
量%未満では、所望のすぐれた耐摩耗性を確
保することができず、一方炭化物量が、同様
の割合で40容量%を越えると、合金の脆化が
著しくなると共に、相手攻撃性も高くなるこ
とから、素地中における炭化物の割合を3〜
40容量%と定めた。 (b) 遊離黒鉛 遊離黒鉛の量が、素地中に占める割合で3
容量%未満では、所望のすぐれた自己潤滑性
を確保することができず、一方遊離黒鉛量
が、同様の割合で20容量%を越えると、合金
の強度が急激に低下するようになることか
ら、素地中における遊離黒鉛の割合を3〜20
容量%と定めた。 C 製造条件 (a) 焼結雰囲気の真空度 焼結雰囲気の真空度は、合金成分たるSi量
にも影響を受けるが、その真空度が10-1torr
より悪くなると、焼結雰囲気中の酸素および
水分が、FeやCをはじめとする成分と反応
を起し、遊離黒鉛の生成を困難にする一方
で、炭化物の生成が促進されてしまうため所
定の組織を得ることができなくなるばかりで
なく、焼結合金中の酸素量が増大するため、
合金強度が著しく低下し、過酷な条件下での
使用に耐えられなくなり、さらに耐摩耗性お
よび摺動特性も劣化するようになることか
ら、焼結雰囲気の真空度を10-1torr以上と定
めた。 (b) 焼結温度 焼結温度が1020℃未満では、素地中への合
金成分の固相拡散が十分に行なわれないた
め、所望の合金強度および組織を確保するこ
とができず、一方1200℃を越えた焼結温度で
は液相の発生量が多くなりすぎて、形状変形
が著しく、所定の形状が得られなくなること
から、焼結温度を1020〜1200℃と定めた。 (c) 冷却速度 冷却速度が2℃/min未満では、あまりに
も徐冷すぎて実用的でないばかりでなく、こ
のように遅い冷却速度にしても遊離黒鉛の析
出量および炭化物の形成量はこれより速い冷
却速度の場合とほとんど同じであり、一方40
℃/minを越えた冷却速度にしても、相対的
に炭化物の割合が多く、遊離黒鉛の割合が少
なくなる傾向が現われるが、その改善効果に
より一層の向上効果は得られないことから、
焼結後における焼結温度から少なくとも変態
点までの冷却速度を2〜40℃/minと定め
た。 つぎに、この発明のFe基焼結合金およびその
製造法を実施例により具体的に説明する。 実施例 原料粉末として、粒度−100meshのFe粉末、
いずれも粒度−100meshを有し、かつCr含有量が
それぞれ5%、13%、25%、35%、および65%の
5種類のFe−Cr合金粉末、同−100meshのカー
ボン粉末、平均粒径:3μmのMo粉末およびW粉
末、いずれも粒度−100meshを有するTiC粉末、
NbC粉末、およびWC粉末、粒度−100meshのFe
−Cr−Mo−Nb合金(Cr:13%、Mo:1%、
Nb:7%含有)粉末、いずれも粒度−100mesh
のFe−P合金(P:27%含有)粉末、Fe−B合
金(B:17%含有)粉末、およびFe−Si合金
(Si:42%含有)粉末を用意し、これら原料粉末
をそれぞれ第1表に示される配合組成に配合し、
V型ミキサーにて30分間混合した後、4〜7ton/
cm2の範囲内の所定圧力にて圧粉体に成形し、つい
でこれらの圧粉体を第2表に示される焼結条件お
よび冷却条件にて焼結することによつて、本発明
法1〜33および比較法1〜3をそれぞれ実施し、
Fe基焼結合金を製造した。 なお、比較法1〜3は配合組成(第1表に※印
を付したもの)がこの発明の範囲から外れたもの
である。
This invention has excellent wear resistance and self-lubricating properties, as well as excellent heat resistance and corrosion resistance, and is particularly applicable to wear-resistant parts such as valve seats, valve guides, rocker arms, tappets, and bearings that require these properties. This invention relates to a method for producing an Fe-based sintered alloy that exhibits excellent performance when used in the production of. Conventionally, the manufacturing of the above wear-resistant parts generally involves the following steps:
An Fe-based sintered alloy with a composition corresponding to that of stainless steel, heat-resistant steel, or alloy tool steel is used. These Fe-based sintered alloys have excellent heat resistance and corrosion resistance, and have a structure in which carbides with a Vickers hardness of 700 or more are uniformly and finely dispersed in the base material, so they have excellent wear resistance in practical use. However, it had the problem of being extremely aggressive due to its hardness. Therefore, the present inventors conducted research to solve the problems of conventional wear-resistant parts as described above, and found that Cr: 1 to 25%, C: 1.3 to 6%, Si: 0.5 to 5%.
%, one or more (total amount) of Mo, W, and Nb (hereinafter collectively referred to as carbide-forming components): 0.1 to 20%, and further as necessary. , one or two of P and B (in total amount):
A compact containing 0.05 to 2% of Fe and unavoidable impurities is sintered at a predetermined temperature within the range of 1020 to 1200°C in a vacuum at a pressure of 10 -1 torr or less. After that, the range from the sintering temperature to the transformation point is at least 2
Carbide produced by cooling at a rate of ~40°C/min and having a Bitkers hardness of 700 or more: 3 to 40% by volume and free graphite:
3-20% by volume Fe with uniformly dispersed structure
The base sintered alloy has excellent heat resistance and corrosion resistance due to its base material, and excellent wear resistance due to the carbide finely and uniformly dispersed in the base material, and also excellent wear resistance due to the free graphite. They obtained the knowledge that self-lubricating properties can be ensured. This invention was made based on the above findings, and the reason why the component composition, manufacturing conditions, and structure were limited as described above will be explained below. A Component composition (a) Cr The Cr component is dissolved in the base material to strengthen it and improve heat resistance and corrosion resistance, and also combines with the C component to have a high hardness of 700 or more on the Bitkers hardness. It has the effect of forming a Cr carbide and, together with the carbide-forming component, a double carbide with even higher hardness to improve the wear resistance of the alloy, but if its content is less than 1%, it does not have the desired effect. However, if the content exceeds 25%, the alloy becomes extremely brittle, so the content was set at 1 to 25%. (b) C The C component includes Cr carbide, which is dissolved in the base material to strengthen it and has a high hardness of 700 or more on the Vickers hardness by combining with Cr and carbide-forming components as described above. This forms double carbides and improves the wear resistance of the alloy.
Furthermore, during the slow cooling process after sintering, free graphite is precipitated as a uniformly finely dispersed free graphite, which has the effect of improving the self-lubricating properties of the alloy.
If the content is less than 1.3%, the desired excellent wear resistance and self-lubricating properties cannot be secured, while if the content exceeds 6%, the strength and toughness of the alloy will be significantly reduced. It was set at 1.3% to 6%. (c) Si The Si component is a solid solution in the matrix, which significantly improves sinterability and densifies the alloy.
It has the effect of increasing the dissociation reaction of the C component dissolved in the matrix and promoting the precipitation of the C component.
If the content is less than 0.5%, the desired effect cannot be obtained, while if the content exceeds 5%, not only will the toughness of the alloy decrease, but also the amount of liquid phase during sintering will decrease. Since too much content would cause shape deformation, the content was set at 0.5 to 5%. (d) P and B These components have the effect of improving sinterability, densifying the alloy, and improving the strength of the alloy by solid solution in the base material, so these properties are particularly required. It may be included depending on the case, but if the content is less than 0.05%, the desired effect of improving the above-mentioned action cannot be obtained, while if the content exceeds 2%, the amount of liquid phase during sintering becomes too large. Since it not only tends to cause shape deformation but also causes a decrease in the strength of the alloy, its content is set at 0.05 to 2%. (e) Carbide-forming components These components not only solidly dissolve in the base material and strengthen it, but also combine with the C component to form carbides and double carbides with high hardness, which improve the wear resistance of the alloy. However, if the content is less than 0.1%, the desired effect of improving the above effect cannot be obtained, while if the content exceeds 20%, the alloy tends to become brittle. , its content is 0.1
~20%. B Microstructure (a) Carbide If the amount of carbide is less than 3% by volume in the base material, the desired excellent wear resistance cannot be secured, but on the other hand, if the amount of carbide is 40% by volume in the same proportion. If the ratio of carbides in the base material exceeds 3 to 3, the alloy will become extremely brittle and will also become more aggressive towards others.
It was set at 40% by volume. (b) Free graphite The amount of free graphite in the matrix is 3
If the amount of free graphite is less than 20% by volume, the desired excellent self-lubricating property cannot be secured, whereas if the amount of free graphite exceeds 20% by volume, the strength of the alloy will decrease rapidly. , the proportion of free graphite in the matrix is 3 to 20.
It was determined as capacity%. C Manufacturing conditions (a) Degree of vacuum in sintering atmosphere The degree of vacuum in the sintering atmosphere is also affected by the amount of Si, which is an alloy component, but the degree of vacuum in the sintering atmosphere is 10 -1 torr.
If things get worse, oxygen and moisture in the sintering atmosphere will react with components such as Fe and C, making it difficult to generate free graphite and promoting the formation of carbides. Not only is it impossible to obtain a structure, but also the amount of oxygen in the sintered alloy increases.
Since the strength of the alloy will drop significantly and it will no longer be able to withstand use under harsh conditions, and the wear resistance and sliding properties will also deteriorate, the degree of vacuum in the sintering atmosphere is set at 10 -1 torr or higher. Ta. (b) Sintering temperature If the sintering temperature is less than 1020°C, the solid phase diffusion of the alloy components into the matrix will not occur sufficiently, making it impossible to secure the desired alloy strength and structure. If the sintering temperature exceeds 1,020 to 1,200°C, the amount of liquid phase generated will be too large, resulting in significant shape deformation and making it impossible to obtain the desired shape. (c) Cooling rate If the cooling rate is less than 2°C/min, not only is the cooling too slow to be practical, but even at such a slow cooling rate, the amount of free graphite precipitated and the amount of carbide formed will be lower than this. Almost the same as for fast cooling rate, while 40
Even if the cooling rate exceeds °C/min, there is a tendency for the proportion of carbides to be relatively high and the proportion of free graphite to be low, but this improvement effect does not result in further improvement.
The cooling rate from the sintering temperature to at least the transformation point after sintering was set at 2 to 40°C/min. Next, the Fe-based sintered alloy of the present invention and its manufacturing method will be specifically explained with reference to Examples. Example As raw material powder, Fe powder with particle size -100mesh,
Five types of Fe-Cr alloy powders, each with a particle size of -100mesh and Cr content of 5%, 13%, 25%, 35%, and 65%, respectively, and carbon powder with -100mesh, average particle size : 3μm Mo powder and W powder, both TiC powders with particle size -100mesh,
Fe NbC powder and WC powder, particle size −100mesh
-Cr-Mo-Nb alloy (Cr: 13%, Mo: 1%,
Nb: 7% content) powder, particle size -100mesh in both cases
Fe-P alloy (P: 27% content) powder, Fe-B alloy (B: 17% content) powder, and Fe-Si alloy (Si: 42% content) powder were prepared, and these raw material powders were each Mixed with the composition shown in Table 1,
After mixing for 30 minutes with a V-type mixer, 4 to 7 tons/
The method 1 of the present invention is formed by forming green bodies at a predetermined pressure within the range of cm 2 and then sintering these green bodies under the sintering conditions and cooling conditions shown in Table 2. ~33 and comparative methods 1 to 3, respectively,
A Fe-based sintered alloy was manufactured. In Comparative Methods 1 to 3, the formulation compositions (those marked with * in Table 1) are outside the scope of the present invention.

【表】【table】

【表】 つぎに、この結果得られた各種のFe基焼結合
金について、その素地における炭化物および遊離
黒鉛の割合を測定すると共に、 試験片寸法:20mm□×厚さ10mm、 面圧:20Kg/cm2、 周速:6.8m/sec、 相手材:FC−22、 潤滑油:使用、 摩擦距離:15×104m、 の条件で摩耗試験を行ない、上記試験片の摩耗深
さと、相手攻撃性を評価する目的で、相手材の摩
耗深さを測定した。これらの結果を第1表に示し
た。 第1表に示される結果から、本発明法1〜33で
製造されたFe基焼結合金は、いずれもすぐれた
耐摩耗性および自己潤滑性を具備しているのに対
して、比較法1〜3で製造されたFe基焼結合金
に見られるように、配合組成がこの発明の範囲か
ら外れると、前記両特性のうち少なくともいずれ
かの特性が劣つたものになることが明らかであ
る。 上述のように、この発明によれば、素地中に微
細均一に分散した炭化物と遊離黒鉛によつて、す
ぐれた耐摩耗性と自己潤滑性が確保され、かつ素
地によつてすぐれた耐熱性と耐食性を具備した
Fe基焼結合金を製造することができ、しかもこ
のFe基焼結合金を、これらの特性が要求される
各種の分野、例えば耐摩耗部品の製造に適用した
場合に、すぐれた性能を長期に亘つて安定的に発
揮するなどの工業上有用な効果がもたらされるの
である。
[Table] Next, for the various Fe-based sintered alloys obtained as a result, the proportions of carbides and free graphite in the matrix were measured, and test piece dimensions: 20 mm x thickness 10 mm, surface pressure: 20 kg/ cm 2 , circumferential speed: 6.8 m/sec, mating material: FC-22, lubricant: used, friction distance: 15 x 10 4 m, and the wear depth of the above test piece and the mating attack. For the purpose of evaluating the properties, the wear depth of the mating material was measured. These results are shown in Table 1. From the results shown in Table 1, the Fe-based sintered alloys produced by methods 1 to 33 of the present invention all have excellent wear resistance and self-lubricating properties, whereas the comparative method 1 As can be seen in the Fe-based sintered alloys produced in Items 1 to 3, it is clear that when the blending composition deviates from the range of the present invention, at least one of the above-mentioned properties becomes inferior. As described above, according to the present invention, the carbide and free graphite finely and uniformly dispersed in the base material ensure excellent wear resistance and self-lubricating properties, and the base material also provides excellent heat resistance and Equipped with corrosion resistance
It is possible to produce Fe-based sintered alloys, and when this Fe-based sintered alloy is applied to various fields that require these properties, such as the production of wear-resistant parts, it can provide excellent performance over a long period of time. Industrially useful effects such as stable performance over a long period of time are brought about.

Claims (1)

【特許請求の範囲】 1 Cr:1〜25%、C:1.3〜6%、Si:0.5〜5
%、 Mo、W、およびNbのうちの1種または2種以
上(合量で):0.1〜20%、 を含有し、残りがFeと不可避不純物からなる配
合組成を有する圧粉体を、 圧力:10-1torr以下の真空中、1020〜1200℃の
範囲内の所定温度で焼結した後、 少なくとも焼結温度から変態点までの範囲を2
〜40℃/minの速度で冷却して、 素地中に、ビツカース硬さで700以上を有する
炭化物:3〜40容量%および遊離黒鉛:3〜20容
量%が均一に分散した組織を有するFe基焼結合
金を製造することを特徴とする耐摩耗性および自
己潤滑性のすぐれたFe基焼結合金の製造法。 2 Cr:1〜25%、C:1.3〜6%、Si:0.5〜5
%、 Mo、W、およびNbのうちの1種または2種以
上(合量で):0.1〜20%、 を含有し、さらに、 PおよびBのうちの1種または2種(合量
で):0.05〜2%、 を含有し、残りがFeと不可避不純物からなる配
合組成を有する圧粉体を、 圧力:10-1torr以下の真空中、1020〜1200℃の
範囲内の所定温度で焼結した後、 少なくとも焼結温度から変態点までの範囲を2
〜40℃/minの速度で冷却して、 素地中に、ビツカース硬さで700以上を有する
炭化物:3〜40容量%および遊離黒鉛:3〜20容
量%が均一に分散した組織を有するFe基焼結合
金を製造することを特徴とする耐摩耗性および自
己潤滑性のすぐれたFe基焼結合金の製造法。
[Claims] 1 Cr: 1-25%, C: 1.3-6%, Si: 0.5-5
%, one or more of Mo, W, and Nb (total amount): 0.1 to 20%, with the balance consisting of Fe and unavoidable impurities. : After sintering at a predetermined temperature within the range of 1020 to 1200℃ in a vacuum of 10 -1 torr or less, the range from the sintering temperature to the transformation point is at least 2
By cooling at a rate of ~40°C/min, an Fe-based material having a structure in which 3 to 40 volume % of carbide with a Bitkers hardness of 700 or more and 3 to 20 volume % of free graphite are uniformly dispersed in the matrix. A method for producing a Fe-based sintered alloy with excellent wear resistance and self-lubricating properties, which is characterized by producing a sintered alloy. 2 Cr: 1-25%, C: 1.3-6%, Si: 0.5-5
%, one or more of Mo, W, and Nb (in total amount): 0.1 to 20%, and further contains one or two of P and B (in total amount) : 0.05 to 2%, and the balance is Fe and unavoidable impurities. After sintering, the range from the sintering temperature to the transformation point is at least 2
By cooling at a rate of ~40°C/min, an Fe-based material having a structure in which 3 to 40 volume % of carbide with a Bitkers hardness of 700 or more and 3 to 20 volume % of free graphite are uniformly dispersed in the matrix. A method for producing a Fe-based sintered alloy with excellent wear resistance and self-lubricating properties, which is characterized by producing a sintered alloy.
JP14756983A 1983-08-12 1983-08-12 Sintered fe alloy with superior wear resistance and self-lubricity and its manufacture Granted JPS6039149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14756983A JPS6039149A (en) 1983-08-12 1983-08-12 Sintered fe alloy with superior wear resistance and self-lubricity and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14756983A JPS6039149A (en) 1983-08-12 1983-08-12 Sintered fe alloy with superior wear resistance and self-lubricity and its manufacture

Publications (2)

Publication Number Publication Date
JPS6039149A JPS6039149A (en) 1985-02-28
JPH0114985B2 true JPH0114985B2 (en) 1989-03-15

Family

ID=15433313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14756983A Granted JPS6039149A (en) 1983-08-12 1983-08-12 Sintered fe alloy with superior wear resistance and self-lubricity and its manufacture

Country Status (1)

Country Link
JP (1) JPS6039149A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076026B2 (en) * 1986-09-08 1995-01-25 マツダ株式会社 Manufacturing method of ferrous sintered alloy members with excellent wear resistance
JP3221192B2 (en) * 1993-10-18 2001-10-22 三菱マテリアル株式会社 Valve seat for intake
JP3257212B2 (en) * 1993-12-27 2002-02-18 三菱マテリアル株式会社 Valve seat made of iron-based sintered alloy for internal combustion engine intake
US11685982B2 (en) * 2016-10-17 2023-06-27 Tenneco Inc. Free graphite containing powders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822358A (en) * 1981-07-30 1983-02-09 Mitsubishi Metal Corp Iron base sintered alloy for structural member of fuel supply apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822358A (en) * 1981-07-30 1983-02-09 Mitsubishi Metal Corp Iron base sintered alloy for structural member of fuel supply apparatus

Also Published As

Publication number Publication date
JPS6039149A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
JP2741199B2 (en) High density sintered iron alloy
US5856625A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
US4985309A (en) Alloyed steel powder for powder metallurgy
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
US5682588A (en) Method for producing ferrous sintered alloy having quenched structure
EP0946774A1 (en) Iron-based powder
JPH10140206A (en) Low alloy steel powder for sintering and hardening
US4696696A (en) Sintered alloy having improved wear resistance property
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPH01261270A (en) Metal-containing titanium carbonitride-chromium carbide ceramic
GB2298869A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
JPH0114985B2 (en)
US4755222A (en) Sinter alloys based on high-speed steel
JPH0517839A (en) Bearing alloy for high temperature use and its production
JP3682556B2 (en) Heat and wear resistant sintered stainless steel
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
EP0903417B1 (en) Powder ferrous metal compositions containing aluminum
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH02153046A (en) High strength sintered alloy steel
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
CN101517110B (en) Metallurgical powder composition and method of production
JPS6154855B2 (en)
JPH026827B2 (en)