JPH026827B2 - - Google Patents

Info

Publication number
JPH026827B2
JPH026827B2 JP9597382A JP9597382A JPH026827B2 JP H026827 B2 JPH026827 B2 JP H026827B2 JP 9597382 A JP9597382 A JP 9597382A JP 9597382 A JP9597382 A JP 9597382A JP H026827 B2 JPH026827 B2 JP H026827B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
less
content
sintered material
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9597382A
Other languages
Japanese (ja)
Other versions
JPS58213859A (en
Inventor
Masayuki Iijima
Hidetoshi Akutsu
Kazuyuki Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9597382A priority Critical patent/JPS58213859A/en
Publication of JPS58213859A publication Critical patent/JPS58213859A/en
Publication of JPH026827B2 publication Critical patent/JPH026827B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐食性を有する鉄系焼結
材料に関するものである。 近年、電子コピー等の事務機部品、コンピユー
ター部品、計測器部品、あるいは時計外装部品等
として、耐食性にすぐれた焼結材料に対する需要
が次第に高まつて来ている。 従来、耐食性のすぐれた焼結材料として知られ
ているものは、JIS規格におけるSUS 316やSUS
304に代表されるステンレス鋼の成分組成を有し
ているものがほとんどであるが、このような成分
組成のものでは、通常の粉末冶金の手法を用いて
製造すると、空孔量10容量%よりも多いものしか
得ることができず、したがつて、所期の耐食性を
呈さないという問題点があつた。 さらに、このような空孔を少なくする方法とし
て、得られた焼結材料に冷間あるいは熱間で鍛造
を加えたり、HIP(静水圧プレス)処理等を施す
ことが考えられているが、この場合、格別な装置
を必要とするうえ、作業が繁雑となり、しかも鍛
造時の割れや欠け発生の問題が未解決であるとい
うのが現状であつた。 本発明者等は、上述のような観点から、材料の
空孔量が低く、耐食性のよりすぐれた鉄系焼結材
料を得べく鋭意研究を行なつた結果、上述のよう
なステンレス鋼の成分組成をベースとして、これ
に特定量のCoとBとを添加して焼結したものは、
焼結の過程でCoとBとを含む液相が生じてこれ
が空孔を埋めるように基地(マトリツクス)中に
均一に分散するので、得られる焼結材料の空孔量
が10容量%よりも少なくなつて耐食性が向上する
との知見を得るに至つたのである。 そして、本発明者等は、CoとBとを含有せし
めて耐食性を向上させた上述のような焼結材料の
諸特性の詳細な検討の段階で、該焼結材料にさら
にMo,Cu,Nb,TiおよびTaの1種または2種
以上を含有せしめると、焼結材料の強度や耐食性
がより向上することをも見出したのである。 したがつて、この発明は、上記知見に基いてな
されたもので、耐食性焼結材料を、 Cr:10.0〜25.0%(以下、組成割合を示す%は
重量%とする)、 Ni:4.0〜20.0%、 Co:0.5〜10.0%、 B:0.01〜1.00%、 を含有し、さらに必要に応じて、 (a) MoおよびCuのうちの1種または2種:0.01
〜5%、 (b) Nb,Ti,およびTaのうちの1種または2種
以上:0.01〜1%、 上記(a)および(b)のいずれか、または両方を含有
し、残りがFeと不可避不純物からなる成分組成
で構成すことにより、空孔量を10容量%以下と
し、しかも素地中にCoとBとを含む化合物が均
一に分散する組織を形成せしめて、耐食性の一層
の向上をはかつた点に特徴を有するものである。 つぎに、この発明の耐食性焼結材料において、
各成分組成範囲並びに空孔量を上記のように限定
した理由を説明する。 (a) Cr Cr成分には、焼結材料に耐食性および耐酸化
性を付与する作用があるが、その含有量が10.0%
未満では所望のすぐれた耐食性および耐酸化性を
確保することができず、一方25.0%を越えて含有
させても、より一層の向上効果が現われないこと
から、その含有量を10.0〜25.0%と定めた。 (b) Ni Ni成分は、Ms点を低下してオーステナイトを
安定化し、したがつて、靭性、耐食性、耐酸化性
を向上させる作用があるが、その含有量が4.0%
未満では前記作用に所望の効果が得られず、一
方、20%を越えて含有させてもそれ以上の向上効
果が得られないことから、経済性をも考慮して、
その含有量を4.0〜20.0%と定めた。 (c) Co Coはオーステナイト生成元素であり、さらに
Co自体が金属間化合物を作つて析出硬化を示し、
また素地に固溶してこれを強化する作用がある。
そのうえ、Bと共存することによつて共晶を作
り、焼結性を著しく改善して、空孔量を減少させ
る作用も有しているが、その含有量が0.5%未満
では前記作用に所望の効果を得ることができず、
一方10.0%を越えて含有させてもより一層の向上
効果は得られず、経済性をも考慮して、その含有
量を0.5〜10.0%と定めた。 (d) B B成分はCoと共晶を作つて焼結性を改善し、
この結果、耐食性がより一層向上したものになる
ほか、素地中に固溶してこれを強化する作用があ
り、さらに、CoおよびBを含む化合物を分散さ
せて材料を硬化させる作用もあるが、その含有量
が0.01%未満では所望の効果を得ることができ
ず、一方1.00%を越えて含有させると靭性および
耐食性が劣化することになるため、その含有量を
0.01〜1.00%と定めた。 (e) Mo,Cu,Nb,Ta、およびTi これらの成分には、焼結材料の強度を向上する
とともに、耐食性を改善するという均等な作用が
あるので、これらの特性の向上が要求される場合
に必要に応じて添加されるものであるが、特に、
MoおよびCu成分は素地に固溶してこれを強化す
る作用が著しく、またNb,TaおよびTiは炭化物
を固定して耐食性を改善する効果にすぐれるもの
であるが、MoまたはCuの1種または2種の合計
の含有量が5%を越えると衝撃値や耐食性を劣化
するようになり、一方、Nb,TaおよびTiの1種
または2種以上の含有量の合計が1%を越えても
それ以上の向上効果が得られないので、その含有
量を、MoまたはCuの1種以上では5%以下、
Nb,TaまたはTiの1種以上では1%以下と定め
た。なお、これら各成分は、わずかな添加によつ
ても前記各特性の向上効果を認めることができる
ものであるが、いずれの成分もその含有量が0.01
%未満になると添加効果の急激な低下を示すの
で、0.01%以上含有させるのが好ましい。 (f) 空孔量 焼結材料の空孔量が10容量%を越えると、材料
自体耐食性が急激に劣化することとなり、耐食性
材料としての用途に供するのが不適当となるため
に、その量を10容量%以下と定めた。なお、この
発明の焼結材料の成分組成となるように、各添加
元素を配合して通常の焼結を行なえば、必然的に
その空孔量が10容量%未満のものが得られるので
ある。 また、この発明の焼結材料中に随伴される不純
物としては、Mn,Si,P,S,C等があげられ
るが、耐食性や焼結性の観点から、これらの不純
物は2.0%以下であることが望ましい。 ついで、この発明の耐食性焼結材料を実施例に
より比較例と対比して説明する。 実施例 原料粉末として、いずれも粒度−150meshを有
するFe―Cr合金、およびFe―Cr―Ni合金粉末を
各種用意し、さらにそれぞれ平均粒径3μmのNi
粉末、Co粉末、Mo粉末、Nb粉末、Ti粉末、Ta
粉末、Cu粉末、並びに−200meshを有するFe―
B合金(B:20%含有)粉末を用意し、これらの
粉末を第1表に示される配合組成にそれぞれ配合
し、マイニユートミキサーにて30分間混合し、5
〜7ton/cm2の圧力にて圧粉体を成形し、ついで真
空炉にて1250〜1300℃の温度範囲の所定温度に加
熱して焼結することによつて、実質的に配合組成
と同一の成分組成をもつた本発明焼結材料1〜2
9および比較焼結材料30を製造した。なお、比
較焼結材料30は、SUS 304の成分組成に相当
する組成を有するものである。 この結果得られた本発明材料および比較材料に
ついて、空孔量、耐高温酸化性、および耐食性を
測定し、その結果も第1表に併せて示した。 耐高温酸化性は、寸法:10×10×10の各試料
を、大気中にて800℃に加熱し、50時間
The present invention relates to an iron-based sintered material having excellent corrosion resistance. In recent years, there has been a gradual increase in demand for sintered materials with excellent corrosion resistance for use in office machine parts such as electronic copiers, computer parts, measuring instrument parts, watch exterior parts, and the like. Conventionally, sintered materials with excellent corrosion resistance are known as SUS 316 and SUS according to the JIS standard.
Most of them have the composition of stainless steel such as 304, but when manufactured using normal powder metallurgy, the porosity is less than 10% by volume. However, there was a problem in that only a large amount of corrosion resistance could be obtained, and therefore, the desired corrosion resistance could not be obtained. Furthermore, as a method to reduce such pores, it is considered that the obtained sintered material is subjected to cold or hot forging, HIP (hydrostatic pressing) treatment, etc. In this case, special equipment is required, the work is complicated, and the problem of cracking and chipping during forging remains unsolved. From the above-mentioned viewpoints, the present inventors conducted intensive research in order to obtain iron-based sintered materials with low porosity and superior corrosion resistance. Based on the composition, a specific amount of Co and B is added and sintered.
During the sintering process, a liquid phase containing Co and B is generated and is uniformly dispersed in the matrix to fill the pores, so that the amount of pores in the resulting sintered material is less than 10% by volume. They came to the knowledge that corrosion resistance improves as the amount decreases. At the stage of detailed examination of the various properties of the above-mentioned sintered material containing Co and B to improve corrosion resistance, the present inventors added Mo, Cu, Nb to the sintered material. , Ti, and Ta, the strength and corrosion resistance of the sintered material are further improved. Therefore, this invention has been made based on the above knowledge, and the corrosion-resistant sintered material is made of Cr: 10.0 to 25.0% (hereinafter, % indicating the composition ratio is expressed as weight %), Ni: 4.0 to 20.0. %, Co: 0.5 to 10.0%, B: 0.01 to 1.00%, and if necessary, (a) one or two of Mo and Cu: 0.01
~5%, (b) One or more of Nb, Ti, and Ta: 0.01~1%, Contains either or both of (a) and (b) above, and the rest is Fe. By composing the material with a composition consisting of unavoidable impurities, the amount of pores is reduced to 10% by volume or less, and a structure is formed in which compounds containing Co and B are uniformly dispersed in the matrix, further improving corrosion resistance. It is characterized by its sharpness. Next, in the corrosion-resistant sintered material of this invention,
The reason why the composition range of each component and the amount of pores are limited as described above will be explained. (a) Cr The Cr component has the effect of imparting corrosion resistance and oxidation resistance to the sintered material, but its content is 10.0%.
If the content is less than 25.0%, the desired excellent corrosion resistance and oxidation resistance cannot be secured, and if the content exceeds 25.0%, no further improvement effect will be obtained. Established. (b) Ni The Ni component lowers the Ms point and stabilizes austenite, thus improving toughness, corrosion resistance, and oxidation resistance, but its content is 4.0%.
If the content is less than 20%, the desired effect cannot be obtained, and on the other hand, if the content exceeds 20%, no further improvement effect can be obtained.
Its content was set at 4.0-20.0%. (c) Co Co is an austenite-forming element, and
Co itself forms intermetallic compounds and shows precipitation hardening,
It also acts as a solid solution in the base material to strengthen it.
Furthermore, when it coexists with B, it forms a eutectic, significantly improving sinterability and reducing the amount of pores, but if its content is less than 0.5%, the desired effect is not achieved. cannot obtain the effect of
On the other hand, even if the content exceeds 10.0%, no further improvement effect can be obtained, and the content was determined to be 0.5 to 10.0%, taking economic efficiency into consideration. (d) B The B component forms a eutectic with Co to improve sinterability,
As a result, the corrosion resistance is further improved, and it has the effect of solid solution in the base material to strengthen it, and also has the effect of dispersing compounds containing Co and B to harden the material. If the content is less than 0.01%, the desired effect cannot be obtained, while if the content exceeds 1.00%, toughness and corrosion resistance will deteriorate.
It was set at 0.01-1.00%. (e) Mo, Cu, Nb, Ta, and Ti These components have the same effect of increasing the strength of the sintered material and improving the corrosion resistance, so improvement of these properties is required. It is added as necessary in the case, but in particular,
Mo and Cu components form a solid solution in the base material and have a remarkable effect of strengthening it, and Nb, Ta and Ti have an excellent effect of fixing carbides and improving corrosion resistance, but one type of Mo or Cu Or, if the total content of the two types exceeds 5%, the impact value and corrosion resistance will deteriorate, while on the other hand, if the total content of one or more of Nb, Ta and Ti exceeds 1%. Since no further improvement effect can be obtained with Mo or Cu, the content should be reduced to 5% or less for one or more of Mo or Cu.
The content of one or more of Nb, Ta, or Ti was set at 1% or less. It should be noted that each of these components can have the effect of improving each of the above characteristics even when added in a small amount, but the content of each component is 0.01.
If the content is less than 0.01%, the effect of addition decreases rapidly, so it is preferable to contain 0.01% or more. (f) Amount of pores If the amount of pores in the sintered material exceeds 10% by volume, the corrosion resistance of the material itself will rapidly deteriorate, making it unsuitable for use as a corrosion-resistant material. is set at 10% by volume or less. Furthermore, if each additive element is blended to achieve the composition of the sintered material of this invention and normal sintering is performed, a material with a porosity of less than 10% by volume will inevitably be obtained. . Further, impurities included in the sintered material of the present invention include Mn, Si, P, S, C, etc., but from the viewpoint of corrosion resistance and sinterability, the content of these impurities is 2.0% or less. This is desirable. Next, the corrosion-resistant sintered material of the present invention will be explained through examples and in comparison with comparative examples. Example Various types of Fe-Cr alloy and Fe-Cr-Ni alloy powders, each with a particle size of -150mesh, were prepared as raw material powders, and Ni with an average particle size of 3 μm was prepared.
Powder, Co powder, Mo powder, Nb powder, Ti powder, Ta
Powder, Cu powder, and Fe with -200mesh
Prepare B alloy powder (containing 20% B), mix these powders in the composition shown in Table 1, mix for 30 minutes with a miniute mixer, and mix for 5 minutes.
By molding the compact at a pressure of ~7 ton/cm 2 and then heating and sintering it in a vacuum furnace to a predetermined temperature in the range of 1250 to 1300°C, the composition is substantially the same as that of the compound. Sintered materials 1 to 2 of the present invention having a component composition of
9 and comparative sintered material 30 were manufactured. Note that the comparative sintered material 30 has a composition equivalent to that of SUS 304. The resulting materials of the present invention and comparative materials were measured for pore content, high temperature oxidation resistance, and corrosion resistance, and the results are also shown in Table 1. High-temperature oxidation resistance is determined by heating each sample with dimensions: 10 x 10 x 10 to 800°C in the air for 50 hours.

【表】【table】

【表】 保持後の重量増加率で評価し、耐食性は、
JIS20Hに規格されている塩水噴霧試験にて評価
した。なお、塩水噴霧試験結果は、△:錆発生あ
り、○:錆発生若干あり、◎:錆発生なし、の3
段階で行なつた。 第1表に示される結果からも、本発明の耐食性
焼結材料はいずれもすぐれた特性を兼ね備えてい
ることが明白である。 上述のように、この発明によれば、格別な後処
理等を要することなく、すぐれた耐食性を備えた
焼結材料を得ることができ、事務機部品、コンピ
ユータ部品、計測器部品はもちろんのこと、特に
外観仕上げ状態に厳しい要求がなされている時計
用外装部品等の用途にすぐれた性能を発揮するう
え、これをさらに、冷間あるいは熱間鍛造に付せ
ばその密度はより向上し、性能のさらにすぐれた
材料となるなど、工業上有用な効果がもたらされ
るのである。
[Table] Corrosion resistance is evaluated based on weight increase rate after holding.
It was evaluated using the salt spray test specified in JIS20H. The salt spray test results are as follows: △: Rust occurred, ○: Some rust occurred, ◎: No rust occurred.
It was done in stages. From the results shown in Table 1, it is clear that all the corrosion-resistant sintered materials of the present invention have excellent properties. As described above, according to the present invention, it is possible to obtain a sintered material with excellent corrosion resistance without requiring any special post-processing, and it can be used not only for office machine parts, computer parts, and measuring instrument parts. In addition to exhibiting excellent performance in applications such as exterior parts for watches that have particularly strict requirements on the appearance finish, when subjected to cold or hot forging, the density is further improved and the performance is improved. This brings about industrially useful effects, such as making it an even better material.

Claims (1)

【特許請求の範囲】 1 Cr:10〜25%、Ni:4〜20%、 Co:0.5〜10%、B:0.01〜1%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、素地中にCoとBとを含む化合
物が均一に分散した組織、および10容量%以下の
空孔量を有することを特徴とする耐食性焼結材
料。 2 Cr:10〜25%、Ni:4〜20%、 Co:0.5〜10%、B:0.01〜1%、 を含有し、さらに、 MoおよびCuのうちの1種または2種:0.01〜
5%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、素地中にCoとBとを含む化合
物が均一に分散した組織、および10容量%以下の
空孔量を有することを特徴とする耐食性焼結材
料。 3 Cr:10〜25%、Ni:4〜20%、 Co:0.5〜10%、B:0.01〜1%、 を含有し、さらに、 Nb,Ti,およびTaのうちの1種または2種以
上:0.01〜1%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、素地中にCoとBとを含む化合
物が均一に分散した組織、および10容量%以下の
空孔量を有することを特徴とする耐食性焼結材
料。 4 Cr:10〜25%、Ni:4〜20%、 Co:0.5〜10%、B:0.01〜1%、 を含有し、さらに、 MoおよびCuのうちの1種または2種:0.01〜
5%と、 Nb,Ti,およびTaのうちの1種または2種以
上:0.01〜1%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、素地中にCoとBとを含む化合
物が均一に分散した組織、および10容量%以下の
空孔量を有することを特徴とする耐食性焼結材
料。
[Claims] 1 Cr: 10 to 25%, Ni: 4 to 20%, Co: 0.5 to 10%, B: 0.01 to 1%. % by weight), a structure in which a compound containing Co and B is uniformly dispersed in the matrix, and a porosity of 10% by volume or less. 2 Contains Cr: 10-25%, Ni: 4-20%, Co: 0.5-10%, B: 0.01-1%, and further contains one or two of Mo and Cu: 0.01-20%.
5%, with the remainder consisting of Fe and unavoidable impurities (wt%), a structure in which compounds containing Co and B are uniformly dispersed in the matrix, and a porosity of 10% by volume or less. A corrosion-resistant sintered material characterized by: 3 Contains Cr: 10-25%, Ni: 4-20%, Co: 0.5-10%, B: 0.01-1%, and further contains one or more of Nb, Ti, and Ta. : 0.01 to 1%, with the remainder consisting of Fe and unavoidable impurities (more than % by weight), a structure in which compounds containing Co and B are uniformly dispersed in the matrix, and pores of 10% by volume or less A corrosion-resistant sintered material characterized by having a quantity of 4 Contains Cr: 10-25%, Ni: 4-20%, Co: 0.5-10%, B: 0.01-1%, and further contains one or two of Mo and Cu: 0.01-1%.
5%, and one or more of Nb, Ti, and Ta: 0.01 to 1%, and the remainder is Fe and unavoidable impurities (weight %), Co and B in the matrix. A corrosion-resistant sintered material characterized by having a structure in which a compound containing the above is uniformly dispersed, and a porosity of 10% by volume or less.
JP9597382A 1982-06-04 1982-06-04 Corrosion-resistant sintered material Granted JPS58213859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9597382A JPS58213859A (en) 1982-06-04 1982-06-04 Corrosion-resistant sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9597382A JPS58213859A (en) 1982-06-04 1982-06-04 Corrosion-resistant sintered material

Publications (2)

Publication Number Publication Date
JPS58213859A JPS58213859A (en) 1983-12-12
JPH026827B2 true JPH026827B2 (en) 1990-02-14

Family

ID=14152114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9597382A Granted JPS58213859A (en) 1982-06-04 1982-06-04 Corrosion-resistant sintered material

Country Status (1)

Country Link
JP (1) JPS58213859A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000207A1 (en) * 1988-06-27 1990-01-11 Kawasaki Steel Corporation Sintered alloy steel with excellent corrosion resistance and process for its production
JP2633689B2 (en) * 1989-06-21 1997-07-23 日立粉末冶金株式会社 Iron-based sintered alloy with excellent oxidation resistance and wear resistance
JPH0394045A (en) * 1989-09-06 1991-04-18 Brother Ind Ltd Low expansion sintered alloy molded article

Also Published As

Publication number Publication date
JPS58213859A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
EP0331679B1 (en) High density sintered ferrous alloys
CN108913976B (en) High-strength face-centered cubic structure intermediate entropy alloy and preparation method thereof
WO2018053940A1 (en) Non-magnetic steel product and powder metallurgy manufacturing method therefor
JP2008528811A (en) Iron-based composite powder
EP2051826B1 (en) Iron-based powder
CN108085576A (en) A kind of preparation method of steel knot TiCN base cemented carbides
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPH026827B2 (en)
US4028094A (en) Stainless steel powder
JP3345640B2 (en) High-strength vibration damping alloy and its manufacturing method
JPS613853A (en) Manufacture of sintered hard alloy
US4690711A (en) Sintered compact and process for producing same
JPH0114985B2 (en)
CN108034881A (en) A kind of steel knot TiCN base cemented carbides and application
JPS5852001B2 (en) free cutting stainless steel powder
JPH0375621B2 (en)
JPS61139601A (en) Low-alloy iron powder for sintering and its manufacture
JPH02153046A (en) High strength sintered alloy steel
JPS6154855B2 (en)
JPH07109540A (en) Production of stainless steel sintered compact
JPS6130601A (en) Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof
JPS58130258A (en) Sintered fe alloy with superior wear and corrosion resistance
JPS6130602A (en) Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof
JPH0436410A (en) Complex sintered tungsten alloy
JPH0941102A (en) Sintered head alloy