JPH0931612A - Iron-base sintered alloy excellent in strength and wear resistance - Google Patents

Iron-base sintered alloy excellent in strength and wear resistance

Info

Publication number
JPH0931612A
JPH0931612A JP20646295A JP20646295A JPH0931612A JP H0931612 A JPH0931612 A JP H0931612A JP 20646295 A JP20646295 A JP 20646295A JP 20646295 A JP20646295 A JP 20646295A JP H0931612 A JPH0931612 A JP H0931612A
Authority
JP
Japan
Prior art keywords
iron
weight
based sintered
strength
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20646295A
Other languages
Japanese (ja)
Inventor
Kinya Kawase
欣也 川瀬
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20646295A priority Critical patent/JPH0931612A/en
Publication of JPH0931612A publication Critical patent/JPH0931612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron-base sintered alloy used not only for wear resistant structural member for internal combustion engine, such as cam lobe, valve guide, and guide bush, but for wear resistant structural member for other various driving devices. SOLUTION: This alloy is an iron-base sintered alloy excellent in strength and wear resistance, having a composition consisting of, by weight, 0.5-3% Mo, 0.8-1.5% C, further either or both of 1-4% Ni and 1-4% Cu, and the balance Fe with inevitable impurities and also having a structure in which lumpy hyper- eutectoid carbides are independently dispersed in a matrix. By this method, the alloy excellent in tensile strength can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、強度および耐摩
耗性に優れた鉄基焼結合金に関するものであり、この鉄
基焼結合金はバルブシート、カムロブ、バルブガイド、
ガイドブッシュなどの内燃機関の耐摩耗構造部材として
用いられるだけでなく、その他の各種の駆動装置の耐摩
耗構造部材として用いられる鉄基焼結合金に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based sintered alloy having excellent strength and wear resistance. The iron-based sintered alloy includes a valve seat, a cam lobe, a valve guide,
The present invention relates to an iron-based sintered alloy that is used not only as a wear resistant structural member of an internal combustion engine such as a guide bush but also as a wear resistant structural member of various other drive devices.

【0002】[0002]

【従来の技術】従来、Mo−C系鉄基焼結合金は、バル
ブシート、カムロブ、バルブガイド、ガイドブッシュな
どの内燃機関の耐摩耗構造部材として用いられことは知
られており、例えば、特開昭63−161144号公報
には、Mo:3〜8重量%、C:0.8〜1.5重量%
を含有し、残りがFeおよび不可避不純物からなる組成
を有る鉄基焼結合金が記載されている。これら鉄基焼結
合金の組織は、素地中に炭化物が網目状に分散した組織
を有している。
2. Description of the Related Art Conventionally, it has been known that Mo-C-based iron-based sintered alloys are used as wear resistant structural members for internal combustion engines such as valve seats, cam lobes, valve guides and guide bushes. In JP-A-63-161144, Mo: 3 to 8% by weight, C: 0.8 to 1.5% by weight.
And an iron-based sintered alloy having a composition containing Fe and the unavoidable impurities. The structure of these iron-based sintered alloys has a structure in which carbides are dispersed in a mesh in a matrix.

【0003】[0003]

【発明が解決しようとする課題】しかし、最近の内燃機
関は、高性能化および高負荷化にともない、従来よりも
一段と苛酷な条件で作動し、このため、上記内燃機関の
各種耐摩耗構造部材は、従来よりも一層の強度と耐摩耗
性が要求されている。ところが上記従来の各種耐摩耗構
造部材を構成する鉄基焼結合金は一段と苛酷な条件に対
して十分に満足できるものではなかった。
However, the recent internal combustion engines have been operated under severer conditions than the conventional ones due to higher performance and higher load. Therefore, various wear resistant structural members of the above internal combustion engines are used. Are required to have higher strength and wear resistance than conventional ones. However, the iron-based sintered alloys constituting the above various conventional wear-resistant structural members have not been sufficiently satisfactory even under severer conditions.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上述のような観点から、各種耐摩耗構造部材として用い
た場合に、従来よりも一層優れた強度および耐摩耗性を
有する鉄基焼結合金を得るべく研究を行った結果、M
o:0.5〜3重量%、C:0.8〜1.5重量%を含
有し、さらにNi:1〜4重量%およびCu:1〜4重
量%の内の1種または2種を含有し、残りがFeおよび
不可避不純物からなる組成を有する鉄基焼結合金を、そ
の鉄基焼結合金のオーステナイト化温度よりも高い温度
(750〜1050℃)に保持したのち冷却すると、素
地中に塊状の過共析炭化物が独立して分散した組織を有
する鉄基焼結合金が得られ、この鉄基焼結合金は、素地
中に網目状の過共析炭化物が分散した組織を有する鉄基
焼結合金に比べて、強度および耐摩耗性が一層優れてい
るという知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
From the above viewpoints, when used as various wear resistant structural members, as a result of research to obtain an iron-based sintered alloy having strength and wear resistance superior to conventional ones, M
o: 0.5 to 3% by weight, C: 0.8 to 1.5% by weight, and 1 or 2 types of Ni: 1 to 4% by weight and Cu: 1 to 4% by weight. When an iron-based sintered alloy that contains Fe and inevitable impurities in the balance is held at a temperature (750 to 1050 ° C.) higher than the austenitizing temperature of the iron-based sintered alloy and then cooled, An iron-based sintered alloy having a structure in which massive hyper-eutectoid carbides are independently dispersed is obtained. This iron-based sintered alloy has a structure in which mesh-like hyper-eutectoid carbides are dispersed in the matrix. They have found that the strength and wear resistance are superior to those of the base sintered alloy.

【0005】この発明は、かかる知見にもとづいて成さ
れたものであって、(1) Mo:0.5〜3重量%、
C:0.8〜1.5重量%、Ni:1〜4重量%を含有
し、残りがFeおよび不可避不純物からなる組成、並び
に素地中に塊状の過共析炭化物が独立して分散した組織
を有する強度および耐摩耗性に優れた鉄基焼結合金、
(2) Mo:0.5〜3重量%、C:0.8〜1.5
重量%、Cu:1〜4重量%を含有し、残りがFeおよ
び不可避不純物からなる組成、並びに素地中に塊状の過
共析炭化物が独立して分散した組織を有する強度および
耐摩耗性に優れた鉄基焼結合金、(3) Mo:0.5
〜3重量%、C:0.8〜1.5重量%、Ni:1〜4
重量%、Cu:1〜4重量%を含有し、残りがFeおよ
び不可避不純物からなる組成、並びに素地中に塊状の過
共析炭化物が独立して分散した組織を有する強度および
耐摩耗性に優れた鉄基焼結合金、に特徴を有するもので
ある。
The present invention was made on the basis of such findings, and (1) Mo: 0.5 to 3% by weight,
C: 0.8 to 1.5% by weight, Ni: 1 to 4% by weight, the composition consisting of Fe and unavoidable impurities in the balance, and a structure in which massive hypereutectoid carbides are independently dispersed in the matrix. An iron-based sintered alloy with excellent strength and wear resistance,
(2) Mo: 0.5 to 3% by weight, C: 0.8 to 1.5
%, Cu: 1 to 4% by weight, with the balance being Fe and unavoidable impurities, and having a structure in which massive hypereutectoid carbides are independently dispersed in the base material, and has excellent strength and wear resistance. Iron-based sintered alloy, (3) Mo: 0.5
~ 3 wt%, C: 0.8-1.5 wt%, Ni: 1-4
%, Cu: 1 to 4% by weight, with the balance being Fe and unavoidable impurities, and having a structure in which massive hypereutectoid carbides are independently dispersed in the base material, and has excellent strength and wear resistance. And an iron-based sintered alloy.

【0006】つぎに、この発明の鉄基焼結合金の成分組
成および組織を上記のごとく限定した理由について説明
する。 (a)Mo Moは、耐摩耗性、強度、耐熱性を向上させる作用があ
るが、その含有量が0.5重量%未満ではその効果が十
分でなく、一方、3重量%を越えて含有すると過共析炭
化物の塊状化が困難になり、また原料として用いるFe
−Mo系粉末の圧縮性および成形性が低下するようにな
ることから、Moの含有量は、0.5〜3重量%に定め
た。Moの含有量の一層好ましい範囲は0.8〜2重量
%である。
Next, the reason why the composition and structure of the iron-based sintered alloy of the present invention are limited as described above will be explained. (A) Mo Mo has the effect of improving wear resistance, strength and heat resistance, but if its content is less than 0.5% by weight, its effect is not sufficient, while if it exceeds 3% by weight. Then, it becomes difficult to agglomerate the hyper-eutectoid carbide, and Fe used as a raw material
Since the compressibility and the moldability of the Mo-based powder are reduced, the Mo content is set to 0.5 to 3% by weight. A more preferable range of the Mo content is 0.8 to 2% by weight.

【0007】(b)C Cには、素地に固溶して強度を向上させるほか、Moと
過共析炭化物を形成して耐摩耗性と強度を向上させる効
果があるが、その含有量が0.8重量%未満では効果が
十分でなく、一方、1.5重量%を越えて含有すると材
料を脆化を促進させるので好ましくない。したがって、
Cの含有量は、0.8〜1.5重量%に定めた。Moの
含有量の一層好ましい範囲は0.9〜1.2重量%であ
る。
(B) C C has the effects of forming a solid solution in the matrix to improve the strength and forming hyper-eutectoid carbide with Mo to improve the wear resistance and strength, but its content is If it is less than 0.8% by weight, the effect is not sufficient, while if it exceeds 1.5% by weight, embrittlement of the material is promoted, which is not preferable. Therefore,
The content of C was set to 0.8 to 1.5% by weight. A more preferable range of the Mo content is 0.9 to 1.2% by weight.

【0008】(c)Ni Niは、焼結を促進させ、強度と靭性を向上させる作用
があるが、その含有量が1重量%未満では所望の効果が
得られず、一方、4重量%を越えてもそれ以上の効果が
得られないことからその含有量は、1〜4重量%に定め
た。Niの含有量の一層好ましい範囲は2〜3重量%で
ある。
(C) Ni Ni has the effect of promoting sintering and improving strength and toughness, but if its content is less than 1% by weight, the desired effect cannot be obtained, while 4% by weight is added. Even if the content exceeds the above range, no further effect is obtained, so the content is defined as 1 to 4% by weight. A more preferable range of the Ni content is 2-3% by weight.

【0009】(d)Cu Cuは、素地を強化し、強度を向上させる作用がある
が、その含有量が1重量%未満では所望の効果が得られ
ず、一方、4重量%を越えると脆化することからその含
有量は、1〜4重量%に定めた。Cuの含有量の一層好
ましい範囲は1.5〜2.5重量%である。
(D) Cu Cu has the effect of strengthening the base material and improving the strength, but if the content is less than 1% by weight, the desired effect cannot be obtained, while if it exceeds 4% by weight, it becomes brittle. Therefore, its content is set to 1 to 4% by weight. A more preferable range of the Cu content is 1.5 to 2.5% by weight.

【0010】(e)組織 鉄基焼結合金の素地中の過共析炭化物は、耐摩耗性を向
上させる作用を有するが、過共析炭化物が網目状に存在
すると、強度が低下するので好ましくない。したがっ
て、鉄基焼結合金の素地中に分散する過共析炭化物はそ
れぞれ独立した塊状の過共析炭化物でなければならな
い。素地中に過共析炭化物がそれぞれ塊状に独立して分
散すると、過共析炭化物が塊状であるために強度を低下
させることなく耐摩耗性を向上させ、かつ均一に固溶し
たMo、Ni、Cuなどが素地の強度を向上させるた
め、耐摩耗性および強度がバランス良く向上するものと
考えられる。塊状の過共析炭化物は5〜50μmの範囲
内にあることが好ましく、この塊状の過共析炭化物は7
30〜1050℃に保持したのち冷却することにより得
られる。
(E) Structure The hyper-eutectoid carbide in the base material of the iron-based sintered alloy has an effect of improving the wear resistance, but the presence of the hyper-eutectoid carbide in the form of a mesh lowers the strength and is therefore preferable. Absent. Therefore, the hypereutectoid carbides dispersed in the base material of the iron-based sintered alloy must be independent massive eutectic carbides. When the hypereutectoid carbides are independently dispersed in the base material in the form of lumps, the hypereutectoid carbides are in the form of lumps to improve the wear resistance without lowering the strength, and uniformly solid-soluted Mo, Ni, Since Cu and the like improve the strength of the base material, it is considered that the wear resistance and the strength are improved in a well-balanced manner. The lumpy hypereutectoid carbide is preferably in the range of 5 to 50 μm, and the lumpy hypereutectoid carbide is 7
It is obtained by holding at 30 to 1050 ° C. and then cooling.

【0011】この発明の素地中に過共析炭化物がそれぞ
れ塊状に独立して分散した組織は、原料粉末を配合し混
合しプレス成形し焼結して得られたMo:0.5〜3重
量%、C:0.8〜1.5重量%を含有し、さらにN
i:1〜4重量%およびCu:1〜4重量%の内の1種
または2種を含有し、残りがFeおよび不可避不純物か
らなる組成を有する鉄基焼結体を、750〜1050
℃、望ましくはその鉄基焼結体のオーステナイト化温度
よりも1〜15℃高い温度に3〜60分間保持したのち
冷却することにより形成することができる。この発明の
鉄基焼結合金の素地は、鉄基焼結体を750〜1050
℃に保持したのち冷却する際の冷却速度に依存するもの
であり、冷却速度が0.5℃/sec未満の遅い冷却速
度で冷却すると素地がベイナイトになり、0.5〜3℃
/secで冷却すると素地がベイナイトおよびマルテン
サイト混合素地となり、3℃/secを越える冷却速度
で冷却すると素地がマルテンサイトになる傾向がある。
The structure in which the hyper-eutectoid carbide is independently dispersed in a lump form in the matrix of the present invention is obtained by blending raw material powders, mixing, press-molding and sintering Mo: 0.5 to 3 weight. %, C: 0.8 to 1.5% by weight, and further N
An iron-based sintered body containing i: 1 to 4% by weight and 1 to 2% of Cu: 1 to 4% by weight, and the balance of Fe and inevitable impurities, is used in the range of 750 to 1050.
It can be formed by maintaining the temperature at 1 ° C, preferably 1 to 15 ° C higher than the austenitizing temperature of the iron-based sintered body for 3 to 60 minutes, and then cooling. The base material of the iron-based sintered alloy of the present invention is an iron-based sintered body of 750 to 1050.
It depends on the cooling rate at the time of cooling after being kept at 0 ° C, and when the cooling rate is slow at a cooling rate of less than 0.5 ° C / sec, the base material becomes bainite and 0.5 to 3 ° C.
When cooled at a cooling rate of 1 / sec, the green body becomes a mixed base of bainite and martensite, and when cooled at a cooling rate exceeding 3 ° C / sec, the green body tends to become martensite.

【0012】[0012]

【実施例】原料粉末として、それぞれ平均粒径:47μ
mを有し表1に示される組成のFe−Mo粉末、Ni粉
末およびCu粉末、並びに平均粒径:21μmの黒鉛粉
末を用意し、これら原料粉末を表1〜表2に示される割
合に配合し、さらに潤滑剤であるステアリン酸亜鉛を添
加した後、ダブルコーンミキサーで十分に混合し、得ら
れた混合粉末を7.0g/ccの密度および90mm×
13mm×10mmの寸法を有する金型圧粉体に成形し
た。得られた金型圧粉成形体をN2 −10%H2 −2%
CH4 の雰囲気中、1120℃で30分間保持の条件で
焼結したのち炉冷することにより鉄基焼結体を作製し
た。ついでこの鉄基焼結体を焼結雰囲気と同じN2 −1
0%H2 −2%CH4 の雰囲気中、表1〜表2に示され
る条件の過共析炭化物塊状化熱処理を行い、本発明鉄基
焼結合金1〜16、比較鉄基焼結合金1〜5および従来
鉄基焼結合金を作製した。
Example: As raw material powder, average particle size: 47 μm
Fe-Mo powder having the composition shown in Table 1 and having Ni, Cu powder, and graphite powder having an average particle size of 21 μm were prepared, and these raw material powders were blended in the proportions shown in Tables 1 and 2. Then, after adding zinc stearate as a lubricant, it was thoroughly mixed with a double cone mixer to obtain a mixed powder having a density of 7.0 g / cc and 90 mm ×
Molded into a green compact having a size of 13 mm × 10 mm. The obtained die powder compact was N 2 -10% H 2 -2%
An iron-based sintered body was produced by sintering in a CH 4 atmosphere at 1120 ° C. for 30 minutes and then furnace cooling. Then, the iron-based sintered body was made to have the same N 2 -1 atmosphere as the sintering atmosphere.
In the atmosphere of 0% H 2 -2% CH 4 , the hypereutectoid carbide agglomeration heat treatment under the conditions shown in Tables 1 and 2 was performed, and the present invention iron-based sintered alloys 1 to 16 and comparative iron-based sintered alloys 1 to 5 and conventional iron-based sintered alloys were produced.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】この様にして得られた本発明鉄基焼結合金
1〜16、比較鉄基焼結合金1〜5および従来鉄基焼結
合金の成分組成を表3〜表4に示し、さらにこれら鉄基
焼結合金の金属顕微鏡により組織観察し、素地中に析出
している塊状過共析炭化物の平均粒径を測定し、その結
果を表3〜表4に示した。
The component compositions of the iron-based sintered alloys 1 to 16 of the present invention, comparative iron-based sintered alloys 1 to 5 and conventional iron-based sintered alloys thus obtained are shown in Tables 3 to 4, and The structures of these iron-based sintered alloys were observed with a metallurgical microscope to measure the average particle size of the massive hyper-eutectoid carbide precipitated in the matrix, and the results are shown in Tables 3 to 4.

【0016】この発明の鉄基焼結合金素地中に分散する
過共析炭化物の塊状組織を一層理解しやすくするため
に、本発明鉄基焼結合金1の金属顕微鏡による組織写真
を図1に示し、その写生図を図2に示した。図1の組織
写真において、白く見える部分が塊状の過共析炭化物で
あり、この塊状の過共析炭化物の写生図を図2に示し
た。
In order to make it easier to understand the bulk structure of the hypereutectoid carbide dispersed in the iron-based sintered alloy matrix of the present invention, a micrograph of the structure of the iron-based sintered alloy 1 of the present invention by a metallurgical microscope is shown in FIG. 2 and its sketch is shown in FIG. In the micrograph of the structure shown in FIG. 1, white portions are lumpy hypereutectoid carbides, and FIG. 2 shows a diagram of this lumpy hypereutectoid carbide.

【0017】さらに、本発明鉄基焼結合金1〜16、比
較鉄基焼結合金1〜5および従来鉄基焼結合金につい
て、強度を評価するためにJIS14A試験片に機械加
工したのち引張試験を行い、引張強さを測定し、その結
果も表3〜表4に示し、さらに、耐摩耗性を評価するた
めに荷重:12kg、摩擦速度:2m/sec、摩擦距
離:100m、相手材:SCM415、潤滑剤:なし、
の条件の大越式摩耗試験を実施し、その摩耗量の測定値
を表3〜表4に示した。
Further, the iron-based sintered alloys 1 to 16 of the present invention, the comparative iron-based sintered alloys 1 to 5 and the conventional iron-based sintered alloys were mechanically processed into JIS14A test pieces in order to evaluate the strength and then subjected to a tensile test. The tensile strength was measured and the results are also shown in Tables 3 to 4. Further, in order to evaluate wear resistance, load: 12 kg, friction speed: 2 m / sec, friction distance: 100 m, mating material: SCM415, Lubricant: None,
The Ogoshi-type wear test was carried out under the conditions of, and the measured values of the wear amounts are shown in Tables 3 to 4.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】表1〜表4に示した結果から、素地中に
塊状過共析炭化物が分散した本発明鉄基焼結合金1〜1
6は、比較鉄基焼結合金1〜5および素地中に網目状炭
化物が分散した従来鉄基焼結合金に比べて、一段と優れ
た引張強さおよび耐摩耗性を有することが分かる。上述
のように、この発明の鉄基焼結合金は、引張強さおよび
耐摩耗性がともに優れているので、高出力内燃機関の耐
摩耗性構造部材として、優れた性能を長期にわたって発
揮することができ、工業上優れた効果をもたらすもので
ある。
From the results shown in Tables 1 to 4, the iron-based sintered alloys 1 to 1 of the present invention in which massive hyper-eutectoid carbides are dispersed in the matrix are obtained.
It can be seen that No. 6 has much more excellent tensile strength and wear resistance than the comparative iron-based sintered alloys 1 to 5 and the conventional iron-based sintered alloy in which the network carbide is dispersed in the matrix. As described above, the iron-based sintered alloy of the present invention is excellent in both tensile strength and wear resistance, so that it should exhibit excellent performance as a wear-resistant structural member for a high-power internal combustion engine for a long period of time. It is possible to bring about excellent industrial effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の鉄基焼結合金の金属顕微鏡による組
織写真である。
FIG. 1 is a micrograph of a structure of an iron-based sintered alloy of the present invention taken with a metallurgical microscope.

【図2】この発明の鉄基焼結合金の金属顕微鏡による写
生図である。
FIG. 2 is a drawing of the iron-based sintered alloy of the present invention, taken by a metallurgical microscope.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mo:0.5〜3重量%、C:0.8〜
1.5重量%、Ni:1〜4重量%を含有し、残りがF
eおよび不可避不純物からなる組成、並びに素地中に塊
状の過共析炭化物が独立して分散した組織を有すること
を特徴とする強度および耐摩耗性に優れた鉄基焼結合
金。
1. Mo: 0.5 to 3% by weight, C: 0.8 to
1.5% by weight, Ni: 1 to 4% by weight, and the balance F
An iron-based sintered alloy excellent in strength and wear resistance, characterized by having a composition of e and unavoidable impurities and having a structure in which massive hyper-eutectoid carbides are independently dispersed in the matrix.
【請求項2】 Mo:0.5〜3重量%、C:0.8〜
1.5重量%、Cu:1〜4重量%を含有し、残りがF
eおよび不可避不純物からなる組成、並びに素地中に塊
状の過共析炭化物が独立して分散した組織を有すること
を特徴とする強度および耐摩耗性に優れた鉄基焼結合
金。
2. Mo: 0.5-3% by weight, C: 0.8-
1.5% by weight, Cu: 1 to 4% by weight, the balance is F
An iron-based sintered alloy excellent in strength and wear resistance, characterized by having a composition of e and unavoidable impurities and having a structure in which massive hyper-eutectoid carbides are independently dispersed in the matrix.
【請求項3】 Mo:0.5〜3重量%、C:0.8〜
1.5重量%、Ni:1〜4重量%、Cu:1〜4重量
%を含有し、残りがFeおよび不可避不純物からなる組
成、並びに素地中に塊状の過共析炭化物が独立して分散
した組織を有することを特徴とする強度および耐摩耗性
に優れた鉄基焼結合金。
3. Mo: 0.5-3% by weight, C: 0.8-
Composition containing 1.5% by weight, Ni: 1 to 4% by weight, Cu: 1 to 4% by weight, the balance consisting of Fe and unavoidable impurities, and massive hypereutectoid carbide dispersed independently in the matrix An iron-based sintered alloy excellent in strength and wear resistance, which is characterized by having a microstructure.
JP20646295A 1995-07-20 1995-07-20 Iron-base sintered alloy excellent in strength and wear resistance Pending JPH0931612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20646295A JPH0931612A (en) 1995-07-20 1995-07-20 Iron-base sintered alloy excellent in strength and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20646295A JPH0931612A (en) 1995-07-20 1995-07-20 Iron-base sintered alloy excellent in strength and wear resistance

Publications (1)

Publication Number Publication Date
JPH0931612A true JPH0931612A (en) 1997-02-04

Family

ID=16523785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20646295A Pending JPH0931612A (en) 1995-07-20 1995-07-20 Iron-base sintered alloy excellent in strength and wear resistance

Country Status (1)

Country Link
JP (1) JPH0931612A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273769A2 (en) 2001-07-03 2003-01-08 Nissan Motor Co., Ltd. Cam lobe piece of built-up type camshaft
WO2005010226A1 (en) * 2003-07-29 2005-02-03 Nippon Piston Ring Co., Ltd. Cam lobe member, camshaft using the same and method for producing cam lobe member
JP4649767B2 (en) * 2001-05-07 2011-03-16 パナソニック株式会社 Biosensor
JP2016108651A (en) * 2014-12-05 2016-06-20 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and sintered body
CN114653958A (en) * 2022-04-01 2022-06-24 中国科学院过程工程研究所 Superfine carbide reinforced high-speed tool steel powder raw material and sintering method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649767B2 (en) * 2001-05-07 2011-03-16 パナソニック株式会社 Biosensor
EP1273769A2 (en) 2001-07-03 2003-01-08 Nissan Motor Co., Ltd. Cam lobe piece of built-up type camshaft
WO2005010226A1 (en) * 2003-07-29 2005-02-03 Nippon Piston Ring Co., Ltd. Cam lobe member, camshaft using the same and method for producing cam lobe member
JP2016108651A (en) * 2014-12-05 2016-06-20 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and sintered body
JP2017226921A (en) * 2014-12-05 2017-12-28 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and sintered body
US10207328B2 (en) 2014-12-05 2019-02-19 Jfe Steel Corporation Alloy steel powder for powder metallurgy, and sintered body
CN114653958A (en) * 2022-04-01 2022-06-24 中国科学院过程工程研究所 Superfine carbide reinforced high-speed tool steel powder raw material and sintering method

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JPS59104454A (en) Anti-wear sintered alloy
JPH0350823B2 (en)
JPS63223142A (en) Fe based sintered alloy for valve seat of internal combustion engine
JP3784926B2 (en) Ferrous sintered alloy for valve seat
KR100691097B1 (en) Sintered steel material
JP2004307950A (en) Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy
EP0711845A1 (en) Wear-resistant sintered ferrous alloy for valve seat
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JP4051167B2 (en) Wear-resistant iron-based sintered alloy
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPH09157806A (en) High-strength ferrous sintered alloy
JP7143899B2 (en) Method for producing copper-based sintered body
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JP3257212B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine intake
JP3763605B2 (en) Sintered alloy material for valve seats
JP4198226B2 (en) High strength sintered body
JPH0114985B2 (en)
JP3341675B2 (en) Iron-based sintered alloy excellent in strength and toughness and method for producing the same
JP4303172B2 (en) Ferrous sintered alloy valve seat
GB2210894A (en) Sintered materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020507