JP6233575B2 - A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDF

Info

Publication number
JP6233575B2
JP6233575B2 JP2013242341A JP2013242341A JP6233575B2 JP 6233575 B2 JP6233575 B2 JP 6233575B2 JP 2013242341 A JP2013242341 A JP 2013242341A JP 2013242341 A JP2013242341 A JP 2013242341A JP 6233575 B2 JP6233575 B2 JP 6233575B2
Authority
JP
Japan
Prior art keywords
degrees
hard coating
crystal
layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013242341A
Other languages
Japanese (ja)
Other versions
JP2015100870A (en
Inventor
翔 龍岡
翔 龍岡
五十嵐 誠
誠 五十嵐
直之 岩崎
直之 岩崎
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013242341A priority Critical patent/JP6233575B2/en
Priority to CN201410289659.3A priority patent/CN104070194A/en
Publication of JP2015100870A publication Critical patent/JP2015100870A/en
Application granted granted Critical
Publication of JP6233575B2 publication Critical patent/JP6233575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/40Tungsten disulphide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]

Description

この発明は、ダクタイル鋳鉄等の切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) which exhibits high chipping resistance with a hard coating layer in high-speed intermittent cutting in which an impact load is applied to a cutting edge such as ductile cast iron. Is.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、上記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al based composite nitride layer is formed by physical vapor deposition on a surface of a substrate (hereinafter collectively referred to as a substrate) as a hard coating layer. It is known that it exhibits excellent wear resistance.
However, although the above-mentioned conventional coated tool coated with a Ti-Al based composite nitride layer is relatively excellent in wear resistance, it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体表面に、組成式(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.60)を満足する複合窒化物層であって、該層についてEBSDによる結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上、また、表面研磨面の法線と直交する任意の方位に対して0〜45度の範囲内に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上であるような、2軸結晶配向性を示すTiとAlの複合窒化物層からなる硬質被覆層を被覆した被覆工具が提案されており、この被覆工具は、重切削加工ですぐれた耐欠損性を発揮するとされている。 For example, Patent Document 1 discloses a composite nitride layer satisfying the composition formula (Ti 1-X Al X ) N (wherein X is 0.40 to 0.60 in atomic ratio) on the substrate surface. When the crystal orientation analysis by EBSD is performed on the layer, the area ratio of the crystal grains having the crystal orientation <100> in the range of 0 to 15 degrees from the normal direction of the surface polished surface is 50% or more. The area ratio of crystal grains having a crystal orientation <100> within a range of 15 degrees centered on the highest peak existing within a range of 0 to 45 degrees with respect to an arbitrary orientation orthogonal to the normal line of the polished surface is 50. %, A coated tool coated with a hard coating layer composed of a composite nitride layer of Ti and Al showing biaxial crystal orientation has been proposed. This coated tool has excellent resistance to heavy cutting. It is said to exhibit deficiency.

また、特許文献2には、基体表面に、バイポーラパルスバイアスを印加し、750〜850℃の成膜温度で蒸着することにより、表面研磨面の法線に対して、{100}面の法線がなす傾斜角を測定して作成した傾斜角度数分布グラフにおいて、30〜40度の傾斜角区分に最高ピークが存在し、その度数合計が、全体の60%以上であり、また、表面研磨面の法線に対して、{112}面の法線がなす傾斜角を測定して作成した構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、その分布割合が全体の50%以上である(Ti1−XAl)N(X=0.4〜0.6)層からなる硬質被覆層を備えた被覆工具が提案されており、この被覆工具は、重切削加工ですぐれた耐欠損性を発揮するとされている。
ただ、上記特許文献1、2に示される被覆工具は、物理蒸着法により硬質被覆層を成膜するため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
Patent Document 2 discloses that a normal of the {100} plane is applied to the normal of the surface polished surface by applying a bipolar pulse bias to the surface of the substrate and depositing it at a film forming temperature of 750 to 850 ° C. In the inclination angle frequency distribution graph created by measuring the inclination angle formed by, the highest peak is present in the inclination angle section of 30 to 40 degrees, the total frequency is 60% or more of the whole, and the surface polished surface In the constituent atomic shared lattice distribution graph created by measuring the inclination angle formed by the normal of the {112} plane with respect to the normal of Σ3, the highest peak exists at Σ3, and the distribution ratio is 50% or more of the whole A coated tool having a hard coating layer composed of a (Ti 1-X Al X ) N (X = 0.4 to 0.6) layer is proposed, and this coated tool was excellent in heavy cutting. It is said to exhibit flaw resistance.
However, since the coating tools shown in Patent Documents 1 and 2 form a hard coating layer by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and the cutting performance is further improved. It is hoped that.

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層及び/または、(Ti1−XAl)C層及び/または、(Ti1−XAl)CN層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.
For example, Patent Document 3 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. a 0.95 (Ti 1-X Al X ) N layer and / or, (Ti 1-X Al X ) C layer and / or, it is described that can be deposited (Ti 1-X Al X) CN layer However, in this document, on this (Ti 1-X Al X ) N layer and / or (Ti 1-X Al X ) C layer and / or (Ti 1-X Al X ) CN layer, Furthermore, since the purpose is to cover the Al 2 O 3 layer and thereby enhance the heat insulation effect, the value of X is increased from 0.65 to 0.95 (Ti 1-X Al X ) N layer. And / or (Ti 1-X Al X ) C layer and / or (T There is no disclosure up to what point the formation of the i 1-X Al X ) CN layer has an effect on cutting performance.

また、例えば、特許文献4には、TiCl、AlCl、NH、Nの混合反応ガス中、700〜900℃の温度でプラズマを用いない化学蒸着を行うことにより、Alの含有割合Xの値が0.75〜0.93である立方晶の(Ti1−XAl)N層からなる硬質被覆層を成膜できることが記載されているが、特許文献3と同様、被覆工具としての適用可能性については何らの開示もない。 Further, for example, Patent Document 4 discloses that Al is contained by performing chemical vapor deposition without using plasma at a temperature of 700 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , NH 3 , and N 2 H 4. It is described that a hard coating layer composed of a cubic (Ti 1-X Al X ) N layer having a ratio X value of 0.75 to 0.93 can be formed. There is no disclosure of applicability as a tool.

特開2008−100320号公報JP 2008-100320 A 特開2008−307615号公報JP 2008-307615 A 特表2011−516722号公報Special table 2011-516722 gazette 米国特許第7767320号明細書US Pat. No. 7,767,320

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、上記特許文献1,2に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、ダクタイル鋳鉄の高速断続切削に供した場合には、耐チッピング性が十分であるとは言えない。
一方、上記特許文献3,4に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、ダクタイル鋳鉄の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。
本発明は、ダクタイル鋳鉄の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。
In recent years, the performance of cutting machines has improved dramatically, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting has been on the trend of higher speed and higher efficiency. The coated tool is further required to have abnormal damage resistance such as chipping resistance, chipping resistance, and peel resistance, and excellent wear resistance over a long-term use.
However, in the coated tools described in Patent Documents 1 and 2, a hard coating layer made of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition to increase the Al content X in the film. Therefore, for example, when it is subjected to high-speed intermittent cutting of ductile cast iron, it cannot be said that the chipping resistance is sufficient.
On the other hand, for the (Ti 1-X Al X ) N layer formed by the chemical vapor deposition method described in Patent Documents 3 and 4, the Al content X can be increased, and a cubic structure is formed. Therefore, although a hard coating layer with a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for cutting, abnormal damage such as chipping, chipping and peeling tends to occur, and it cannot be said that satisfactory cutting performance is exhibited.
The present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use, even when subjected to high-speed intermittent cutting of ductile cast iron and the like. It is intended.

本発明者等は、上述の観点から、TiとAlの複合炭窒化物(以下、「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoint, the present inventors have made a hard coating made of a composite carbonitride of Ti and Al (hereinafter sometimes referred to as “(Ti 1-X Al X ) (C Y N 1-Y )”). As a result of intensive studies to improve the chipping resistance and wear resistance of the coated tool formed by chemical vapor deposition, the following knowledge was obtained.

炭化タングステン基超硬合金(以下、「WC基超硬合金」で示す)、炭窒化チタン基サーメット(以下、「TiCN基サーメット」で示す)、または立方晶窒化ホウ素基超高圧焼結体(以下、「cBN基超高圧焼結体」で示す)のいずれかで構成された基体の表面に、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層(但し、X、Yは原子比であって、0.55≦X≦0.95、0.0005≦Y≦0.005)を成膜するとともに、蒸着時の成膜条件を調整することにより、硬質被覆層について電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析した場合、基体表面の法線方向に対する結晶粒の{110}面の法線がなす傾斜角を測定して、0〜45度の範囲内にある測定傾斜角の度数を集計したとき、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示すような立方晶構造の(Ti1−XAl)(C1−Y)層を成膜した場合には、硬質被覆層の靱性が格段に向上し、すぐれた耐チッピング性を示すようになることを見出したのである。 Tungsten carbide-based cemented carbide (hereinafter referred to as “WC-based cemented carbide”), titanium carbonitride-based cermet (hereinafter referred to as “TiCN-based cermet”), or cubic boron nitride-based ultrahigh pressure sintered body (hereinafter referred to as “TiCN-based cemented carbide”) , Such as a thermal CVD method in which trimethylaluminum (Al (CH 3 ) 3 ) is contained as a reactive gas component on the surface of a substrate composed of any one of “cBN-based ultra-high pressure sintered body”. by vapor deposition, as a hard coating layer, the cubic (Ti 1-X Al X) of the structure (C Y N 1-Y) layer (where, X, Y is an atomic ratio, 0.55 ≦ X ≦ 0 .95, 0.0005 ≦ Y ≦ 0.005), and by adjusting the film forming conditions during vapor deposition, the hard coating layer is crystallized using an electron beam backscatter diffractometer. When analyzing the orientation, When the inclination angle formed by the normal of the {110} plane of the crystal grain with respect to the line direction is measured and the frequency of the measurement inclination angle within the range of 0 to 45 degrees is counted, 0 to 10 degrees and 25 to 35 degrees The first and second peaks of frequencies are present in the range of 0 to 10 degrees, and the sum of the frequencies within the range of 0 to 10 degrees represents a ratio of 20% or more of the entire frequencies in the tilt angle frequency distribution, and 25 to 25 (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic structure in which the total of the frequencies existing in the range of 35 degrees indicates a ratio of 30% or more of the total frequencies in the tilt angle distribution. It has been found that when the film is formed, the toughness of the hard coating layer is remarkably improved and excellent chipping resistance is exhibited.

また、本発明者等は、熱CVD法等の化学蒸着法により成膜した上記(Ti1−XAl)(C1−Y)層からなる硬質被覆層について、結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、炭素、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラフを示すTiとAlの複合炭窒化物層である場合には、結晶粒の粒界強度が向上し、その結果、一段と耐チッピング性が向上することを見出したのである。 In addition, the inventors of the present invention have described the crystal planes of crystal grains in the hard coating layer composed of the above (Ti 1-X Al X ) (C Y N 1-Y ) layer formed by chemical vapor deposition such as thermal CVD. The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type planes in which constituent atoms composed of Ti, Al, carbon, and nitrogen are present at lattice points. Each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result of the centered cubic crystal structure. Distribution of lattice points (constituent atom shared lattice points) to be calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is two or more in the crystal structure of the NaCl type face centered cubic crystal) ) N + When represented by 1, in the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 due to frequency), the distribution of Σ3 in the entire ΣN + 1 In the case of a Ti / Al composite carbonitride layer showing a constituent atomic share lattice distribution graph with a ratio of 50% or more, the grain boundary strength of the crystal grains is improved, and as a result, the chipping resistance is further improved. I found out.

したがって、上記のような硬質被覆層を備えた被覆工具を、例えば、ダクタイル鋳鉄の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用にわたってすぐれた耐摩耗性を発揮することができるのである。   Therefore, when a coated tool having a hard coating layer as described above is used for, for example, high-speed intermittent cutting of ductile cast iron, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and excellent over a long period of use. The wear resistance can be exhibited.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、平均層厚1〜20μmの層厚で硬質被覆層が被覆された表面被覆切削工具であって、
(a)上記硬質被覆層は、化学蒸着法により成膜された立方晶構造のTiとAlの複合炭窒化物層からなり、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(b)上記TiとAlの複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示す、TiとAlの複合炭窒化物層であることを特徴とする表面被覆切削工具。
(2) 前記(1)に記載の表面被覆切削工具の硬質被覆層において、電界放出型走査電子顕微鏡を用い、硬質被覆層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、炭素、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラフを示すTiとAlの複合炭窒化物層であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 前記(1)または(2)に記載の表面被覆切削工具の製造方法において、上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜ることを特徴とする前記(1)または(2)に記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) An average layer thickness of 1 to 20 μm is formed on the surface of a substrate made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. A surface-coated cutting tool coated with a hard coating layer,
(A) The hard coating layer is composed of a composite carbonitride layer of Ti and Al having a cubic structure formed by a chemical vapor deposition method.
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(B) For the Ti and Al composite carbonitride layer, the crystal orientation of each crystal grain was analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer using an electron beam backscattering diffractometer. In this case, the inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the substrate surface is measured, and the measured inclination angle is 0 to 45 degrees with respect to the normal direction. When the measurement inclination angle within the range is divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the first and second frequencies are in the range of 0 to 10 degrees and 25 to 35 degrees. The sum of the frequencies present in the range of 0 to 10 degrees indicates a ratio of 20% or more of the total frequencies in the tilt angle frequency distribution, and the frequencies existing in the range of 25 to 35 degrees T represents a ratio of 30% or more of the total frequency in the tilt angle frequency distribution, T Surface-coated cutting tool, characterized in that as a complex carbonitride layer of Al.
(2) In the hard coating layer of the surface-coated cutting tool according to (1), an electron beam is irradiated to each crystal grain existing within the measurement range of the longitudinal section of the hard coating layer using a field emission scanning electron microscope. Then, the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. It has a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, Al, carbon, and nitrogen exist, respectively. Based on the measurement tilt angle obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom among the crystal grains is calculated, and lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. N (N is NaCl type face centered cubic crystal structure) When the constituent atomic lattice point form existing is an even number greater than or equal to 2) is represented by ΣN + 1, the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit value of N is 28 due to the frequency) The constituent atomic shared lattice point distribution graph shown in the above is a composite carbonitride layer of Ti and Al showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 is 50% or more. The surface-coated cutting tool according to (1).
The method of manufacturing a surface-coated cutting tool according to (3) above (1) or (2), the hard coating layer, at least, the deposition to Rukoto by chemical vapor deposition containing trimethyl aluminum as a reaction gas component The method for producing a surface-coated cutting tool according to (1) or (2), which is characterized in that "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

TiとAlの立方晶複合炭窒化物層((Ti1−XAl)(C1−Y)層)の平均組成:
上記(Ti1−XAl)(C1−Y)層において、Alの含有割合X(原子比)の値が0.55未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、X(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、(Ti1−XAl)(C1−Y)層自体の靭性が低下し、チッピング、欠損を発生しやすくなることから、X(原子比)の値は、0.55以上0.95以下とすることが必要である。
また、上記(Ti1−XAl)(C1−Y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の含有割合Y(原子比)が0.0005未満となると高硬度が得られなくなり、一方、Y(原子比)が0.005を超えると、高温強度が低下してくることから、Y(原子比)の値は、0.0005以上0.005以下と定めた。
なお、PVD法によって上記組成の(Ti1−XAl)(C1−Y)層を成膜した場合には、結晶構造は六方晶であるが、本発明では、後記する化学蒸着法によって成膜していることから、立方晶構造を維持したままで上記組成の(Ti1−XAl)(C1−Y)層を得ることができるので、皮膜硬さの低下はない。
The average composition of the cubic composite carbonitride layer of Ti and Al ((Ti 1-X Al X) (C Y N 1-Y) layer):
In the above (Ti 1-X Al X ) (C Y N 1-Y ) layer, if the Al content ratio X (atomic ratio) is less than 0.55, the high temperature hardness is insufficient and the wear resistance is reduced. On the other hand, when the value of X (atomic ratio) exceeds 0.95, the (Ti 1-X Al X ) (C Y N 1-Y ) layer itself is caused by a decrease in the relative Ti content. Since the toughness of the steel is reduced and chipping and defects are likely to occur, the value of X (atomic ratio) needs to be 0.55 or more and 0.95 or less.
In the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the C component has the effect of improving the hardness, while the N component has the effect of improving the high temperature strength. When the Y content ratio (atomic ratio) is less than 0.0005, high hardness cannot be obtained. On the other hand, when Y (atomic ratio) exceeds 0.005, the high-temperature strength decreases. The ratio was determined to be 0.0005 or more and 0.005 or less.
When the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition is formed by the PVD method, the crystal structure is a hexagonal crystal. Since the film is formed by the method, the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition can be obtained while maintaining the cubic structure, and the film hardness is reduced. There is no.

TiとAlの立方晶複合炭窒化物層((Ti1−XAl)(C1−Y)層)の{110}面についての傾斜角度数分布:
この発明の上記(Ti1−XAl)(C1−Y)層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、基体表面の法線方向(断面研磨面における基体表面と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角(図1(a)、(b)参照)を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示す場合に、上記TiとAlの複合炭窒化物層からなる硬質被覆層は、立方晶構造を維持したままで高硬度を有し、しかも、上記傾斜角度数分布形態によって靭性を向上させる。
また、0〜10度の範囲内に度数のピークが存在し、その度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すことにより上記硬質被覆層が高い耐チッピング性を保持するようになり、一方で、25〜35度の範囲内に度数のピークが存在し、その度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示すことにより上記硬質被覆層が高い耐摩耗性を保持するようになる。より好ましい0〜10度の範囲内に存在する度数の合計は傾斜角度数分布における度数全体の20〜40%の割合であり、より好ましい25〜35度の範囲内に存在する度数の合計は傾斜角度数分布における度数全体の30〜50%の割合である。
更に、これら適度に結晶方位の傾きが異なるTiとAlの立方晶複合炭窒化物同士が存在することによって、TiとAlの立方晶複合炭窒化物層内の歪発生を緩和することができるため、高熱発生を伴い、切れ刃に衝撃的・断続的付加が作用する高速断続切削加工において、優れた耐摩耗性を損なうことなく、優れた耐チッピング性を発揮することができる。
なお、ここで言う第一、第二ピークとは最大ピークと二番目に大きいピークとを指す。
したがって、このような被覆工具(請求項1の発明)は、例えば、ダクタイル鋳鉄の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
Cubic composite carbonitride layer of Ti and Al ((Ti 1-X Al X) (C Y N 1-Y) layer) of the {110} inclination angle frequency distribution for surface:
For the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention, when the crystal orientation of each crystal grain is analyzed from the longitudinal section direction using an electron beam backscattering diffractometer, The inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the substrate surface (the direction perpendicular to the substrate surface in the cross-section polished surface) (see FIGS. 1A and 1B) Of the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees, and the frequencies existing in each section are tabulated. When the first and second peaks of frequencies exist in the range of 0 to 10 degrees and 25 to 35 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the entire frequency in the tilt angle frequency distribution Of 20% or more, and the total frequency within the range of 25 to 35 degrees. Is a hard coating layer composed of a composite carbonitride layer of Ti and Al having a high hardness while maintaining a cubic structure, In addition, the toughness is improved by the inclination angle number distribution form.
In addition, there is a frequency peak in the range of 0 to 10 degrees, and the total of the frequencies indicates a ratio of 20% or more of the entire frequency in the inclined angle frequency distribution, so that the hard coating layer retains high chipping resistance. On the other hand, there is a frequency peak in the range of 25 to 35 degrees, and the total of the frequencies indicates a ratio of 30% or more of the entire degrees in the inclination angle frequency distribution. Maintains high wear resistance. The sum of the frequencies existing within a more preferable range of 0 to 10 degrees is a ratio of 20 to 40% of the entire frequency in the tilt angle frequency distribution, and the total of the frequencies existing within a more preferable range of 25 to 35 degrees is a tilt. It is a ratio of 30 to 50% of the entire frequency in the angular frequency distribution.
Furthermore, the existence of Ti and Al cubic composite carbonitrides having moderately different crystal orientation inclinations can alleviate strain generation in the Ti and Al cubic composite carbonitride layers. In high-speed intermittent cutting with high heat generation and impact / intermittent addition to the cutting edge, excellent chipping resistance can be exhibited without impairing excellent wear resistance.
In addition, the 1st and 2nd peak said here points out the maximum peak and the 2nd largest peak.
Therefore, such a coated tool (invention of claim 1) is excellent in that the occurrence of chipping, chipping, peeling and the like is suppressed even when used for high-speed intermittent cutting of ductile cast iron, for example. Demonstrate wear resistance.

ただ、上記硬質被覆層は、その平均層厚が1μm未満では、基体との密着性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削でチッピング、欠損、剥離等の異常損傷を発生しやすくなることから、その合計平均層厚は1〜20μmと定めた。   However, if the average thickness of the hard coating layer is less than 1 μm, sufficient adhesion to the substrate cannot be ensured. On the other hand, if the average thickness exceeds 20 μm, high-speed intermittent cutting with high heat generation occurs. Therefore, the total average layer thickness is determined to be 1 to 20 μm.

また、請求項2に係る発明では、上記(Ti1−XAl)(C1−Y)層について、電界放出型走査電子顕微鏡を用い、硬質被覆層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合、前記結晶粒は、格子点にTi、Al、炭素、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し(図2(a)、(b)参照)、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラフを示す硬質被覆層を形成することにより、結晶粒の粒界強度が向上し、その結果高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生がさらに一段と抑えられ、しかも、より一段とすぐれた耐摩耗性を発揮するのである。 Further, in the invention according to claim 2, for the (Ti 1-X Al X) (C Y N 1-Y) layer, using a field emission scanning electron microscope, within the measurement range of a longitudinal section of the hard coating layer The existing crystal grains are each irradiated with an electron beam, and the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. In this case, the crystal grains have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, Al, carbon, and nitrogen are present at lattice points (see FIGS. 2A and 2B). Based on the measurement inclination angle obtained as a result, lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains. ) Distribution and share constituent atoms between the constituent atomic shared lattice points In the case where the constituent atomic shared lattice point form in which there are N lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) is represented by ΣN + 1, each ΣN + 1 is an entire ΣN + 1 (however, In the constituent atom shared lattice point distribution graph showing the distribution ratio of the upper limit of N to 28 in terms of frequency), the constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 in the entire ΣN + 1 is 50% or more By forming the hard coating layer shown, the grain boundary strength of the crystal grains is improved, and as a result, even when used for high-speed interrupted cutting, the occurrence of chipping, chipping, peeling, etc. is further suppressed, and It exhibits even better wear resistance.

この発明の請求項1の(Ti1−XAl)(C1−Y)層、即ち、基体表面の法線方向に対する結晶粒の結晶面である{110}面の法線がなす傾斜角を測定した際に、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示す、立方晶の(Ti1−XAl)(C1−Y)層を成膜するには、例えば、通常の化学蒸着法によって
反応ガス組成(容量%):
TiCl 0.5〜 1.0%、Al(CH1〜 2%、
AlCl 0〜 5%、NH 10〜 15%、
6〜 8%、C 0〜 1%、
Ar 2〜 10%、残りH
反応雰囲気温度: 700〜 900℃、
反応雰囲気圧力: 2〜 5kPa、
という条件下で蒸着することによって成膜することができる。
The (Ti 1-X Al X ) (C Y N 1-Y ) layer according to claim 1 of the present invention, that is, the normal of the {110} plane which is the crystal plane of the crystal grain with respect to the normal direction of the substrate surface When the tilt angle is measured, the first and second peaks of frequencies are present in the range of 0 to 10 degrees and 25 to 35 degrees, and the sum of the frequencies present in the range of 0 to 10 degrees is the tilt angle. Cubic (Ti) showing a ratio of 20% or more of the whole frequency in the number distribution and a total of frequencies in the range of 25 to 35 degrees showing a ratio of 30% or more of the whole frequency in the inclination angle frequency distribution. In order to form a 1-X Al X ) ( CY N 1-Y ) layer, for example, a reaction gas composition (volume%) by a normal chemical vapor deposition method:
TiCl 4 0.5-1.0%, Al (CH 3 ) 3 1-2%,
AlCl 3 0-5%, NH 3 10-15%,
N 2 6~ 8%, C 2 H 4 0~ 1%,
Ar 2 to 10%, remaining H 2 ,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
A film can be formed by vapor deposition under the above conditions.

また、請求項2に係るこの発明では、成膜条件をより限定することによって、構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合が50%以上である構成原子共有格子点形態を示す立方晶の(Ti1−XAl)(C1−Y)層を成膜することができる。
例えば、
反応ガス組成(容量%):
TiCl 0.5〜 1.0%、Al(CH1〜 2%、
AlCl 0〜 5%、NH 10〜 12%、
6〜 8%、C 0〜 1%、
Ar 5〜 10%、残りH
反応雰囲気温度: 700〜 900℃、
反応雰囲気圧力: 2〜 5kPa、
とより限定した条件で成膜することが必要である。
Moreover, in this invention which concerns on Claim 2, in the constituent atom shared lattice point distribution graph by further limiting the film forming conditions, the constituent atom shared lattice point form in which the distribution ratio of Σ3 in the entire ΣN + 1 is 50% or more A cubic (Ti 1-X Al X ) (C Y N 1-Y ) layer showing can be formed.
For example,
Reaction gas composition (volume%):
TiCl 4 0.5-1.0%, Al (CH 3 ) 3 1-2%,
AlCl 3 0-5%, NH 3 10-12%,
N 2 6~ 8%, C 2 H 4 0~ 1%,
Ar 5-10%, remaining H 2 ,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
It is necessary to form a film under more limited conditions.

本発明の被覆工具は、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、立方晶構造の(Ti1−XAl)(C1−Y)層が硬質被覆層として成膜され、さらに、該硬質被覆層は、基体表面の法線方向に対する結晶粒の{110}面の法線がなす傾斜角を測定した傾斜角度数分布において、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示すことにより、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用するダクタイル鋳鉄の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。
さらに、好ましくは、該硬質被覆層は、構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合は50%以上であることによって、より一段と耐チッピング性、耐欠損性、耐剥離性等が向上し、長期の使用にわたってすぐれた耐摩耗性を発揮することができるのである。
The coated tool of the present invention is obtained by, for example, (Ti 1-X Al X ) (C) having a cubic structure by chemical vapor deposition such as thermal CVD containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component. Y N 1-Y ) layer is formed as a hard coating layer, and the hard coating layer has an inclination angle measured by the inclination angle formed by the normal of the {110} plane of the crystal grains with respect to the normal direction of the substrate surface. In the number distribution, the first and second peaks of frequencies exist in the range of 0 to 10 degrees and 25 to 35 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the frequency in the tilt angle distribution. It shows a ratio of 20% or more of the whole, and the total of the frequencies existing in the range of 25 to 35 degrees indicates a ratio of 30% or more of the entire frequencies in the inclination angle frequency distribution. Intermittent / impact negative on blade There even when using a high-speed intermittent cutting of ductile iron to act, chipping, defective, without generating abnormal damage such as peeling is to exert excellent wear resistance over a long period of use.
Further, preferably, the hard coating layer has a chipping resistance, a chipping resistance, and a peeling resistance more greatly when the distribution ratio of Σ3 occupying the entire ΣN + 1 in the constituent atomic shared lattice distribution graph is 50% or more. Etc., and excellent wear resistance can be exhibited over a long period of use.

(a)、(b)は、硬質被覆層を構成する(Ti1−XAl)(C1−Y)層における結晶粒の結晶面である{110}面の法線が、基体表面の法線に対してなす傾斜角の測定範囲を示す概略説明図である。(A), (b) constitutes the hard coating layer (Ti 1-X Al X) normal to the (C Y N 1-Y) is a crystal plane of the crystal grains in the layer {110} plane, the substrate It is a schematic explanatory drawing which shows the measurement range of the inclination angle made with respect to the normal line of a surface. 硬質被覆層を構成する(Ti,Al)(C1−Y)層が有するNaCl型面心立方晶の結晶構造、(001)面、(011)面を示す概略模式図である。It is a schematic diagram showing the crystal structure of the NaCl type face centered cubic crystal, (001) plane, (011) plane, which the (Ti, Al) (C Y N 1-Y ) layer constituting the hard coating layer has. 本発明被覆工具について作成した構成原子共有格子点分布グラフの一例を示す。An example of a constituent atom shared lattice point distribution graph created for the coated tool of the present invention is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders have the composition shown in Table 1. After mixing, adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact is 1370-1470 in a vacuum of 5 Pa. Substrate A to C made of WC-base cemented carbide having an insert shape of ISO standard SEEN1203AFSN were manufactured after vacuum sintering under the condition of holding at a predetermined temperature within a range of 1 ° C. for 1 hour.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体a〜cを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a substrate made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN c was produced.



つぎに、これらの工具基体A〜Cおよび工具基体a〜cの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表5に示される本発明被覆工具1〜10を製造した。 Next, on the surfaces of these tool bases A to C and tool bases a to c, (Ti 1-X Al X ) (C Y ) of the present invention is used under the conditions shown in Table 3 using a normal chemical vapor deposition apparatus. The present invention coated tools 1 to 10 shown in Table 5 were manufactured by vapor-depositing N 1 -Y ) layers at a target layer thickness.

また、比較の目的で、同じく工具基体A〜Cおよび工具基体a〜cの表面に、通常の化学蒸着装置を用い、表4に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表6に示される比較例被覆工具1〜8を製造した。 Further, for the purpose of comparison, a conventional chemical vapor deposition apparatus was similarly used on the surfaces of the tool bases A to C and the tool bases a to c, and under the conditions shown in Table 4, (Ti 1-X Al X ) of the comparative example. Comparative example-coated tools 1 to 8 shown in Table 6 were manufactured by vapor-depositing (C Y N 1-Y ) layers at a target layer thickness.

また、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9、10の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表5および表6に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、上記の本発明被覆工具1〜10の硬質被覆層について、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{110}面の法線がなす傾斜角についての傾斜角度数分布における第一、第二ピークの存在するピーク位置、0〜10度の範囲内に存在する度数の割合(α),25〜35度の範囲内に存在する度数の割合(β),構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合(γ)について測定した。
図3に、本発明被覆工具8について測定した構成原子共有格子点分布グラフを示す。
なお、具体的な測定は次のとおりである。
蛍光X線分析装置を用い、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層表面にスポット径100μmのX線を照射し、得られた特性X線の解析結果から平均Al含有割合X、平均C含有割合Yを求めた。
ついで、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、30×50μmの領域を0.1μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、第一、第二ピークの存在するピーク位置、0〜10度の範囲内に存在する度数の割合(α),25〜35度の範囲内に存在する度数の割合(β)を求めた。また、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる) 存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を2 8 とする) に占める分布割合を求めることにより構成原子共有格子点分布グラフ作成し、ΣN+1全体に占めるΣ3の分布割合(γ)を求めた。
さらに、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。
表5に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 1-10, comparative example coated tool 1-8, and reference example coated tool 9,10 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Tables 5 and 6.
Next, with respect to the hard coating layers of the above-mentioned coated tools 1 to 10 of the present invention, the average Al content ratio X, the average C content ratio Y of the hard coating layer, and the inclination formed by the normal of the {110} plane with respect to the normal direction of the substrate surface The peak position where the first and second peaks exist in the inclination angle frequency distribution for the angle, the ratio (α) of the frequency existing in the range of 0 to 10 degrees, the ratio of the frequency existing in the range of 25 to 35 degrees (Β), In the constituent atom shared lattice point distribution graph, the distribution ratio (γ) of Σ3 in the entire ΣN + 1 was measured.
FIG. 3 shows a constituent atomic shared lattice point distribution graph measured for the coated tool 8 of the present invention.
The specific measurement is as follows.
Using a fluorescent X-ray analyzer, the surface of the hard coating layer composed of a composite carbonitride layer of Ti and Al having a cubic structure was irradiated with X-rays having a spot diameter of 100 μm, and the average Al was obtained from the analysis result of the obtained characteristic X-rays. The content ratio X and the average C content ratio Y were determined.
Next, in a state where the cross section of the hard coating layer composed of a composite carbonitride layer of Ti and Al having a cubic structure is used as a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and 70 ° on the polished surface. An electron beam having an acceleration voltage of 15 kV at an incident angle of 1 nm is irradiated to each crystal grain having a cubic crystal lattice existing within the measurement range of the cross-sectional polished surface with an irradiation current of 1 nA, and an electron backscatter diffraction image apparatus is used. Thus, a {110} plane which is a crystal plane of the crystal grain with respect to a normal line of the substrate surface (a direction perpendicular to the substrate surface in the cross-section polished surface) in a 30 × 50 μm region at an interval of 0.1 μm / step The inclination angle formed by the normal line is measured, and based on the measurement result, among the measurement inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, By counting the frequencies that exist in each category First, there is the peak position of the second peak, was determined the ratio of the frequencies present in the range of 0 degrees (alpha), the ratio of the frequencies present in the range of 25 to 35 degrees (beta). In addition, the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface (the direction perpendicular to the substrate surface in the cross-section polished surface). Based on the measurement inclination angle obtained as a result, lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains. ), And there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl-type face-centered cubic crystal). When the lattice point form is represented by ΣN + 1, a constituent atom shared lattice point distribution graph is created by calculating the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit is 2 8 in relation to the frequency), and ΣN + 1 Σ3 in total Distribution was determined the ratio (γ).
Furthermore, regarding the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.
Table 5 shows the results.

ついで、比較例被覆工具1〜8のそれぞれについても、本発明被覆工具1〜10と同様にして、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{110}面の法線がなす傾斜角についての傾斜角度数分布における第一、第二ピークの存在するピーク位置、0〜10度の範囲内に存在する度数の割合(α),30〜40度の範囲内に存在する度数の割合(β),構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合(γ)について測定した。
また、硬質被覆層の結晶構造についても、本発明被覆工具1〜10と同様にして、調査した。
表6に、その結果を示す。
Next, for each of the comparative coated tools 1 to 8, as in the coated tools 1 to 10 of the present invention, the average Al content ratio X, average C content ratio Y of the hard coating layer, and the normal direction of the substrate surface { 110} plane normal angle, the peak position where the first and second peaks exist in the tilt angle number distribution, the ratio of the frequency existing within the range of 0 to 10 degrees (α), 30 to 40 degrees The ratio (β) of the frequencies existing in the range of γ, and the distribution ratio (γ) of Σ3 in the entire ΣN + 1 in the constituent atom shared lattice point distribution graph were measured.
Further, the crystal structure of the hard coating layer was also investigated in the same manner as the coated tools 1 to 10 of the present invention.
Table 6 shows the results.





つぎに、上記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10、比較例被覆工具1〜8について、以下に示す、ダクタイル鋳鉄の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・FCD700幅100mm、長さ400mmのブロック材
回転速度: 890min−1
切削速度: 350m/min、
切り込み: 1.0mm、
一刃送り量: 0.1mm/刃、
切削時間: 8分、
表7に、上記切削試験の結果を示す。
Next, in the state where all the above-mentioned various coated tools are clamped to the tool steel cutter tip portion with a cutter diameter of 125 mm by a fixing jig, the present invention coated tools 1 to 10 and comparative example coated tools 1 to 8, A dry high-speed face milling and center-cut cutting test, which is a kind of high-speed intermittent cutting of ductile cast iron, was performed, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / FCD700 width 100mm, length 400mm
Rotational speed: 890 min −1
Cutting speed: 350 m / min,
Cutting depth: 1.0mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting time: 8 minutes,
Table 7 shows the results of the cutting test.


表5〜7に示される結果から、本発明被覆工具1〜10は、立方晶構造の(Ti1−XAl)(C1−Y)層が成膜され、傾斜角度数分布において0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在すると共に、0〜10度の範囲内に存在する度数の割合(α)が20%以上であり、また、30〜40度の範囲内に存在する度数の割合(β)が30%以上であり、加えて、本発明被覆工具6〜10は、Σ3の分布割合γの値が50%以上であることから、ダクタイル鋳鉄の高速断続切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜8については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7, the coated tools 1 to 10 of the present invention have a (Ti 1-X Al X ) (C Y N 1-Y ) layer formed in a cubic structure, and the inclination angle number distribution is The first and second peaks of frequencies are present in the range of 0 to 10 degrees and 25 to 35 degrees, and the ratio (α) of the frequencies present in the range of 0 to 10 degrees is 20% or more, Since the ratio (β) of the frequency existing in the range of 30 to 40 degrees is 30% or more, in addition, the present coated tools 6 to 10 have a value of the distribution ratio γ of Σ3 of 50% or more. It exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of ductile cast iron.
On the other hand, it is clear that all of the comparative example coated tools 1 to 8 not only cause abnormal damage such as chipping, chipping and peeling on the hard coating layer, but also reach the service life in a relatively short time. is there.

上述のように、この発明の被覆工具は、ダクタイル鋳鉄の高速ミーリング切削加工及び外径高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

As described above, the coated tool of the present invention can be used as a coated tool for various work materials as well as high-speed milling cutting and outer diameter high-speed intermittent cutting of ductile cast iron, and for long-term use. Since it exhibits excellent chipping resistance and wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (3)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、平均層厚1〜20μmの層厚で硬質被覆層が被覆された表面被覆切削工具であって、
(a)上記硬質被覆層は、化学蒸着法により成膜された立方晶構造のTiとAlの複合炭窒化物層からなり、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(b)上記TiとAlの複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度と25〜35度の範囲に度数の第一、第二ピークが存在し、かつ、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の20%以上の割合を示すと共に、25〜35度の範囲内に存在する度数の合計が傾斜角度数分布における度数全体の30%以上の割合を示す、TiとAlの複合炭窒化物層であることを特徴とする表面被覆切削工具。
A hard coating layer having an average layer thickness of 1 to 20 μm is formed on the surface of a substrate made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body. A coated surface-coated cutting tool,
(A) The hard coating layer is composed of a composite carbonitride layer of Ti and Al having a cubic structure formed by a chemical vapor deposition method.
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(B) For the Ti and Al composite carbonitride layer, the crystal orientation of each crystal grain was analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer using an electron beam backscattering diffractometer. In this case, the inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the substrate surface is measured, and the measured inclination angle is 0 to 45 degrees with respect to the normal direction. When the measurement inclination angle within the range is divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the first and second frequencies are in the range of 0 to 10 degrees and 25 to 35 degrees. The sum of the frequencies present in the range of 0 to 10 degrees indicates a ratio of 20% or more of the total frequencies in the tilt angle frequency distribution, and the frequencies existing in the range of 25 to 35 degrees T represents a ratio of 30% or more of the total frequency in the tilt angle frequency distribution, T Surface-coated cutting tool, characterized in that as a complex carbonitride layer of Al.
請求項1に記載の表面被覆切削工具の硬質被覆層において、電界放出型走査電子顕微鏡を用い、硬質被覆層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、炭素、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラフを示すTiとAlの複合炭窒化物層であることを特徴とする請求項1に記載の表面被覆切削工具。   The hard coating layer of the surface-coated cutting tool according to claim 1, wherein a field emission scanning electron microscope is used to irradiate each crystal grain existing within the measurement range of the longitudinal section of the hard coating layer with an electron beam. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured with respect to the surface normal lines. In this case, the crystal grains have Ti, Al, It has a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of carbon and nitrogen exist, respectively. Based on the measured tilt angle obtained as a result of this, at the interface between adjacent crystal grains, The distribution of lattice points (constituent atom shared lattice points) each sharing one constituent atom between the crystal grains is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N Is more than 2 due to the crystal structure of NaCl type face centered cubic When the constituent atomic shared lattice point form that is present is expressed as ΣN + 1, the constituent atomic sharing that indicates the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) The lattice point distribution graph is a composite carbonitride layer of Ti and Al showing a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 is 50% or more. Surface coated cutting tool. 請求項1または2に記載の表面被覆切削工具の製造方法において、上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜ることを特徴とする請求項1または2に記載の表面被覆切削工具の製造方法
The method of manufacturing a surface-coated cutting tool according to claim 1 or 2, the hard coating layer is at least claim 1, characterized that you deposited by chemical vapor deposition containing trimethyl aluminum as a reaction gas component Or the manufacturing method of the surface covering cutting tool of 2.
JP2013242341A 2013-11-22 2013-11-22 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP6233575B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013242341A JP6233575B2 (en) 2013-11-22 2013-11-22 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN201410289659.3A CN104070194A (en) 2013-11-22 2014-06-25 Surface wrapping cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242341A JP6233575B2 (en) 2013-11-22 2013-11-22 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2015100870A JP2015100870A (en) 2015-06-04
JP6233575B2 true JP6233575B2 (en) 2017-11-22

Family

ID=51592025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242341A Active JP6233575B2 (en) 2013-11-22 2013-11-22 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (2)

Country Link
JP (1) JP6233575B2 (en)
CN (1) CN104070194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856660A (en) * 2015-10-09 2017-06-16 住友电工硬质合金株式会社 Surface-coated cutting tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009929A1 (en) * 2015-07-13 2017-01-19 住友電工ハードメタル株式会社 Surface-coated cutting tool
CN106536101B (en) * 2015-07-13 2019-03-26 住友电工硬质合金株式会社 Surface-coated cutting tool
JP6726403B2 (en) 2015-08-31 2020-07-22 三菱マテリアル株式会社 Surface-coated cutting tool with excellent hard coating layer and chipping resistance
JP6931454B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6573171B2 (en) * 2015-12-24 2019-09-11 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP6044861B1 (en) * 2016-04-08 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266980B1 (en) * 2001-06-11 2005-11-02 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
CN100431756C (en) * 2004-01-30 2008-11-12 三菱麻铁里亚尔株式会社 Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof
JP4725773B2 (en) * 2004-12-27 2011-07-13 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4725774B2 (en) * 2004-12-27 2011-07-13 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP4534790B2 (en) * 2005-02-23 2010-09-01 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4655308B2 (en) * 2005-09-13 2011-03-23 三菱マテリアル株式会社 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting
JP4748450B2 (en) * 2006-02-06 2011-08-17 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
EP2085500B1 (en) * 2007-12-28 2013-02-13 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
JP5182501B2 (en) * 2008-07-09 2013-04-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5326845B2 (en) * 2009-06-12 2013-10-30 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting.
JP6024981B2 (en) * 2012-03-09 2016-11-16 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5935479B2 (en) * 2012-04-20 2016-06-15 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
CN103372764B (en) * 2012-04-20 2017-03-01 三菱综合材料株式会社 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing knife
JP5946016B2 (en) * 2012-05-22 2016-07-05 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856660A (en) * 2015-10-09 2017-06-16 住友电工硬质合金株式会社 Surface-coated cutting tool
CN106856660B (en) * 2015-10-09 2019-05-28 住友电工硬质合金株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
CN104070194A (en) 2014-10-01
JP2015100870A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548072B2 (en) Surface coated cutting tool
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2014034730A1 (en) Surface-coated cutting tool
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2018144139A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2018144138A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2013049119A (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting work
JP7016462B2 (en) Surface covering cutting tool
JP6928220B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2017013211A (en) Surface coating and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6233575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150