JP6928220B2 - Surface coating cutting tool with excellent chipping resistance due to the hard coating layer - Google Patents

Surface coating cutting tool with excellent chipping resistance due to the hard coating layer Download PDF

Info

Publication number
JP6928220B2
JP6928220B2 JP2017174844A JP2017174844A JP6928220B2 JP 6928220 B2 JP6928220 B2 JP 6928220B2 JP 2017174844 A JP2017174844 A JP 2017174844A JP 2017174844 A JP2017174844 A JP 2017174844A JP 6928220 B2 JP6928220 B2 JP 6928220B2
Authority
JP
Japan
Prior art keywords
layer
grain boundary
constituent
shared lattice
lattice point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174844A
Other languages
Japanese (ja)
Other versions
JP2018058202A (en
Inventor
正樹 奥出
正樹 奥出
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2017/035466 priority Critical patent/WO2018066469A1/en
Publication of JP2018058202A publication Critical patent/JP2018058202A/en
Application granted granted Critical
Publication of JP6928220B2 publication Critical patent/JP6928220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼やステンレス鋼等の切削加工を、切刃に高負荷が作用する高速断続高切り込み条件および高速断続高送り条件で行った場合でも、硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関する。 According to the present invention, the hard coating layer exhibits excellent chipping resistance even when cutting steel, stainless steel, etc. is performed under high-speed intermittent high cutting conditions and high-speed intermittent high feed conditions in which a high load acts on the cutting edge. However, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られている。
Conventionally, generally, on the surface of a substrate (hereinafter, collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter, WC) -based cemented carbide or a titanium nitride (hereinafter, TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter, also indicated by TiN) layer, a carbonitride (hereinafter, indicated by TiCN) layer, and a carbon oxide (hereinafter, TiCO). A Ti compound layer consisting of one layer or two or more of the (shown) layer and the carbonitride oxide (hereinafter referred to as TiCNO) layer.
(B) An aluminum oxide layer having an α-type crystal structure in a chemically vapor-deposited state (hereinafter referred to as an Al 2 O 3 layer),
As described above, a coating tool in which a hard coating layer composed of (a) and (b) is vapor-deposited is known.

しかし、前述したような従来の被覆工具は、例えば、各種の鋼や鋳鉄などの連続切削ではすぐれた切削性能を発揮するが、これを、断続切削加工に用いた場合には、被覆層のチッピングが発生しやすく、工具寿命が短命になるという問題があった。
そこで、被覆層の耐チッピング性を高めるために、硬質被覆層に種々の改良を加えた被覆工具が提案されている。
However, the conventional covering tool as described above exhibits excellent cutting performance in continuous cutting of various types of steel and cast iron, for example, but when this is used for intermittent cutting, chipping of the coating layer is performed. There is a problem that the tool life is shortened.
Therefore, in order to improve the chipping resistance of the coating layer, a coating tool in which various improvements are made to the hard coating layer has been proposed.

例えば、特許文献1には、
工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具において、
上記(a)のTi化合物層のうちの1層を、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件で、2.5〜15μmの平均層厚に化学蒸着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電
子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間
隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である(001)面および(
011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、
および窒素からなる構成原子がそれぞれ存在するNaCl型立方晶の結晶構造を有し、こ
の結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子の
それぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)
の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格
子点の数:N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分
布頻度の点からN:28を上限とする)毎に定めたΣN+1で表される構成原子共有格子
点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの構成原子共有格子点形態(単位形態)
の分布割合を、前記Σ3〜Σ29の構成原子共有格子点形態(単位形態)全体の合計分布割合に占める割合で示す構成
原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3の分布割
合が前記構成原子共有格子点形態(単位形態)全体の合計分布割合の65〜80%を占める構成原子共有格子点分布グ
ラフを示す炭窒化チタン層、
からなる被覆工具が提案されており、この被覆工具によれば、鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮するとされている。
For example, in Patent Document 1,
On the surface of the tool substrate,
(A) The lower layer is composed of two or more layers of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonic acid oxide layer, and a carbonic acid nitrogen oxide layer, all of which are chemically vapor-deposited, and 3 Ti compound layer with a total average layer thickness of ~ 20 μm,
(B) An aluminum oxide layer having an average layer thickness of 1 to 15 μm, in which the upper layer is chemically vapor-deposited.
In the coating tool formed of the hard coating layer composed of the above (a) and (b),
One layer of the Ti compound layer of (a) above is
Reaction gas composition: By volume%, TiCl 4 : 0.1 to 0.8%, CH 3 CN: 0.05 to 0.3%, Ar: 10 to 30%, H 2 : Remaining,
Reaction atmosphere temperature: 930 to 1000 ° C,
Reaction atmospheric pressure: 6-20 kPa,
Under the conditions of, chemical vapor deposition is formed to an average layer thickness of 2.5 to 15 μm, and
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and an electron backscatter diffraction imager is used to set a predetermined region at intervals of 0.1 μm / step. , The (001) plane and (001) which are the crystal planes of the crystal grains with respect to the normal line of the surface polishing plane.
011) Measure the inclination angle formed by the normal of the plane, in which case the crystal grains are Ti, carbon, at the lattice points.
Each of the constituent atoms has a NaCl-type cubic crystal structure in which constituent atoms consisting of and nitrogen are present, and each of the constituent atoms is said to be at the interface of crystal grains adjacent to each other based on the measurement inclination angle obtained as a result. Lattice points that share one constituent atom between crystal grains (constituting atom shared lattice points)
The number of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points: N (in this case, N is an even number of 2 or more due to the crystal structure of the NaCl type cubic crystal). Calculate the distribution ratio of each constituent atom shared lattice point form (unit form) represented by ΣN + 1 determined for each (up to N: 28 from the point of distribution frequency), and share each constituent atom of Σ3 to Σ29. Lattice point form (unit form)
In the constituent atom shared lattice point distribution graph showing the distribution ratio of Σ3 to Σ29 as a percentage of the total distribution ratio of the constituent atom shared lattice point forms (unit forms) of the above Σ3 to Σ29, the highest peak exists in Σ3 and the above Σ3 Titanium carbon nitride layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of is occupied 65 to 80% of the total distribution ratio of the entire constituent atom shared lattice point form (unit form).
A covering tool made of the above has been proposed, and according to this covering tool, it is said that the hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting of steel, cast iron, and the like.

また、特許文献2には、
工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、チタンの炭化物層、窒化物層、炭窒化
物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ、その内の1層
はチタンの炭窒化物層からなり、3〜20μmの合計平均層厚を有するチタン化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニ
ウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具において、
上記(a)のチタン化合物層の内のチタンの炭窒化物層について、電界放出型走査電子
顕微鏡を用い、縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散
乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対
する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を
測定し、この場合、前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN=28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの構成原子共有格子点形態(単位形態)の分布割合を、前記Σ3〜Σ29の構成原子共有格子点形態(単位形態)全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフにおいて、切れ刃稜線部では前記Σ3の分布割合が前記構成原子共有格子点形態(単位形態)全体の合計分布割合の5〜13%を示し、切れ刃稜線部以外の領域では前記Σ3の分布割合が前記構成原子共有格子点形態(単位形態)全体の合計分布割合の50%以上を占める構成原子共有格子点分布グラフを示すチタンの炭窒化物層、
からなる強断続加工ですぐれた耐チッピング性を発揮する被覆工具が提案されており、この被覆工具によれば、切れ刃稜線部の硬質被覆層の下部層のΣ3の分布割合と、切れ刃稜線部以外の領域における硬質被覆層の下部層のΣ3の分布割合を、それぞれ、特定の範囲に定めることによって、断続の間隔が長く切れ刃先端には強い衝撃が加わる強断続加工において、耐摩耗性の低下を招くことなく、すぐれた耐チッピング性が発揮されるとされている。
Further, in Patent Document 2,
On the surface of the tool substrate,
(A) The lower layer is composed of two or more layers of a titanium carbide layer, a nitride layer, a carbonitride layer, a coal oxide layer, and a carbonitride oxide layer, all of which are chemically vapor-deposited. One of them is a titanium compound layer composed of a titanium carbide layer and having a total average layer thickness of 3 to 20 μm.
(B) An aluminum oxide layer having an average layer thickness of 1 to 15 μm, in which the upper layer is chemically vapor-deposited.
In the coating tool formed of the hard coating layer composed of the above (a) and (b),
The carbonitride layer of titanium in the titanium compound layer of (a) above is irradiated with an electron beam for each crystal grain existing in the measurement range of the vertical cross section using an electro-emission scanning electron microscope, and electron backscattering is performed. Using a diffraction image device, the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface at intervals of 0.1 μm / step in a predetermined region. In this case, the crystal grains have a NaCl-type surface-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen are present at the lattice points, respectively, and the measurement inclination angle obtained as a result is obtained. Based on, at the interface of the crystal grains adjacent to each other, the distribution of lattice points (constituting atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated, and the above-mentioned The number of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points N (In this case, N is an even number of 2 or more due to the crystal structure of the NaCl type cubic crystal, but N = 28 from the point of distribution frequency. The distribution ratio of each constituent atom shared lattice point form (unit form) represented by ΣN + 1 determined for each (upper limit) is calculated, and the distribution of each constituent atom shared lattice point form (unit form) of Σ3 to Σ29 is calculated. In the constituent atom shared lattice point distribution graph showing the ratio as a ratio to the total distribution ratio of the constituent atom shared lattice point forms (unit forms) of the constituent atoms of Σ3 to Σ29, the distribution ratio of the Σ3 is the configuration in the cutting edge ridge portion. It shows 5 to 13% of the total distribution ratio of the entire atomic shared lattice point morphology (unit form), and the distribution ratio of Σ3 is the total of the entire constituent atomic shared lattice point morphology (unit form) in the region other than the cutting edge ridge. A carbon nitride layer of titanium showing a composition atom shared lattice point distribution graph occupying 50% or more of the distribution ratio,
A coating tool that exhibits excellent chipping resistance by strong intermittent machining has been proposed. According to this coating tool, the distribution ratio of Σ3 in the lower layer of the hard coating layer at the cutting edge ridge and the cutting edge ridge. By setting the distribution ratio of Σ3 in the lower layer of the hard coating layer in the region other than the part to a specific range, the abrasion resistance in strong intermittent machining where the interval between interruptions is long and a strong impact is applied to the tip of the cutting edge. It is said that excellent chipping resistance is exhibited without causing deterioration of the blade.

特許第4518258号公報Japanese Patent No. 4518258 特開2015−182154号公報Japanese Unexamined Patent Publication No. 2015-182154

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高速化すると共に、高切り込みや高送りなどの重切削、断続切削等で切刃に高負荷が作用する傾向にある。
前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削、断続切削に用いた場合には特に問題はないが、より一段と厳しい切削条件である高速断続重切削条件で鋼やステンレス鋼を加工した場合には、硬質被覆層の塑性変形性が十分でないことに加え、硬質被覆層には高負荷が作用するため、硬質被覆層を構成する粒子の脱落、剥離等の発生あるいはチッピングの発生を原因として比較的短時間で工具寿命に至る。
In recent years, the performance of cutting equipment has been remarkably improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting. Along with this, the cutting speed is further increased, and a high load tends to act on the cutting edge due to heavy cutting such as high cutting and high feed, intermittent cutting and the like.
There is no particular problem when the above-mentioned conventional covering tool is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but steel and stainless steel under high-speed intermittent heavy cutting conditions, which are more severe cutting conditions. When steel is processed, the plastic deformability of the hard coating layer is not sufficient, and a high load acts on the hard coating layer, so that the particles constituting the hard coating layer fall off, peel off, or chip. The tool life is reached in a relatively short time due to the occurrence of.

そこで、本発明者らは、前述のような観点から、切れ刃に断続的・衝撃的な高負荷が作用し、また、硬質被覆層の塑性変形が発生しやすい高速断続重切削条件(例えば、高速高切り込み断続切削条件、高速高送り断続切削条件)で使用した場合でも、硬質被覆層の剥離、チッピングが発生しないような硬質被覆層の構造について鋭意研究を行ったところ、硬質被覆層の下部層を構成する少なくとも一つのTiCN層において、該TiCN層の全対応粒界長に対して、Σ31以上の対応粒界長の長さ割合を80%以上とすることによって、下部層を構成するTiCN層中に靱性の高い粒界を多く分布させることができ、これにより、切刃に断続的・衝撃的な高負荷が作用する高速高切り込み断続条件あるいは高速高送り断続条件で鋼、ステンレス鋼等を切削加工した場合にも、硬質被覆層の剥離、チッピングの発生が抑制されることを見出した。 Therefore, from the above-mentioned viewpoints, the present inventors have high-speed intermittent heavy cutting conditions (for example,) in which an intermittent and shocking high load acts on the cutting edge and plastic deformation of the hard coating layer is likely to occur. After diligent research on the structure of the hard coating layer so that peeling and chipping of the hard coating layer do not occur even when used under high-speed high-cut intermittent cutting conditions and high-speed high-feed intermittent cutting conditions), the lower part of the hard coating layer In at least one TiCN layer constituting the layer, the TiCN constituting the lower layer is formed by setting the length ratio of the corresponding grain boundary length of Σ31 or more to 80% or more with respect to the total corresponding grain boundary length of the TiCN layer. Many grain boundaries with high toughness can be distributed in the layer, which makes it possible to distribute steel, stainless steel, etc. under high-speed high-cutting intermittent conditions or high-speed high-feed intermittent conditions in which a high load intermittently or impactfully acts on the cutting edge. It was found that the peeling of the hard coating layer and the occurrence of chipping are suppressed even when the hard coating layer is cut.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に下部層と上部層からなる硬質被覆層が設けられている表面被覆切削工具において、
(a)前記下部層は、3〜20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの1層または2層以上からなるTi化合物層であって、その内の少なくとも1層はTiCN層で構成されており、
(b)前記上部層は、1〜15μmの平均層厚を有し、α型の結晶構造を有するAl層からなり、
(c)前記下部層の少なくとも1層のTiCN層について、電界放出型走査電子顕微鏡を用い、前記少なくとも1層のTiCN層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出した場合に、全対応粒界長に占める各構成原子共有格子点からなる対応粒界長の割合が示された対応粒界分布グラフにおいて、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%を占め、
(d)前記少なくとも1層のTiCN層の縦断面において、アスペクト比が3以上であるTiCN結晶粒が80%以上の面積割合を占めることを特徴とする表面被覆切削工具。
(2)前記下部層の少なくとも1層のTiCN層について、電界放出型走査電子顕微鏡を用い、前記少なくとも1層のTiCN層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出した場合に、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、また、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であることを特徴とする前記(1)に記載の表面被覆切削工具。」
The present invention has been made based on the above findings.
"(1) In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is provided on the surface of a tool substrate made of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The lower layer is a Ti compound layer having a total average layer thickness of 3 to 20 μm and composed of one layer or two or more layers of TiC, TiN, TiCN, TiCO, and TiCNO. At least one layer is composed of TiCN layer,
(B) The upper layer is composed of an Al 2 O 3 layer having an average layer thickness of 1 to 15 μm and an α-type crystal structure.
(C) At least one TiCN layer of the lower layer is irradiated with an electron beam for each crystal grain existing within the measurement range of the vertical cross section of the at least one TiCN layer using an electric field emission scanning electron microscope. , Using an electron rear scattering diffraction image device, the normals of the (001) and (011) planes, which are the crystal planes of the crystal grains, with respect to the normals of the surface of the substrate in a predetermined region at intervals of 0.1 μm / step. The inclination angle formed by the grains was measured, and in this case, the crystal grains had a NaCl-type surface-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen were present at the lattice points, respectively, and the result was obtained. Based on the measurement inclination angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface of the crystal grains adjacent to each other. At the same time, when the distribution ratio of each of the constituent atom shared lattice point forms (unit forms) represented by ΣN + 1 defined for each number N of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points is calculated. In the corresponding grain boundary distribution graph showing the ratio of the corresponding grain boundary length consisting of each constituent atom shared lattice point to the total corresponding grain boundary length, the grains in the constituent atom shared lattice point form (unit form) having Σ31 or more. The boundary length occupies 80% of the grain boundary length of the constituent atomic shared lattice point form (unit form) having Σ3 or more.
(D) A surface-coated cutting tool characterized in that TiCN crystal grains having an aspect ratio of 3 or more occupy an area ratio of 80% or more in the vertical cross section of at least one TiCN layer.
(2) With respect to at least one TiCN layer of the lower layer, an electro-emission type scanning electron microscope is used to irradiate each crystal grain existing within the measurement range of the vertical cross section of the at least one TiCN layer with an electron beam. , Using an electron rear scattering diffraction image device, the normals of the (001) and (011) planes, which are the crystal planes of the crystal grains, with respect to the normals of the surface of the substrate in a predetermined region at intervals of 0.1 μm / step. The inclination angle formed by the grains was measured, and in this case, the crystal grains had a NaCl-type surface-centered cubic crystal structure in which constituent atoms consisting of Ti, carbon, and nitrogen were present at the lattice points, respectively, and the result was obtained. Based on the measurement inclination angle, the distribution of lattice points (constituting atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface of the crystal grains adjacent to each other. At the same time, when the distribution ratio of each of the constituent atom shared lattice point forms (unit forms) represented by ΣN + 1 defined for each number N of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points is calculated. In addition, the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ3 is 20% or less of the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ3 to Σ29, and the configuration of Σ5. The above (1), wherein the grain boundary length of the atomic shared lattice point form (unit form) is 30% or less of the grain boundary length of the constituent atomic shared lattice point forms (unit form) of Σ3 to Σ29. Surface coating cutting tool. "

次に、本発明の被覆工具について詳細に説明する。
下部層:
下部層を構成するTi化合物層は、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなり(ただし、その内の少なくとも1層はTiCN層)、基本的にはα型の結晶構造を有するAl層(以下、「α−Al層」で示す。)の下部層として存在し、自身の持つすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。さらに、Ti化合物層は、工具基体表面、α−Al層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。
しかしながら、このTi化合物層の合計平均層厚が3μm未満である場合、前述した作用を十分に発揮させることができない。一方、このTi化合物層の合計平均層厚が20μmを越える場合、高速断続重切削では熱塑性変形を起し易くなり、偏摩耗の原因となる。
したがって、Ti化合物層の合計平均層厚は3〜20μmと定めた。
Next, the covering tool of the present invention will be described in detail.
Lower layer:
The Ti compound layer constituting the lower layer is composed of one or more layers of the TiC layer, the TiN layer, the TiCN layer, the TiCO layer and the TiCNO layer (however, at least one of them is the TiCN layer), and is basically It exists as a lower layer of an Al 2 O 3 layer (hereinafter referred to as “α-Al 2 O 3 layer”) having an α-type crystal structure, and is a hard coating layer due to its excellent high-temperature strength. Gives high temperature strength to. Further, the Ti compound layer adheres to both the surface of the tool substrate and the upper layer composed of the α-Al 2 O 3 layer, and has an effect of maintaining the adhesion of the hard coating layer to the tool substrate.
However, when the total average layer thickness of the Ti compound layer is less than 3 μm, the above-mentioned action cannot be sufficiently exerted. On the other hand, when the total average layer thickness of the Ti compound layer exceeds 20 μm, thermoplastic deformation is likely to occur in high-speed intermittent heavy cutting, which causes uneven wear.
Therefore, the total average layer thickness of the Ti compound layer was set to 3 to 20 μm.

下部層のうちの少なくとも1層のTiCN層:
本発明における下部層は、少なくとも1層のTiCN層を含む。
そして、前記少なくとも1層のTiCN層について、構成原子共有格子点分布グラフを求めた場合、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占めることが重要である。
Σ31以上の構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占める場合には、TiCN層中に靱性にすぐれた粒界が数多く分布することによって、TiCN層の衝撃緩和性が向上し、また、工具基体の変形に追従して硬質被覆層が変形することが可能となるため、鋼、ステンレス鋼等の高速断続重切削加工において、チッピングの発生が抑制される。
図1に、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占めるTiCN層の構成原子共有格子点分布グラフの例を示す。
At least one TiCN layer of the lower layer:
The lower layer in the present invention includes at least one TiCN layer.
Then, when the constituent atom shared lattice point distribution graph is obtained for the at least one TiCN layer, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more is Σ3 or more. It is important to occupy 80% or more of the grain boundary length of the lattice point form (unit form).
When the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 or more, in the TiCN layer. By distributing a large number of grain boundaries with excellent toughness, the impact mitigation of the TiCN layer is improved, and the hard coating layer can be deformed following the deformation of the tool substrate. Therefore, steel and stainless steel. The occurrence of chipping is suppressed in high-speed intermittent heavy cutting of steel and the like.
In FIG. 1, the TiCN layer in which the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. An example of the atomic shared lattice point distribution graph of is shown.

さらに、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占める前記TiCN層において、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、また、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下である場合には、TiCN層の靱性がより向上するため、一段とすぐれた耐チッピング性が発揮される。
図2に、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占め、さらに、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、かつ、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であるTiCN層の構成原子共有格子点分布グラフの例を示す。
Further, in the TiCN layer in which the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. , The grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and the constituent atoms of Σ5 When the grain boundary length of the shared lattice point form (unit form) is 30% or less of the grain boundary length of the constituent atomic shared lattice point forms (unit form) of Σ3 to Σ29, the toughness of the TiCN layer is further improved. Therefore, excellent chipping resistance is exhibited.
In FIG. 2, the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more, and further. , The grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and the constituent atoms of Σ5. Example of constituent atom shared lattice point distribution graph of TiCN layer in which the grain boundary length of the shared lattice point form (unit form) is 30% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29. Is shown.

ここで、構成原子共有格子点分布グラフは、この出願前から既によく知られているように、電界放出型走査電子顕微鏡を用い、例えば、硬質被覆層の下部層の層厚方向に平行な縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し(この場合、前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有する炭窒化チタン結晶粒である)、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N(この場合、NはNaCl型面心立方晶の結晶構造上2以上の偶数となる。)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの粒界長を算出し、Σ3以上のそれぞれの構成原子共有格子点形態(単位形態)の粒界長を、Σ3以上の構成原子共有格子点形態(単位形態)の合計粒界長に占める割合で示す構成原子共有格子点分布グラフを作成する。
なお、Σ31以上の粒界長の合計は、Σ31以上の個々のNにおける粒界長を算出するのではなく、Σ31以上としてひとまとめにした。すなわち、Σ3、Σ5、Σ7、Σ9、Σ11、Σ13、Σ15、Σ17、Σ19、Σ21、Σ23、Σ25、Σ27、Σ29のそれぞれの粒界長を算出し、測定により得られたΣ3以上の全粒界長からΣ3〜Σ29までの粒界長の合計を差し引いた値をΣ31以上の粒界長の合計として求めた。
Here, the constituent atom shared lattice point distribution graph uses an electric field emission type scanning electron microscope, as is already well known before this application, for example, a longitudinal section parallel to the layer thickness direction of the lower layer of the hard coating layer. The above-mentioned The inclination angle formed by the normals of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured (in this case, the crystal grains have constituent atoms consisting of Ti, carbon, and nitrogen at the lattice points, respectively. (It is a titanium carbonitide crystal grain having a NaCl-type surface-centered cubic crystal structure), and based on the measurement inclination angle obtained as a result, at the interface of the crystal grains adjacent to each other, each of the constituent atoms is The distribution of lattice points (constituting atom shared lattice points) that share one constituent atom between the crystal grains is calculated, and the number of lattice points N (the number of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points) In this case, N is an even number of 2 or more due to the crystal structure of the NaCl-type surface-centered cubic crystal.) Calculate the grain boundary length of each constituent atom shared lattice point form (unit form) represented by ΣN + 1 determined for each. Then, the grain boundary length of each constituent atom shared lattice point form (unit form) of Σ3 or more is shown as a ratio to the total grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 or more. Create a point distribution graph.
The total grain boundary lengths of Σ31 or more are grouped together as Σ31 or more, instead of calculating the grain boundary lengths of individual Ns of Σ31 or more. That is, the grain boundary lengths of Σ3, Σ5, Σ7, Σ9, Σ11, Σ13, Σ15, Σ17, Σ19, Σ21, Σ23, Σ25, Σ27, and Σ29 are calculated, and the total grain boundaries of Σ3 or more obtained by the measurement are calculated. The value obtained by subtracting the total of the grain boundary lengths from Σ3 to Σ29 from the length was obtained as the total of the grain boundary lengths of Σ31 or more.

前記のΣ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占めるTiCN層を有する下部層は、例えば、以下のようにして形成することができる。
即ち、まず、工具基体表面に、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなるTi化合物層を硬質被覆層の下部層として蒸着形成する(なお、TiCN層のみを蒸着形成することも勿論可能である)。
そして、上記下部層のうちの少なくとも1層のTiCN層については、
反応ガス組成(容量%):TiCl 1〜3%、CHCN 0.3〜1.0%、N 25〜60%、HCl 0.05%〜0.2%、Ar 3〜15%、残部H
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:5〜10kPa、
の条件で化学蒸着することにより、前記所定の構成原子共有格子点形態(単位形態)を有するTiCN層を形成することができる。
It has a TiCN layer in which the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. The lower layer can be formed, for example, as follows.
That is, first, the surface of the tool substrate is hard-coated with a Ti compound layer composed of one or more of the TiC layer, the TiN layer, the TiCN layer, the TiCO layer and the TiCNO layer by using a normal chemical vapor deposition apparatus. It is vapor-deposited as a lower layer of the layer (it is also possible to vapor-deposit only the TiCN layer).
Then, for at least one TiCN layer among the lower layers,
Reaction gas composition (volume%): TiCl 4 1~3%, CH 3 CN 0.3~1.0%, N 2 25~60%, HCl 0.05% ~0.2%, Ar 3~15% , Remaining H 2 ,
Reaction atmosphere temperature: 750-900 ° C,
Reaction atmospheric pressure: 5-10 kPa,
By chemical vapor deposition under the above conditions, a TiCN layer having the predetermined constituent atom shared lattice point morphology (unit morphology) can be formed.

また、上記で蒸着形成したΣ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占めるTiCN層において、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、さらに、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であるTiCN層は、化学蒸着をより限定した条件で行うことによって形成することができる。
例えば、以下のような条件である。
反応ガス組成(容量%):TiCl 2〜3%、CHCN 0.5〜0.8%、N 25〜45%、HCl 0.08%〜0.15%、Ar 5〜10%、残部H
反応雰囲気温度:820〜900℃、
反応雰囲気圧力:5〜7kPa、
上記の条件で化学蒸着することにより、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占め、また、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、さらに、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であるTiCN層を形成することができる。
Further, the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more formed by vapor deposition in the above is 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. In the TiCN layer that occupies, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and further. The TiCN layer in which the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ5 is 30% or less of the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ3 to Σ29 is subjected to chemical vapor deposition. It can be formed by performing under limited conditions.
For example, the conditions are as follows.
Reaction gas composition (volume%): TiCl 4 2~3%, CH 3 CN 0.5~0.8%, N 2 25~45%, HCl 0.08% ~0.15%, Ar 5~10% , Remaining H 2 ,
Reaction atmosphere temperature: 820-900 ° C,
Reaction atmospheric pressure: 5-7 kPa,
By chemical vapor deposition under the above conditions, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more is 80, which is the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 or more. The grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29. Further, the TiCN layer in which the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ5 is 30% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29 is formed. Can be done.

下部層のうちの少なくとも1層のTiCN層の結晶粒のアスペクト比:
前記化学蒸着法により形成した特定の構成原子共有格子点形態(単位形態)を有する下部層のTiCN層は、柱状縦長組織を有している。
例えば、前記TiCN層のTiCN結晶粒の最大粒子幅Wと層厚方向の最大粒子長さLから求められるアスペクト比が3以上である柱状縦長成長TiCN結晶粒の占める面積割合が、TiCN層の縦断面面積の80面積%以上となり、柱状縦長組織の特徴であるすぐれた耐摩耗性向上効果を期待することができる。
なお、前記最大粒子幅W、最大粒子長さLとは、柱状縦長成長TiCN結晶粒について、TiCN層の縦断面における1つの結晶粒を計測したとき、層厚方向に対して垂直な方向の結晶粒の幅(短辺)で最も大きい値を最大粒子幅Wと呼び、一方、層厚方向の結晶粒の高さ(長辺)で最も大きい値を最大粒子長さLと呼ぶ。
TiCN層の縦断面において最大粒子幅Wの分布を算出し、その分布で最大ピークを示す値については0.3〜1.0μmであることが望ましく、Wの分布の最大ピーク値が0.3未満のTiCN結晶粒は柱状縦長組織の特徴であるすぐれた耐摩耗性向上効果を期待できず、Wの分布の最大ピーク値が1.0より大きい場合は、TiCN結晶粒が粗粒となり、硬質被覆層のチッピングを引き起こしやすくなる。
Aspect ratio of crystal grains of at least one TiCN layer in the lower layer:
The lower TiCN layer having a specific constituent atom shared lattice point morphology (unit morphology) formed by the chemical vapor deposition method has a columnar vertically long structure.
For example, the area ratio occupied by the columnar vertically elongated TiCN crystal grains having an aspect ratio of 3 or more obtained from the maximum particle width W of the TiCN crystal grains of the TiCN layer and the maximum particle length L in the layer thickness direction is the longitudinal section of the TiCN layer. It is 80 area% or more of the surface area, and an excellent effect of improving wear resistance, which is a characteristic of columnar vertically long structures, can be expected.
The maximum particle width W and the maximum particle length L are the crystals in the direction perpendicular to the layer thickness direction when one crystal grain in the vertical cross section of the TiCN layer is measured for the columnar vertically elongated TiCN crystal grains. The largest value in the grain width (short side) is called the maximum particle width W, while the largest value in the height (long side) of the crystal grains in the layer thickness direction is called the maximum particle length L.
The distribution of the maximum grain width W is calculated in the vertical cross section of the TiCN layer, and the value showing the maximum peak in the distribution is preferably 0.3 to 1.0 μm, and the maximum peak value of the W distribution is 0.3. TiCN crystal grains of less than less than can not be expected to have an excellent effect of improving wear resistance, which is a characteristic of columnar longitudinal structures, and when the maximum peak value of W distribution is greater than 1.0, TiCN crystal grains become coarse grains and are hard. It is easy to cause chipping of the coating layer.

上部層:
前記で形成した下部層の表面に、従来から知られている化学蒸着法によって上部層のα−Al層を形成するが、上部層の平均層厚が、1μm未満であると長期の使用に亘ってすぐれた耐摩耗性を発揮することができず、一方、15μmを越えると、チッピングが発生し易くなることから、上部層の層厚は1〜15μmと定めた。
Upper layer:
An α-Al 2 O 3 layer of the upper layer is formed on the surface of the lower layer formed above by a conventionally known chemical vapor deposition method, but if the average layer thickness of the upper layer is less than 1 μm, it is long-term. It is not possible to exhibit excellent wear resistance over use, and on the other hand, if it exceeds 15 μm, chipping is likely to occur. Therefore, the layer thickness of the upper layer is set to 1 to 15 μm.

本発明によれば、硬質被覆層が、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、下部層は、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上のTi化合物層からなり、かつ、その内の少なくとも1層はTiCN層であって、該TiCN層は、全対応粒界長に占める各構成原子共有格子点からなる対応粒界長の割合が示された対応粒界分布グラフにおいて、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%を占め、あるいは、さらに、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、また、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であることによって、該TiCN層には靱性の高い粒界が多く分布する。
このため、本発明被覆工具は、鋼、ステンレス鋼等の切削加工を、切刃に断続的・衝撃的な高負荷が作用する高速高切り込み断続条件あるいは高速高送り断続条件で行った場合でも、硬質被覆層のチッピング発生、剥離発生が抑制され、長期の使用にわたってすぐれた切削性能を発揮する。
According to the present invention, the hard coating layer has a lower layer formed on the surface of the tool substrate and an upper layer formed on the lower layer, and the lower layer is TiC, TiN, TiCN, TiCO, TiCNO. Of these, two or more Ti compound layers are formed, and at least one of them is a TiCN layer, and the TiCN layer is a corresponding grain composed of each constituent atomic shared lattice point occupying the total corresponding grain boundary length. In the corresponding grain boundary distribution graph showing the ratio of boundary lengths, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more is of the constituent atom shared lattice point form (unit form) of Σ3 or more. It occupies 80% of the grain boundary length, or further, the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ3 is the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29. It is 20% or less, and the grain boundary length of the constituent atomic shared lattice point form (unit form) of Σ5 is 30% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29. As a result, many grain boundaries with high toughness are distributed in the TiCN layer.
Therefore, in the covering tool of the present invention, even when cutting of steel, stainless steel, etc. is performed under high-speed high-cutting intermittent conditions or high-speed high-feed intermittent conditions in which a high load intermittently or impactfully acts on the cutting edge. The occurrence of chipping and peeling of the hard coating layer is suppressed, and excellent cutting performance is exhibited over a long period of use.

本発明被覆工具の下部層のTiCN層の全対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフの一つの例を示す。One example of a constituent atom shared lattice point distribution graph showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the total corresponding grain boundary length of the TiCN layer of the lower layer of the coating tool of the present invention. Is shown. 図1に示す本発明被覆工具の下部層のTiCN層のΣ3〜Σ29の対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフを示す。Constituent atom shared lattice showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the corresponding grain boundary lengths of Σ3 to Σ29 of the TiCN layer of the lower layer of the coating tool of the present invention shown in FIG. A point distribution graph is shown. 本発明被覆工具の下部層のTiCN層の全対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフの他の例を示す。Another example of the constituent atom shared lattice point distribution graph showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the total corresponding grain boundary length of the TiCN layer of the lower layer of the coating tool of the present invention. Is shown. 図3示す本発明被覆工具の下部層のTiCN層のΣ3〜Σ29の対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフを示す。Constituent atomic shared lattice points showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the corresponding grain boundary lengths of Σ3 to Σ29 of the TiCN layer of the lower layer of the coating tool of the present invention shown in FIG. The distribution graph is shown. 比較被覆工具の下部層のTiCN層の全対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフの一つの例を示す。One example of a constituent atom shared lattice point distribution graph showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the total corresponding grain boundary length of the TiCN layer in the lower layer of the comparative coating tool. show.

本発明の被覆工具について、実施例に基づいて具体的に説明する。 The covering tool of the present invention will be specifically described with reference to Examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A〜Dをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder was prepared, these raw powders , Add wax to the compounding composition shown in Table 1, ball-mill mix in acetone for 24 hours, dry under reduced pressure, press-mold into a green compact of a predetermined shape at a pressure of 98 MPa, and press-mold this green compact. Is vacuum sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool made of WC-based superhard alloy having an insert shape of ISO standard CNMG120408. The substrates A to D were produced, respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体Eを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, ZrC powder, TaC powder, Mo 2 C powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base E made of TiCN-based cermet having an insert shape of ISO standard CNMG120412 was prepared.

ついで、これらの工具基体A〜Dおよび工具基体Eのそれぞれを、通常の化学蒸着装置に装入し、以下の工程で硬質被覆層を形成した。
(a)まず、表3に示される条件にて、表6に示される目標層厚の下部層としてのTi化合物層を蒸着形成した。
(b)ただし、上記下部層のうち、少なくとも1層のTiCN層の形成に際しては、表4に示される条件A〜DにてTiCN層を蒸着形成した。
(c)次に、表3に示される条件にて、表8に示される目標層厚の上部層としてのα−Al層を蒸着形成した。
上記の(a)〜(c)の工程で、表6、表8に示される硬質被覆層を有する本発明被覆工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to D and tool base E was charged into a normal chemical vapor deposition apparatus, and a hard coating layer was formed by the following steps.
(A) First, a Ti compound layer as a lower layer of the target layer thickness shown in Table 6 was deposited and formed under the conditions shown in Table 3.
(B) However, when forming at least one TiCN layer among the lower layers, the TiCN layer was vapor-deposited under the conditions A to D shown in Table 4.
(C) Next, under the conditions shown in Table 3, an α-Al 2 O 3 layer as an upper layer of the target layer thickness shown in Table 8 was deposited and formed.
In the steps (a) to (c) above, the coating tools 1 to 13 of the present invention having the hard coating layers shown in Tables 6 and 8, respectively, were manufactured.

また、比較の目的で、前記本発明被覆工具1〜13の製造条件から外れる条件で硬質被覆層を蒸着することにより、表7、表9に示す硬質被覆層を有する比較例被覆工具1〜13をそれぞれ製造した。
具体的には、前記本発明被覆工具1〜13の製造工程(a)、(b)における下部層の形成にあたり、下部層のうちのTiCN層の形成に際して、表5に示される条件a〜dにて、表7に示されるTiCN層を蒸着形成した。
Further, for the purpose of comparison, Comparative Example Coating Tools 1 to 13 having the Hard Coating Layers shown in Tables 7 and 9 are deposited by depositing a hard coating layer under conditions other than the manufacturing conditions of the coating tools 1 to 13 of the present invention. Was manufactured respectively.
Specifically, in forming the lower layer in the manufacturing steps (a) and (b) of the covering tools 1 to 13 of the present invention, the conditions a to d shown in Table 5 are formed when forming the TiCN layer among the lower layers. The TiCN layer shown in Table 7 was vapor-deposited.

ついで、本発明被覆工具1〜13と比較例被覆工具1〜13については、下部層のうちの少なくとも1層のTiCN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
即ち、上記構成原子共有格子点分布グラフは、下部層のTiCN層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、工具基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態(単位形態)をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値をN=28とする)に占める粒界長の割合を求めることにより作成した。
なお、Σ31以上の構成原子共有格子点形態(単位形態)の粒界長については、測定により得られたΣ3以上の全粒界長からΣ3〜Σ29までの粒界長の合計を差し引いた値を、Σ31以上の粒界長の合計として求めた。
Next, for the covering tools 1 to 13 of the present invention and the covering tools 1 to 13, at least one TiCN layer among the lower layers is a constituent atom shared lattice point distribution graph using a field emission scanning electron microscope. Was created respectively.
That is, the constituent atom shared lattice point distribution graph is set in the lens barrel of the electric field emission type scanning electron microscope with the vertical cross section of the lower TiCN layer as the polished surface, and is incident on the polished surface at 70 degrees. An electron beam with an acceleration voltage of 15 kV at an angle is irradiated with an irradiation current of 1 nA for each crystal grain existing within the measurement range of the vertical cross-section polished surface, and an electron rear scattering diffraction image device is used to irradiate a region of 30 × 50 μm. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, was measured with respect to the normal line of the surface of the tool substrate at an interval of 0.1 μm / step. Distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface of the crystal grains adjacent to each other based on the obtained measurement inclination angle. Is calculated, and there are N lattice points that do not share a constituent atom between the constituent atom shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl-type surface-centered cubic crystal). When (unit form) is expressed as ΣN + 1, it was created by finding the ratio of the grain boundary length to the entire ΣN + 1 (however, the upper limit is set to N = 28 due to the frequency).
For the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more, the value obtained by subtracting the total of the grain boundary lengths of Σ3 to Σ29 from the total grain boundary length of Σ3 or more obtained by the measurement is subtracted. , Σ31 or more was calculated as the total grain boundary length.

この結果得られた、下部層のTiCN層においてΣ31以上の構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長に占める割合、また、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長に占める割合、さらに、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長に占める割合を、表8、表9に示した。 In the TiCN layer of the lower layer obtained as a result, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more becomes the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 or more. The ratio of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and the configuration of Σ5. Tables 8 and 9 show the ratio of the grain boundary length of the atomic shared lattice point form (unit form) to the grain boundary length of the constituent atomic shared lattice point forms (unit form) of Σ3 to Σ29.

図1には、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占める本発明被覆工具1のTiCN層の構成原子共有格子点分布グラフの例を示す。
図2には、前記本発明被覆工具1のTiCN層のΣ3〜Σ29の対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフを示すが、図2においては、Σ3〜Σ29の対応粒界長に占めるΣ3の割合は26%、Σ5の割合は18%であることがわかる。
図3には、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占める本発明被覆工具2のTiCN層の構成原子共有格子点分布グラフの例を示すが、図4に示されるように、本発明被覆工具2のΣ3の構成原子共有格子点形態(単位形態)の粒界長は、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、かつ、Σ5の構成原子共有格子点形態(単位形態)の粒界長は、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であることがわかる。
In FIG. 1, the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. An example of the constituent atom shared lattice point distribution graph of the TiCN layer of the invention covering tool 1 is shown.
FIG. 2 shows the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the corresponding grain boundary lengths of Σ3 to Σ29 of the TiCN layer of the coating tool 1 of the present invention. A point distribution graph is shown. In FIG. 2, it can be seen that the ratio of Σ3 to the corresponding grain boundary lengths of Σ3 to Σ29 is 26% and the ratio of Σ5 is 18%.
In FIG. 3, the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ31 or more occupies 80% or more of the grain boundary length of the constituent atom shared lattice point form (unit form) having Σ3 or more. An example of the constituent atom shared lattice point distribution graph of the TiCN layer of the coating tool 2 of the present invention is shown. As shown in FIG. 4, the grain boundary of the constituent atom shared lattice point form (unit form) of Σ3 of the covering tool 2 of the present invention The length is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ5 is Σ3 to Σ3 to Σ5. It can be seen that it is 30% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ29.

表8に示されるとおり、本発明被覆工具の下部層のTiCN層は、いずれもΣ31以上の構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上の構成原子共有格子点形態(単位形態)の粒界長の80%以上であり、また、いくつかについては、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、かつ、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であった。
これに対して、表9に示されるとおり、比較例被覆工具のTiCN層については、いずれも、Σ31以上の構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上の構成原子共有格子点形態(単位形態)の粒界長の80%未満であった。
なお、図5に、比較例被覆工具1のTiCN層の全対応粒界長に占める各構成原子共有格子点形態(単位形態)の粒界長の割合が示された構成原子共有格子点分布グラフの一つの例を示すが、Σ31以上の構成原子共有格子点形態(単位形態)の粒界長は、Σ3以上の構成原子共有格子点形態(単位形態)の粒界長の60%であった。
As shown in Table 8, the TiCN layer of the lower layer of the covering tool of the present invention has a constituent atom shared lattice point form (unit form) having a grain boundary length of Σ31 or more and a constituent atom shared lattice point form (unit form) of Σ3 or more. It is 80% or more of the grain boundary length of the unit form), and in some cases, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 is the constituent atom shared lattice point form of Σ3 to Σ29 (unit form). The grain boundary length of the constituent atom shared lattice point form (unit form) of Σ5 is 20% or less of the grain boundary length of the unit form), and the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29 is It was less than 30% of the world leader.
On the other hand, as shown in Table 9, for the TiCN layer of the comparative example covering tool, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more is shared by the constituent atoms of Σ3 or more. It was less than 80% of the grain boundary length of the lattice point form (unit form).
Note that FIG. 5 is a composition atom shared lattice point distribution graph showing the ratio of the grain boundary length of each constituent atom shared lattice point form (unit form) to the total corresponding grain boundary length of the TiCN layer of the comparative example covering tool 1. Although one example is shown, the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ31 or more was 60% of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 or more. ..

また、本発明被覆工具1〜13、比較例被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて縦断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
表6〜表9に、その結果を示す。
Further, when the thickness of each constituent layer of the hard coating layer of the coating tools 1 to 13 of the present invention and the coating tools 1 to 13 of the comparative example was measured in a vertical cross section using a scanning electron microscope, the target layer thickness and the substance were all measured. The same average layer thickness (average value of 5-point measurement) was shown.
The results are shown in Tables 6 to 9.

さらに、本発明被覆工具1〜13、比較被覆工具1〜13の下部層のTiCN層の縦断面について、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体表面と平行な方向に10μm、工具基体と垂直な方向にTiCN層の層厚分の高さの領域内に存在するTiCN結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定し、分布を算出し、最大粒子幅Wの分布の最大ピークを示す値を算出した。TiCN結晶粒のそれぞれについてアスペクト比L/Wの値を求め、アスペクト比L/Wが3以上である結晶粒が、TiCN層の縦断面に占める面積割合を求めた。
表8、表9に、その結果を示す。
Further, regarding the vertical cross section of the TiCN layer of the lower layer of the covering tools 1 to 13 of the present invention and the comparative covering tools 1 to 13, using a scanning electron microscope (magnification 5000 times), 10 μm in the direction parallel to the surface of the tool substrate. The maximum particle width W and the maximum particle length L are measured for each of the TiCN crystal grains existing in the region at the height of the layer thickness of the TiCN layer in the direction perpendicular to the tool substrate, the distribution is calculated, and the maximum particle width is calculated. A value indicating the maximum peak of the distribution of W was calculated. The value of the aspect ratio L / W was determined for each of the TiCN crystal grains, and the area ratio of the crystal grains having the aspect ratio L / W of 3 or more to the vertical cross section of the TiCN layer was determined.
The results are shown in Tables 8 and 9.

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

Figure 0006928220
Figure 0006928220

つぎに、本発明被覆工具1〜13、比較例被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS630の長さ方向等間隔4本縦溝入り、
切削速度:300m/min、
切り込み:3.0mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Aという)で、ステンレス鋼の湿式高速断続高切り込み切削試験(通常の切削速度、切り込みは、それぞれ、70m/min、2.0mm)、
被削材:JIS・S60Cの長さ方向等間隔4本縦溝入り、
切削速度:300m/min、
切り込み:1.5mm、
送り:1.0mm/rev、
切削時間:5分、
の条件(切削条件Bという)で、高炭素鋼の湿式高速断続高送り切削試験(通常の切削速度、送り量は、それぞれ、100m/min、0.3mm/rev)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表10にこの測定結果を示した。
Next, with respect to the various covering tools of the covering tools 1 to 13 of the present invention and the covering tools 1 to 13 of the comparative example, all of them are screwed to the tip of the tool steel cutting tool with a fixing jig.
Work material: JIS / SUS630 with 4 vertical grooves at equal intervals in the length direction,
Cutting speed: 300m / min,
Notch: 3.0 mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes,
Under the conditions (referred to as cutting condition A), a wet high-speed intermittent high-cutting cutting test for stainless steel (normal cutting speed and cutting are 70 m / min and 2.0 mm, respectively).
Work material: JIS / S60C with 4 vertical grooves at equal intervals in the length direction,
Cutting speed: 300m / min,
Notch: 1.5 mm,
Feed: 1.0 mm / rev,
Cutting time: 5 minutes,
Under the conditions (referred to as cutting condition B), wet high-speed intermittent high-feed cutting test of high carbon steel (normal cutting speed and feed amount are 100 m / min and 0.3 mm / rev, respectively).
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 10.

Figure 0006928220
Figure 0006928220

表10に示される結果から、本発明被覆工具1〜13は、その下部層のTiCN層が、すぐれた靱性を備えるため、耐チッピング性にすぐれ、長期の使用に亘ってすぐれた切削性能を示した。
これに対して、比較例被覆工具1〜13は、高速断続重切削加工では、硬質被覆層のチッピング発生、剥離発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 10, the coating tools 1 to 13 of the present invention have excellent chipping resistance because the TiCN layer of the lower layer thereof has excellent toughness, and show excellent cutting performance over a long period of use. rice field.
On the other hand, it is clear that the coating tools 1 to 13 of Comparative Examples reach their service life in a relatively short time due to chipping and peeling of the hard coating layer in high-speed intermittent heavy cutting.

前述のように、本発明の被覆工具は、切れ刃に高負荷が作用する炭素鋼やステンレス鋼などの高速高切り込み・高送りの重切削という厳しい切削条件下でも、硬質被覆層のチッピング、剥離が発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, the coating tool of the present invention chips and peels the hard coating layer even under severe cutting conditions such as high-speed high-cutting and high-feed heavy cutting such as carbon steel and stainless steel in which a high load acts on the cutting edge. Since it exhibits excellent cutting performance over a long period of use, it is fully satisfactory for improving the performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction. It can be done.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に下部層と上部層からなる硬質被覆層が設けられている表面被覆切削工具において、
(a)前記下部層は、3〜20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの1層または2層以上からなるTi化合物層であって、その内の少なくとも1層はTiCN層で構成されており、
(b)前記上部層は、1〜15μmの平均層厚を有し、α型の結晶構造を有するAl層からなり、
(c)前記下部層の少なくとも1層のTiCN層について、電界放出型走査電子顕微鏡を用い、前記少なくとも1層のTiCN層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出した場合に、全対応粒界長に占める各構成原子共有格子点からなる対応粒界長の割合が示された対応粒界分布グラフにおいて、Σ31以上である構成原子共有格子点形態(単位形態)の粒界長が、Σ3以上である構成原子共有格子点形態(単位形態)の粒界長の80%以上を占め、
(d)前記少なくとも1層のTiCN層の縦断面において、アスペクト比が3以上であるTiCN結晶粒が80%以上の面積割合を占めることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer consisting of a lower layer and an upper layer is provided on the surface of a tool substrate made of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The lower layer is a Ti compound layer having a total average layer thickness of 3 to 20 μm and composed of one layer or two or more layers of TiC, TiN, TiCN, TiCO, and TiCNO. At least one layer is composed of TiCN layer,
(B) The upper layer is composed of an Al 2 O 3 layer having an average layer thickness of 1 to 15 μm and an α-type crystal structure.
(C) At least one TiCN layer of the lower layer is irradiated with an electron beam for each crystal grain existing within the measurement range of the vertical cross section of the at least one TiCN layer using an electric field emission scanning electron microscope. Using an electron rear scattering diffraction image device, the normals of the (001) and (011) planes, which are the crystal planes of the crystal grains, with respect to the normals of the surface of the substrate in a predetermined region at intervals of 0.1 μm / step. The inclination angle formed by the grains was measured, and in this case, the crystal grains had a NaCl-type surface-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen were present at the lattice points, respectively, and the result was obtained. Based on the measurement inclination angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface of the crystal grains adjacent to each other. At the same time, when the distribution ratio of each of the constituent atom shared lattice point forms (unit forms) represented by ΣN + 1 defined for each number N of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points is calculated. In the corresponding grain boundary distribution graph showing the ratio of the corresponding grain boundary length consisting of each constituent atom shared lattice point to the total corresponding grain boundary length, the grains in the constituent atom shared lattice point form (unit form) having Σ31 or more. The boundary length occupies 80% or more of the grain boundary length of the constituent atomic shared lattice point form (unit form) having Σ3 or more.
(D) A surface-coated cutting tool characterized in that TiCN crystal grains having an aspect ratio of 3 or more occupy an area ratio of 80% or more in the vertical cross section of at least one TiCN layer.
前記下部層の少なくとも1層のTiCN層について、電界放出型走査電子顕微鏡を用い、前記少なくとも1層のTiCN層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出した場合に、Σ3の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の20%以下であり、また、Σ5の構成原子共有格子点形態(単位形態)の粒界長が、Σ3〜Σ29の構成原子共有格子点形態(単位形態)の粒界長の30%以下であることを特徴とする請求項1に記載の表面被覆切削工具。







With respect to at least one TiCN layer of the lower layer, an electric field emitting scanning electron microscope is used to irradiate each crystal grain existing within the measurement range of the longitudinal cross section of the at least one TiCN layer with an electron beam, and electron rearward. Using a scattering diffraction imager, the inclination formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface at intervals of 0.1 μm / step in a predetermined region. The angle is measured, and in this case, the crystal grain has a NaCl-type surface-centered cubic crystal structure in which constituent atoms consisting of Ti, carbon, and nitrogen are present at the lattice points, respectively, and the measurement inclination angle obtained as a result is obtained. Based on, at the interface of crystal grains adjacent to each other, the distribution of lattice points (constituting atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated, and the above Σ3 when calculating the distribution ratio of each of the constituent atom shared lattice point forms (unit forms) represented by ΣN + 1 defined for each number N of lattice points that do not share the constituent atoms existing between the constituent atom shared lattice points. The grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29 is 20% or less of the grain boundary length of the constituent atom shared lattice point form (unit form) of Σ3 to Σ29, and the constituent atom shared lattice of Σ5. The surface coating cutting according to claim 1, wherein the grain boundary length of the point form (unit form) is 30% or less of the grain boundary length of the constituent atomic shared lattice point forms (unit form) of Σ3 to Σ29. tool.







JP2017174844A 2016-10-04 2017-09-12 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer Active JP6928220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035466 WO2018066469A1 (en) 2016-10-04 2017-09-29 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016196189 2016-10-04
JP2016196189 2016-10-04

Publications (2)

Publication Number Publication Date
JP2018058202A JP2018058202A (en) 2018-04-12
JP6928220B2 true JP6928220B2 (en) 2021-09-01

Family

ID=61909424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174844A Active JP6928220B2 (en) 2016-10-04 2017-09-12 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Country Status (1)

Country Link
JP (1) JP6928220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927954B2 (en) * 2018-12-25 2021-09-01 ユニオンツール株式会社 Diamond coating for cutting tools

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136631A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Hardmetal Corp Cutting tip with replaceable edge
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide
JP6191873B2 (en) * 2014-03-20 2017-09-06 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
JP6657594B2 (en) * 2014-05-16 2020-03-04 三菱マテリアル株式会社 Surface coated cutting tool
JP6548072B2 (en) * 2014-05-30 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool
EP3000913B1 (en) * 2014-09-26 2020-07-29 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)
JP6738556B2 (en) * 2015-06-26 2020-08-12 三菱マテリアル株式会社 Surface coated cutting tool
JP6555514B2 (en) * 2015-07-06 2019-08-07 三菱マテリアル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2018058202A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6548072B2 (en) Surface coated cutting tool
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP6738556B2 (en) Surface coated cutting tool
EP3202515A1 (en) Surface-coated cutting tool having excellent chip resistance
JP6657594B2 (en) Surface coated cutting tool
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP6928220B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4853120B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP6555514B2 (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP7016462B2 (en) Surface covering cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
WO2018066469A1 (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4716253B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5440267B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2006315149A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6928220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150