WO2017057266A1 - Bar stock and cutting tool - Google Patents

Bar stock and cutting tool Download PDF

Info

Publication number
WO2017057266A1
WO2017057266A1 PCT/JP2016/078251 JP2016078251W WO2017057266A1 WO 2017057266 A1 WO2017057266 A1 WO 2017057266A1 JP 2016078251 W JP2016078251 W JP 2016078251W WO 2017057266 A1 WO2017057266 A1 WO 2017057266A1
Authority
WO
WIPO (PCT)
Prior art keywords
central portion
blank
content
particles
average
Prior art date
Application number
PCT/JP2016/078251
Other languages
French (fr)
Japanese (ja)
Inventor
尊史 山川
松下 滋
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201680056048.1A priority Critical patent/CN108136514B/en
Priority to JP2017543250A priority patent/JP6608945B2/en
Publication of WO2017057266A1 publication Critical patent/WO2017057266A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • This aspect relates to a rod-shaped body and a cutting tool such as a drill and an end mill.
  • the long rod-shaped body is used as a structural member.
  • a blank made of a long cylindrical rod-like body becomes a cutting tool such as a drill and an end mill by performing a cutting process.
  • a solid drill having a cutting edge located at the tip and a flute groove extending from the cutting edge is known as a drill used for drilling.
  • the drill is used, for example, in drilling a substrate on which electronic components are mounted.
  • JP 2012-526664 A Patent Document 1 discloses a blank having a different composition in the radial direction or the longitudinal direction.
  • This aspect is a long rod-shaped body made of a cemented carbide containing WC particles and Co and having a first end and a second end in the longitudinal direction, and the first end is in the width direction.
  • the second end portion has a second central portion located in the center in the width direction, and the content of Co in the first central portion is the second central portion.
  • EBSD electron beam backscatter diffraction
  • FIG. 1 is composed of FIGS. 1A to 1D.
  • FIG. 1A is a side view of a blank which is an example of a rod-shaped body of the present embodiment.
  • FIG. 1B is a diagram showing a distribution of Co content in the blank of FIG. 1A.
  • FIG. 1C is a diagram showing a distribution of Cr content in the blank of FIG. 1A.
  • FIG. 1D is a diagram showing a distribution of V content in the blank of FIG. 1A.
  • FIG. 2 is composed of FIG. 2A and FIG. 2B.
  • FIG. 2A is a side view of a variation of the blank of FIG. 1A.
  • FIG. 2B is a diagram showing a distribution of Co content in the blank of FIG. 2A. It is a schematic diagram for demonstrating the structure of a metal mold
  • FIG. 1A is a side view of a blank
  • FIGS. 1B to 1D are diagrams respectively showing distributions of Co content, Cr content, and V content in the blank.
  • the part shown with the dotted line in FIG. 1A has shown an example of the cutting tool formed using a blank.
  • a blank 2 used in the drill 1 in FIG. 1 which is an example of a cutting tool has a long cylindrical shape made of a cemented carbide containing WC and Co, and is located on the first end side in the longitudinal direction. It has an end portion (hereinafter referred to as end portion A) and an end portion (hereinafter referred to as end portion B) located on the second end portion side.
  • end portion A an end portion located on the first end side in the longitudinal direction. It has an end portion (hereinafter referred to as end portion A) and an end portion (hereinafter referred to as end portion B) located on the second end portion side.
  • the cutting edge 5 is formed in the edge part (henceforth the edge part X) located in the 1st edge part side, and the 2nd edge part in the drill 1 is used.
  • the end B of the blank 2 is joined to the shank 3 located at the end on the side (hereinafter referred to as end Y).
  • the blank 2 may be directly joined to the shank 3 or may be
  • the end A in the blank 2 is more than the end X where the cutting edge 5 in the drill 1 is formed. It is located on the first end side.
  • the edge part A of the blank 2 has the 1st center part (henceforth center part A1) located in the center of the width direction, and the edge part B of the blank 2 is the width direction. 2nd center part (henceforth center part B1) located in the center.
  • the Co content Co A in the central portion A1 is smaller than the Co content Co B in the central portion B1.
  • the end X has a central portion (hereinafter, referred to as the central portion X1) located at the center in the width direction, and the end Y of the drill is in the width direction.
  • the center part (henceforth the center part Y1) located in the center of is included.
  • Co content in center part X1 is less than Co content in center part Y1.
  • the wear resistance on the end X side having the cutting edge 5 can be increased, and the break resistance on the end Y side that is easily broken in a cutting tool such as a drill or an end mill can be increased. .
  • the width direction in the present embodiment refers to a direction perpendicular to the longitudinal direction of the blank 2, and the central portion in the width direction is half the length in the direction perpendicular to the longitudinal direction of the blank 2. This refers to a region including the center in the width direction of the blank 2.
  • the “content” in the present embodiment is not a value indicating an absolute amount but a value indicating a content ratio (% by mass).
  • the average in the central portion A1 is smaller than the average KAM value in the central portion B1.
  • the average KAM value in the central portion X1 is smaller than the average KAM value in the central portion Y1.
  • the average KAM value in the central portion A1 is 0.5 to 0.65 ° and the average KAM value in the central portion B1 is 0.75 to 0.92 °
  • chipping resistance in the end portion A And the rigidity at the end portion B can be further increased, and when a cutting tool is used, the chipping resistance and processing accuracy of the cutting blade 5 can be further increased.
  • KAM Kernel Average s Misorientation
  • EBSD Electro Backscatter Diffraction
  • the amount of Co added on the end A side is made smaller than the amount of Co added on the end B side, and part of Co is diffused during firing.
  • the Co content Co A in the central portion A1 is made smaller than the Co content Co B in the central portion B1. Since the addition amount of Co on the end A side is smaller than the addition amount of Co on the end B side, the firing shrinkage amount on the end A side is different from the firing shrinkage amount on the end B side. For this reason, distortion is likely to occur in the firing process, but by controlling the firing conditions, the average KAM value is obtained while leaving a small plastic strain in a part of the WC particles existing on the end A side and the end B side. It can be controlled within a predetermined range.
  • the end A in the blank 2 of the present embodiment further includes a first outer peripheral portion (hereinafter referred to as an outer peripheral portion A2) located on the outer periphery in addition to the central portion A1.
  • an outer peripheral portion A2 located on the outer periphery in addition to the central portion A1.
  • the outer peripheral portion A2 refers to a range in which the average KAM value can be analyzed including the outer peripheral end portion of the end portion A.
  • the measurement region of the average KAM value may be measured with a width of 10% or less with respect to the width in the direction perpendicular to the longitudinal direction in the cross section along the longitudinal direction of the blank 2.
  • the content of Co, Co A is 0 to 10 mass%, when the Co B is 2 to 16 mass% can maintain a high abrasion resistance and fracture resistance of the blank 2. More desirable ranges of Co A and Co B vary depending on processing conditions. For example, when using the blank 2 as a drill for processing a printed circuit board, Co A is set to 1 to 4.9% by mass and Co B May be 5 to 10% by mass.
  • Co B When Co B is 5% by mass or more, it is easy to densify the end portion B in a normal uniform composition, and it is difficult to form Co agglomerated portions in the blank 2 after firing. Therefore, the Co distribution is less likely to be uneven. This is presumably because when Co B is 5% by mass or more, Co diffuses due to the Co capillary phenomenon, so that Co agglomerates are difficult to form, and a uniform distribution state is likely to occur. As a result, a dense cemented carbide is obtained on the end A side even if Co A is relatively small.
  • the ratio of Co A to Co B (Co A / Co B ) is 0.2 to 0.7, the hardness at the end A can be improved and the breakage resistance of the blank 2 can be improved. Can be increased.
  • Co AO Co AO
  • this Co AO is less than Co A indicating the Co content in the central portion A1
  • a drill or In a rotary tool such as an end mill it is possible to improve the wear resistance in the outer peripheral portion A2 that is most easily worn among the cutting blades 5.
  • the blank 2 may contain a Cr element and a V element in addition to WC and Co. Further, the blank 2 may contain carbides of Group 4, 5, and 6 metals other than W, Cr, and V. When the blank 2 contains Cr, the corrosion resistance of the blank 2 can be increased, and when it contains Co and Cr, the heat resistance can be increased. Moreover, since Cr and V can suppress abnormal grain growth of WC particles, a cemented carbide with high strength can be stably produced.
  • V is also a component that suppresses grain growth of WC particles during firing.
  • the V content is small on the end A side, the grain growth of the WC particles becomes difficult to be suppressed on the end A side, and the average particle size of the WC particles increases.
  • the chipping resistance of the cemented carbide is improved on the end A side.
  • the V content is large on the end B side, grain growth of the WC particles is suppressed on the end B side, and the average particle size of the WC particles is reduced.
  • the strength of the cemented carbide increases on the end B side, and the breakage resistance of the drill 1 is improved.
  • the V content V A in the central portion A1 may be less than the V content V B in the central portion B1.
  • blank 2 may have a region where the V content is varied in slope S V with Cr content toward the center portion A1 to the central portion B1 is changed in a slope S Cr.
  • slope S Cr is smaller than the inclination S V
  • corrosion resistance is improved over the entire blank 2.
  • improved when the inclination S V is greater than the inclination S Cr serves to improve the high and chipping resistance hardness at the side of the end portion A, the strength is high and breakage resistance in the side of the end portion B To do.
  • edge part A and the edge part B point out the edge part of the blank 2, it specifically points out the range which can analyze the composition of the blank 2 by EPMA analysis.
  • the distribution of the content of each metal element in the longitudinal direction of the blank 2 is measured and confirmed by EPMA analysis.
  • FIG. 1C and FIG. 1D in the EPMA analysis of the blank 2, the measurement values at the ends where accurate composition measurement is not possible are omitted.
  • FIG. 2 the description of the distribution of Cr and V is omitted.
  • Cr A indicating the content of Cr in the central part A1 is 0.05 to 2% by mass
  • Cr B indicating the content of Cr in the central part B1 is 0.1 to 3% by mass
  • VA indicating the V content is 0 to 1% by mass
  • V B indicating the V content in the central portion B1 is 0.05 to 2% by mass
  • At least a part of Cr is dissolved as a metal in the binder phase, and in addition, it is present as a composite carbide with Cr 3 C 2 or other metals.
  • V is at least partially dissolved as a metal in the binder phase, and may also be present as a composite carbide with VC or other metals.
  • V has a smaller amount of solid solution in the binder phase than Cr element.
  • Cr A and Cr B are values obtained by converting the Cr element content into Cr 3 C 2
  • V A and V B are values obtained by converting the V element content into VC.
  • the blank 2 When S Cr is 0 to 0.1% by mass / mm and SV is 0.1 to 0.5% by mass / mm, the blank 2 has corrosion resistance, heat resistance, and resistance at the end A side. High wear resistance and chipping resistance, and breakage resistance on the end B side.
  • Co A, Co B, Cr A, Cr B, V A, method of measuring V B is in a state of being split in half along the blank 2 in the longitudinal direction, the center portion A1 and the central portion B1 by EPMA analysis It can confirm by measuring the composition in.
  • the composition analysis from the end A to the end B of the blank 2 is measured on a central axis parallel to the longitudinal direction of the cross section. Calculating a distribution of the content and the V content in the longitudinal direction of the Cr of the blank 2 was determined by EPMA analysis, the slope when approximated to a straight line by the least square method for the entire distribution of the blank 2 S Cr, as S V To do.
  • content of Cr in an outer peripheral part refers to content of Cr in the range which can analyze the composition of the blank 2 by EPMA analysis in an outer periphery.
  • segmented the blank 2 along the longitudinal direction was made into outer peripheral part A2, and it measured as content of Cr in this outer peripheral part A2.
  • the average particle size a A of WC particles in the central portion A1 is greater than the average particle size a B of the WC grains in the central portion B1 is deficient higher hardness is the wear resistance of the prone end A Can be improved. Further, since the rigidity of the end portion B is increased, the rod-shaped body is not easily bent. Therefore, when the blank 2 is a cutting tool having the cutting edge 5 on the end A side and the shank 3 on the end B side, the wear resistance of the cutting edge 5 and the chipping resistance at the end A are shown. Is further improved, and breakage resistance at the end B is improved.
  • the average particle diameter of WC particles can be calculated from the SEM photograph by the Luzex analysis method. Moreover, you may use the following method as another method of confirming the average particle diameter of WC particle
  • grains is observed with the electron beam backscattering diffraction (EBSD) method by a scanning electron microscope with a backscattering electron diffraction image system.
  • EBSD electron beam backscattering diffraction
  • grains is observed with the electron beam backscattering diffraction (EBSD) method by a scanning electron microscope with a backscattering electron diffraction image system.
  • the outline of each WC particle is specified by confirming the orientation direction of each WC particle.
  • the area of each WC particle is calculated based on the outline of each WC particle, and the diameter when this area is converted into a circle is taken as the particle diameter. And let the average value of the particle size of each WC particle be an average particle size.
  • the wear resistance and fracture resistance on the end A side can be optimized, and breakage resistance on the end B side can be improved.
  • the region for measuring the average particle diameter of the WC particles at the end A and the end B is a straight line from the first end to the second end of the blank 2 when the structure of the blank 2 is observed by SEM analysis. To obtain a region where the straight line crosses 10 or more WC particles.
  • the regions from the first end and the second end are regions that do not exceed the width of the rod-shaped body.
  • outer peripheral part A2 points out the thickness area
  • center part A1 is the center in the width direction of the edge part A of the blank 2
  • a thickness region of 10% of the width at the end A of the blank 2 is indicated.
  • angular part by the side of the edge part A in the cross section which divided the blank 2 in the longitudinal direction is defined as aAO .
  • the average particle diameter a A is 0.3 to 1.5 ⁇ m and the average particle diameter a B is 0.1 to 0.9 ⁇ m
  • the chipping resistance of the end A is further improved
  • the breakage resistance of the end B is further improved. If the blank 2 is used to drill 1, the desirable range of the average particle size a A is 0.4 ⁇ 0.7 [mu] m, preferably in the range of the average particle size a B is 0.15 ⁇ 0.5 [mu] m.
  • Blank 2 is located in the 1st field 11 where content of Co changes with inclination S1Co as it goes to center part B1 from central part A1, and the end B side rather than the 1st field 11, You may have 2nd area
  • the slope S 1 Co is larger than the slope S 2 Co, the toughness in the wide area on the end B side can be increased while maintaining the wear resistance on the end A side high, and the blank 2 Breakage resistance can be improved.
  • the Cr content may change with the slope S 1Cr , and the V content may change with the slope S 1V .
  • the Cr content may change with the slope S 2Cr
  • the V content may change with the slope S 2V .
  • the presence of the first region 11 and the second region 12 can be confirmed by the distribution of Co content in the longitudinal direction of the blank 2. Then, the Cr content and the V content in the first region 11 and the second region 12 are measured, and the slopes when the distribution in each region is approximated by the least square method are expressed as S 1Co , S 1Cr , S 1V , S 2Co, S 2Cr, calculated as S 2V. In addition, the direction where inclination becomes low toward center part B1 from center part A1 is made into plus, and the direction which becomes high toward center part B1 from center part A1 is made into minus.
  • the slope S 1Co When the slope S 1Co is 0.2 to 1% by mass / mm and the slope S 2Co is 0 to 0.2% by mass / mm, the hardness on the end A side can be improved and the blank 2 Breakage resistance can be improved.
  • the slope S 1Co in the first region 11 may not be constant within the region. In particular, in the first region 11, when the slope S 1Co increases as it approaches the first end located at the end A, the wear resistance at the first end is high, and the break resistance of the blank 2 is high. Get higher.
  • FIG. 1D shows a change in the content of the V element so as to correspond to the change in the content of the Co element. That is, in FIG. 1D, the slope S 1V of the V element in the first region 11 is larger than the slope S 2V of the V element in the second region 12. Further, the slope S 3V of the V element in the third region 13 is larger than the slope S 1V of the V element in the first region 11.
  • the first end than the first region 11 may have a fourth region 14 in which the content of Co is changed in tilt S 4CO.
  • the inclination of the inclined S 4CO is smaller than the inclination of the inclined S 1co it may be able to increase the range of high wear resistance in the side of the end portion A.
  • the diamond coating layer is formed on the surface of the blank 2.
  • the content of Co contained in the fourth region 14 is reduced, so that the crystallinity of the diamond coating layer on the surface of the fourth region 14 can be further increased. Therefore, the hardness and adhesion of the diamond coating layer are improved.
  • An inflection point in the distribution of Co content may exist at the boundary between the first region 11 and the fourth region 14.
  • the length of the first region 11 is L1
  • the length of the second region 12 is L2
  • the length of the third region 13 is L3
  • the hardness at the end A can be improved and the breakage resistance of the blank 2 can be increased.
  • L3 / L2 0.01 to 0.1
  • the adjustment of the Co content in the second region 12 and the first region 11 is easy.
  • L4 / L2 is 0 to 0.05, densification of the cemented carbide at the end A can be more stably promoted.
  • L4 / L2 is larger than 0.05 and there is a portion that is not densified in the fourth region 14, a part of the fourth region 14 is polished and removed when the drill 1 is manufactured. Also good.
  • Content Co AO of Co in the outer peripheral portion of the end portion A if less than the content Co A of Co at the center of the end portion A, in the rotary tool drill or end mill, among the cutting edge 5 Abrasion resistance in the outer peripheral portion that is most easily worn can be increased.
  • the blank 2 has a protruding portion 15 located on the outer side in the longitudinal direction from the end portion A.
  • the protrusion 15 has a shape with a diameter smaller than that of the end A. That is, the diameter d A of the end portion A, the diameter d c of the projecting portion 15 is small.
  • the protrusion 15 can be easily formed, and the tip of the drill 1 that has been bladed can be formed on the protrusion 15, so that the processing cost is not wasted.
  • the projection 15 when the projection 15 is hemispherical, the projection 15 may be lost even if the blanks 2 collide with each other when the blank 2 is randomly inserted into the bonding apparatus. It is suppressed, and it can also be controlled that other blank 2 is damaged by projection part 15.
  • the base part side which the projection part 15 connects to the edge part A is connected by the R surface in the cross sectional view. Accordingly, it is possible to suppress the load from being concentrated on the end portion of the lower punch 23 during the molding of the molded body 35 and the lower punch 23 from being chipped.
  • the diameter d B of the B portion of the diameter d A and a blank 2 of the end A of the blank 2 are both 2mm or less, when the longitudinal length is L, the ratio of L to d A (L / d When A ) is 3 or more, it is easy to adjust Co A and Co B to predetermined values in the blank 2 after firing. That is, when the ratio (L / d A ) is a large value, even if Co diffuses during firing, it is easy to ensure a sufficient difference between Co A and Co B in the blank 2.
  • a more desirable range of the ratio (L / d A ) is 4 to 10.
  • the blank 2 may be in a state where it is not polished after firing, but in order to increase the positional accuracy of the blank 2 when gripping the blank 2 in the step of joining the blank 2 to the shank 3, the outer periphery of the blank 2 after firing
  • the surface may be centerless processed.
  • preferable dimensions of the blank 2 are d A and d B of 0.2 to 2 mm and a length L of 3 to 20 mm when used as a drill for processing a printed circuit board.
  • the drill 1 used for drilling a printed circuit board is illustrated as a cutting tool.
  • the present invention is not limited to this, and the drill 1 may have a long main body. That's fine.
  • the present invention can be applied as a cutting tool for turning such as a drill for metal processing, a medical drill, an end mill, and a throw-away tip for inner diameter processing.
  • the rod-like body such as the blank 2 can be used as an anti-wear material and a sliding member other than the cutting tool. Even when the rod-like body is used as a tool other than a cutting tool, the rod-like body is suitably used for an application in which the region including the end A is used in contact with the mating member in a state where the end B is fixed and processed. It is done.
  • the first raw material powder 30 contains WC powder as the raw material powder.
  • the first raw material powder 30 may contain Co powder as the raw material powder.
  • the second raw material powder 33 contains WC powder and Co powder as raw material powder.
  • the content of Co powder in the first raw material powder 30 is less than the content of Co powder in the second raw material powder 33.
  • the content of the Co powder in the first raw material powder 30 is 0 to 0.5, particularly 0 to 0.3, as a mass ratio with respect to the content of the Co powder in the second raw material powder 33.
  • Each of the first raw material powder 30 and the second raw material powder 33 may contain Cr 3 C 2 powder, VC powder, or Co powder in addition to the WC powder.
  • the first raw material powder 30 and the second raw material powder 33 are carbides, nitrides, and carbonitrides of periodic tables 4, 5, and 6 metals other than WC, Cr 3 C 2 , and VC, respectively. Any additive of the product powder may be contained.
  • the amount of WC powder in the first raw material powder 30 is 90 to 100% by mass
  • the amount of Co powder is 0 to 8% by mass
  • the total amount of additives is 0 to 5% by mass.
  • the amount of WC powder in the second raw material powder 33 is 65 to 95% by mass
  • the amount of Co powder is 5 to 30% by mass
  • the total amount of additives is 0 to 10% by mass.
  • the average particle size of the WC powder in the first raw material powder 30 and the average particle size of the WC powder in the second raw material powder 33 are made different from each other, so that the end portion A to the end portion B of the blank 2 after firing. It is also possible to adjust the distribution state, hardness, toughness and other characteristics of Co and other metal elements.
  • a slurry is prepared by adding a binder and a solvent to the above prepared powder. This slurry is granulated into granules and formed into molding powder.
  • a press mold (hereinafter simply referred to as a mold) 20 is prepared, and the above granules are put into a cavity 22 of a die 21 of the mold 20. Then, the upper punch 24 is lowered from above the granules put into the cavity 22 of the die 21 and pressed to produce a molded body.
  • the upper surface serving as the pressing surface of the lower punch 23 that is the bottom of the cavity 22 has a recess 25 for forming the protrusion 15.
  • the molding method according to the present embodiment includes a step of putting the first raw material powder 30 into a region including the recess 25 in the cavity 22, a step of putting the second raw material powder 33 into the cavity 22, and lowering the upper punch 24 from above.
  • the molded body 35 has a cylindrical shape, and the Co content in the protrusion 15 and the end A is smaller than the Co content in the end B. As a result, it becomes easy to adjust the distribution of the predetermined Co content in the blank 2.
  • the bottom face of the recessed part 25 is a curved surface, in the molded object 35, while the chip
  • the position of the upper punch 24 from the holding position of the upper punch 24 at the time of pressurization is 0.1 mm to 2 mm, and 0.1 to the length of the molded body.
  • An additional load may be applied to the upper punch 24 and the load on the lower punch 23 may be reduced so as to descend downward by a length of% to 20%.
  • the diameter D A of the lower punch 23 side of the molded body 35 may be smaller than the diameter D B of the upper punch 24 side.
  • a desirable range of the ratio D A / D B in the present embodiment is 0.8 to 0.99.
  • the Co powder content in the second raw material powder 33 is smaller than the Co powder content in the first raw material powder 30.
  • Other raw material powders such as a third raw material powder having a Co powder content higher than the content of Co may be present.
  • the molded body that has been pressure-molded is taken out of the mold, fired at 1300-1500 ° C. for 0.5-2 hours, and then subjected to sinter HIP treatment to become blank 2.
  • the firing temperature is adjusted by the Co content and the average particle size of the WC particles.
  • the rate of temperature increase from 1000 ° C. during firing to the firing temperature is 4 to 7 ° C./min, and the reduced pressure at the firing temperature is 50 to 200 Pa.
  • the sinter HIP is processed at a pressure 5 to 10 MPa at a temperature 5 to 20 ° C. lower than the sintering temperature. Thereby, the content of Co in the end A and the end B can be easily adjusted.
  • the shrinkage rate of the end A and the end B is different during firing, and the molded body is deformed, and the shrinkage rate of the end B Becomes larger than the contraction rate of the end portion A. That is, a part of Co at the end portion B diffuses toward the end portion A by firing, so that the end portion B contracts more than the end portion A. Accordingly, the diameter of the end portion B tends to be smaller than the diameter of the end portion A in the shape of the sintered body.
  • the heating rate is faster than 4 ° C./min, it is possible to avoid excessive diffusion of Co during firing, so that the difference in Co concentration in the blank 2 after sintering can be increased, and the center It is easy to make the average KAM value of the part A1 smaller than the average KAM value of the central part B1. Moreover, depending on the case, it is easy to make the average particle diameter of center part A1 larger than the average particle diameter of center part B1.
  • the rate of temperature increase is slower than 7 ° C./min, the blank 2 can be satisfactorily contracted, and the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1.
  • the WC can be easily densified at the end A.
  • the decompression pressure at the firing temperature is 50 Pa or more, it is possible to avoid excessive diffusion of Co during firing, so that the difference in Co concentration in the blank 2 after sintering can be increased, and the central portion It is easy to make the average KAM value of A1 smaller than the average KAM value of the central portion B1. Further, when the reduced pressure is 200 Pa or less, the blank 2 can be satisfactorily contracted, and the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1. Therefore, it becomes easy to densify the WC at the end A.
  • the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1. Moreover, depending on the case, it is easy to make the average particle diameter of center part A1 larger than the average particle diameter of center part B1.
  • the difference between the sintering HIP processing temperature and the sintering temperature is 20 ° C. or less, the blank 2 can be satisfactorily shrunk, and the average KAM value of the central part A1 is smaller than the average KAM value of the central part B1. Easy to do. Therefore, it becomes easy to densify the WC at the end A.
  • the molding step in the present invention is not limited to the press molding shown in the above embodiment, but can be molded by cold isostatic pressing, dry bagging, injection molding, or the like.
  • the arranged blanks 2 are automatically brought into contact with a member constituted by a shank 3 and a neck portion 7 which are separately prepared, and then joined by a laser or the like. Thereafter, blade joining is performed on the joined blank 2.
  • the drill 1 is configured such that the end X is on the cutting blade 5 side of the drill 1 and the end Y is on the shank 3 side of the drill 1.
  • a cutting tool such as a drill 1 is produced by cutting the blank 2.
  • the drill 1 in FIG. 4 is configured by a blank (machined part) that has been subjected to blade processing, a neck part 7 joined to the machined part, and a shank 3 positioned on the rear end side (upper side in FIG. 4) of the neck part 7. ing.
  • the processed part has a cutting edge 5 located at the end X and a groove 6 following the cutting edge 5.
  • a body 8 is constituted by the processed portion and the neck portion 7. Therefore, it can be said that the shank 3 is located on the rear end side of the body 8.
  • the cutting blade 5 is a portion that first contacts the work material while rotating around the central axis, and is required to have high chipping resistance and wear resistance.
  • the groove 6 has a function of discharging chips generated by processing backward, and the neck portion 7 is a connecting portion that connects the processing portion and the shank 3 having different diameters.
  • the maximum diameter of the processed part is set to 2 mm or less, for example.
  • the shank 3 can be used as a part for fixing the drill 1 to the processing machine.
  • a coating layer may be located on the surface of the drill 1.
  • the coating layer include TiN, TiCN, TiAlN, diamond, diamond-like carbon, and diamond formed by the CVD method, which are formed by the PVD method.
  • the drill 1 may have a structure in which the neck 7 and the shank 3 are made of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 is joined to the tip of the neck 7. Further, the entire drill 1 may be constituted by the blank 2. Moreover, the neck 7 is not essential, and the drill 1 may have a configuration in which the blank 2 and the shank 3 are directly joined.
  • a mold shown in FIG. 3 provided with a die having 144 through holes was prepared.
  • the first raw material powder of Table 1 was charged, and then the second raw material powder of Table 1 was filled and press-molded.
  • a molded body in which the first raw material powder and the second raw material powder were laminated was molded by press molding and taken out of the mold.
  • the diameter of the lower punch side is D A
  • the diameter of the upper punch side is D B
  • the length of the lower part of the molded body is H A
  • the length of the upper part of the molded body is H B. Indicated.
  • the molded body was heated from 1000 ° C. at the rate of temperature increase shown in Table 2 and fired for 1 hour in the atmosphere and firing temperature shown in Table 2. Then, the sintered HIP (shown as HIP in Table 2) temperature shown in Table 2 was obtained. It changed and the blank was obtained by performing the sinter HIP process for 30 minutes at the pressure of 5 MPa.
  • the obtained blank shown in Table 2 was measured end A, the diameter of the end portion B (d A, d B) a. Further, the blank was divided in half along the longitudinal direction, and changes in Co content, Cr content, and V content from end A to end B were measured by EPMA analysis. The presence, inclination, and length of the fourth region were confirmed from the region. Furthermore, about the edge part A of a blank, content of Co in an outer peripheral part was measured. The results are shown in Tables 2-5. Moreover, the average particle diameter of the WC particle
  • the measurement of KAM by the EBSD method was performed as follows. First, the cross section in the longitudinal direction of the blank was buffed using colloidal silica, and then the measurement area was divided into square areas (pixels) using EBSD (model number JSM7000F) manufactured by Oxford. For each divided area, the Kikuchi pattern was obtained from the reflected electrons of the electron beam incident on the sample surface, and the orientation of the pixel was measured. The measured azimuth data was analyzed using JSM7000F analysis software, and various parameters were calculated.
  • Observation conditions were an acceleration voltage of 15 kV, a measurement area of 60 ⁇ m width ⁇ 5 ⁇ m depth on the blank surface, and a distance (step size) between adjacent pixels of 0.1 ⁇ m.
  • KAM calculates the average value of misorientation between a certain pixel in the crystal grain and the adjacent pixel existing in the range not exceeding the crystal grain boundary, and measures the average KAM value as the average value in all the pixels constituting the entire measurement area. did.
  • the measurement of the said average KAM value was measured about arbitrary 3 visual fields, and it evaluated by the average value. The results are shown in Table 5.
  • the average particle diameter a A of the WC particles in the central portion A1 is the same as the average particle diameter a B of the WC particles in the central portion B1, so the flank wear width is large and the number of processed parts is also large. There were few things.
  • sample No. No. Co A is smaller than Co B
  • the average KAM value in the central part A1 is smaller than the average KAM value in the central part B1.
  • the flank wear width was small and the number of workpieces increased.
  • sample No. 1 having an average KAM value in the central portion A1 of 0.50 to 0.65 ° and an average KAM value in the central portion B1 of 0.75 to 0.92 °.
  • I-1, I-2 and I-7 to I-13 the number of processed parts further increased.
  • sample No. having a ratio (Co A / Co B ) of 0.2 to 0.7 was used.
  • the number of processed parts increased.
  • the average particle diameter of a A at the center portion A1 is greater than the average particle size a B at the central portion B1
  • Sample No. in I-1 to I-4, I-6 to I-13, and I-23 the flank wear width was small and the number of workpieces was large. All samples, an average particle diameter of a A is 0.3 ⁇ 1.5 [mu] m, an average particle diameter of a B was 0.1 ⁇ 0.9 .mu.m.
  • sample Nos. 1 and 4 in which the ratio (a A / a B ) of the average particle size a A to the average particle size a B is 1.5 to 4.
  • the number of processed parts increased.
  • the flank wear width was smaller and the number of workpieces increased.
  • Each of I-1 to I-12 has a second region having a slope S 2Co and a first region having a slope S 1Co larger than the slope S 2Co , the flank wear width is small, and the number of processed parts is large. It was.
  • Sample No. No. 2 having a gradient S 1Co of 0.2 to 1% by mass / mm and a gradient S 2Co of 0 to 0.2% by mass / mm.
  • the flank wear width was small.
  • the sample No. No. Co A is smaller than Co B and the average KAM value in the central portion A1 is smaller than the average KAM value in the central portion B1.
  • the flank wear width was small and the number of workpieces increased.
  • the average particle diameter a A in the central part A1 was larger than the average particle diameter a B in the central part B1.

Abstract

An elongated bar stock made of a cemented carbide containing tungsten carbide (WC) particles and cobalt (Co) and comprising a first edge and a second edge along the longitudinal direction, wherein the first edge has a first center portion positioned in the center in the width direction, and the second edge has a second center portion positioned in the center in the width direction. The Co content in the first center portion is less than the Co content in the second center portion, and for the measurement of an average kernel average misorientation (KAM) for WC particles measured with the electron backscatter diffraction (EBSD) method, the average KAM value in the first center portion is less than the average KAM value in the second center portion.

Description

棒状体及び切削工具Rod and cutting tool
 本態様は、棒状体並びにドリル及びエンドミル等の切削工具に関する。 This aspect relates to a rod-shaped body and a cutting tool such as a drill and an end mill.
 長尺状の棒状体は、構造部材として用いられている。例えば、長尺状の円柱形状の棒状体からなるブランクは、刃付け加工をすることによってドリル及びエンドミル等の切削工具になる。孔開け加工に使用するドリルとして、先端に位置する切刃及び切刃から延びたフルート溝を有するソリッドドリルが知られている。ドリルは、例えば電子部品を搭載する基板の孔開け加工において用いられる。棒状体の一例として、特開2012-526664号公報(特許文献1)には、径方向又は長手方向に組成が異なるブランクが開示されている。 The long rod-shaped body is used as a structural member. For example, a blank made of a long cylindrical rod-like body becomes a cutting tool such as a drill and an end mill by performing a cutting process. A solid drill having a cutting edge located at the tip and a flute groove extending from the cutting edge is known as a drill used for drilling. The drill is used, for example, in drilling a substrate on which electronic components are mounted. As an example of the rod-shaped body, JP 2012-526664 A (Patent Document 1) discloses a blank having a different composition in the radial direction or the longitudinal direction.
 近年、ブランクには、更なる耐摩耗性と耐折損性の向上が求められている。 In recent years, blanks are required to have further improved wear resistance and breakage resistance.
 本態様は、WC粒子及びCoを含有する超硬合金からなり、長手方向において第1端部及び第2端部を有する長尺状の棒状体であって、前記第1端部は、幅方向の中央に位置する第1中央部を有し、前記第2端部は、幅方向の中央に位置する第2中央部を有し、前記第1中央部におけるCoの含有量が、前記第2中央部におけるCoの含有量よりも少ないとともに、前記WC粒子の後方散乱電子回折像システム付きの走査電子顕微鏡による電子線後方散乱回折(EBSD)法にて測定された平均KAM値の測定において、前記第1中央部における平均KAM値が、前記第2中央部における平均KAM値よりも小さい。 This aspect is a long rod-shaped body made of a cemented carbide containing WC particles and Co and having a first end and a second end in the longitudinal direction, and the first end is in the width direction. The second end portion has a second central portion located in the center in the width direction, and the content of Co in the first central portion is the second central portion. In the measurement of the average KAM value measured by the electron beam backscatter diffraction (EBSD) method with a scanning electron microscope with a backscattered electron diffraction image system of the WC particles, while being less than the content of Co in the center part, The average KAM value in the first central portion is smaller than the average KAM value in the second central portion.
図1は、図1A~図1Dで構成される。図1Aは、本実施形態の棒状体の一例であるブランクについての側面図である。図1Bは、図1AのブランクにおけるCoの含有量の分布を示す図である。図1Cは、図1AのブランクにおけるCrの含有量の分布を示す図である。図1Dは、図1AのブランクにおけるVの含有量の分布を示す図である。FIG. 1 is composed of FIGS. 1A to 1D. FIG. 1A is a side view of a blank which is an example of a rod-shaped body of the present embodiment. FIG. 1B is a diagram showing a distribution of Co content in the blank of FIG. 1A. FIG. 1C is a diagram showing a distribution of Cr content in the blank of FIG. 1A. FIG. 1D is a diagram showing a distribution of V content in the blank of FIG. 1A. 図2は、図2A及び図2Bで構成される。図2Aは、図1Aのブランクの変形例についての側面図である。図2Bは、図2AのブランクにおけるCoの含有量の分布を示す図である。FIG. 2 is composed of FIG. 2A and FIG. 2B. FIG. 2A is a side view of a variation of the blank of FIG. 1A. FIG. 2B is a diagram showing a distribution of Co content in the blank of FIG. 2A. 図1のブランクの製造方法の一例について、金型の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a metal mold | die about an example of the manufacturing method of the blank of FIG. 本実施形態のドリルの一例についての側面図である。It is a side view about an example of the drill of this embodiment.
 棒状体について図面に基づいて説明する。本実施形態における切削工具用のブランク(以下、単にブランクともいう)は、棒状体の一例である。図1Aは、ブランクの側面図であり、図1B~図1Dは、それぞれブランクにおけるCoの含有量、Crの含有量、Vの含有量の分布をそれぞれ示す図である。なお、図1Aにおける点線で示される部分は、ブランクを用いて形成される切削工具の一例を示している。 The rod-shaped body will be described with reference to the drawings. A blank for a cutting tool in the present embodiment (hereinafter also simply referred to as a blank) is an example of a rod-shaped body. FIG. 1A is a side view of a blank, and FIGS. 1B to 1D are diagrams respectively showing distributions of Co content, Cr content, and V content in the blank. In addition, the part shown with the dotted line in FIG. 1A has shown an example of the cutting tool formed using a blank.
 切削工具の一例である図1のドリル1に用いられるブランク2は、WC及びCoを含有する超硬合金からなる長尺状の円柱形状であり、長手方向において、第1端部側に位置する端部(以下、端部Aとする。)及び第2端部側に位置する端部(以下、端部Bとする。)を有している。本実施形態のブランク2をドリル1に用いる場合には、第1端部側に位置する端部(以下、端部Xとする。)に切刃5が形成され、ドリル1における第2端部側の端部(以下、端部Yとする。)に位置するシャンク3にブランク2の端部Bが接合される。ブランク2は、直接にシャンク3に接合されてもよいし、別部材を介してもよい。 A blank 2 used in the drill 1 in FIG. 1 which is an example of a cutting tool has a long cylindrical shape made of a cemented carbide containing WC and Co, and is located on the first end side in the longitudinal direction. It has an end portion (hereinafter referred to as end portion A) and an end portion (hereinafter referred to as end portion B) located on the second end portion side. When using the blank 2 of this embodiment for the drill 1, the cutting edge 5 is formed in the edge part (henceforth the edge part X) located in the 1st edge part side, and the 2nd edge part in the drill 1 is used. The end B of the blank 2 is joined to the shank 3 located at the end on the side (hereinafter referred to as end Y). The blank 2 may be directly joined to the shank 3 or may be another member.
 本実施形態においては、ブランク2における端部Aを研磨することによって切刃5が形成されることから、ブランク2における端部Aは、ドリル1における切刃5が形成される端部Xよりも第1端部側に位置している。 In the present embodiment, since the cutting edge 5 is formed by polishing the end A in the blank 2, the end A in the blank 2 is more than the end X where the cutting edge 5 in the drill 1 is formed. It is located on the first end side.
 本実施形態によれば、ブランク2の端部Aが、幅方向の中央に位置する第1中央部(以下、中央部A1とする。)を有し、ブランク2の端部Bが、幅方向の中央に位置する第2中央部(以下、中央部B1とする。)を有している。そして、中央部A1におけるCoの含有量Coが、中央部B1におけるCoの含有量Coよりも少ない。 According to this embodiment, the edge part A of the blank 2 has the 1st center part (henceforth center part A1) located in the center of the width direction, and the edge part B of the blank 2 is the width direction. 2nd center part (henceforth center part B1) located in the center. The Co content Co A in the central portion A1 is smaller than the Co content Co B in the central portion B1.
 別の見方をすれば、ドリル1の状態では、端部Xが、幅方向の中央に位置する中央部(以下、中央部X1とする。)を有し、ドリルの端部Yが、幅方向の中央に位置する中央部(以下、中央部Y1とする。)を有している。そして、中央部X1におけるCoの含有量が、中央部Y1におけるCoの含有量よりも少ない。 From another point of view, in the state of the drill 1, the end X has a central portion (hereinafter, referred to as the central portion X1) located at the center in the width direction, and the end Y of the drill is in the width direction. The center part (henceforth the center part Y1) located in the center of is included. And Co content in center part X1 is less than Co content in center part Y1.
 これによって、切刃5を有する端部Xの側における耐摩耗性を高くすることができるとともに、ドリルやエンドミル等の切削工具において折損しやすい端部Yの側における耐折損性を高めることができる。 As a result, the wear resistance on the end X side having the cutting edge 5 can be increased, and the break resistance on the end Y side that is easily broken in a cutting tool such as a drill or an end mill can be increased. .
 なお、本実施形態における幅方向とは、ブランク2の長手方向に垂直な方向を指し、幅方向の中央部とは、ブランク2の長手方向に垂直な方向の長さに対して、半分の長さの位置、すなわち、ブランク2の幅方向の中心を含む領域を指す。また、本実施形態における「含有量」とは、絶対的な量を指す値ではなく、含有比率(質量%)を指す値である。 The width direction in the present embodiment refers to a direction perpendicular to the longitudinal direction of the blank 2, and the central portion in the width direction is half the length in the direction perpendicular to the longitudinal direction of the blank 2. This refers to a region including the center in the width direction of the blank 2. The “content” in the present embodiment is not a value indicating an absolute amount but a value indicating a content ratio (% by mass).
 そして、本実施形態によれば、WC粒子の後方散乱電子回折像システム付きの走査電子顕微鏡による電子線後方散乱回折(EBSD)法にて測定された平均KAM値の測定において、中央部A1における平均KAM値が、中央部B1における平均KAM値よりも小さい。別の見方をすれば、ドリル1の状態では、中央部X1における平均KAM値が、中央部Y1における平均KAM値よりも小さい。 And according to this embodiment, in the measurement of the average KAM value measured by the electron beam backscatter diffraction (EBSD) method by the scanning electron microscope with the backscattered electron diffraction image system of the WC particles, the average in the central portion A1 The KAM value is smaller than the average KAM value in the central portion B1. From another viewpoint, in the state of the drill 1, the average KAM value in the central portion X1 is smaller than the average KAM value in the central portion Y1.
 これによって、端部Aの側においてはクラックの進展が起きにくく、耐チッピング性が高いとともに、端部Bの側においては剛性が高くブランク2が撓みにくい。そのためブランク2を、端部Xの側に切刃5を有するとともに端部Yの側にシャンク3を有する切削工具とした際には、切刃5の耐チッピング性が向上するとともに、端部Bの剛性を高めることができるので、切削工具の加工精度を高めることができる。 This makes it difficult for cracks to develop on the side of the end A and has high chipping resistance, and on the side of the end B, the rigidity is high and the blank 2 is difficult to bend. Therefore, when the blank 2 is a cutting tool having the cutting edge 5 on the end X side and the shank 3 on the end Y side, the chipping resistance of the cutting edge 5 is improved and the end B Therefore, the processing accuracy of the cutting tool can be increased.
 特に、中央部A1における平均KAM値が0.5~0.65°であり、中央部B1における平均KAM値が0.75~0.92°である場合には、端部Aにおける耐チッピング性と端部Bにおける剛性とをさらに高めることができ、切削工具とした際には、切刃5の耐チッピング性及び加工精度をさらに高めることができる。 In particular, when the average KAM value in the central portion A1 is 0.5 to 0.65 ° and the average KAM value in the central portion B1 is 0.75 to 0.92 °, chipping resistance in the end portion A And the rigidity at the end portion B can be further increased, and when a cutting tool is used, the chipping resistance and processing accuracy of the cutting blade 5 can be further increased.
 ここで、KAM(Karnel Average Misorientation)とは、EBSD(Electron Backscatter Diffraction:後方散乱電子回折)法にて測定した隣接測定点間の結晶方位の差である局所方位差を表し、KAM値は塑性ひずみ等の大きさと相関を有する。また、KAMは微視レベルで局所的な変形や転移密度を反映するので、KAM値の測定によって微視レベルでの局所的な塑性変形が確認できる。平均KAM値は、観測領域内の各位置におけるKAM値を測定して、これを平均したものである。 Here, KAM (Karnel Average s Misorientation) is a local azimuth difference that is a difference in crystal orientation between adjacent measurement points measured by EBSD (Electron Backscatter Diffraction) method, and the KAM value is a plastic strain. Etc., and have a correlation with Moreover, since KAM reflects local deformation and transition density at the microscopic level, local plastic deformation at the microscopic level can be confirmed by measuring the KAM value. The average KAM value is obtained by measuring the KAM values at each position in the observation region and averaging them.
 本実施形態では、ブランク2を焼成する前の成形体において、端部A側のCoの添加量を端部B側のCoの添加量よりも少なくし、焼成中にCoを一部拡散させることによって、ブランク2において、中央部A1におけるCoの含有量Coを中央部B1におけるCoの含有量Coよりも少なくしている。端部A側のCoの添加量を端部B側のCoの添加量よりも少なくしていることから、端部A側の焼成収縮量と端部B側の焼成収縮量が異なる。そのため、焼成工程において歪みが生じやすいが、焼成条件を制御することによって、端部A側と端部B側に存在するWC粒子の一部に微小な塑性歪みを残存させつつ、平均KAM値を所定の範囲内に制御することができる。 In this embodiment, in the formed body before firing the blank 2, the amount of Co added on the end A side is made smaller than the amount of Co added on the end B side, and part of Co is diffused during firing. Thus, in the blank 2, the Co content Co A in the central portion A1 is made smaller than the Co content Co B in the central portion B1. Since the addition amount of Co on the end A side is smaller than the addition amount of Co on the end B side, the firing shrinkage amount on the end A side is different from the firing shrinkage amount on the end B side. For this reason, distortion is likely to occur in the firing process, but by controlling the firing conditions, the average KAM value is obtained while leaving a small plastic strain in a part of the WC particles existing on the end A side and the end B side. It can be controlled within a predetermined range.
 本実施形態のブランク2における端部Aは、中央部A1に加えて外周に位置する第1外周部(以下、外周部A2とする。)をさらに有している。外周部A2におけるWC粒子の平均KAM値が、中央部A1におけるWC粒子の平均KAM値よりも小さい場合には、回転工具として用いたときに、切刃5の加工精度を高めて、工具寿命を延ばすことができる。 The end A in the blank 2 of the present embodiment further includes a first outer peripheral portion (hereinafter referred to as an outer peripheral portion A2) located on the outer periphery in addition to the central portion A1. When the average KAM value of the WC particles in the outer peripheral part A2 is smaller than the average KAM value of the WC particles in the central part A1, when used as a rotary tool, the machining accuracy of the cutting blade 5 is increased, and the tool life is increased. Can be extended.
 ここで、外周部A2とは、端部Aにおける外周の端部を含み平均KAM値が分析可能な範囲を指している。例えば、平均KAM値の測定領域は、ブランク2の長手方向に沿った断面において、長手方向と垂直な方向の幅に対して10%以下の幅で測定すればよい。 Here, the outer peripheral portion A2 refers to a range in which the average KAM value can be analyzed including the outer peripheral end portion of the end portion A. For example, the measurement region of the average KAM value may be measured with a width of 10% or less with respect to the width in the direction perpendicular to the longitudinal direction in the cross section along the longitudinal direction of the blank 2.
 そして、Coの含有量において、Coが0~10質量%であり、Coが2~16質量%である場合には、ブランク2の耐摩耗性及び耐欠損性を高く維持できる。Co及びCoのより望ましい範囲は、加工条件によって変わるが、例えば、プリント基板加工用のドリルとしてブランク2を用いる場合には、Coを1~4.9質量%とするとともに、Coを5~10質量%とすればよい。 Then, the content of Co, Co A is 0 to 10 mass%, when the Co B is 2 to 16 mass% can maintain a high abrasion resistance and fracture resistance of the blank 2. More desirable ranges of Co A and Co B vary depending on processing conditions. For example, when using the blank 2 as a drill for processing a printed circuit board, Co A is set to 1 to 4.9% by mass and Co B May be 5 to 10% by mass.
 Coが5質量%以上の場合には、通常の均一な組成において端部Bを緻密化させることが容易であり、焼成後のブランク2中にCoの凝集部ができにくい。そのため、Coの分布にムラができにくい。これは、Coが5質量%以上の場合には、Coの毛細管現象によってCoが拡散するために、Coの凝集部ができにくく、均一な分布状態になり易いためと考えられる。その結果、端部Aの側においてはCoが相対的に少なくても、緻密な超硬合金となる。 When Co B is 5% by mass or more, it is easy to densify the end portion B in a normal uniform composition, and it is difficult to form Co agglomerated portions in the blank 2 after firing. Therefore, the Co distribution is less likely to be uneven. This is presumably because when Co B is 5% by mass or more, Co diffuses due to the Co capillary phenomenon, so that Co agglomerates are difficult to form, and a uniform distribution state is likely to occur. As a result, a dense cemented carbide is obtained on the end A side even if Co A is relatively small.
 また、CoとCoとの比率(Co/Co)が0.2~0.7である場合には、端部Aにおける硬度を向上させることができるとともに、ブランク2の耐折損性を高めることができる。 Further, when the ratio of Co A to Co B (Co A / Co B ) is 0.2 to 0.7, the hardness at the end A can be improved and the breakage resistance of the blank 2 can be improved. Can be increased.
 また、外周部A2におけるCoの含有量をCoAOと定義した場合に、このCoAOが、中央部A1におけるCoの含有量を示すCoよりも少ない場合には、切削工具のうちのドリルやエンドミル等の回転工具において、切刃5のうちで最も摩耗しやすい外周部A2における耐摩耗性を高めることができる。 Further, when the Co content in the outer peripheral portion A2 is defined as Co AO , when this Co AO is less than Co A indicating the Co content in the central portion A1, a drill or In a rotary tool such as an end mill, it is possible to improve the wear resistance in the outer peripheral portion A2 that is most easily worn among the cutting blades 5.
 本実施形態において、ブランク2は、WC及びCo以外に、Cr元素及びV元素を含有していてもよい。さらに、ブランク2は、W、Cr、Vを除く周期表4、5、6族金属の炭化物を含有していてもよい。ブランク2がCrを含有している場合には、ブランク2の耐食性を高くすることができ、また、Co及びCrを含有している場合には耐熱性を高めることができる。また、Cr及びVは、WC粒子の異常粒成長を抑制することができるので、強度の高い超硬合金を安定して作製することができる。 In this embodiment, the blank 2 may contain a Cr element and a V element in addition to WC and Co. Further, the blank 2 may contain carbides of Group 4, 5, and 6 metals other than W, Cr, and V. When the blank 2 contains Cr, the corrosion resistance of the blank 2 can be increased, and when it contains Co and Cr, the heat resistance can be increased. Moreover, since Cr and V can suppress abnormal grain growth of WC particles, a cemented carbide with high strength can be stably produced.
 Vは、焼成時にWC粒子の粒成長を抑制する成分でもある。端部Aの側においてVの含有量が少ない場合には、端部Aの側においてWC粒子の粒成長が抑制されにくくなり、WC粒子の平均粒径が大きくなる。その結果、端部Aの側においては、超硬合金の耐チッピング性が向上する。一方、端部Bの側においてVの含有量が多い場合には、端部Bの側においてWC粒子の粒成長が抑制され、WC粒子の平均粒径が小さくなる。その結果、端部Bの側においては、超硬合金の強度が高くなり、ドリル1の耐折損性が向上する。 V is also a component that suppresses grain growth of WC particles during firing. When the V content is small on the end A side, the grain growth of the WC particles becomes difficult to be suppressed on the end A side, and the average particle size of the WC particles increases. As a result, the chipping resistance of the cemented carbide is improved on the end A side. On the other hand, when the V content is large on the end B side, grain growth of the WC particles is suppressed on the end B side, and the average particle size of the WC particles is reduced. As a result, the strength of the cemented carbide increases on the end B side, and the breakage resistance of the drill 1 is improved.
 中央部A1におけるVの含有量Vは、中央部B1におけるVの含有量Vより少なくてもよい。また、ブランク2は、中央部A1から中央部B1へ向かうにしたがってCrの含有量が傾斜SCrで変化するとともにVの含有量が傾斜Sで変化する領域を有していてもよい。このとき、傾斜SCrが傾斜Sよりも小さい場合には、ブランク2の全体に亘って耐食性が良好になる。また、傾斜Sが傾斜SCrより大きい場合には、端部Aの側においては硬度が高くかつ耐チッピング性が向上するとともに、端部Bの側においては強度が高くかつ耐折損性が向上する。 The V content V A in the central portion A1 may be less than the V content V B in the central portion B1. Also, blank 2 may have a region where the V content is varied in slope S V with Cr content toward the center portion A1 to the central portion B1 is changed in a slope S Cr. At this time, when the slope S Cr is smaller than the inclination S V is corrosion resistance is improved over the entire blank 2. Further, improved when the inclination S V is greater than the inclination S Cr serves to improve the high and chipping resistance hardness at the side of the end portion A, the strength is high and breakage resistance in the side of the end portion B To do.
 なお、本実施形態において、端部A及び端部Bとは、ブランク2の端部を指すが、具体的には、EPMA分析によってブランク2の組成が分析できる範囲を指す。ブランク2の長手方向の組成変化を確認するには、ブランク2の長手方向の各金属元素の含有量の分布をEPMA分析によって測定して確認する。なお、図1C及び図1Dにおいては、ブランク2のEPMA分析において、正確な組成の測定ができない端部における測定値は記載を省略する。また、図2においては、Cr及びVの分布の記載を省略する。 In addition, in this embodiment, although the edge part A and the edge part B point out the edge part of the blank 2, it specifically points out the range which can analyze the composition of the blank 2 by EPMA analysis. In order to confirm the composition change in the longitudinal direction of the blank 2, the distribution of the content of each metal element in the longitudinal direction of the blank 2 is measured and confirmed by EPMA analysis. In FIG. 1C and FIG. 1D, in the EPMA analysis of the blank 2, the measurement values at the ends where accurate composition measurement is not possible are omitted. In FIG. 2, the description of the distribution of Cr and V is omitted.
 中央部A1におけるCrの含有量を示すCrが0.05~2質量%であり、中央部B1におけるCrの含有量を示すCrが0.1~3質量%であり、中央部A1におけるVの含有量を示すVが0~1質量%であり、中央部B1におけるVの含有量を示すVが0.05~2質量%である場合には、ブランク2の耐食性、耐熱性及び強度が高い。 Cr A indicating the content of Cr in the central part A1 is 0.05 to 2% by mass, Cr B indicating the content of Cr in the central part B1 is 0.1 to 3% by mass, and in the central part A1 When VA indicating the V content is 0 to 1% by mass and V B indicating the V content in the central portion B1 is 0.05 to 2% by mass, the corrosion resistance and heat resistance of the blank 2 And the strength is high.
 Crは、その少なくとも一部は結合相中に金属として固溶し、加えて、Cr又は他の金属との複合炭化物などとして存在する。Vは、その少なくとも一部は結合相中に金属として固溶し、加えて、VC又は他の金属との複合炭化物としても存在し得る。なお、Vは、Cr元素に比べて結合相中への固溶量が少ない。本実施形態において、Cr、CrはCr元素の含有量をCr換算した値とし、V、VはV元素の含有量をVC換算した値とする。 At least a part of Cr is dissolved as a metal in the binder phase, and in addition, it is present as a composite carbide with Cr 3 C 2 or other metals. V is at least partially dissolved as a metal in the binder phase, and may also be present as a composite carbide with VC or other metals. V has a smaller amount of solid solution in the binder phase than Cr element. In the present embodiment, Cr A and Cr B are values obtained by converting the Cr element content into Cr 3 C 2 , and V A and V B are values obtained by converting the V element content into VC.
 SCrが0~0.1質量%/mmであり、Sが0.1~0.5質量%/mmである場合には、ブランク2の耐食性、耐熱性、端部Aの側における耐摩耗性及び耐チッピング性、端部Bの側における耐折損性が高い。 When S Cr is 0 to 0.1% by mass / mm and SV is 0.1 to 0.5% by mass / mm, the blank 2 has corrosion resistance, heat resistance, and resistance at the end A side. High wear resistance and chipping resistance, and breakage resistance on the end B side.
 なお、Co、Co、Cr、Cr、V、Vの測定方法は、ブランク2を長手方向に沿って半分に分割にした状態で、EPMA分析によって中央部A1及び中央部B1における組成を測定することにより確認できる。ブランク2の端部Aから端部Bに亘る組成分析は、断面の長手方向に平行な中心軸上において測定する。ブランク2の長手方向のCrの含有量及びVの含有量の分布をEPMA分析によって測定し、ブランク2の全体の分布について最小二乗法で直線に近似した際の傾きをSCr、Sとして算出する。 Incidentally, Co A, Co B, Cr A, Cr B, V A, method of measuring V B is in a state of being split in half along the blank 2 in the longitudinal direction, the center portion A1 and the central portion B1 by EPMA analysis It can confirm by measuring the composition in. The composition analysis from the end A to the end B of the blank 2 is measured on a central axis parallel to the longitudinal direction of the cross section. Calculating a distribution of the content and the V content in the longitudinal direction of the Cr of the blank 2 was determined by EPMA analysis, the slope when approximated to a straight line by the least square method for the entire distribution of the blank 2 S Cr, as S V To do.
 ここで、長手方向に対して垂直な方向において、ブランク2の外周部におけるCrの含有量が、外周から100μm以上内部に位置する部分におけるCrの含有量に比べて多い場合には、ブランク2の耐食性がより向上する。なお、外周部におけるCrの含有量とは、外周におけるEPMA分析によってブランク2の組成が分析できる範囲でのCrの含有量を指す。また、本実施形態においては、ブランク2を長手方向に沿って分割した断面での端部Aの側の角部を外周部A2として、この外周部A2におけるCrの含有量をとして測定している。 Here, in the direction perpendicular to the longitudinal direction, when the Cr content in the outer peripheral portion of the blank 2 is larger than the Cr content in the portion located 100 μm or more from the outer periphery, Corrosion resistance is further improved. In addition, content of Cr in an outer peripheral part refers to content of Cr in the range which can analyze the composition of the blank 2 by EPMA analysis in an outer periphery. Moreover, in this embodiment, the corner | angular part by the side of the edge part A in the cross section which divided | segmented the blank 2 along the longitudinal direction was made into outer peripheral part A2, and it measured as content of Cr in this outer peripheral part A2. .
 中央部A1におけるWC粒子の平均粒径aが、中央部B1におけるWC粒子の平均粒径aよりも大きい場合には、硬度が高くて欠損が発生しやすい端部Aの耐摩耗性を改善することができる。また、端部Bの剛性が高められるので棒状体が撓みにくい。そのためブランク2を、端部Aの側に切刃5を有するとともに端部Bの側にシャンク3を有する切削工具とした際には、切刃5の耐摩耗性及び端部Aにおける耐チッピング性がより向上するとともに、端部Bにおける耐折損性が向上する。 The average particle size a A of WC particles in the central portion A1 is greater than the average particle size a B of the WC grains in the central portion B1 is deficient higher hardness is the wear resistance of the prone end A Can be improved. Further, since the rigidity of the end portion B is increased, the rod-shaped body is not easily bent. Therefore, when the blank 2 is a cutting tool having the cutting edge 5 on the end A side and the shank 3 on the end B side, the wear resistance of the cutting edge 5 and the chipping resistance at the end A are shown. Is further improved, and breakage resistance at the end B is improved.
 WC粒子の平均粒径は、SEM写真からルーゼックス解析法にて算出できる。また、WC粒子の平均粒径を確認する他の方法として、以下の方法を用いてもよい。まず、ブランク2の断面について、後方散乱電子回折像システム付きの走査電子顕微鏡による電子線後方散乱回折(EBSD)法にてWC粒子の配向方向を観察する。各WC粒子の配向方向を確認することによって、各WC粒子の輪郭を特定する。そして、各WC粒子の輪郭に基づいて各WC粒子の面積を算出し、この面積を円に換算したときの直径を粒径とする。そして、各WC粒子の粒径の平均値を平均粒径とする。 The average particle diameter of WC particles can be calculated from the SEM photograph by the Luzex analysis method. Moreover, you may use the following method as another method of confirming the average particle diameter of WC particle | grains. First, about the cross section of the blank 2, the orientation direction of WC particle | grains is observed with the electron beam backscattering diffraction (EBSD) method by a scanning electron microscope with a backscattering electron diffraction image system. The outline of each WC particle is specified by confirming the orientation direction of each WC particle. Then, the area of each WC particle is calculated based on the outline of each WC particle, and the diameter when this area is converted into a circle is taken as the particle diameter. And let the average value of the particle size of each WC particle be an average particle size.
 ここで、平均粒径aと平均粒径aとの比率(a/a)が、1.5~4である場合には、端部Aの側における耐摩耗性及び耐欠損性を適正化できるとともに、端部Bの側における耐折損性を高めることができる。 Here, when the ratio (a A / a B ) between the average particle diameter a A and the average particle diameter a B is 1.5 to 4, the wear resistance and fracture resistance on the end A side Can be optimized, and breakage resistance on the end B side can be improved.
 本実施形態において、端部A及び端部BにおけるWC粒子の平均粒径を測定する領域は、SEM分析によってブランク2の組織を観察したとき、ブランク2の第1端から第2端に向かう直線を引いて、直線が10個以上のWC粒子を横切る長さでの領域とする。また、第1端及び第2端からの領域は、それぞれ棒状体の幅を越えない長さの領域とする。 In this embodiment, the region for measuring the average particle diameter of the WC particles at the end A and the end B is a straight line from the first end to the second end of the blank 2 when the structure of the blank 2 is observed by SEM analysis. To obtain a region where the straight line crosses 10 or more WC particles. In addition, the regions from the first end and the second end are regions that do not exceed the width of the rod-shaped body.
 また、長手方向に対して垂直な方向において、中央部A1におけるWC粒子の平均粒径aが、端部Aの幅方向の外周部A2におけるWC粒子の平均粒径aAOよりも大きい場合には、外周部A2における耐欠損性が向上するとともに、中央部A1における剛性が向上する。 Further, in the direction perpendicular to the longitudinal direction, when the average particle size a A of WC particles in the central portion A1 is greater than the average particle diameter a AO of WC particles in the outer peripheral portion A2 of the width direction of the end portion A The fracture resistance at the outer peripheral portion A2 is improved, and the rigidity at the central portion A1 is improved.
 なお、外周部A2とは、ブランク2の端部Aにおける外周表面からの幅方向の長さの10%の厚み領域を指し、中央部A1とは、ブランク2の端部Aの幅方向における中心を含み、ブランク2の端部Aにおける幅の10%の厚み領域を指す。また、本実施形態においては、ブランク2を長手方向に半割した断面での端部Aの側の角部である、外周部A2におけるWC粒子の平均粒径をaAOと定義する。 In addition, outer peripheral part A2 points out the thickness area | region of 10% of the length of the width direction from the outer peripheral surface in the edge part A of the blank 2, and center part A1 is the center in the width direction of the edge part A of the blank 2 And a thickness region of 10% of the width at the end A of the blank 2 is indicated. Moreover, in this embodiment, the average particle diameter of WC particle | grains in the outer peripheral part A2 which is a corner | angular part by the side of the edge part A in the cross section which divided the blank 2 in the longitudinal direction is defined as aAO .
 また、平均粒径aが0.3~1.5μmであり、平均粒径aが0.1~0.9μmである場合には、端部Aの耐チッピング性がより向上するとともに、端部Bの耐折損性がより向上する。ブランク2がドリル1に用いられる場合、平均粒径aの望ましい範囲は0.4~0.7μmであり、平均粒径aの望ましい範囲は0.15~0.5μmである。 Further, when the average particle diameter a A is 0.3 to 1.5 μm and the average particle diameter a B is 0.1 to 0.9 μm, the chipping resistance of the end A is further improved, The breakage resistance of the end B is further improved. If the blank 2 is used to drill 1, the desirable range of the average particle size a A is 0.4 ~ 0.7 [mu] m, preferably in the range of the average particle size a B is 0.15 ~ 0.5 [mu] m.
 ブランク2は、中央部A1から中央部B1へ向かうにしたがってCoの含有量が傾斜S1Coで変化する第1領域11と、第1領域11よりも端部Bの側に位置しており、中央部A1から中央部B1へ向かうにしたがってCoの含有量が傾斜S2Coで変化する第2領域12とを有していてもよい。このとき、傾斜S1Coが傾斜S2Coよりも大きい場合には、端部Aの側における耐摩耗性を高く維持したまま、端部Bの側の広範囲における靭性を高めることができてブランク2の耐折損性を高めることができる。 Blank 2 is located in the 1st field 11 where content of Co changes with inclination S1Co as it goes to center part B1 from central part A1, and the end B side rather than the 1st field 11, You may have 2nd area | region 12 from which content of Co changes by inclination S2Co as it goes to the center part B1 from part A1. At this time, when the slope S 1 Co is larger than the slope S 2 Co, the toughness in the wide area on the end B side can be increased while maintaining the wear resistance on the end A side high, and the blank 2 Breakage resistance can be improved.
 第1領域11においては、Crの含有量が傾斜S1Crで変化していてもよく、また、Vの含有量が傾斜S1Vで変化していてもよい。加えて、第2領域12においては、Crの含有量が傾斜S2Crで変化していてもよく、また、Vの含有量が傾斜S2Vで変化していてもよい。 In the first region 11, the Cr content may change with the slope S 1Cr , and the V content may change with the slope S 1V . In addition, in the second region 12, the Cr content may change with the slope S 2Cr , and the V content may change with the slope S 2V .
 第1領域11及び第2領域12の存在は、ブランク2の長手方向でのCoの含有量の分布によって確認できる。そして、第1領域11及び第2領域12におけるCrの含有量、Vの含有量を測定し、各領域における分布を最小二乗法で近似した際の傾きを、S1Co、S1Cr、S1V、S2Co、S2Cr、S2Vとして算出する。なお、傾きは、中央部A1から中央部B1に向かって低くなる向きをプラスとし、中央部A1から中央部B1に向かって高くなる向きをマイナスとする。 The presence of the first region 11 and the second region 12 can be confirmed by the distribution of Co content in the longitudinal direction of the blank 2. Then, the Cr content and the V content in the first region 11 and the second region 12 are measured, and the slopes when the distribution in each region is approximated by the least square method are expressed as S 1Co , S 1Cr , S 1V , S 2Co, S 2Cr, calculated as S 2V. In addition, the direction where inclination becomes low toward center part B1 from center part A1 is made into plus, and the direction which becomes high toward center part B1 from center part A1 is made into minus.
 傾斜S1Coが0.2~1質量%/mmであり、傾斜S2Coが0~0.2質量%/mmである場合には、端部Aの側における硬度を向上できるとともに、ブランク2の耐折損性を高めることができる。なお、第1領域11における傾斜S1Coは領域内で一定でなくてもよい。特に、第1領域11の中でも、端部Aに位置する第1端に近付くにしたがって傾斜S1Coが大きくなる場合には、第1端における耐摩耗性が高く、かつブランク2の耐折損性がより高くなる。 When the slope S 1Co is 0.2 to 1% by mass / mm and the slope S 2Co is 0 to 0.2% by mass / mm, the hardness on the end A side can be improved and the blank 2 Breakage resistance can be improved. Note that the slope S 1Co in the first region 11 may not be constant within the region. In particular, in the first region 11, when the slope S 1Co increases as it approaches the first end located at the end A, the wear resistance at the first end is high, and the break resistance of the blank 2 is high. Get higher.
 なお、ブランク2の表面にダイヤモンド被覆層(図示せず)を被覆する際に、第2領域12に含有されるCoの含有量が少ない場合には、ダイヤモンド結晶の成長を妨げるCoの含有量が少ないため、第2領域12においてはダイヤモンド被覆層の結晶化度が高くなるので、ダイヤモンド被覆層の硬度及び密着性が向上する。 When the surface of the blank 2 is coated with a diamond coating layer (not shown), if the Co content contained in the second region 12 is small, the Co content that hinders the growth of the diamond crystal is low. Since there are few, the crystallinity degree of a diamond coating layer becomes high in the 2nd area | region 12, Therefore The hardness and adhesiveness of a diamond coating layer improve.
 また、第2領域12と第1領域11との間に、中央部A1から中央部B1へ向かうにしたがってCoの含有量が傾斜S3Coで変化する第3領域13を有していてもよい。このとき、傾斜S3Coの傾斜が傾斜S2Coよりも大きい場合には、第1領域11及び第2領域12の傾斜S1Co、S2Coを制御することが容易であり、折損が発生しやすい端部Bの側における耐折損性をさらに高めることができる。傾斜S3Coが2~50質量%/mmであれば、端部Aの側の耐摩耗性と端部Bの側の耐折損性をともに高めることができる。 Moreover, you may have the 3rd area | region 13 where content of Co changes with inclination S3Co as it goes to center part B1 from the center part A1 between the 2nd area | region 12 and the 1st area | region 11. At this time, when the inclination of the inclined S 3Co is greater than the slope S 2Co is inclined S 1co of the first region 11 and the second region 12, it is easy to control the S 2Co, breakage prone end The breakage resistance on the part B side can be further increased. When the slope S 3 Co is 2 to 50 mass% / mm, both the wear resistance on the end A side and the break resistance on the end B side can be improved.
 図1Dには、Co元素の含有量の変化に対応するようにV元素の含有量が変化している様子が示されている。つまり、図1Dにおいては、第1領域11におけるV元素の傾斜S1Vが、第2領域12におけるV元素の傾斜S2Vよりも大きくなっている。また、第3領域13におけるV元素の傾斜S3Vが、第1領域11におけるV元素の傾斜S1Vよりも大きくなっている。 FIG. 1D shows a change in the content of the V element so as to correspond to the change in the content of the Co element. That is, in FIG. 1D, the slope S 1V of the V element in the first region 11 is larger than the slope S 2V of the V element in the second region 12. Further, the slope S 3V of the V element in the third region 13 is larger than the slope S 1V of the V element in the first region 11.
 一方、図1Cにおいて、Cr元素の含有量の変化は、Co元素の含有量の変化に対応しておらず、理由は不明であるが、隣接する位置におけるCrの含有量の値が大きくばらついている一方で、全体としては小さな傾斜の変化となっている。 On the other hand, in FIG. 1C, the change in the content of Cr element does not correspond to the change in the content of Co element, and the reason is unknown, but the value of Cr content at adjacent positions varies greatly. On the other hand, the overall change is small.
 さらに、図2に示すように、第1領域11よりも第1端の側に、Coの含有量が傾斜S4Coで変化する第4領域14を有していてもよい。このとき、傾斜S4Coの傾斜が傾斜S1Coの傾斜よりも小さい場合には、端部Aの側における耐摩耗性の高い範囲を広くすることができることがある。 Furthermore, as shown in FIG. 2, on the side of the first end than the first region 11 may have a fourth region 14 in which the content of Co is changed in tilt S 4CO. At this time, when the inclination of the inclined S 4CO is smaller than the inclination of the inclined S 1co it may be able to increase the range of high wear resistance in the side of the end portion A.
 また、傾斜S4Coが0~0.5質量%/mmであるとともに、第4領域14におけるCoの含有量が0~0.6質量%である場合には、ブランク2の表面にダイヤモンド被覆層をコーティングする際に、第4領域14に含有されるCoの含有量が少なくなるため、第4領域14の表面においてダイヤモンド被覆層の結晶化度をさらに高めることができる。そのため、ダイヤモンド被覆層の硬度及び密着性が向上する。第1領域11と第4領域14との境界には、Coの含有量の分布における屈曲点が存在してもよい。 Further, when the gradient S 4 Co is 0 to 0.5 mass% / mm and the Co content in the fourth region 14 is 0 to 0.6 mass%, the diamond coating layer is formed on the surface of the blank 2. When coating is performed, the content of Co contained in the fourth region 14 is reduced, so that the crystallinity of the diamond coating layer on the surface of the fourth region 14 can be further increased. Therefore, the hardness and adhesion of the diamond coating layer are improved. An inflection point in the distribution of Co content may exist at the boundary between the first region 11 and the fourth region 14.
 第1領域11の長さをL1、第2領域12の長さをL2、第3領域13の長さをL3、第4領域14の長さをL4としたとき、L1/L2=0.3~3である場合には、端部Aにおける硬度を向上できるとともに、ブランク2の耐折損性を高めることができる。L3/L2=0.01~0.1である場合には、第2領域12及び第1領域11におけるCoの含有量の調整が容易である。L4/L2=が0~0.05である場合には、端部Aにおける超硬合金の緻密化をより安定して促進できる。L4/L2=が0.05より大きく、かつ第4領域14に緻密化されていない部分が存在する場合には、ドリル1を作製する際に、第4領域14の一部を研磨除去してもよい。 When the length of the first region 11 is L1, the length of the second region 12 is L2, the length of the third region 13 is L3, and the length of the fourth region 14 is L4, L1 / L2 = 0.3. In the case of ˜3, the hardness at the end A can be improved and the breakage resistance of the blank 2 can be increased. When L3 / L2 = 0.01 to 0.1, the adjustment of the Co content in the second region 12 and the first region 11 is easy. When L4 / L2 = is 0 to 0.05, densification of the cemented carbide at the end A can be more stably promoted. When L4 / L2 = is larger than 0.05 and there is a portion that is not densified in the fourth region 14, a part of the fourth region 14 is polished and removed when the drill 1 is manufactured. Also good.
 なお、第1領域11、第2領域12、第3領域13及び第4領域14の組成は、それぞれブランク2の幅方向の中央部において測定すればよい。 In addition, what is necessary is just to measure the composition of the 1st area | region 11, the 2nd area | region 12, the 3rd area | region 13, and the 4th area | region 14 in the center part of the width direction of the blank 2, respectively.
 端部Aの外周部におけるCoの含有量CoAOが、端部Aの中央部におけるCoの含有量Coよりも少ない場合には、ドリルやエンドミル等の回転工具において、切刃5のうちで最も摩耗しやすい外周部における耐摩耗性を高めることができる。 Content Co AO of Co in the outer peripheral portion of the end portion A, if less than the content Co A of Co at the center of the end portion A, in the rotary tool drill or end mill, among the cutting edge 5 Abrasion resistance in the outer peripheral portion that is most easily worn can be increased.
 図1、2においては、ブランク2は、端部Aよりも長手方向の外側に位置する突起部15を有している。突起部15は、端部Aよりも直径が小さい形状である。すなわち、端部Aの直径dに対して、突起部15の直径dが小さい。突起部15は容易に形成できるとともに、突起部15に刃付け加工したドリル1の先端部を形成することもできるので、加工代の無駄が少ない。 In FIGS. 1 and 2, the blank 2 has a protruding portion 15 located on the outer side in the longitudinal direction from the end portion A. The protrusion 15 has a shape with a diameter smaller than that of the end A. That is, the diameter d A of the end portion A, the diameter d c of the projecting portion 15 is small. The protrusion 15 can be easily formed, and the tip of the drill 1 that has been bladed can be formed on the protrusion 15, so that the processing cost is not wasted.
 図1、2に示すように、突起部15が半球状である場合には、ブランク2をランダムに接合装置内に投入する際にブランク2同士が衝突しても、突起部15が欠けることが抑制され、また、突起部15によって他のブランク2が傷つけられることも抑制できる。また、本実施形態では、突起部15は端部Aにつながる根元側が、断面視においてR面でつながっている。これによって、成形体35の成形時に下パンチ23の端部に荷重が集中して、下パンチ23が欠けてしまうことが抑制される。 As shown in FIGS. 1 and 2, when the projection 15 is hemispherical, the projection 15 may be lost even if the blanks 2 collide with each other when the blank 2 is randomly inserted into the bonding apparatus. It is suppressed, and it can also be controlled that other blank 2 is damaged by projection part 15. Moreover, in this embodiment, the base part side which the projection part 15 connects to the edge part A is connected by the R surface in the cross sectional view. Accordingly, it is possible to suppress the load from being concentrated on the end portion of the lower punch 23 during the molding of the molded body 35 and the lower punch 23 from being chipped.
 ここで、ブランク2の端部Aの直径d及びブランク2のB部の直径dがともに2mm以下で、長手方向の長さをLとしたとき、dに対するLの比率(L/d)が3以上である場合には、焼成後のブランク2において、Co及びCoを所定の値に調整することが容易である。すなわち、比率(L/d)が大きい値である場合には、焼成中にCoが拡散したとしても、ブランク2中のCoとCoの差を十分に確保し易い。比率(L/d)のより望ましい範囲としては、4~10である。 Here, the diameter d B of the B portion of the diameter d A and a blank 2 of the end A of the blank 2 are both 2mm or less, when the longitudinal length is L, the ratio of L to d A (L / d When A ) is 3 or more, it is easy to adjust Co A and Co B to predetermined values in the blank 2 after firing. That is, when the ratio (L / d A ) is a large value, even if Co diffuses during firing, it is easy to ensure a sufficient difference between Co A and Co B in the blank 2. A more desirable range of the ratio (L / d A ) is 4 to 10.
 ブランク2は焼成後に研磨しない状態であってもよいが、ブランク2をシャンク3に接合する工程において、ブランク2を把持する際にブランク2の位置精度を高めるために、焼成後のブランク2の外周面をセンタレス加工するものであってもよい。 The blank 2 may be in a state where it is not polished after firing, but in order to increase the positional accuracy of the blank 2 when gripping the blank 2 in the step of joining the blank 2 to the shank 3, the outer periphery of the blank 2 after firing The surface may be centerless processed.
 なお、ブランク2の好適な寸法は、プリント基板加工用のドリルとして用いる場合には、d、dが0.2~2mm、長さLが3~20mmである。dの特に望ましい範囲は0.3~1.7mmである。他の用途においては、dは2mmを越える場合もあり、このような場合におけるdの望ましい範囲は、0.2~20mmであり、L=3~50mmである。 Note that preferable dimensions of the blank 2 are d A and d B of 0.2 to 2 mm and a length L of 3 to 20 mm when used as a drill for processing a printed circuit board. A particularly desirable range for d A is 0.3 to 1.7 mm. In other applications, d A may exceed 2 mm, in which case the preferred range for d A is 0.2-20 mm and L = 3-50 mm.
 本実施形態においては、切削工具としてプリント基板の孔開け加工に用いられるドリル1が例示されているが、本発明はこれに限定されるものではなく、長尺状の本体部を有するものであればよい。例えば、金属加工用ドリルや医療用ドリル、エンドミル、内径加工用のスローアウェイチップ等の旋削加工用の切削工具として適用可能である。また、ブランク2等の棒状体は、切削工具以外でも、耐摩材、摺動部材として用いることができる。棒状体は、切削工具以外として用いる場合でも、所定の形状に加工され、端部Bが固定された状態で、端部Aを含む領域が相手材と接触して使用される用途に好適に用いられる。 In this embodiment, the drill 1 used for drilling a printed circuit board is illustrated as a cutting tool. However, the present invention is not limited to this, and the drill 1 may have a long main body. That's fine. For example, the present invention can be applied as a cutting tool for turning such as a drill for metal processing, a medical drill, an end mill, and a throw-away tip for inner diameter processing. Further, the rod-like body such as the blank 2 can be used as an anti-wear material and a sliding member other than the cutting tool. Even when the rod-like body is used as a tool other than a cutting tool, the rod-like body is suitably used for an application in which the region including the end A is used in contact with the mating member in a state where the end B is fixed and processed. It is done.
 (ブランクの製造方法)
 上記ブランクを作製する方法の一例として、突起部15を有するブランク2を作製する方法について説明する。まず、ブランク2及び切削工具(ドリル1)をなす超硬合金を作製するためのWC粉末等の原料粉末を調合する。本実施形態においては、2種類の原料粉末を調合する。
(Blank manufacturing method)
As an example of a method for producing the blank, a method for producing the blank 2 having the protrusions 15 will be described. First, raw material powders, such as WC powder for producing the cemented carbide forming the blank 2 and the cutting tool (drill 1), are prepared. In this embodiment, two types of raw material powders are prepared.
 すなわち、ブランク2における突起部15が位置する端部Aを含む部位を作製するための第1原料粉末30と、ブランク2における端部Bの側を作製するための第2原料粉末33とを調合する。第1原料粉末30は、原料粉末としてWC粉末を含有している。第1原料粉末30は、原料粉末としてCo粉末を含有していてもよい。 That is, the 1st raw material powder 30 for producing the site | part containing the edge part A in which the projection part 15 in the blank 2 is located, and the 2nd raw material powder 33 for producing the edge part B side in the blank 2 are prepared. To do. The first raw material powder 30 contains WC powder as the raw material powder. The first raw material powder 30 may contain Co powder as the raw material powder.
 第2原料粉末33は、原料粉末としてWC粉末及びCo粉末を含有している。第1原料粉末30中のCo粉末の含有量は、第2原料粉末33中のCo粉末の含有量よりも少ない。第1原料粉末30中のCo粉末の含有量は、第2原料粉末33中のCo粉末の含有量に対する質量比率で、0~0.5、特に0~0.3である。 The second raw material powder 33 contains WC powder and Co powder as raw material powder. The content of Co powder in the first raw material powder 30 is less than the content of Co powder in the second raw material powder 33. The content of the Co powder in the first raw material powder 30 is 0 to 0.5, particularly 0 to 0.3, as a mass ratio with respect to the content of the Co powder in the second raw material powder 33.
 第1原料粉末30及び第2原料粉末33は、それぞれWC粉末以外にCr粉末、VC粉末、又はCo粉末を含有していてもよい。また、第1原料粉末30及び第2原料粉末33は、それぞれ上記の粉末以外に、WC、Cr、VC以外の周期表第4、5及び6族金属の炭化物、窒化物及び炭窒化物粉末のいずれかの添加物を含有していてもよい。 Each of the first raw material powder 30 and the second raw material powder 33 may contain Cr 3 C 2 powder, VC powder, or Co powder in addition to the WC powder. In addition to the above powders, the first raw material powder 30 and the second raw material powder 33 are carbides, nitrides, and carbonitrides of periodic tables 4, 5, and 6 metals other than WC, Cr 3 C 2 , and VC, respectively. Any additive of the product powder may be contained.
 例えば、第1原料粉末30中のWC粉末の調合量は90~100質量%であり、Co粉末の調合量は0~8質量%、添加物の調合量は総量で0~5質量%である。第2原料粉末33中のWC粉末の調合量は65~95質量%であり、Co粉末の調合量は5~30質量%であり、添加物の調合量は総量で0~10質量%である。また、第1原料粉末30中のWC粉末の平均粒径と、第2原料粉末33中のWC粉末の平均粒径とを異ならせることによって、焼成後のブランク2の端部Aから端部BにかけてのCo及び他の金属元素の分布状態、硬度や靭性等の特性を調整することもできる。 For example, the amount of WC powder in the first raw material powder 30 is 90 to 100% by mass, the amount of Co powder is 0 to 8% by mass, and the total amount of additives is 0 to 5% by mass. . The amount of WC powder in the second raw material powder 33 is 65 to 95% by mass, the amount of Co powder is 5 to 30% by mass, and the total amount of additives is 0 to 10% by mass. . Further, the average particle size of the WC powder in the first raw material powder 30 and the average particle size of the WC powder in the second raw material powder 33 are made different from each other, so that the end portion A to the end portion B of the blank 2 after firing. It is also possible to adjust the distribution state, hardness, toughness and other characteristics of Co and other metal elements.
 上記の調合された粉末にバインダ及び溶媒を添加することによってスラリーが作製される。このスラリーを造粒して顆粒とし、成形用粉末とする。 A slurry is prepared by adding a binder and a solvent to the above prepared powder. This slurry is granulated into granules and formed into molding powder.
 図3に示すように、プレス成形金型(以下、単に金型と略す。)20を準備し、金型20のダイス21のキャビティ22内に上記の顆粒を投入する。そして、ダイス21のキャビティ22内に投入された顆粒の上方から上パンチ24を下降させて加圧することにより成形体が作製される。本実施形態においては、キャビティ22の底部である下パンチ23のプレス面となる上面は、突起部15を形成するための凹部25を有する。 As shown in FIG. 3, a press mold (hereinafter simply referred to as a mold) 20 is prepared, and the above granules are put into a cavity 22 of a die 21 of the mold 20. Then, the upper punch 24 is lowered from above the granules put into the cavity 22 of the die 21 and pressed to produce a molded body. In the present embodiment, the upper surface serving as the pressing surface of the lower punch 23 that is the bottom of the cavity 22 has a recess 25 for forming the protrusion 15.
 本実施形態における成形方法は、キャビティ22内の凹部25を含む領域に第1原料粉末30を投入する工程と、キャビティ22に第2原料粉末33を投入する工程と、上方から上パンチ24を下降させてダイス21のキャビティ22内に投入された第1原料粉末30及び第2原料粉末33の積層体を加圧する工程と、この積層体からなる成形体35を金型20から取り出す工程とを具備する。 The molding method according to the present embodiment includes a step of putting the first raw material powder 30 into a region including the recess 25 in the cavity 22, a step of putting the second raw material powder 33 into the cavity 22, and lowering the upper punch 24 from above. A step of pressurizing the laminated body of the first raw material powder 30 and the second raw material powder 33 put into the cavity 22 of the die 21, and a step of taking out the molded body 35 made of this laminated body from the mold 20. To do.
 成形体35は円柱形状であり、突起部15及び端部AにおけるCoの含有量が、端部BにおけるCoの含有量よりも少ない。その結果、ブランク2において所定のCoの含有量の分布に調整しやすくなる。 The molded body 35 has a cylindrical shape, and the Co content in the protrusion 15 and the end A is smaller than the Co content in the end B. As a result, it becomes easy to adjust the distribution of the predetermined Co content in the blank 2.
 また、凹部25の底面が曲面である場合には、成形体35において、生突起部32の欠けを抑制できるとともに、焼成後のブランク2における突起部15内のCoの含有量のバラツキを抑制できるため、局所的に焼結不良となることが避けられ易い。なお、凹部25及び突起部15は省略してもよい。 Moreover, when the bottom face of the recessed part 25 is a curved surface, in the molded object 35, while the chip | tip of the raw projection part 32 can be suppressed, the variation in Co content in the projection part 15 in the blank 2 after baking can be suppressed. For this reason, local sintering defects are easily avoided. Note that the recess 25 and the protrusion 15 may be omitted.
 直径が2mm以下の焼結体を得る場合には、例えば、加圧時の上パンチ24の保持位置から上パンチ24の位置が0.1mm~2mm、成形体の長さに対して0.1%~20%の長さ分だけ下方に下降するように上パンチ24に追加荷重を加えるとともに下パンチ23の荷重を小さくしてもよい。成形条件が上記である場合には、成形体35に加わる圧力のムラが改善されるので、成形体35を抜き出す際に破損することが避けられ易く、成形体35を焼成した後のブランク2の形状を所定の形状とすることができる。 In the case of obtaining a sintered body having a diameter of 2 mm or less, for example, the position of the upper punch 24 from the holding position of the upper punch 24 at the time of pressurization is 0.1 mm to 2 mm, and 0.1 to the length of the molded body. An additional load may be applied to the upper punch 24 and the load on the lower punch 23 may be reduced so as to descend downward by a length of% to 20%. When the molding conditions are as described above, unevenness in pressure applied to the molded body 35 is improved, so that it is easy to avoid breakage when the molded body 35 is extracted, and the blank 2 after firing the molded body 35 is easy to avoid. The shape can be a predetermined shape.
 このとき、図3に示すように、成形体35の下パンチ23側の直径Dを上パンチ24側の直径Dよりも小さくしてもよい。本実施形態における比率D/Dの望ましい範囲は、0.8~0.99である。 At this time, as shown in FIG. 3, the diameter D A of the lower punch 23 side of the molded body 35 may be smaller than the diameter D B of the upper punch 24 side. A desirable range of the ratio D A / D B in the present embodiment is 0.8 to 0.99.
 また、特に図示しないが、例えば、第1原料粉末30と第2原料粉末33との間に、第1原料粉末30におけるCo粉末の含有量よりも少なく、かつ、第2原料粉末33におけるCo粉末の含有量よりも多いCo粉末の含有量を有する第3原料粉末など、他の原料粉末が存在していてもよい。 Although not particularly illustrated, for example, between the first raw material powder 30 and the second raw material powder 33, the Co powder content in the second raw material powder 33 is smaller than the Co powder content in the first raw material powder 30. Other raw material powders such as a third raw material powder having a Co powder content higher than the content of Co may be present.
 加圧成形された成形体は、金型から取り出され、1300~1500℃で0.5~2時間焼成された後、シンターHIP処理されることによってブランク2となる。焼成温度は、Coの含有量やWC粒子の平均粒径によって調整される。このとき、本実施形態では、焼成時の1000℃から焼成温度までの昇温速度を4~7℃/分、焼成温度における減圧圧力を50~200Paとする。そして、シンターHIPは、焼結温度よりも5~20℃低い温度で、5~10MPaの圧力で処理する。これによって、端部A及び端部BのCoの含有量を容易に調整することができる。 The molded body that has been pressure-molded is taken out of the mold, fired at 1300-1500 ° C. for 0.5-2 hours, and then subjected to sinter HIP treatment to become blank 2. The firing temperature is adjusted by the Co content and the average particle size of the WC particles. At this time, in this embodiment, the rate of temperature increase from 1000 ° C. during firing to the firing temperature is 4 to 7 ° C./min, and the reduced pressure at the firing temperature is 50 to 200 Pa. The sinter HIP is processed at a pressure 5 to 10 MPa at a temperature 5 to 20 ° C. lower than the sintering temperature. Thereby, the content of Co in the end A and the end B can be easily adjusted.
 また、第1原料粉末30及び第2原料粉末33の焼結性が異なるために、焼成中、端部A及び端部Bの収縮率が異なって成形体が変形し、端部Bの収縮率が端部Aの収縮率よりも大きくなる。すなわち、焼成によって、端部BのCoの一部が、端部Aに向かって拡散するために、端部Bは端部Aよりも収縮する。これによって、焼結体の形状は端部Bの直径が端部Aの直径よりも小さくなる傾向にある。 Moreover, since the sinterability of the first raw material powder 30 and the second raw material powder 33 is different, the shrinkage rate of the end A and the end B is different during firing, and the molded body is deformed, and the shrinkage rate of the end B Becomes larger than the contraction rate of the end portion A. That is, a part of Co at the end portion B diffuses toward the end portion A by firing, so that the end portion B contracts more than the end portion A. Accordingly, the diameter of the end portion B tends to be smaller than the diameter of the end portion A in the shape of the sintered body.
 ここで、昇温速度が4℃/分より速い場合には、焼成中にCoの拡散が進行し過ぎることが避けられるため、焼結後のブランク2におけるCo濃度の差を大きくでき、かつ中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。また、場合によっては、中央部A1の平均粒径を中央部B1の平均粒径よりも大きくし易い。昇温速度が7℃/分より遅い場合には、ブランク2を良好に収縮させることができ、中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。また、場合によっては、端部AにおいてWCを緻密化させ易くなる。 Here, when the heating rate is faster than 4 ° C./min, it is possible to avoid excessive diffusion of Co during firing, so that the difference in Co concentration in the blank 2 after sintering can be increased, and the center It is easy to make the average KAM value of the part A1 smaller than the average KAM value of the central part B1. Moreover, depending on the case, it is easy to make the average particle diameter of center part A1 larger than the average particle diameter of center part B1. When the rate of temperature increase is slower than 7 ° C./min, the blank 2 can be satisfactorily contracted, and the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1. In some cases, the WC can be easily densified at the end A.
 また、焼成温度における減圧圧力が50Pa以上の場合には、焼成中にCoの拡散が進行し過ぎることが避けられるため、焼結後のブランク2におけるCo濃度の差を大きくでき、かつ、中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。また、減圧圧力が200Pa以下の場合には、ブランク2を良好に収縮させることができ、中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。そのため、端部AにおいてWCを緻密化させ易くなる。 In addition, when the decompression pressure at the firing temperature is 50 Pa or more, it is possible to avoid excessive diffusion of Co during firing, so that the difference in Co concentration in the blank 2 after sintering can be increased, and the central portion It is easy to make the average KAM value of A1 smaller than the average KAM value of the central portion B1. Further, when the reduced pressure is 200 Pa or less, the blank 2 can be satisfactorily contracted, and the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1. Therefore, it becomes easy to densify the WC at the end A.
 さらに、シンターHIPの処理温度と焼結温度との差が5℃より大きい場合には、中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。また、場合によっては、中央部A1の平均粒径を中央部B1の平均粒径よりも大きくし易い。シンターHIPの処理温度と焼結温度との差が20℃以下の場合には、ブランク2を良好に収縮させることができ、中央部A1の平均KAM値を中央部B1の平均KAM値よりも小さくし易い。そのため、端部AにおいてWCを緻密化させ易くなる。 Furthermore, when the difference between the processing temperature and sintering temperature of the sinter HIP is larger than 5 ° C., the average KAM value of the central portion A1 can be easily made smaller than the average KAM value of the central portion B1. Moreover, depending on the case, it is easy to make the average particle diameter of center part A1 larger than the average particle diameter of center part B1. When the difference between the sintering HIP processing temperature and the sintering temperature is 20 ° C. or less, the blank 2 can be satisfactorily shrunk, and the average KAM value of the central part A1 is smaller than the average KAM value of the central part B1. Easy to do. Therefore, it becomes easy to densify the WC at the end A.
 なお、本発明における成形工程は上記実施形態に示したプレス成形に限定されるものではなく、冷間静水圧プレス、ドライバッグ成形、射出成形等によって成形することもできる。 Note that the molding step in the present invention is not limited to the press molding shown in the above embodiment, but can be molded by cold isostatic pressing, dry bagging, injection molding, or the like.
 (切削工具の製造方法)
 上記工程によって得られたブランク2を用いて、プリント基板加工用のドリル1を作製する方法の一例について説明する。数十本又は数百本のブランク2が、ランダムに接合装置内に投入される。ブランク2は、接合装置内で長手方向が揃えられた状態で整列される。突起部15を有する場合には、突起部15を画像データ等にて確認し、ブランク2の端部Aと端部Bとを特定する。この特定に基づいて、自動的に、端部Aと端部Bとを一定の方向に並べることができる。
(Manufacturing method of cutting tool)
An example of a method for producing a drill 1 for processing a printed circuit board using the blank 2 obtained by the above process will be described. Dozens or hundreds of blanks 2 are randomly placed in the bonding apparatus. The blank 2 is aligned in a state where the longitudinal direction is aligned in the bonding apparatus. When the protrusion 15 is provided, the protrusion 15 is confirmed by image data or the like, and the end A and the end B of the blank 2 are specified. Based on this specification, the end A and the end B can be automatically arranged in a certain direction.
 そして、並べられたブランク2は、自動的に、別途準備されたシャンク3及び首部7によって構成される部材に当接された後、レーザ等で接合される。その後、接合されたブランク2に刃付け加工が施される。このとき、ドリル1の構成は、図1に示すように、端部Xがドリル1の切刃5側で、端部Yがドリル1のシャンク3側となる。 Then, the arranged blanks 2 are automatically brought into contact with a member constituted by a shank 3 and a neck portion 7 which are separately prepared, and then joined by a laser or the like. Thereafter, blade joining is performed on the joined blank 2. At this time, as shown in FIG. 1, the drill 1 is configured such that the end X is on the cutting blade 5 side of the drill 1 and the end Y is on the shank 3 side of the drill 1.
 (切削工具)
 上記ブランク2の刃付け加工によって、ドリル1等の切削工具が作製される。図4のドリル1は、刃付け加工されたブランク(加工部)と、加工部に接合された首部7と、首部7の後端側(図4における上側)に位置するシャンク3とによって構成されている。加工部は、端部Xに位置する切刃5と、切刃5に続く溝6とを有している。加工部及び首部7によってボディ8が構成されている。そのため、シャンク3は、ボディ8の後端側に位置しているともいえる。
(Cutting tools)
A cutting tool such as a drill 1 is produced by cutting the blank 2. The drill 1 in FIG. 4 is configured by a blank (machined part) that has been subjected to blade processing, a neck part 7 joined to the machined part, and a shank 3 positioned on the rear end side (upper side in FIG. 4) of the neck part 7. ing. The processed part has a cutting edge 5 located at the end X and a groove 6 following the cutting edge 5. A body 8 is constituted by the processed portion and the neck portion 7. Therefore, it can be said that the shank 3 is located on the rear end side of the body 8.
 切刃5は、中心軸を有して回転しながら被削材に最初に接触する部分であり、高い耐チッピング性と耐摩耗性が要求される。溝6は加工によって発生する切屑を後方へ排出する機能を持ち、首部7は、互いに直径の異なる加工部及びシャンク3を接続するつなぎの部分である。加工部の最大直径は、例えば2mm以下に設定される。シャンク3は、ドリル1を加工機に固定する部分として利用可能である。 The cutting blade 5 is a portion that first contacts the work material while rotating around the central axis, and is required to have high chipping resistance and wear resistance. The groove 6 has a function of discharging chips generated by processing backward, and the neck portion 7 is a connecting portion that connects the processing portion and the shank 3 having different diameters. The maximum diameter of the processed part is set to 2 mm or less, for example. The shank 3 can be used as a part for fixing the drill 1 to the processing machine.
 特に図示しないが、ドリル1の表面には被覆層が位置していてもよい。被覆層としては、例えば、PVD法で成膜されたTiN、TiCN、TiAlN、ダイヤモンド、ダイヤモンドライクカーボン、及び、CVD法で成膜されたダイヤモンド等が挙げられる。 Although not particularly illustrated, a coating layer may be located on the surface of the drill 1. Examples of the coating layer include TiN, TiCN, TiAlN, diamond, diamond-like carbon, and diamond formed by the CVD method, which are formed by the PVD method.
 ドリル1は、首部7及びシャンク3が鋼、合金鋼又はステンレス鋼等の安価な材質で構成され、ブランク2が首部7の先端に接合された構造であってもよい。また、ドリル1の全体がブランク2によって構成されていてもよい。また、首部7は必須ではなく、ドリル1は、ブランク2とシャンク3とが直接に接合された構成であってもよい。 The drill 1 may have a structure in which the neck 7 and the shank 3 are made of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 is joined to the tip of the neck 7. Further, the entire drill 1 may be constituted by the blank 2. Moreover, the neck 7 is not essential, and the drill 1 may have a configuration in which the blank 2 and the shank 3 are directly joined.
 金属コバルト(Co)粉末と、炭化クロム(Cr)粉末と、炭化バナジウム(VC)粉末と、残部が平均粒径0.3μmの炭化タングステン(WC)粉末を表1に示す割合で、表1に示す第1原料粉末及び第2原料粉末の2種類の混合粉末を調合した。各混合粉末に対して、バインダや溶媒を添加、混合して、スラリーを作製し、スプレードライヤにて平均粒径70μmの顆粒を作製した。 Metal cobalt (Co) powder, chromium carbide (Cr 3 C 2 ) powder, vanadium carbide (VC) powder, and the balance of tungsten carbide (WC) powder having an average particle size of 0.3 μm as shown in Table 1, Two kinds of mixed powders of the first raw material powder and the second raw material powder shown in Table 1 were prepared. To each mixed powder, a binder and a solvent were added and mixed to prepare a slurry, and granules having an average particle diameter of 70 μm were prepared with a spray dryer.
 貫通孔を144個有するダイスを備えた図3に示す金型を準備した。表1の第1原料粉末を投入し、続いて、表1の第2原料粉末を充填してプレス成形を行なった。第1原料粉末及び第2原料粉末が積層された成形体をプレス成形によって成形し、金型から取り出した。このとき、下パンチ側の直径をD、上パンチ側の直径をD、成形体下部の長さをH、成形体上部の長さをHとして、成形体の形状が表1に示される。 A mold shown in FIG. 3 provided with a die having 144 through holes was prepared. The first raw material powder of Table 1 was charged, and then the second raw material powder of Table 1 was filled and press-molded. A molded body in which the first raw material powder and the second raw material powder were laminated was molded by press molding and taken out of the mold. At this time, the diameter of the lower punch side is D A , the diameter of the upper punch side is D B , the length of the lower part of the molded body is H A , and the length of the upper part of the molded body is H B. Indicated.
 成形体を、1000℃から表2に示す昇温速度で昇温し、表2に示す雰囲気及び焼成温度で1時間焼成した後、表2に示すシンターHIP(表2においてHIPと記載)温度に変えて、5MPaの圧力で30分間シンターHIP処理をすることによりブランクを得た。 The molded body was heated from 1000 ° C. at the rate of temperature increase shown in Table 2 and fired for 1 hour in the atmosphere and firing temperature shown in Table 2. Then, the sintered HIP (shown as HIP in Table 2) temperature shown in Table 2 was obtained. It changed and the blank was obtained by performing the sinter HIP process for 30 minutes at the pressure of 5 MPa.
 得られたブランクについて、端部A、端部Bの直径(d、d)を測定して表2に記載した。また、ブランクを長手方向に沿って半分に分割にして、端部Aから端部BまでのCoの含有量、Crの含有量、Vの含有量の変化をEPMA分析にて測定し、第1領域から第4領域の有無、傾斜、長さを確認した。さらに、ブランクの端部Aについては、外周部におけるCoの含有量を測定した。結果は表2~5に示した。また、EBSD法によって、中央部A1、外周部A2、中央部B1におけるWC粒子の平均粒径を測定した。 The obtained blank shown in Table 2 was measured end A, the diameter of the end portion B (d A, d B) a. Further, the blank was divided in half along the longitudinal direction, and changes in Co content, Cr content, and V content from end A to end B were measured by EPMA analysis. The presence, inclination, and length of the fourth region were confirmed from the region. Furthermore, about the edge part A of a blank, content of Co in an outer peripheral part was measured. The results are shown in Tables 2-5. Moreover, the average particle diameter of the WC particle | grains in center part A1, outer peripheral part A2, and center part B1 was measured by EBSD method.
 EBSD法によるKAMの測定は次のように実施した。まず、ブランクの長手方向の断面について、コロイダルシリカを用いてバフ研磨した後、オックスフォード社製EBSD(型番JSM7000F)を用いて、測定領域を四角形の領域(ピクセル)に区切った。区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得てピクセルの方位を測定した。測定した方位データをJSM7000Fの解析ソフトを用いて解析し、各種パラメータを算出した。 The measurement of KAM by the EBSD method was performed as follows. First, the cross section in the longitudinal direction of the blank was buffed using colloidal silica, and then the measurement area was divided into square areas (pixels) using EBSD (model number JSM7000F) manufactured by Oxford. For each divided area, the Kikuchi pattern was obtained from the reflected electrons of the electron beam incident on the sample surface, and the orientation of the pixel was measured. The measured azimuth data was analyzed using JSM7000F analysis software, and various parameters were calculated.
 観察条件は、加速電圧15kV、測定面積はブランクの表面において、幅60μm×深さ5μmとし、隣接するピクセル間の距離(ステップサイズ)は0.1μmとした。隣接するピクセル間の方位差が5°以上となる場合を結晶粒界とみなした。KAMは結晶粒内のあるピクセルと、結晶粒界を超えない範囲に存在する隣接ピクセルとの方位差の平均値を計算し、測定全面積を構成する全ピクセルにおける平均値として平均KAM値を測定した。なお、上記平均KAM値の測定は、任意の3視野について測定し、その平均値で評価した。結果は表5に示した。 Observation conditions were an acceleration voltage of 15 kV, a measurement area of 60 μm width × 5 μm depth on the blank surface, and a distance (step size) between adjacent pixels of 0.1 μm. A case where the orientation difference between adjacent pixels was 5 ° or more was regarded as a crystal grain boundary. KAM calculates the average value of misorientation between a certain pixel in the crystal grain and the adjacent pixel existing in the range not exceeding the crystal grain boundary, and measures the average KAM value as the average value in all the pixels constituting the entire measurement area. did. In addition, the measurement of the said average KAM value was measured about arbitrary 3 visual fields, and it evaluated by the average value. The results are shown in Table 5.
 そして、このブランクの外周部をセンタレス加工した後、ランダムに接合装置内に投入し、接合装置内にてブランクの突起部の向きを認識して、各ブランクの端部A及び端部Bを同じ向きに整列させ、ブランクの端部Bをシャンクに当接させて接合し、ブランクの端部Aを含む部位に刃付け加工を施すことによって、ドリルを作製した。 And after centerless-processing the outer peripheral part of this blank, it throws in in a joining apparatus at random, recognizes the direction of the protrusion part of a blank in a joining apparatus, and the edge part A and edge part B of each blank are the same A drill was produced by aligning the ends, bringing the end B of the blank into contact with the shank, joining them, and applying a cutting process to the portion including the end A of the blank.
 得られたドリルについて、下記条件でドリル加工テストを行った。結果を表5に示す。
(ドリル加工テスト条件)
被削材 :FR4、0.8mm厚、3枚重ね
ドリル形状:φ0.25mm
回転数:160krpm
送り速度:3.2m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
About the obtained drill, the drilling test was done on the following conditions. The results are shown in Table 5.
(Drilling test conditions)
Work material: FR4, 0.8mm thickness, 3-ply drill shape: φ0.25mm
Rotation speed: 160krpm
Feed rate: 3.2 m / min Evaluation item: Number of drilled products (pieces) and drill flank wear width after testing (μm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5より、CoがCoと同じである試料No.I-14では逃げ面摩耗幅が大きく、試料No.I-15では焼結不足で1孔目で初期欠損した。また、中央部A1の平均KAM値(A)が中央部B1の平均KAM値(B)と同じであり、中央部A1におけるWC粒子の平均粒径aが、中央部B1におけるWC粒子の平均粒径aと同じである試料No.I-16~I-22では、耐チッピング性が低く、穴位置精度が低下して、加工個数が少なくなった。また、試料No.I-16~I-22では、中央部A1におけるWC粒子の平均粒径aが中央部B1におけるWC粒子の平均粒径aと同じであったため、逃げ面摩耗幅が大きく、加工個数も少ないものとなっていた。 From Tables 1 to 5, it can be seen from Sample No. 1 that Co A is the same as Co B. In I-14, the flank wear width was large. In I-15, initial chipping occurred in the first hole due to insufficient sintering. The average mean KAM value of the center portion A1 (A) is the same as the average KAM value of the center portion B1 (B), the average particle size a A of WC particles in the central portion A1 is, the WC grains in the central portion B1 Sample No. which is the same as the particle size a B In I-16 to I-22, the chipping resistance was low, the hole position accuracy was lowered, and the number of workpieces was reduced. Sample No. In I-16 to I-22, the average particle diameter a A of the WC particles in the central portion A1 is the same as the average particle diameter a B of the WC particles in the central portion B1, so the flank wear width is large and the number of processed parts is also large. There were few things.
 これに対して、CoがCoよりも少なく、中央部A1の平均KAM値が中央部B1の平均KAM値よりも小さい試料No.I-1~I-13及びI-23では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。中でも、中央部A1における平均KAM値が0.50~0.65°であり、中央部B1における平均KAM値が0.75~0.92°である試料No.I-1、I-2及びI-7~I-13では、さらに加工個数が多くなった。 On the other hand, sample No. No. Co A is smaller than Co B , and the average KAM value in the central part A1 is smaller than the average KAM value in the central part B1. In I-1 to I-13 and I-23, the flank wear width was small and the number of workpieces increased. Among them, sample No. 1 having an average KAM value in the central portion A1 of 0.50 to 0.65 ° and an average KAM value in the central portion B1 of 0.75 to 0.92 °. In I-1, I-2 and I-7 to I-13, the number of processed parts further increased.
 また、外周部A2におけるWC粒子の平均KAM値(AO)が、中央部A1におけるWC粒子の平均KAM値よりも小さい試料No.I-1~I-3、I-7~I-13では、加工個数が多かった。 Specimen No. in which the average KAM value (AO) of the WC particles in the outer peripheral part A2 is smaller than the average KAM value of the WC particles in the central part A1. In I-1 to I-3 and I-7 to I-13, the number of processed parts was large.
 また、比率(Co/Co)が0.2~0.7である試料No.I-1、I-2、I-7、I-8、I-10~I-13では、加工個数が多くなった。さらに、中央部A1における平均粒径aが、中央部B1における平均粒径aよりも大きい試料No.I-1~I-4、I-6~I-13及びI-23では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。いずれの試料も、平均粒径aが0.3~1.5μmであり、平均粒径aが0.1~0.9μmであった。特に、平均粒径aと平均粒径aとの比率(a/a)が1.5~4である試料No.I-1~I-3、I-7~I-13では、加工個数が多くなった。 In addition, the sample No. having a ratio (Co A / Co B ) of 0.2 to 0.7 was used. In I-1, I-2, I-7, I-8, and I-10 to I-13, the number of processed parts increased. Further, the average particle diameter of a A at the center portion A1 is greater than the average particle size a B at the central portion B1 Sample No. In I-1 to I-4, I-6 to I-13, and I-23, the flank wear width was small and the number of workpieces was large. All samples, an average particle diameter of a A is 0.3 ~ 1.5 [mu] m, an average particle diameter of a B was 0.1 ~ 0.9 .mu.m. In particular, sample Nos. 1 and 4 in which the ratio (a A / a B ) of the average particle size a A to the average particle size a B is 1.5 to 4. In I-1 to I-3 and I-7 to I-13, the number of processed parts increased.
 さらに、平均粒径aAOと平均粒径aと比率(aAO/a)が、1.1~2である試料No.I-1~I-4、I-7、I-9、I-11~I-13では、より、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。 Further, sample Nos. 1 and 2 in which the average particle size a AO , the average particle size a A, and the ratio (a AO / a A ) are 1.1 to 2. In I-1 to I-4, I-7, I-9, and I-11 to I-13, the flank wear width was smaller and the number of workpieces increased.
 さらに、試料No.I-1~I-12では、いずれも傾斜S2Coの第2領域と、傾斜S2Coよりも大きい傾斜S1Coの第1領域を有し、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。特に、傾斜S1Coが0.2~1質量%/mmであり、傾斜S2Coが0~0.2質量%/mmである試料No.I-1、I-2、I-6~I-12では、逃げ面摩耗幅が小さかった。 Furthermore, sample no. Each of I-1 to I-12 has a second region having a slope S 2Co and a first region having a slope S 1Co larger than the slope S 2Co , the flank wear width is small, and the number of processed parts is large. It was. In particular, Sample No. No. 2 having a gradient S 1Co of 0.2 to 1% by mass / mm and a gradient S 2Co of 0 to 0.2% by mass / mm. In I-1, I-2, and I-6 to I-12, the flank wear width was small.
 実施例1で用いた原料粉末を用いて表6の成形体を作製し、表7の条件で焼成した。そして、このブランクを用いてドリルを作製した。得られたドリルについて、下記条件でドリル加工テストを行った。結果を表7~10に示す。
(ドリル加工テスト条件)
被削材 :FR4材、24層板、3.2mm厚、1枚
ドリル形状:φ0.25mm
回転数:160krpm
送り速度:3.2m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
Using the raw material powder used in Example 1, the compacts shown in Table 6 were produced and fired under the conditions shown in Table 7. And the drill was produced using this blank. About the obtained drill, the drilling test was done on the following conditions. The results are shown in Tables 7-10.
(Drilling test conditions)
Work material: FR4 material, 24-layer plate, 3.2 mm thickness, single drill shape: φ0.25 mm
Rotation speed: 160krpm
Feed rate: 3.2 m / min Evaluation item: Number of drilled products (pieces) and drill flank wear width after testing (μm)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表6~10より、CoがCoよりも少なく、中央部A1の平均KAM値が中央部B1の平均KAM値よりも小さい試料No.II-1~II-4では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。試料No.II-1~II-4では、中央部A1における平均粒径aが、中央部B1における平均粒径aよりも大きかった。 According to Tables 6 to 10, the sample No. No. Co A is smaller than Co B and the average KAM value in the central portion A1 is smaller than the average KAM value in the central portion B1. In II-1 to II-4, the flank wear width was small and the number of workpieces increased. Sample No. In II-1 to II-4, the average particle diameter a A in the central part A1 was larger than the average particle diameter a B in the central part B1.
 実施例1で用いた原料粉末を用いて表11の成形体を作製し、表12の条件で焼成した。そして、このブランクを用いてドリルを作製した。得られたドリルについて、下記条件でドリル加工テストを行った。結果を表12~15に示す。
(ドリル加工テスト条件)
被削材 :FP4材、0.06mm厚、10枚重ね
ドリル形状:φ0.105mm
回転数:300krpm
送り速度:1.8m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
Using the raw material powder used in Example 1, the compacts shown in Table 11 were produced and fired under the conditions shown in Table 12. And the drill was produced using this blank. About the obtained drill, the drilling test was done on the following conditions. The results are shown in Tables 12-15.
(Drilling test conditions)
Work material: FP4 material, 0.06mm thickness, 10-ply drill shape: φ0.105mm
Rotation speed: 300krpm
Feeding speed: 1.8 m / min Evaluation item: Number of products that have been drilled (pieces) and flank wear width of the drill after the test (μm)
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表11~15より、CoがCoよりも少なく、中央部A1の平均KAM値が中央部B1の平均KAM値よりも小さい試料No.III-1~III-3では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。試料No.III-1~III-3では、中央部A1における平均粒径aが、中央部B1における平均粒径aよりも大きかった。 From Tables 11 to 15, the sample No. No. Co A is smaller than Co B and the average KAM value in the central part A1 is smaller than the average KAM value in the central part B1. In III-1 to III-3, the flank wear width was small and the number of workpieces increased. Sample No. In III-1 to III-3, the average particle size a A in the central portion A1 was larger than the average particle size a B in the central portion B1.
1  ドリル(切削工具)
2  ブランク(切削工具用ブランク)
3  シャンク
5  切刃
6  溝
7  首部
8  ボディ
11 第1領域
12 第2領域
13 第3領域
14 第4領域
15 突起部
1 Drill (cutting tool)
2 Blank (blank for cutting tool)
3 Shank 5 Cutting edge 6 Groove 7 Neck 8 Body 11 First region 12 Second region 13 Third region 14 Fourth region 15 Projection

Claims (12)

  1.  WC粒子及びCoを含有する超硬合金からなり、長手方向において第1端部及び第2端部を有する長尺状の棒状体であって、
     前記第1端部は、幅方向の中央に位置する第1中央部を有し、
     前記第2端部は、幅方向の中央に位置する第2中央部を有し、
     前記第1中央部におけるCoの含有量が、前記第2中央部におけるCoの含有量よりも少ないとともに、
     前記WC粒子の後方散乱電子回折像システム付きの走査電子顕微鏡による電子線後方散乱回折(EBSD)法にて測定された平均KAM値の測定において、前記第1中央部における平均KAM値が、前記第2中央部における平均KAM値よりも小さい棒状体。
    It is made of a cemented carbide containing WC particles and Co, and is a long rod-shaped body having a first end and a second end in the longitudinal direction,
    The first end portion has a first center portion located at the center in the width direction,
    The second end portion has a second central portion located at the center in the width direction,
    The Co content in the first central portion is less than the Co content in the second central portion,
    In measurement of an average KAM value measured by an electron beam backscatter diffraction (EBSD) method using a scanning electron microscope with a backscattered electron diffraction image system of the WC particle, the average KAM value in the first central portion is the first KAM value. 2 Rod-shaped body smaller than the average KAM value at the center.
  2.  前記第1端部は、外周に位置する第1外周部をさらに有し、
     前記第1外周部における前記平均KAM値が、前記第1中央部における前記WC粒子の平均KAM値よりも小さい請求項1記載の棒状体。
    The first end portion further includes a first outer peripheral portion located on the outer periphery,
    The rod-shaped body according to claim 1, wherein the average KAM value in the first outer peripheral portion is smaller than the average KAM value of the WC particles in the first central portion.
  3.  前記第1中央部における前記平均KAM値が0.50~0.65°であり、前記第2中央部における平均KAM値が0.75~0.92°である請求項1又は2記載の棒状体。 3. The rod-like shape according to claim 1, wherein the average KAM value in the first central portion is 0.50 to 0.65 °, and the average KAM value in the second central portion is 0.75 to 0.92 °. body.
  4.  前記第1中央部における前記WC粒子の平均粒径が、前記第2中央部における前記WC粒子の平均粒径よりも大きい請求項1乃至3のいずれか記載の棒状体。 The rod-shaped body according to any one of claims 1 to 3, wherein an average particle diameter of the WC particles in the first central portion is larger than an average particle diameter of the WC particles in the second central portion.
  5.  前記第1中央部における前記WC粒子の平均粒径に対する、前記第2中央部における前記WC粒子の平均粒径の比率が、1.5~4である請求項4記載の棒状体。 The rod-shaped body according to claim 4, wherein a ratio of an average particle diameter of the WC particles in the second center part to an average particle diameter of the WC particles in the first center part is 1.5 to 4.
  6.  前記第1外周部における前記WC粒子の平均粒径が、前記第1中央部における前記WC粒子の平均粒径よりも大きい請求項4又は5記載の棒状体。 The rod-shaped body according to claim 4 or 5, wherein an average particle diameter of the WC particles in the first outer peripheral portion is larger than an average particle diameter of the WC particles in the first central portion.
  7.  前記第1外周部における前記WC粒子の平均粒径に対する、前記第1中央部における前記WC粒子の平均粒径の比率が、1.1~2である請求項6記載の棒状体。 The rod-shaped body according to claim 6, wherein a ratio of an average particle diameter of the WC particles in the first central portion to an average particle diameter of the WC particles in the first outer peripheral portion is 1.1 to 2.
  8.  前記第1中央部における前記WC粒子の平均粒径が0.3~1.5μmであり、前記第2中央部における前記WC粒子の平均粒径が0.1~0.9μmである請求項4乃至7のいずれか記載の棒状体。 5. The average particle diameter of the WC particles in the first central portion is 0.3 to 1.5 μm, and the average particle diameter of the WC particles in the second central portion is 0.1 to 0.9 μm. The rod-shaped body in any one of thru | or 7.
  9.  前記第1中央部におけるCoの含有量に対する、前記前記第2中央部におけるCoの含有量の比率が、0.2~0.7である請求項1乃至8のいずれか記載の棒状体。 The rod-shaped body according to any one of claims 1 to 8, wherein a ratio of a Co content in the second central portion to a Co content in the first central portion is 0.2 to 0.7.
  10.  前記棒状体は、前記第2端部の側に位置して、前記Coの含有量が傾斜S2Coで変化している第2領域と、前記第1端部の側に位置して、前記Coの含有量が傾斜S1Coで変化している第1領域とを有し、
     前記傾斜S1Coが、前記傾斜S2Coよりも大きい請求項1乃至9のいずれか記載の棒状体。
    The rod-shaped body is located on the second end side, the second region where the Co content is changed by the slope S2Co , and the Co-like body is located on the first end side. And a first region in which the content of S varies with the gradient S 1Co ,
    The inclined S 1co is, the rod-like body according to any one of the inclined S greater claim than 2Co 1 to 9.
  11.  前記傾斜S1Coが0.2~1質量%/mmであり、前記傾斜S2Coが0.2質量%/mm未満である請求項10記載の棒状体。 The rod-shaped body according to claim 10, wherein the inclined S 1Co is 0.2 to 1% by mass / mm, and the inclined S 2Co is less than 0.2% by mass / mm.
  12.  WC粒子とCoとを含有する超硬合金からなり、長手方向において、切刃を有する端部Xと、シャンク側に位置する端部Yとを有する長尺状の切削工具であって、
     前記端部Xは、幅方向の中央に位置する中央部X1を有し、
     前記端部Yは、幅方向の中央に位置する中央部Y1を有し、
     前記中央部X1におけるCoの含有量が、前記中央部Y1におけるCoの含有量よりも少ないとともに、
     前記WC粒子の後方散乱電子回折像システム付きの走査電子顕微鏡による電子線後方散乱回折(EBSD)法にて測定された平均KAM値の測定において、前記X中央部における平均KAM値が、前記Y中央部における平均KAM値よりも小さい切削工具。
    A long cutting tool comprising a cemented carbide containing WC particles and Co, and having an end X having a cutting edge and an end Y located on the shank side in the longitudinal direction,
    The end X has a center X1 located at the center in the width direction,
    The end portion Y has a central portion Y1 located at the center in the width direction,
    The content of Co in the central portion X1 is less than the content of Co in the central portion Y1,
    In the measurement of the average KAM value measured by an electron beam backscatter diffraction (EBSD) method using a scanning electron microscope with a backscattered electron diffraction image system of the WC particles, the average KAM value in the X central portion is the Y center. Cutting tool smaller than the average KAM value in the part.
PCT/JP2016/078251 2015-09-29 2016-09-26 Bar stock and cutting tool WO2017057266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680056048.1A CN108136514B (en) 2015-09-29 2016-09-26 Clava and cutting element
JP2017543250A JP6608945B2 (en) 2015-09-29 2016-09-26 Rod and cutting tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015191537 2015-09-29
JP2015-191537 2015-09-29
JP2015-213064 2015-10-29
JP2015213064 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017057266A1 true WO2017057266A1 (en) 2017-04-06

Family

ID=58427500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078251 WO2017057266A1 (en) 2015-09-29 2016-09-26 Bar stock and cutting tool

Country Status (4)

Country Link
JP (1) JP6608945B2 (en)
CN (1) CN108136514B (en)
TW (1) TWI619571B (en)
WO (1) WO2017057266A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212702A1 (en) * 2016-06-06 2017-12-14 住友電工ハードメタル株式会社 Rod, drill bit body, rod manufacturing method, and drill manufacturing method
EP3567133A1 (en) * 2018-05-09 2019-11-13 Tungaloy Corporation Coated cutting tool
US20190344357A1 (en) * 2018-05-09 2019-11-14 Tungaloy Corporation Coated cutting tool
LU100871B1 (en) * 2018-07-11 2020-01-13 Tungaloy Corp Coated cutting tool
JP2020521646A (en) * 2017-06-08 2020-07-27 グーリング カーゲーGuhring Kg Cutting tools
WO2023176819A1 (en) * 2022-03-18 2023-09-21 株式会社アライドマテリアル Cutting blade made of super-hard alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218010A (en) * 1986-03-19 1987-09-25 Mitsubishi Metal Corp Carbide drill
JP2004114202A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Fine machining tool
JP2015101747A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160591A (en) * 2002-11-12 2004-06-10 Sumitomo Electric Ind Ltd Rotary tool
SE527679C2 (en) * 2004-01-26 2006-05-09 Sandvik Intellectual Property Carbide body, especially spiral drill, and its use for rotary metalworking tools
JP3762777B1 (en) * 2004-10-19 2006-04-05 住友電気工業株式会社 Cemented carbide
US8454274B2 (en) * 2007-01-18 2013-06-04 Kennametal Inc. Cutting inserts
WO2010117823A2 (en) * 2009-03-31 2010-10-14 Diamond Innovations, Inc. Abrasive compact of superhard material and chromium and cutting element including same
JP5796778B2 (en) * 2012-01-23 2015-10-21 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
GB201302345D0 (en) * 2013-02-11 2013-03-27 Element Six Gmbh Cemented carbide material and method of making same
JP5645151B1 (en) * 2013-03-25 2014-12-24 日立金属株式会社 Stainless steel intermediate material for blades

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218010A (en) * 1986-03-19 1987-09-25 Mitsubishi Metal Corp Carbide drill
JP2004114202A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Fine machining tool
JP2015101747A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212702A1 (en) * 2016-06-06 2017-12-14 住友電工ハードメタル株式会社 Rod, drill bit body, rod manufacturing method, and drill manufacturing method
JP2020521646A (en) * 2017-06-08 2020-07-27 グーリング カーゲーGuhring Kg Cutting tools
JP6990257B2 (en) 2017-06-08 2022-01-12 グーリング カーゲー Cutting tools
EP3567133A1 (en) * 2018-05-09 2019-11-13 Tungaloy Corporation Coated cutting tool
US20190344357A1 (en) * 2018-05-09 2019-11-14 Tungaloy Corporation Coated cutting tool
JP2019195872A (en) * 2018-05-09 2019-11-14 株式会社タンガロイ Coated cutting tool
US10766076B2 (en) * 2018-05-09 2020-09-08 Tungaloy Corporation Coated cutting tool
LU100871B1 (en) * 2018-07-11 2020-01-13 Tungaloy Corp Coated cutting tool
WO2023176819A1 (en) * 2022-03-18 2023-09-21 株式会社アライドマテリアル Cutting blade made of super-hard alloy

Also Published As

Publication number Publication date
CN108136514A (en) 2018-06-08
TW201718134A (en) 2017-06-01
CN108136514B (en) 2019-08-09
JP6608945B2 (en) 2019-11-20
JPWO2017057266A1 (en) 2018-07-12
TWI619571B (en) 2018-04-01

Similar Documents

Publication Publication Date Title
JP6608945B2 (en) Rod and cutting tool
KR101733964B1 (en) Drill blank, manufacturing method for drill blank, drill, and manufacturing method for drill
JP6256415B2 (en) Cemented carbide and cutting tools
KR20130079664A (en) Cutting tool
JP6633735B2 (en) Cutting insert
JP6491333B2 (en) Rod and cutting tool
JP6608941B2 (en) Rod and cutting tool
JP6437828B2 (en) CUTTING TOOL BLANK, CUTTING TOOL BLANK MANUFACTURING METHOD, CUTTING TOOL, AND CUTTING TOOL MANUFACTURING METHOD
Liu et al. Characterization of green Al2O3 ceramics surface machined by tools with textures on flank‐face in dry turning
JP6339436B2 (en) Drill blank, drill blank manufacturing method, and drill
KR101807629B1 (en) Cermet tool
CN108883474B (en) Cutting insert and cutting tool
JP6515387B2 (en) Carbide tool and method of manufacturing the same
JP7327864B1 (en) Precision nozzle and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851437

Country of ref document: EP

Kind code of ref document: A1