JP5282911B2 - Diamond coated cutting tool - Google Patents
Diamond coated cutting tool Download PDFInfo
- Publication number
- JP5282911B2 JP5282911B2 JP2010071904A JP2010071904A JP5282911B2 JP 5282911 B2 JP5282911 B2 JP 5282911B2 JP 2010071904 A JP2010071904 A JP 2010071904A JP 2010071904 A JP2010071904 A JP 2010071904A JP 5282911 B2 JP5282911 B2 JP 5282911B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- tool
- particles
- film
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、炭化タングステン(WC)基超硬合金または炭窒化チタン基サーメットで構成された工具基体(以下、単に工具基体という)の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆切削工具に関し、特に、CFRP材、高Si含有アルミニウム合金、グラファイト等の難削材の切削加工において、長期の使用に亘ってすぐれた耐摩耗性を発揮するダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。 The present invention relates to a diamond-coated cutting tool in which a diamond coating is coated on the surface of a tool substrate (hereinafter simply referred to as a tool substrate) made of tungsten carbide (WC) -based cemented carbide or titanium carbonitride-based cermet. The present invention relates to a diamond-coated cutting tool (hereinafter referred to as a diamond-coated tool) that exhibits excellent wear resistance over long-term use in cutting difficult-to-cut materials such as CFRP materials, high Si-containing aluminum alloys, and graphite. .
従来、工具基体の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られているが、従来のダイヤモンド被覆工具においては、ダイヤモンドを成膜した際に、成膜後の冷却過程で工具基体とダイヤモンド皮膜の熱膨張係数の差に起因して、ダイヤモンド皮膜に大きな圧縮残留応力が発生し、そのため工具基体に対するダイヤモンド皮膜の付着強度が十分でないという問題があった。
このような問題を解決するため、例えば、特許文献1に示されるように、ダイヤモンドの成膜に際し、超硬合金等の基体上へ、基体成分及び炭素成分を有する中間層を介してダイヤモンド皮膜を成膜することにより密着性を改善する技術が提案されているが、この成膜技術では、例えば、基体成分の一つであるCoをまず超硬基体上に蒸着し、その後ダイヤモンドの蒸着を行っているが、Coが超硬基体表面に存在するとダイヤモンドがグラファイト化しやすくなるため、密着性のすぐれたダイヤモンド被覆工具が得られないという問題があった。なお、特許文献1では、基体成分の一つであるWCを超硬基体上に蒸着し、その後ダイヤモンドを蒸着することも提案されているが、この場合にも、密着性のすぐれたダイヤモンド被覆工具が得られないという問題があった。
また、ダイヤモンド被膜の密着性改善を試みる他の技術として、例えば、特許文献2に示されるように、中間層として、SiCまたはSiNxを形成する技術、また、特許文献3に示されるように、中間層として金属Siを設ける技術が提案されているが、いずれの場合も、ダイヤモンド皮膜の密着性が十分でないという問題があった。
Conventionally, a diamond-coated tool in which the surface of a tool base is coated with a diamond coating is known. However, in a conventional diamond-coated tool, when a diamond is formed, the tool base and the diamond are cooled in the cooling process after the film is formed. Due to the difference in coefficient of thermal expansion of the film, a large compressive residual stress is generated in the diamond film, and there is a problem that the adhesion strength of the diamond film to the tool substrate is not sufficient.
In order to solve such a problem, for example, as shown in Patent Document 1, when forming a diamond film, a diamond film is formed on a substrate such as a cemented carbide through an intermediate layer having a substrate component and a carbon component. A technique for improving adhesion by forming a film has been proposed. In this film forming technique, for example, Co, which is one of the substrate components, is first deposited on a carbide substrate, and then diamond is deposited. However, when Co is present on the surface of the carbide substrate, diamond is easily graphitized, and there is a problem that a diamond-coated tool with excellent adhesion cannot be obtained. In Patent Document 1, it is also proposed to deposit WC, which is one of the substrate components, on a carbide substrate and then deposit diamond, but in this case as well, a diamond-coated tool with excellent adhesion is proposed. There was a problem that could not be obtained.
In addition, as another technique for trying to improve the adhesion of the diamond film, for example, as shown in Patent Document 2, a technique of forming SiC or SiNx as an intermediate layer, or as shown in Patent Document 3, Techniques for providing metal Si as a layer have been proposed, but in either case, there was a problem that the adhesion of the diamond film was not sufficient.
近年の切削装置のFA化はめざましく、かつ切削加工の省力化に対する要求も強く、これに伴い、ダイヤモンド被覆工具による切削加工は高速化する傾向にあるが、上記の従来ダイヤモンド被覆工具においては、通常の被削材の連続切削や断続切削ではすぐれた切削性能を発揮するが、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高い高Si含有Al合金、グラファイト等の難削材の切削加工に用いた場合には、ダイヤモンド皮膜に作用する応力、歪等がダイヤモンド皮膜と工具基体との界面に作用し、ダイヤモンド皮膜の剥離を引き起こしやすく、比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable, and there has been a strong demand for labor saving in cutting work. With this, cutting with diamond-coated tools tends to increase in speed, but in the conventional diamond-coated tools described above, Excellent cutting performance in continuous cutting and intermittent cutting of various work materials, but cutting of difficult-to-cut materials such as CFRP with higher specific strength and rigidity than metal materials, high Si content Al alloy with high weldability, graphite, etc. When used in processing, the stress, strain, etc. acting on the diamond coating will act on the interface between the diamond coating and the tool substrate, easily causing the diamond coating to peel off, and the service life will be reached in a relatively short time. It is.
そこで、本発明者等は、CFRP、高Si含有Al合金、グラファイト等の難削材の切削に用いても、ダイヤモンド皮膜の剥離が発生しないダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、
WC基超硬合金からなる工具基体表面にダイヤモンド皮膜を成膜するにあたり、まず、工具基体表面近傍のCo成分を酸処理で除去し、
この工具基体に対してダイヤモンド核生成を行い、
核生成終了後に工具基体の温度を高め、工具基体内部から表面側へのCoの拡散を促し、
引き続きダイヤモンドの成膜を続けることによって、
工具基体とダイヤモンド皮膜との界面のダイヤモンド皮膜側には、図1に示すように、拡散したCoによるCo微粒子が析出形成され、このCo微粒子は、難削材の切削加工に際し、ダイヤモンド皮膜に作用する応力やひずみを緩和する作用があるため、ダイヤモンド皮膜と工具基体間での密着性が向上し、その結果、ダイヤモンド皮膜の剥離が防止され、長期の使用にわたってすぐれた耐摩耗性を発揮するようになることを見出したのである。
Therefore, as a result of earnest research to develop a diamond-coated tool in which peeling of the diamond film does not occur even when the present inventors are used for cutting difficult-to-cut materials such as CFRP, high Si content Al alloy, and graphite,
In forming a diamond film on the surface of a tool base made of a WC-base cemented carbide, first, the Co component near the surface of the tool base is removed by acid treatment,
Diamond nucleation is performed on this tool base,
After the nucleation is completed, the temperature of the tool base is increased, and the diffusion of Co from the inside of the tool base to the surface side is promoted.
By continuing the diamond film formation,
As shown in FIG. 1, Co fine particles of diffused Co are deposited on the diamond film side of the interface between the tool base and the diamond film, and these Co fine particles act on the diamond film when cutting difficult-to-cut materials. As a result, the adhesion between the diamond coating and the tool base is improved, and as a result, peeling of the diamond coating is prevented, and excellent wear resistance is exhibited over a long period of use. I found out that
この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に5〜30μmの膜厚のダイヤモンド皮膜が被覆されたダイヤモンド被覆切削工具であって、上記工具基体とダイヤモンド皮膜の界面部のダイヤモンド皮膜側の基体表面から400nmの範囲には、平均粒径5〜200nmのCo粒子が析出しており、かつ、Co粒子の含有割合は、0.1〜20原子%であることを特徴とするダイヤモンド被覆切削工具。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) A diamond-coated cutting tool in which a diamond coating film having a film thickness of 5 to 30 μm is coated on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, the tool base and diamond Co particles having an average particle diameter of 5 to 200 nm are deposited in the range of 400 nm from the surface of the substrate on the diamond film side at the interface of the film , and the content ratio of Co particles is 0.1 to 20 atomic%. diamond-coated cutting tool, wherein the Rukoto Oh. "
It is characterized by.
以下、本発明について説明する。
本発明では、工具基体は、WCを硬質成分とするWC基超硬合金または炭窒化チタン基サーメットから構成するが、上記各成分を所望配合組成となるように配合した原料粉末を、成形、焼結することにより、本発明の工具基体を製造する。
また、Co粒子が析出している範囲は、基体表面から400nmの範囲が望ましく、この範囲を越えたところにCo粒子が析出していても、ダイヤモンド膜の応力やひずみを緩和する効果がなく、かえって耐摩耗性などに悪影響を及ぼす可能性がある。
The present invention will be described below.
In the present invention, the tool base is composed of a WC-base cemented carbide or titanium carbonitride-based cermet containing WC as a hard component. As a result, the tool base of the present invention is manufactured.
In addition, the range in which Co particles are precipitated is desirably a range of 400 nm from the surface of the substrate, and even if Co particles are precipitated beyond this range, there is no effect of relaxing the stress and strain of the diamond film, On the contrary, it may adversely affect wear resistance.
本発明では、まず、WC基超硬合金からなる工具基体表面を、例えば、硫酸、過酸化水素および水からなる混合溶液にて短時間エッチングする酸処理を行うことによって、工具基体表面に存在するCoを除去する。
その後、微粒(粒径5〜100nm)のダイヤモンド粒子を分散させたアルコール中に浸漬し、超音波を付与することで、種ダイヤモンドを工具基体表面に付着させる。
次いで、上記酸処理をした工具基体を、例えば、熱フィラメントCVD方式のダイヤモンド成膜炉に装入し、工具基体温度を700℃に維持した状態で、水素とメタン(濃度0.5〜5%程度)の混合ガス400Paの気流中で、フィラメント温度を約2200℃として、約30分間、初期のダイヤモンド核生成処理を行う。
ダイヤモンドの核生成終了後、フィラメント温度を約2350℃に高めて、それにより工具基体の温度を約1050℃にまで昇温し、約20〜60分間成膜を行う。
そして、工具基体温度およびフィラメント温度を高めた成膜処理時に、工具基体が高温に維持されていることから、工具基体内部から工具基体表面への超硬合金成分であるCoの拡散が促され、図1に示すように、工具基体とダイヤモンド皮膜の界面には微粒のCo粒子の析出物が生成する。
工具基体とダイヤモンド皮膜の界面でかつダイヤモンド皮膜側に生成するCo粒子は、難削材の切削加工時に、ダイヤモンド皮膜に作用する応力やひずみを緩和させる作用を有し、しかも、Co粒子は、ダイヤモンド皮膜の表面に形成されるものでないから、ダイヤモンドの成膜時に、グラファイト化を起こす危険性はない。
ついで、フィラメント温度を約2200℃に下げることにより、工具基体温度を約650〜800℃の範囲に下げ、所望の膜厚になるまでダイヤモンドの成膜を継続することによって、本発明のダイヤモンド被覆工具を作製する。
なお、成膜するダイヤモンド皮膜の膜厚が、5μm未満では、長期の使用に亘ってすぐれた摩耗性を発揮し、長寿命化を図ることができなくなり、一方、膜厚が30μmを超えると、成膜の際にエッジ部での鋭利さを保つことが出来なくなり、切れ味が低下することから、本発明では、ダイヤモンド皮膜の膜厚を5〜30μmと定めた。
In the present invention, first, the surface of the tool base made of a WC-based cemented carbide is present on the surface of the tool base by performing an acid treatment for a short time with, for example, a mixed solution of sulfuric acid, hydrogen peroxide and water. Co is removed.
Thereafter, the seed diamond is adhered to the surface of the tool base by immersing in fine particles (particle size 5 to 100 nm) of dispersed diamond particles and applying ultrasonic waves.
Next, the acid-treated tool base is placed in, for example, a hot filament CVD diamond deposition furnace, and the tool base temperature is maintained at 700 ° C., and hydrogen and methane (concentration 0.5 to 5%). The initial diamond nucleation treatment is performed for about 30 minutes at a filament temperature of about 2200 ° C. in an air stream of about 400 Pa of mixed gas.
After the nucleation of diamond is completed, the filament temperature is raised to about 2350 ° C., thereby raising the temperature of the tool base to about 1050 ° C., and film formation is performed for about 20 to 60 minutes.
And, since the tool base is maintained at a high temperature during the film forming process in which the tool base temperature and the filament temperature are increased, diffusion of Co, which is a cemented carbide component, from the inside of the tool base to the tool base surface is promoted. As shown in FIG. 1, precipitates of fine Co particles are generated at the interface between the tool base and the diamond film.
Co particles generated at the interface between the tool base and the diamond coating and on the diamond coating side have a function of relaxing stress and strain acting on the diamond coating when cutting difficult-to-cut materials. Since it is not formed on the surface of the film, there is no danger of graphitization during diamond film formation.
Next, by lowering the filament temperature to about 2200 ° C., the tool substrate temperature is lowered to a range of about 650 to 800 ° C., and diamond film formation is continued until a desired film thickness is obtained. Is made.
In addition, when the film thickness of the diamond film to be formed is less than 5 μm, it exhibits excellent wearability over a long period of use, and it is impossible to achieve a long life, whereas when the film thickness exceeds 30 μm, Since the sharpness at the edge portion cannot be maintained during film formation and the sharpness is lowered, the thickness of the diamond film is set to 5 to 30 μm in the present invention.
上記本発明のダイヤモンド被覆工具において、工具基体とダイヤモンド皮膜の界面でかつダイヤモンド皮膜側に生成するCo粒子の大きさは、その平均粒径が5nm未満ではダイヤモンド皮膜に生じる応力・ひずみの緩和効果が小さく、また、平均粒径が200nmを超えるようになると、ダイヤモンド皮膜の強度を低下させ、かえって、膜を剥離させる原因となることから、Co粒子の平均粒径は5〜200nmと定めた。
なお、上記Co粒子の平均粒径は、ダイヤモンド被覆工具の縦断面を透過型電子顕微鏡にて観察・測定することにより、求めることができる。
In the diamond coated tool of the present invention, the Co particles generated at the interface between the tool base and the diamond film and on the diamond film side have a stress / strain relaxation effect on the diamond film when the average particle size is less than 5 nm. If it is small and the average particle diameter exceeds 200 nm, the strength of the diamond film is lowered, which causes the film to peel off. Therefore, the average particle diameter of Co particles is determined to be 5 to 200 nm.
The average particle diameter of the Co particles can be obtained by observing and measuring the longitudinal section of the diamond-coated tool with a transmission electron microscope.
また、この発明では、ダイヤモンド皮膜の膜厚を5〜30μmと定めているが、膜厚がこの範囲から外れた場合には、長期の使用に亘ってすぐれた耐剥離性を発揮することができなくなり、長寿命化を図ることができなくなるという理由から、本発明では、ダイヤモンド皮膜の膜厚を5〜30μmと定めた。 Moreover, in this invention, although the film thickness of the diamond film is set to 5 to 30 μm, when the film thickness is out of this range, excellent peeling resistance can be exhibited over a long period of use. In the present invention, the film thickness of the diamond film is determined to be 5 to 30 μm because it is impossible to extend the life.
また、この発明では、工具基体とダイヤモンド皮膜の界面部のダイヤモンド皮膜側に析出しているCo粒子の含有割合を0.1〜20原子%としているが、Co粒子の含有割合が0.1〜20原子%の範囲を外れると、Co粒子の析出がダイヤモンド膜の応力やひずみを緩和する効果が見られなくなることから、Co粒子の含有割合を0.1〜20原子%と定めた。
Co粒子の含有割合は、ダイヤモンド皮膜断面の工具基体表面直上を透過型電子顕微鏡で観察し、例えば、任意の400×400nmの領域をエネルギー分散型X線分析(EDX)により測定することにより求めることができる。
Moreover, in this invention, although the content rate of Co particles deposited on the diamond film side of the interface portion between the tool base and the diamond film is 0.1 to 20 atomic%, the content rate of Co particles is 0.1 to 20%. When the content is out of the range of 20 atomic%, the effect of relieving the stress and strain of the diamond film by the precipitation of Co particles is not observed.
The content ratio of the Co particles is obtained by observing the surface of the diamond substrate just above the surface of the tool base with a transmission electron microscope and measuring, for example, an arbitrary 400 × 400 nm region by energy dispersive X-ray analysis (EDX). Can do.
この発明のダイヤモンド被覆工具は、ダイヤモンド皮膜と工具基体の界面部かつダイヤモンド皮膜側に、平均粒径5〜200nmのCo粒子が析出しており、また、析出しているCo粒子の含有割合は、基体表面から400nmの範囲において0.1〜20原子%であって、切削加工時にダイヤモンド皮膜に作用する応力・ひずみが、上記Co粒子の存在によって緩和され、ダイヤモンド皮膜が工具基体から剥離するのが抑制されることから、これを、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高い高Si含有Al合金、グラファイト等の難削材の切削加工で用いた場合でも、ダイヤモンド皮膜の剥離が防止されるとともに長期の使用に亘ってすぐれた耐摩耗性を発揮し、工具の長寿命化が図られるのである。 In the diamond-coated tool of the present invention, Co particles having an average particle diameter of 5 to 200 nm are deposited on the interface part between the diamond film and the tool base and the diamond film side, and the content ratio of the precipitated Co particles is: It is 0.1 to 20 atomic% in the range of 400 nm from the surface of the substrate, and the stress and strain acting on the diamond film during cutting are alleviated by the presence of the Co particles, and the diamond film peels off from the tool substrate. Even if this is used for cutting difficult-to-cut materials such as CFRP, which has a higher specific strength and higher rigidity than metal materials, or a high Si content Al alloy with high weldability, graphite, etc., the diamond film is peeled off. In addition, the wear resistance is excellent over a long period of use, and the tool life is extended.
つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。
なお、以下ではダイヤモンド被覆ドリルについて説明するが、ドリルに何ら限定されるものではない。
Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.
In addition, although a diamond covering drill is demonstrated below, it is not limited to a drill at all.
まず、表1に示す、いずれも1〜3μmの範囲内の所定の平均粒径を有する原料粉末を用意し、同じく表1に示す配合組成となるように配合した混合粉末を調製し、これをボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して、直径が10mm,8mmの丸棒圧粉体とし、これらの丸棒圧粉体を焼結して焼結体を製造し、さらに、研削加工にて溝形成部の外径を8mm、6mmの寸法に加工し、その際に、外周マージン部および切れ刃エッジ部に対しては、粒度#600のSiC砥粒を用いたエアーブラスト処理および粒度#1200のダイヤモンド砥石を用いた30μm以上の仕上研削加工処理を行い、外径8mmの工具基体1〜5および外径6mmの工具基体6〜10を製造した。 First, as shown in Table 1, all prepared raw material powder having a predetermined average particle diameter in the range of 1 to 3 μm, and prepared a mixed powder blended so as to have the composition shown in Table 1, After wet mixing for 72 hours in a ball mill and drying, press molding is performed at a pressure of 100 MPa to form round bar compacts with diameters of 10 mm and 8 mm, and these round bar compacts are sintered to obtain a sintered body. In addition, the outer diameter of the groove forming portion is processed to a size of 8 mm and 6 mm by grinding, and at that time, SiC abrasive grains of particle size # 600 are applied to the outer margin portion and the cutting edge portion. The air blasting process used and the finishing grinding process of 30 μm or more using a diamond grindstone with a grain size of # 1200 were performed to produce tool bases 1 to 5 having an outer diameter of 8 mm and tool bases 6 to 10 having an outer diameter of 6 mm.
ついで、上記工具基体1〜10に、硫酸、過酸化水素および水を1:1:1の割合で混合した溶液にて、室温で30秒間エッチングする酸処理を施し、ついで、平均粒径30〜60nmのダイヤモンド粒子を分散させたIPA(イソプロピルアルコール)溶液で超音波洗浄を行うことにより、工具基体1〜10の表面からのCo成分の除去および種ダイヤモンドの付着処理を行った。 Subsequently, the tool bases 1 to 10 were subjected to an acid treatment for etching at room temperature for 30 seconds with a solution in which sulfuric acid, hydrogen peroxide and water were mixed at a ratio of 1: 1: 1, and then an average particle size of 30 to By performing ultrasonic cleaning with an IPA (isopropyl alcohol) solution in which 60 nm diamond particles are dispersed, the Co component was removed from the surfaces of the tool bases 1 to 10 and seed diamond was adhered.
ついで、上記工具基体1〜10を、熱フィラメントCVD方式のダイヤモンド成膜炉に装入し、表2に示す条件で、ダイヤモンド核生成、Co粒子析出物の生成を行うと同時に、所定膜厚のダイヤモンド皮膜の成膜を行うことにより、表3に示す本発明のダイヤモンド被覆工具1〜10(以下、本発明1〜10という)を作製した。 Next, the tool bases 1 to 10 are charged into a hot filament CVD diamond deposition furnace, and under the conditions shown in Table 2, diamond nucleation and Co particle precipitates are generated, and at the same time, a predetermined film thickness is obtained. By forming a diamond film, diamond coated tools 1 to 10 (hereinafter referred to as present inventions 1 to 10) of the present invention shown in Table 3 were produced.
比較のため、上記工具基体1〜10に対して、表4に示す条件でダイヤモンドの成膜を行い、表5に示される比較例のダイヤモンド被覆工具1〜10(比較例1〜10という)を作製した。
なお、比較例1および比較例6については、工具基体の酸処理を行っておらず、したがって、工具基体表面に存在するCoは除去されていない。
For comparison, a diamond film was formed on the tool bases 1 to 10 under the conditions shown in Table 4, and diamond coated tools 1 to 10 (referred to as Comparative Examples 1 to 10) of Comparative Examples shown in Table 5 were used. Produced.
In Comparative Examples 1 and 6, the tool base was not acid-treated, and therefore Co existing on the tool base surface was not removed.
上記本発明1〜10、比較例1〜10について、工具基体とダイヤモンド皮膜の界面部の縦断面を透過型電子顕微鏡にて観察し、工具基体とダイヤモンド皮膜の界面部であってかつダイヤモンド皮膜側の基体から400nmの範囲に析出しているCo粒子の粒径を10箇所で測定し、その平均値を算出することによりCo粒子の平均粒径を求めた。
また、同じく上記本発明1〜10、比較例1〜10について、ダイヤモンド皮膜断面の工具基体表面直上を透過型電子顕微鏡で観察し、任意の400×400nmの領域をエネルギー分散型X線分析(EDX)により測定し、析出しているCo粒子の含有割合を求めた。
表3、表5に、これらの測定値を示す。
For the present inventions 1 to 10 and Comparative Examples 1 to 10, the longitudinal section of the interface between the tool substrate and the diamond film was observed with a transmission electron microscope, and the interface between the tool substrate and the diamond film was on the diamond film side. The average particle size of the Co particles was determined by measuring the particle size of the Co particles deposited in the range of 400 nm from the substrate at 10 locations and calculating the average value.
Similarly, for the present inventions 1 to 10 and Comparative Examples 1 to 10, the surface immediately above the tool substrate surface of the diamond coating was observed with a transmission electron microscope, and an arbitrary 400 × 400 nm region was analyzed by energy dispersive X-ray analysis (EDX). ) And the content ratio of the precipitated Co particles was determined.
Tables 3 and 5 show these measured values.
つぎに、上記本発明1〜5および比較例1〜5については、次の条件Aでグラファイト板の乾式穴あけ切削加工試験を行った。
《切削条件A》
被削材:厚さ10mmのグラファイト板、
切削速度:150 m/min.、
送り:0.2 mm/rev.、
穴深さ:10 mm(貫通穴)、
また、上記本発明6〜10および比較例6〜10については、次の条件Bで高Si含有アルミニウム板の乾式穴あけ切削加工試験を行った。
《切削条件B》
被削材:厚さ50mmの20%Si含有アルミニウム合金板、
切削速度:350 m/min.、
送り:0.2 mm/rev.、
穴深さ:25 mm、
エアブロー
いずれの穴あけ切削加工試験でも、切削不能になるまでの穴あけ加工数を測定した。
これらの測定結果を表6に示す。
Next, about the said invention 1-5 and the comparative examples 1-5, the dry-type drilling cutting test of the graphite board was done on the following conditions A.
<Cutting condition A>
Work material: Graphite plate with a thickness of 10 mm,
Cutting speed: 150 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 10 mm (through hole),
Moreover, about the said invention 6-10 and the comparative examples 6-10, the dry drilling cutting test of the high Si content aluminum plate was done on the following conditions B.
<Cutting condition B>
Work material: Aluminum alloy plate containing 20% Si with a thickness of 50 mm,
Cutting speed: 350 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 25 mm,
In any air blow drilling test, the number of drilling processes until cutting became impossible was measured.
These measurement results are shown in Table 6.
表3、5、6に示される結果から、工具基体とダイヤモンド皮膜の界面部のダイヤモンド皮膜側には、平均粒径5〜200nmのCo粒子が析出しており、また、Co粒子の含有割合が0.1〜20原子%である本発明1〜10では、Co粒子の存在によりダイヤモンド皮膜に作用する切削加工時の応力・ひずみが緩和され、工具基体との密着性にすぐれるため、ダイヤモンド皮膜の剥離が防止されるとともに長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較例1、6は、工具基体表面にCo成分が存在し、成膜時にダイヤモンドがグラファイト化するため、密着性が劣っており、また、比較例2〜5、7〜10は、工具基体とダイヤモンド皮膜の界面部のダイヤモンド皮膜側にCo粒子の存在が僅かである、全く存在しない、あるいは、過剰に存在するため、いずれの場合も、ダイヤモンド皮膜と工具基体間での密着性に劣り、特に、ダイヤモンド皮膜の剥離により短時間で使用寿命に至ることは明らかである。
From the results shown in Tables 3, 5, and 6, Co particles having an average particle diameter of 5 to 200 nm are precipitated on the diamond film side of the interface portion between the tool base and the diamond film, and the content ratio of the Co particles is In the present invention 1 to 10 of 0.1 to 20 atomic%, the presence of Co particles relaxes the stress and strain at the time of cutting that acts on the diamond film, and is excellent in adhesion to the tool base. Peeling is prevented and excellent wear resistance is exhibited over a long period of use.
On the other hand, Comparative Examples 1 and 6 have a Co component on the surface of the tool base, and diamond is graphitized during film formation. Therefore, the adhesion is inferior, and Comparative Examples 2-5 and 7-10. Since the Co particles exist in the diamond film side at the interface between the tool substrate and the diamond film, there is little, no, or excessive presence of Co particles. It is apparent that the service life is shortened in a short time by peeling off the diamond film.
この発明のダイヤモンド被覆工具は、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金、グラファイト等の難削材の切削においても、ダイヤモンド皮膜の剥離が生じることなく長期の使用に亘って、すぐれた耐剥離性と耐摩耗性を発揮するものであり、ドリルに限らず、インサート、フライス工具、エンドミル、カッター等の各種切削工具として幅広く利用することが可能である。 The diamond-coated tool of the present invention can be used for a long period of time without causing peeling of the diamond film even when cutting difficult-to-cut materials such as CFRP having a higher specific strength and higher rigidity than metal materials, Al alloys having high weldability, and graphite. It exhibits excellent peeling resistance and wear resistance, and can be widely used as various cutting tools such as inserts, milling tools, end mills, cutters, etc., as well as drills.
Claims (1)
A diamond-coated cutting tool in which a diamond coating film having a film thickness of 5 to 30 μm is coated on the surface of a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and the interface between the tool substrate and the diamond coating the range of the substrate of 400nm diamond film side and precipitated Co particles having an average particle diameter 5~200nm is, and, the content of Co particles, wherein 0.1 to 20 atomic% der Rukoto Diamond coated cutting tool.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010071904A JP5282911B2 (en) | 2010-03-26 | 2010-03-26 | Diamond coated cutting tool |
CN201110043041.5A CN102198523B (en) | 2010-03-26 | 2011-02-18 | Diamond coating and cutting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010071904A JP5282911B2 (en) | 2010-03-26 | 2010-03-26 | Diamond coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011200987A JP2011200987A (en) | 2011-10-13 |
JP5282911B2 true JP5282911B2 (en) | 2013-09-04 |
Family
ID=44659659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010071904A Active JP5282911B2 (en) | 2010-03-26 | 2010-03-26 | Diamond coated cutting tool |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5282911B2 (en) |
CN (1) | CN102198523B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5796778B2 (en) * | 2012-01-23 | 2015-10-21 | 三菱マテリアル株式会社 | Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance |
CN104002537B (en) * | 2013-02-25 | 2018-02-27 | 三菱综合材料株式会社 | Improve the diamond-coated hard alloy cutting element of point of a knife intensity |
JP5716861B1 (en) * | 2013-11-29 | 2015-05-13 | 三菱マテリアル株式会社 | Diamond-coated cemented carbide cutting tool and method for manufacturing the same |
EP3603857A4 (en) * | 2017-03-22 | 2020-11-04 | Mitsubishi Materials Corporation | Diamond coated cemented carbide cutting tool |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106494A (en) * | 1984-10-29 | 1986-05-24 | Kyocera Corp | Member coated with diamond and its production |
US5068148A (en) * | 1988-12-21 | 1991-11-26 | Mitsubishi Metal Corporation | Diamond-coated tool member, substrate thereof and method for producing same |
US5236740A (en) * | 1991-04-26 | 1993-08-17 | National Center For Manufacturing Sciences | Methods for coating adherent diamond films on cemented tungsten carbide substrates |
JP2981012B2 (en) * | 1991-05-07 | 1999-11-22 | 旭ダイヤモンド工業株式会社 | Manufacturing method of diamond coated tool |
JPH05125542A (en) * | 1991-11-05 | 1993-05-21 | Kobe Steel Ltd | Manufacture of thin diamond film tool |
JPH05295545A (en) * | 1992-04-17 | 1993-11-09 | Sumitomo Electric Ind Ltd | Diamond-coated hard material and its production |
SE503038C2 (en) * | 1993-07-09 | 1996-03-11 | Sandvik Ab | Diamond-coated carbide or ceramic cutting tools |
BR9407924A (en) * | 1993-10-29 | 1996-11-26 | Balzers Hochvakuum | Coated body process for its manufacture as well as use of the same |
US5585176A (en) * | 1993-11-30 | 1996-12-17 | Kennametal Inc. | Diamond coated tools and wear parts |
JPH0839360A (en) * | 1994-07-29 | 1996-02-13 | Shin Etsu Chem Co Ltd | Highly durable cemented carbide tool and its manufacture |
US20040141867A1 (en) * | 2001-05-16 | 2004-07-22 | Klaus Dreyer | Composite material and method for production thereof |
US7879412B2 (en) * | 2004-06-10 | 2011-02-01 | The University Of Electro-Communications | Diamond thin film coating method and diamond-coated cemented carbide member |
US7985470B2 (en) * | 2007-02-02 | 2011-07-26 | Sumitomo Electric Hardmetal Corp. | Diamond sintered compact |
-
2010
- 2010-03-26 JP JP2010071904A patent/JP5282911B2/en active Active
-
2011
- 2011-02-18 CN CN201110043041.5A patent/CN102198523B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102198523A (en) | 2011-09-28 |
CN102198523B (en) | 2015-06-17 |
JP2011200987A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5757232B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer | |
JP5716861B1 (en) | Diamond-coated cemented carbide cutting tool and method for manufacturing the same | |
JPWO2008026700A1 (en) | Cutting tool, manufacturing method thereof and cutting method | |
JP6399349B2 (en) | Diamond coated cemented carbide cutting tool | |
JP5282911B2 (en) | Diamond coated cutting tool | |
JP5573635B2 (en) | Diamond coated cutting tool | |
JP5488873B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP6489505B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP6195068B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP2017064840A (en) | Diamond-coated cutting tool made of cemented carbide | |
JP6171525B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP5850396B2 (en) | Diamond coated cemented carbide cutting tool with excellent toughness and wear resistance | |
JP5499771B2 (en) | Diamond coated cutting tool | |
JP5590326B2 (en) | Diamond-coated cemented carbide drill | |
JP5861982B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting | |
JP6102613B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP5397689B2 (en) | Diamond coated cutting tool | |
JP5187572B2 (en) | Diamond coated cemented carbide cutting tool | |
JP5459504B2 (en) | Diamond coated cutting tool | |
JP5838858B2 (en) | Diamond coated cemented carbide drill with excellent wear resistance | |
JP6040698B2 (en) | Diamond-coated cemented carbide drill | |
JP5569740B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP5477781B2 (en) | Diamond coated cutting tool | |
JP5287413B2 (en) | Diamond coated cutting tool | |
JP2017024138A (en) | Surface-coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120703 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20120703 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130514 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5282911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |