JP2008238281A - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP2008238281A
JP2008238281A JP2007078325A JP2007078325A JP2008238281A JP 2008238281 A JP2008238281 A JP 2008238281A JP 2007078325 A JP2007078325 A JP 2007078325A JP 2007078325 A JP2007078325 A JP 2007078325A JP 2008238281 A JP2008238281 A JP 2008238281A
Authority
JP
Japan
Prior art keywords
film
boride
hardness
value
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078325A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2007078325A priority Critical patent/JP2008238281A/en
Publication of JP2008238281A publication Critical patent/JP2008238281A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a performance of high hardness of a boride coating without sacrificing a tight-contact characteristic of the coating by controlling a maximum diffraction intensity of X-ray diffraction. <P>SOLUTION: In this coated tool, a boride coating made of one or more kinds of metal elements selected from Al, Si, Cr, W, Ti, Nb and Zr is coated on a substrate surface. The boride coating has a hexagonal crystal structure, and has a maximum diffraction intensity in X-ray diffraction on a (001) face, and a residual compression stress is 0.1 GPa or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、皮膜の密着特性を犠牲にすることなく、硼化物皮膜の高硬度化への性能改善に関する。   The present invention relates to a performance improvement for increasing the hardness of a boride film without sacrificing the adhesion properties of the film.

硼化物皮膜に関する技術は、特許文献1、2、非特許文献3に開示されている。   Techniques relating to the boride film are disclosed in Patent Documents 1 and 2 and Non-Patent Document 3.

特開2006−26833号公報JP 2006-26833 A 特開2002−263913号公報JP 2002-263913 A N.Panich, Y.Sun, Thin Solid Films,500(2006)190−196N. Panich, Y.M. Sun, Thin Solid Films, 500 (2006) 190-196

本願発明の目的は、X線回折による最強回折強度を制御して、皮膜の密着特性を犠牲にすることなく、硼化物皮膜の高硬度化への性能改善をすることである。   An object of the present invention is to control the strongest diffraction intensity by X-ray diffraction and improve the performance of the boride film to increase the hardness without sacrificing the adhesion characteristics of the film.

本願発明は、基体表面にAl、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の金属元素からなる硼化物皮膜を被覆した被覆工具において、該硼化物皮膜は六方晶の結晶構造を有し、X線回折において最強回折強度を(001)面に有し、残留圧縮応力が0.1GPa以上であること、を特徴とする被覆工具である。上記の構成を採用して、X線回折による最強回折強度を制御することによって、皮膜の密着特性を犠牲にすることなく、硼化物皮膜の高硬度化への性能改善をすることができた。   The present invention relates to a coated tool in which a boride film made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr is coated on the surface of a substrate. A coated tool characterized by having a crystal structure, having the strongest diffraction intensity in the (001) plane in X-ray diffraction, and having a residual compressive stress of 0.1 GPa or more. By adopting the above configuration and controlling the strongest diffraction intensity by X-ray diffraction, it was possible to improve the performance of increasing the hardness of the boride film without sacrificing the adhesion characteristics of the film.

本願発明の被覆工具において、硼化物皮膜のX線回折における(001)面の回折強度をI(001)、(111)の回折強度をI(111)とし、I(001)/I(111)をIa値としたとき、7≦Ia≦25であること、また、(101)の回折強度をI(101)とし、I(101)/I(111)をIb値としたとき、0.1≦Ib≦1であることが好ましい。更に、硼化物皮膜のX線回折における(001)面の半価幅Hw値が、0.6≦Hw≦1.1であること、I(001)>I(111)>I(101)であることが好ましい。   In the coated tool of the present invention, the diffraction intensity of the (001) plane in the X-ray diffraction of the boride film is I (001), the diffraction intensity of (111) is I (111), and I (001) / I (111) When I is the Ia value, 7 ≦ Ia ≦ 25, and when the diffraction intensity of (101) is I (101) and I (101) / I (111) is the Ib value, 0.1 It is preferable that ≦ Ib ≦ 1. Further, the half width Hw value of the (001) plane in the X-ray diffraction of the boride film is 0.6 ≦ Hw ≦ 1.1, and I (001)> I (111)> I (101) Preferably there is.

本願発明の硼化物皮膜を被覆した被覆工具は、X線回折による最強回折強度を制御して、皮膜の密着特性を犠牲にすることなく、硼化物皮膜の高硬度化への性能改善をすることができる。   The coated tool coated with the boride film of the present invention controls the strongest diffraction intensity by X-ray diffraction, and improves the performance to increase the hardness of the boride film without sacrificing the adhesion characteristics of the film. Can do.

本願発明は、工具基体に被覆する硼化物皮膜の結晶配向性から、X線回折による最強回折強度を制御することにより、皮膜の密着特性を犠牲にすることなく、安定して高い残留圧縮応力を有する硼化物皮膜を被覆することである。その結果、工具の耐摩耗性を飛躍的に改善した。本願発明は、Al、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の金属元素からなる硼化物皮膜であり、六方晶の結晶構造を有する。これらの金属元素は硼化物皮膜を高硬度化させるのに有効な元素であり、特に、Si、W、Tiは皮膜の高硬度化に有効である。Ti硼化物が最も高硬度であるが、耐酸化性に乏しい傾向にあるため、(Ti、Al)B2、(Ti、Cr)B2等、複合添加することが有効である。硼化物皮膜は複合硼化物であることが有効な形態である。そのほか、硼化物皮膜は、潤滑特性にも優れることから、被覆工具の耐摩耗性を改善できる。Ti、Zrの硼化物皮膜は、切削温度に相当する800から1000℃程度の高温域において、従来の窒化物皮膜や炭化物皮膜に比べて高い熱伝導性を有することから、切削時の発熱を面内方向に逃がして溶着や刃先変形等の回避にも有効である。Al、Nb、Cr、Zrは耐酸化性の改善し、Wは潤滑性の改善に有効である。Al、Wは、例えば超硬合金を基材とした場合、基材からのCo拡散の防止に有効である。また、六方晶の結晶構造を有する硼化物皮膜の最強回折強度を(001)面に制御することによって、高硬度化を図ることができる。X線回折において、最強回折強度を(001)面に制御することにより、皮膜が高硬度化する理由は、次のように考えられる。一般的に六方晶の結晶構造は、金属原子で構成される三角柱の中心に硼素原子が位置し、これら金属原子が形成する層と硼素原子が形成する層が交互に積み重なった結晶構造であり、これらの層間の結合力が比較的弱い。そこで本願発明では、硼化物皮膜が層方向に優先的に成長するように制御することにより、硼化物皮膜の著しい高硬度化を達成したものと考えられる。最強回折強度を(001)面に制御することは、(001)面と皮膜硬さの測定圧子の進入方向とを略垂直になるように制御することであり、これによって(001)面の特性である硬さを効果的に活用することができる。一方、六方晶のすべり面である(001)面が測定圧子の進入する方向と略45度傾いていると、最強回折強度は(001)面とはならず、最大せん断応力をうけ、高硬度化を図ることは困難である。本願発明における各指数付けは、JCPDSカードにより決定した。(111)面と(102)面の面間隔は夫々、0.13717nm、0.13751nmと極めて近い値であり、分離することが困難であるため、本願発明では理論強度がやや高い(111)面とした。
本願発明では、例えば、物理蒸着(以下、PVDと記す。)法により、硼化物皮膜の結晶配向性を制御し、X線回折による最強回折強度を与える面も制御することができる。本願発明の硼化物皮膜の硬さは45〜75GPaを達成することが可能である。硼化物皮膜の硬Xが45GPa未満の場合、耐摩耗性が低下する傾向にある。75GPaを超えると残留圧縮応力が高くなり過ぎて密着強度が低下し、皮膜が剥離しやすくなる。その結果、工具の摩耗が増加する傾向にある。特に硬さが65〜73GPaのとき、残留圧縮応力と皮膜硬さのバランスが最適であり、密着強度に優れ、同時に耐摩耗性にも優れる。ここで、硬さ測定は、ナノインデンテーション法で測定することができる。本願発明の残留圧縮応力が0.1GPa以上である。この理由は、結晶配向性を制御し、皮膜の密着特性を犠牲にすることなく皮膜の高硬度化をはかるためである。
In the present invention, by controlling the strongest diffraction intensity by X-ray diffraction from the crystal orientation of the boride film coated on the tool base, a stable high residual compressive stress can be obtained without sacrificing the adhesion characteristics of the film. It is to coat the boride film having. As a result, the wear resistance of the tool has been dramatically improved. The present invention is a boride film made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr, and has a hexagonal crystal structure. These metal elements are effective elements for increasing the hardness of the boride film. In particular, Si, W, and Ti are effective for increasing the hardness of the film. Ti boride has the highest hardness, but tends to have poor oxidation resistance. Therefore, it is effective to add (Ti, Al) B2, (Ti, Cr) B2, etc. in combination. It is an effective form that the boride film is a composite boride. In addition, since the boride film has excellent lubrication characteristics, the wear resistance of the coated tool can be improved. Ti and Zr boride coatings have higher thermal conductivity than conventional nitride coatings and carbide coatings in the high temperature range of about 800 to 1000 ° C. corresponding to the cutting temperature. It is also effective for avoiding welding, cutting edge deformation, etc. by escaping inward. Al, Nb, Cr, and Zr improve oxidation resistance, and W is effective in improving lubricity. For example, when a cemented carbide is used as the base material, Al and W are effective in preventing Co diffusion from the base material. Further, the hardness can be increased by controlling the strongest diffraction intensity of the boride film having a hexagonal crystal structure to the (001) plane. In X-ray diffraction, the reason why the film is hardened by controlling the strongest diffraction intensity to the (001) plane is considered as follows. In general, the hexagonal crystal structure is a crystal structure in which a boron atom is located at the center of a triangular prism composed of metal atoms, and layers formed by these metal atoms and layers formed by boron atoms are alternately stacked. The bonding strength between these layers is relatively weak. Therefore, in the present invention, it is considered that the boride film is remarkably increased in hardness by controlling the boride film to grow preferentially in the layer direction. Controlling the strongest diffraction intensity to the (001) plane is to control the (001) plane and the approaching direction of the coating hardness measurement indenter to be substantially perpendicular, and thereby the characteristics of the (001) plane. The hardness which is can be utilized effectively. On the other hand, when the (001) plane, which is a hexagonal slip plane, is tilted by about 45 degrees from the direction in which the measurement indenter enters, the strongest diffraction intensity does not become the (001) plane, and is subjected to the maximum shear stress and has high hardness. It is difficult to make it easier. Each indexing in the present invention was determined by a JCPDS card. The distance between the (111) plane and the (102) plane is extremely close to 0.13717 nm and 0.13751 nm, respectively, and it is difficult to separate them. Therefore, in the present invention, the theoretical intensity is slightly high (111) plane. It was.
In the present invention, for example, the crystal orientation of the boride film can be controlled by the physical vapor deposition (hereinafter referred to as PVD) method, and the surface giving the strongest diffraction intensity by X-ray diffraction can also be controlled. The boride film of the present invention can achieve a hardness of 45 to 75 GPa. When the hardness X of the boride film is less than 45 GPa, the wear resistance tends to decrease. If it exceeds 75 GPa, the residual compressive stress becomes too high, the adhesion strength is lowered, and the film is easily peeled off. As a result, tool wear tends to increase. In particular, when the hardness is 65 to 73 GPa, the balance between the residual compressive stress and the film hardness is optimal, and the adhesion strength is excellent, and at the same time, the wear resistance is also excellent. Here, the hardness can be measured by a nanoindentation method. The residual compressive stress of the present invention is 0.1 GPa or more. The reason for this is to control the crystal orientation and to increase the hardness of the film without sacrificing the adhesion properties of the film.

本願発明のIa値F、7≦Ia≦25、であることが好ましい。その理由は、Ia値が7〜25である場合、残留圧縮応力が高くなり、耐摩耗性に優れる。Ia値が7未満の場合は、硼化物皮膜の硬さが十分ではなく、25を超える場合は残留圧縮応力が高くなり過ぎてしまい、密着強度に乏しく剥離が生じ易い傾向にある。Ib値が0.1≦Ib≦1、であることが好ましい。その理由は、Ib値が0.1未満の場合は皮膜内に残留する圧縮応力が高く密着性が低下する傾向にあり、1を超える場合は、結晶性が低下し、皮膜の硬さが低下する傾向にある。Hw値が、0.6≦Hw≦1.1、であることが好ましい。本願発明の硼化物皮膜は、I(001)>I(111)>I(101)であることによって硼化物皮膜の高硬度化に有効であり、好ましい。   The Ia value F of the present invention is preferably 7 ≦ Ia ≦ 25. The reason is that when the Ia value is 7 to 25, the residual compressive stress is high and the wear resistance is excellent. When the Ia value is less than 7, the hardness of the boride film is not sufficient, and when it exceeds 25, the residual compressive stress becomes too high, and the adhesion strength tends to be poor and peeling tends to occur. The Ib value is preferably 0.1 ≦ Ib ≦ 1. The reason for this is that when the Ib value is less than 0.1, the compressive stress remaining in the film tends to be high and the adhesion tends to decrease, and when it exceeds 1, the crystallinity decreases and the hardness of the film decreases. Tend to. The Hw value is preferably 0.6 ≦ Hw ≦ 1.1. The boride film of the present invention is preferable because I (001)> I (111)> I (101) is effective in increasing the hardness of the boride film.

本願発明は、単一層でも優れた耐摩耗性と潤滑特性を有する。硼化物皮膜と窒化物、炭化物を2層以上交互に積層することにより、耐酸化性を改善する他、硼化物皮膜の特性を効果的に発揮することができるため、好ましい。交互に積層する場合は、数nmの厚さで交互に積層しても良い。窒化物皮膜を硼化物皮膜と基材との界面に被覆することにより、基材との密着強度を向上させることができ好ましい。炭化物皮膜の場合は、特に潤滑性改善に有効であることから好ましい。本願発明の硼化物皮膜の表面に存在するマクロパーティクルの面積率が5%以下であることによって、工具の耐凝着性を低下させ、好ましい。PVD法の中でもスパッタリング法により、マクロパーティクルの存在比率を1%以下とすることができる。被覆処理後、皮膜表面に付着したマクロパーティクルを機械的に除去することにより、マクロパーティクルの面積率を低下させることができる。ここでいうマクロパーティクルは、皮膜表面に対して凸形状を有する付着粒子であり、その核は金属成分が主体である。マクロパーティクルの面積率は、走査型電子顕微鏡により倍率3k倍で撮影し、凸形状のマクロパーティクルの面積を画像解析処理により定量することができる。本願発明の硼化物皮膜は、Ar、Krを5原子%未満含有することが好ましい。Ar、Krを含有させることにより、被覆時のボンバードメント効果が向上し、皮膜の硬さ向上及び皮膜表面がより平滑になり、工具の耐摩耗性、耐凝着性を改善することができる。Ar、Krが結晶粒界に介在することにより、皮膜の硬さを低下させることなく、残留圧縮応力が緩和される傾向にありことから、チッピングが減少する。Ar、Krの含有量が5%を超えて多く含むと、皮膜硬さが大幅に低下し、耐摩耗性が低下する。更に高温環境下で皮膜外へ抜け出し、酸素の拡散を助長し、耐酸化性が低下する。特にAr、Kr含有量は0.01〜0.8%が好ましい。Ar、Krの存在、及び定量は、電子プローブマイクロアナライザー分析、オージェ電子分光分析により分析することができる。   The present invention has excellent wear resistance and lubrication characteristics even with a single layer. By laminating two or more layers of a boride film, nitride, and carbide, the oxidation resistance is improved and the characteristics of the boride film can be exhibited effectively, which is preferable. When the layers are alternately stacked, the layers may be alternately stacked with a thickness of several nm. By coating the nitride film on the interface between the boride film and the substrate, the adhesion strength with the substrate can be improved, which is preferable. A carbide film is preferable because it is particularly effective for improving lubricity. The area ratio of the macroparticles present on the surface of the boride coating of the present invention is preferably 5% or less, which is preferable because the adhesion resistance of the tool is lowered. Among PVD methods, the abundance ratio of macro particles can be reduced to 1% or less by sputtering. After the coating treatment, the macroparticles adhering to the coating surface are mechanically removed, whereby the area ratio of the macroparticles can be reduced. The macro particles here are attached particles having a convex shape with respect to the coating surface, and the core is mainly composed of a metal component. The area ratio of macro particles can be photographed with a scanning electron microscope at a magnification of 3k, and the area of convex macro particles can be quantified by image analysis processing. The boride film of the present invention preferably contains less than 5 atomic% of Ar and Kr. By containing Ar and Kr, the bombardment effect at the time of coating is improved, the hardness of the coating is improved and the coating surface becomes smoother, and the wear resistance and adhesion resistance of the tool can be improved. Since Ar and Kr are present in the crystal grain boundaries, the residual compressive stress tends to be relaxed without reducing the hardness of the film, so that chipping is reduced. If the contents of Ar and Kr are more than 5%, the hardness of the film is greatly lowered and the wear resistance is lowered. Furthermore, it escapes out of the film under a high temperature environment, promotes oxygen diffusion, and decreases oxidation resistance. In particular, the content of Ar and Kr is preferably 0.01 to 0.8%. The presence and quantification of Ar and Kr can be analyzed by electron probe microanalyzer analysis and Auger electron spectroscopy analysis.

本願発明の硼化物皮膜被覆した工具は、長寿命化がはかれる。工具基材は、超硬合金、サーメット、高速度鋼、立方晶窒化硼素焼結体、ダイス鋼等が好ましい。工具としては、例えばエンドミル、ドリル、リーマ、タップ、ブローチ、ホブ、カッター、小径ドリル、ルーター、インサート等の切削工具、金型、パンチ等が挙げられる。本願発明は、基材との密着強度に特に優れ、工具の寿命延長に効果が有る。超硬合金は、Co含有量3〜12重量%未満からなる。3%未満では、突発的なチッピングや切れ刃の欠損が生じる場合がある。一方、12%を超えると、被覆効果が薄れ好ましくない。以下、本願発明を実施例に基づいて説明する。   The tool coated with the boride film of the present invention has a long life. The tool base is preferably cemented carbide, cermet, high speed steel, cubic boron nitride sintered body, die steel or the like. Examples of the tool include an end mill, a drill, a reamer, a tap, a broach, a hob, a cutter, a small diameter drill, a cutting tool such as a router, an insert, a die, a punch, and the like. The present invention is particularly excellent in adhesion strength with the base material, and is effective in extending the tool life. The cemented carbide has a Co content of less than 3 to 12% by weight. If it is less than 3%, sudden chipping or chipping of the cutting edge may occur. On the other hand, if it exceeds 12%, the covering effect is not preferred. Hereinafter, the present invention will be described based on examples.

(実施例1)
本願発明は、工具基材にバイアス電圧を印加するPVD法を採用し、成膜時のイオン化率を高めながら、皮膜の結晶配向性を制御することにより、安定して高硬度な硼化物皮膜を被覆することができる。この点でスパッタリング法による被覆方法が好ましいが、アーク放電式イオンプレーティング(以下、AIPと記す。)法を併用して積層被覆することができる。スパッタリング法では、直流電源を使用して、安定した特性を有する硼化物皮膜を被覆することが出来る。スパッタ電源、バイアス電源には、直流電源、高周波電源、パルス電源から選択し、組み合わせて使用することができる。またイオン化を促進するために電極を基材近傍に配置することにより、各元素のイオン化が更に促進され、皮膜の結晶性を制御することができ好ましい。特に、成膜は、真空容器内に独立したアノードを設け、被覆することが好ましい。通常の成膜装置は、真空容器壁をアノードとしている。本願は特別に蒸発源と対向する位置に独立したアノードを設けて電子の移動距離を長くした。その結果、プラズマの活性度が高まり、硼化物皮膜の結晶性が向上し、皮膜がより高硬度化することができた。本願発明の硼化物皮膜を被覆した成膜装置を図1、2に示す。成膜装置はスパッタリング蒸発源3、4、5の3基を搭載した製膜装置であり、スパッタリング蒸発源4とアノード7には、電源6が接続され、夫々対向した位置に設置されている。また、図中には示していないが蒸発源3、5も同様に夫々別の電源に接続されている。真空容器1は、ターボ分子ポンプ、ロータリーポンプにより排気され、Arはガス供給ポート10より導入される。蒸発源4に、硼化物ターゲットを装填した。バイアス電源8は基材2に接続され、独立して基材に負のバイアス電圧を印加する。基材2は、毎分1回転し、基材2には固定冶具とサンプルホルダーが設置され、自公転する。基材2と蒸発源3、4、5に設置したターゲット表面との距離は50mmとした。皮膜の特性評価用試料は、鏡面加工を施したCo含有量10重量%の超微粒子超硬合金製SNMN432形状の試験片を準備した。また、工具試料は、Co含有量8重量%の超微粒子超硬合金製の4枚刃スクエアエンドミル、2枚刃ボールエンドミルとし、夫々脱脂洗浄を十分に実施して真空容器に設置した。被覆条件は、ヒーター加熱で基材温度を500℃、排気9を行い容器内圧力が4×10−3Paに達した後、Arガスを真空容器内に導入し、基材2に−400Vのバイアス電圧を印加してイオンによる基材のクリーニングを30分間実施した。次に、蒸発源4がカソード、電極7がアノードとなるよう電源6から電力を供給し、放電を開始した。カソード電力は4kWに設定した。同時に基材2にバイアス電圧を印加して硼化物皮膜を略2μm被覆した。本願発明の硼化物皮膜の各種特性を評価するために、硼化物ターゲット組成、バイアス電圧、成膜温度、Ar流量、アノード設置有無、を夫々変更した。冷却後、試料取り出して各種評価を実施した。表1に成膜パラメータを示す。
Example 1
The present invention employs a PVD method in which a bias voltage is applied to a tool substrate, and controls the crystal orientation of the film while increasing the ionization rate during film formation, thereby stably forming a high hardness boride film. Can be coated. In this respect, a coating method by a sputtering method is preferable, but an arc discharge ion plating (hereinafter, referred to as AIP) method can be used in combination for a multilayer coating. In the sputtering method, a boride film having stable characteristics can be coated using a direct current power source. A sputtering power source and a bias power source can be selected from a DC power source, a high frequency power source, and a pulse power source and used in combination. Further, it is preferable to dispose the electrode in the vicinity of the base material in order to promote ionization, whereby the ionization of each element is further promoted and the crystallinity of the film can be controlled. In particular, the film formation is preferably performed by providing an independent anode in a vacuum vessel. A normal film forming apparatus uses a vacuum vessel wall as an anode. In the present application, an independent anode is provided at a position opposite to the evaporation source to increase the electron movement distance. As a result, the plasma activity was increased, the crystallinity of the boride film was improved, and the film could be hardened. 1 and 2 show a film forming apparatus coated with the boride film of the present invention. The film forming apparatus is a film forming apparatus on which three sputtering evaporation sources 3, 4, and 5 are mounted. A power source 6 is connected to the sputtering evaporation source 4 and the anode 7, and they are installed at positions facing each other. Although not shown in the drawing, the evaporation sources 3 and 5 are also connected to different power sources in the same manner. The vacuum vessel 1 is evacuated by a turbo molecular pump and a rotary pump, and Ar is introduced from a gas supply port 10. The evaporation source 4 was loaded with a boride target. The bias power source 8 is connected to the base material 2 and independently applies a negative bias voltage to the base material. The base material 2 rotates once per minute, and a fixing jig and a sample holder are installed on the base material 2 and revolves and revolves. The distance between the substrate 2 and the target surface placed on the evaporation sources 3, 4, 5 was 50 mm. As a sample for evaluating the characteristics of the coating, a test piece having an SNMN432 shape made of ultrafine cemented carbide with a Co content of 10% by weight subjected to mirror finishing was prepared. The tool sample was a four-blade square end mill and a two-blade ball end mill made of ultrafine cemented carbide with a Co content of 8% by weight, each of which was thoroughly degreased and placed in a vacuum vessel. The coating conditions were as follows: the substrate temperature was 500 ° C. by heating the heater, the exhaust 9 was performed and the internal pressure of the container reached 4 × 10 −3 Pa. Then, Ar gas was introduced into the vacuum container, and a bias of −400 V was applied to the base 2 The substrate was cleaned with ions by applying a voltage for 30 minutes. Next, electric power was supplied from the power source 6 so that the evaporation source 4 was a cathode and the electrode 7 was an anode, and discharging was started. The cathode power was set to 4 kW. At the same time, a bias voltage was applied to the substrate 2 to coat the boride film with about 2 μm. In order to evaluate the various characteristics of the boride film of the present invention, the boride target composition, bias voltage, film forming temperature, Ar flow rate, and presence / absence of anode installation were changed. After cooling, the sample was taken out and subjected to various evaluations. Table 1 shows film formation parameters.

Figure 2008238281
Figure 2008238281

皮膜硬さの測定には、エリオニクス製のナノインデンテーション装置を用いた。試験片を5度傾けて、鏡面研磨後、皮膜の研磨面内で最大押し込み深さが膜厚の略1/10未満となる領域を選定した。このとき略1/5でも基材の影響はなかった。押込み荷重49mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、その平均値を求めた。本測定方法における皮膜硬さは、圧子の微細形状、測定時の温度、湿度、試料の表面状態に左右され易く、得られる数値は必ずしもビッカース硬さと一致しない。そこで、単結晶Siを同時に測定した。そのときの単結晶Siの皮膜硬さが15GPaであった。そこで測定結果をもとに相対比較することが出来る。次に、硼化物皮膜の摩擦摩耗特性を測定した。評価条件は、ボールオンディスク型の摩耗試験機を用い、荷重5N、回転半径3mm、回転速度を3cm/秒、ディスクを被覆基材、ボールを直径6mmのSUJ2とし、摩擦係数測定、また鉄の付着状態、皮膜の摩擦を測定した。更に、硼化物皮膜の密着性を評価した。被覆表面からロックウェルCスケールで圧痕つけ、圧痕周辺部の剥離状態を光学顕微鏡で観察した。剥離が観察できなかったものをA、圧痕周辺全体に剥離が観察されたものをCとし、その中間の剥離状態をBとした。これらの評価結果を表1に併記した。硼化物皮膜のX線回折による評価を行った。リガク社製X線回折装置を用い、管電圧120kV、管電流40μm、X線源Cukα、X線入射角5度、X線入射スリット0.4mm、2θを20〜90度とした。結晶構造を決定し、(001)、(101)、(002)の回折強度の和を基準とした時の回折強度比率、Ia値、Ib値、Hw値を夫々測定した。結果を表2に示す。硼化物皮膜の残留応力の測定は、X線回折の並傾法を用いて行った。測定結果、本発明例は何れの皮膜も残留圧縮応力が0.1GPa以上であった。   For measuring the film hardness, an Elionix nanoindentation apparatus was used. The specimen was tilted 5 degrees, and after mirror polishing, a region where the maximum indentation depth was less than about 1/10 of the film thickness was selected within the polished surface of the film. At this time, there was no influence of the substrate even at about 1/5. Ten points were measured under the measurement conditions of an indentation load of 49 mN, a maximum load holding time of 1 second, and a removal speed after loading of 0.49 mN / second, and the average value was obtained. The film hardness in this measurement method is easily influenced by the fine shape of the indenter, the temperature and humidity at the time of measurement, and the surface state of the sample, and the obtained numerical values do not necessarily match the Vickers hardness. Therefore, single crystal Si was measured simultaneously. The film hardness of the single crystal Si at that time was 15 GPa. Therefore, a relative comparison can be made based on the measurement results. Next, the friction and wear characteristics of the boride film were measured. The evaluation conditions were ball-on-disk type wear tester, load 5N, rotation radius 3mm, rotation speed 3cm / sec, disk coated substrate, ball 6mm diameter SUJ2, friction coefficient measurement, and iron The adhesion state and the friction of the film were measured. Furthermore, the adhesion of the boride film was evaluated. Indentation was made from the coated surface with Rockwell C scale, and the peeled state around the indentation was observed with an optical microscope. The case where peeling was not observed was A, the case where peeling was observed around the entire indentation was C, and the intermediate peeling state was B. These evaluation results are also shown in Table 1. The boride film was evaluated by X-ray diffraction. Using an X-ray diffractometer manufactured by Rigaku Corporation, the tube voltage was 120 kV, the tube current was 40 μm, the X-ray source Cukα, the X-ray incident angle was 5 degrees, the X-ray incident slit was 0.4 mm, and 2θ was 20 to 90 degrees. The crystal structure was determined, and the diffraction intensity ratio, Ia value, Ib value, and Hw value with respect to the sum of the diffraction intensity of (001), (101), and (002) were measured. The results are shown in Table 2. The residual stress of the boride film was measured using the X-ray diffraction parallel tilt method. As a result of the measurement, the residual compressive stress was 0.1 GPa or more in any of the films of the present invention.

Figure 2008238281
Figure 2008238281

表1、2より、最強回折強度を(001)面に有する本発明例は、硬さが47〜75GPaと高硬度を示した。一般的にチタン硼化物は(101)に最大強度を示し、30〜40GPa程度の硬さである。図3に本発明例1のX線回折結果を示すが、最強回折強度を(001)面に有していた。本発明例1は、スパッタリング蒸発源及びガスから放出した電子が対面に設置されたアノードに捕獲され、プラズマがより活性化された結果、比較例2に比べて、(001)面に強く配向した結晶性高い硼化物皮膜が成膜された。硼化物皮膜の硬さは72GPaに達し、高硬度なチタン硼化物皮膜が得られた。最強回折強度を(001)面に有することについて、I(001)/{I(001)+I(101)+I(111)}をIc値とし、このIc値を指標として考察した。即ち、Ic値が50%を超える場合、最強回折強度を(001)面に有する硼化物皮膜と考えることができる。図4より、Ic値が50%を超える場合、高硬度であることがわかった。更に、I(001)>I(111)>I(101)の関係を満足することにより、より優れた皮膜特性を有し、好ましい形態であった。
表1より、本発明例1〜4は、摩擦係数が0.24〜0.37と低い値を示した。本発明例1、3、4は、試験後の皮膜表面に付着した溶着物も目視では殆ど確認できず、試験後の皮膜表面のデプスプロフィルから摩耗による損傷も殆ど確認できなった。但し、本発明例2は、摩擦摩耗試験後、ディスクの摩耗の進行が早かった。一方、最強回折強度を(101)面に有する比較例17は、アノード電極の無い条件としたため、電子が真空容器壁に捕獲された。これより電子の飛行距離が格段に短く、プラズマの活性度が低くなり、皮膜硬さは33GPaと低い値を示した。摩擦係数は0.62であり、硼化物皮膜の摩耗進行が早かった。本発明例1と比較例17では、結晶配向性が異なり、硼化物皮膜の成長そのものが異なった。比較例21は、成膜後真空容器から取り出した段階で、層状に硼化物皮膜が剥離しており、密着強度が極めて低かった。図5にIa値と皮膜硬さの関係を示した。Ia値が7≦Ia≦25、において、高硬度な硼化物皮膜が得られ好ましい形態であった。図6にIb値と皮膜硬さの関係を示したが、0.1≦Ib≦1、の範囲において、高硬度な硼化物皮膜が得られ好ましい形態であった。図7にHw値と皮膜硬さとの関係を示した。0.6≦Hw≦1.1、の範囲において、高硬度な硼化物皮膜が得られ好ましい形態であった。また高い密着性、低摩擦係数を有していた。本発明例1と同一成膜パラメータを用いて、ターゲット材をクロム硼化物、アルミ硼化物、ジルコニウム硼化物、ニオブ硼化物、タングステン硼化物へ変更し、本発明例12から16を作成し、同様な評価を実施した。評価結果を表1、2に示した。同一成膜条件下では、チタン硼化物が最も高硬度であり、次いでクロム硼化物、ジルコニウム硼化物、アルミ硼化物の順であった。摩擦係数は、クロム硼化物、アルミ硼化物、ニオブ硼化物が比較的低い値を示した。これらは比較例17と比較しても、高硬度、低摩擦係数を示し、チタン硼化物と同様に優れた機械的特性を示した。
成膜パラメータのひとつであるバイアス電圧が、バイアス電圧が−80〜−140Vでは、最強回折強度を(001)面に有し、−100〜−140Vの本発明例は、硬さが高くなり好ましい形態であった。一方、−20〜−60Vでは、最強回折強度を(101)面に有した。成膜温度について、成膜時のヒーター電力値を指標にして考察した。ヒーター電力が10kWの状態で、基材の温度は500〜600℃の範囲であることから、蒸着源の対面にアノードを設置した状態で、ヒーター電力値を変化させたが、最強回折強度には影響が小さく、面指数は変わらなかった。しかし、成膜温度が高い程、即ちヒーター電力が高い程、硼化物皮膜は高硬度となる傾向を示した。特に、ヒーター電力が5kWの本発明例6、10kWの本発明例1は、ヒーター加熱を供給しない本発明例5よりも硬さが高く、より好ましかった。Ar流量が100〜600sccmの条件では、高硬度の皮膜が得られた。Ar流量が増加する程、高硬度となり、摩擦係数も低下する傾向にあった。Ar流量が300〜600sccmの本発明例1、9〜11は高硬度であり、好ましい被覆条件であった。Ar流量が500sccmの時、真空容器内の圧力は略0.5Paであった。一方、比較例22は、Ar流量が50sccmと最も少ない場合であるが、X線回折結果から結晶性が悪く、多数の回折ピークが認められ、結晶構造を同定することができなかった。
From Tables 1 and 2, the examples of the present invention having the strongest diffraction intensity on the (001) plane showed a hardness of 47 to 75 GPa and a high hardness. In general, titanium boride has a maximum strength at (101) and a hardness of about 30 to 40 GPa. FIG. 3 shows the result of X-ray diffraction of Example 1 of the present invention, which had the strongest diffraction intensity on the (001) plane. In Example 1 of the present invention, electrons emitted from the sputtering evaporation source and the gas were captured by the anode placed on the opposite side, and the plasma was more activated. As a result, it was strongly oriented in the (001) plane as compared with Comparative Example 2. A boride film with high crystallinity was formed. The hardness of the boride film reached 72 GPa, and a high hardness titanium boride film was obtained. Regarding having the strongest diffraction intensity in the (001) plane, I (001) / {I (001) + I (101) + I (111)} was taken as an Ic value, and this Ic value was considered as an index. That is, when the Ic value exceeds 50%, it can be considered as a boride film having the strongest diffraction intensity on the (001) plane. FIG. 4 shows that when the Ic value exceeds 50%, the hardness is high. Furthermore, by satisfying the relationship of I (001)> I (111)> I (101), the film had more excellent film properties and was a preferred form.
From Table 1, Examples 1-4 of this invention showed a low value with a friction coefficient of 0.24-0.37. In Examples 1, 3, and 4 of the present invention, almost no deposits adhered to the surface of the film after the test could be visually confirmed, and damage due to abrasion could hardly be confirmed from the depth profile of the surface of the film after the test. However, in Example 2 of the present invention, the wear of the disk progressed rapidly after the frictional wear test. On the other hand, in Comparative Example 17 having the strongest diffraction intensity on the (101) plane, the conditions were such that there was no anode electrode, so electrons were trapped on the vacuum vessel wall. As a result, the flight distance of electrons was remarkably short, the plasma activity was low, and the film hardness was as low as 33 GPa. The friction coefficient was 0.62, and the wear of the boride film progressed quickly. Inventive Example 1 and Comparative Example 17 were different in crystal orientation and different in the boride film growth itself. In Comparative Example 21, the boride film was peeled off in a layer form at the stage of removal from the vacuum container after film formation, and the adhesion strength was extremely low. FIG. 5 shows the relationship between the Ia value and the film hardness. When the Ia value was 7 ≦ Ia ≦ 25, a boride film having a high hardness was obtained, which was a preferred form. FIG. 6 shows the relationship between the Ib value and the film hardness. In the range of 0.1 ≦ Ib ≦ 1, a boride film having a high hardness was obtained, which was a preferable embodiment. FIG. 7 shows the relationship between the Hw value and the film hardness. In the range of 0.6 ≦ Hw ≦ 1.1, a boride film having high hardness was obtained, which was a preferred form. Moreover, it had high adhesion and a low coefficient of friction. Using the same film formation parameters as Example 1 of the present invention, the target material was changed to chrome boride, aluminum boride, zirconium boride, niobium boride, and tungsten boride, and Inventive Examples 12 to 16 were prepared. Evaluation was carried out. The evaluation results are shown in Tables 1 and 2. Under the same film forming conditions, titanium boride had the highest hardness, followed by chromium boride, zirconium boride, and aluminum boride in this order. The coefficient of friction was relatively low for chromium boride, aluminum boride and niobium boride. Even when compared with Comparative Example 17, they exhibited high hardness and a low friction coefficient, and exhibited excellent mechanical properties similar to titanium boride.
When the bias voltage, which is one of the deposition parameters, is −80 to −140 V, the strongest diffraction intensity is in the (001) plane, and the present invention example of −100 to −140 V is preferable because the hardness is increased. It was a form. On the other hand, at -20 to -60V, the strongest diffraction intensity was in the (101) plane. The film formation temperature was considered using the heater power value during film formation as an index. Since the temperature of the substrate is in the range of 500 to 600 ° C. with the heater power of 10 kW, the heater power value was changed with the anode placed on the opposite side of the vapor deposition source. The impact was small and the face index did not change. However, the higher the film forming temperature, that is, the higher the heater power, the higher the boride film tends to become harder. In particular, Invention Example 6 having a heater power of 5 kW and Invention Example 1 having a power of 10 kW were more preferable because of higher hardness than Invention Example 5 in which no heater heating was supplied. Under the condition of Ar flow rate of 100 to 600 sccm, a high hardness film was obtained. The higher the Ar flow rate, the higher the hardness and the lower the friction coefficient. Invention Examples 1 and 9 to 11 having an Ar flow rate of 300 to 600 sccm had high hardness and were preferable coating conditions. When the Ar flow rate was 500 sccm, the pressure in the vacuum vessel was about 0.5 Pa. On the other hand, Comparative Example 22 was the case where the Ar flow rate was as low as 50 sccm, but the crystallinity was poor from the X-ray diffraction results, and a number of diffraction peaks were observed, and the crystal structure could not be identified.

(実施例2)
耐摩耗性、耐久性を評価するために、スクエアエンドミルによる工具寿命の評価を、次の試験条件で実施した。
(試験条件)
工具:4枚刃ソリッドスクエアエンドミル、直径10mm
切削方法:側面切削
被削材:ADC12、T6処理
切り込み:軸方向、10mm、径方向、2mm
主軸回転数:10kmin−1
テーブル送り:4m/min
切削油:なし、エアブロー
工具寿命の評価結果は、逃げ面摩耗幅が0.1mmに達した切削長又は著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ、バリ、焼け等の状態に達した切削長を工具寿命とした。10m未満の値は切り捨てて標記した。その評価結果を表2に併記した。
表2より、最強回折強度を(001)面に有する本発明例1〜16は、(101)面に最強回折強度を示す比較例17〜20よりも略1.6倍以上の長い耐久性を有し優れた工具寿命を示した。特に、本発明例1は比較例17の略3倍の工具寿命を示した。結晶構造の配向性の制御を行うことにより、工具寿命が格段に向上する結果が得られた。本発明例の膜硬さが47〜75GPaである場合、特に優れた工具寿命が得られることから、耐摩耗性の改善に特に有効であることが確認できた。本発明例は切削温度に相当する800から1000℃程度の高温域において、従来の窒化物皮膜や炭化物皮膜に比べて、高い熱伝導性を有することから、切削時の発熱を面内方向に逃がして溶着や刃先変形等の回避にも有効となった。鉄系被削材との親和性、耐凝着性、摺動特性などの潤滑性に優れた。
(Example 2)
In order to evaluate the wear resistance and durability, the tool life was evaluated by a square end mill under the following test conditions.
(Test conditions)
Tool: 4-flute solid square end mill, diameter 10mm
Cutting method: Side cutting Work material: ADC12, T6 treatment Cutting: Axial direction, 10 mm, radial direction, 2 mm
Spindle speed: 10kmin-1
Table feed: 4m / min
Cutting oil: None, Air blow The tool life evaluation results are as follows: Cutting length with flank wear width reaching 0.1 mm or extremely unstable machining conditions such as sparking, abnormal noise, flaking of work surface, burr, burn The cutting length that reached the above condition was defined as the tool life. Values less than 10 m were marked off. The evaluation results are also shown in Table 2.
From Table 2, Invention Examples 1 to 16 having the strongest diffraction intensity on the (001) plane have a durability that is approximately 1.6 times longer than Comparative Examples 17 to 20 showing the strongest diffraction intensity on the (101) plane. Has excellent tool life. In particular, Invention Example 1 showed a tool life approximately three times that of Comparative Example 17. By controlling the orientation of the crystal structure, the tool life was significantly improved. When the film hardness of the example of the present invention is 47 to 75 GPa, a particularly excellent tool life can be obtained, so that it was confirmed that the film hardness is particularly effective for improving the wear resistance. Since the present invention has higher thermal conductivity in a high temperature range of about 800 to 1000 ° C. corresponding to the cutting temperature than the conventional nitride film or carbide film, heat generated during cutting is released in the in-plane direction. Therefore, it was effective in avoiding welding and blade edge deformation. Excellent compatibility with iron-based work materials, adhesion resistance, and sliding properties.

図1は、本願発明に使用した成膜装置の正面図を示す。FIG. 1 shows a front view of a film forming apparatus used in the present invention. 図2は、本願発明に使用した成膜装置の上面図を示す。FIG. 2 shows a top view of the film forming apparatus used in the present invention. 図3は、本発明例1のX線回折結果を示す。FIG. 3 shows an X-ray diffraction result of Example 1 of the present invention. 図4は、Ic値と皮膜硬さの関係を示す。FIG. 4 shows the relationship between Ic value and film hardness. 図5は、Ia値と皮膜硬さの関係を示す。FIG. 5 shows the relationship between the Ia value and the film hardness. 図6は、Ib値と皮膜硬さの関係を示す。FIG. 6 shows the relationship between the Ib value and the film hardness. 図7は、Hw値と皮膜硬さの関係を示す。FIG. 7 shows the relationship between the Hw value and the film hardness.

符号の説明Explanation of symbols

1:真空容器
2:基材
3:スパッタリング蒸発源
4:スパッタリング蒸発源
5:スパッタリング蒸発源
6:電源
7:アノード
8:バイアス電源
9:排気ライン
10:ガス供給ポート
1: Vacuum container 2: Base material 3: Sputtering evaporation source 4: Sputtering evaporation source 5: Sputtering evaporation source 6: Power supply 7: Anode 8: Bias power supply 9: Exhaust line 10: Gas supply port

Claims (5)

基体表面にAl、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の金属元素からなる硼化物皮膜を被覆した被覆工具において、該硼化物皮膜は六方晶の結晶構造を有し、X線回折において最強回折強度を(001)面に有し、残留圧縮応力が0.1GPa以上であること、を特徴とする被覆工具。 In a coated tool in which a boride film made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr is coated on a substrate surface, the boride film has a hexagonal crystal structure. A coated tool characterized by having the strongest diffraction intensity in the (001) plane in X-ray diffraction and having a residual compressive stress of 0.1 GPa or more. 請求項1記載の被覆工具において、該硼化物皮膜のX線回折における(001)面の回折強度をI(001)、(111)の回折強度をI(111)とし、I(001)/I(111)をIa値としたとき、7≦Ia≦25であることを特徴とする被覆工具。 The coated tool according to claim 1, wherein the diffraction intensity of the (001) plane in the X-ray diffraction of the boride film is I (001), the diffraction intensity of (111) is I (111), and I (001) / I A coated tool, wherein 7 ≦ Ia ≦ 25, where (111) is an Ia value. 請求項1又は2記載の被覆工具において、該硼化物皮膜のX線回折における(101)の回折強度をI(101)とし、I(101)/I(111)をIb値としたとき、0.1≦Ib≦1であることを特徴とする被覆工具。 3. The coated tool according to claim 1, wherein when the diffraction intensity of (101) in the X-ray diffraction of the boride film is I (101) and I (101) / I (111) is Ib value, 1. A coated tool characterized in that 1 ≦ Ib ≦ 1. 請求項1乃至請求項3の何れかに記載の被覆工具において、該硼化物皮膜のX線回折における(001)面の半価幅Hw値が、0.6≦Hw≦1.1であることを特徴とする被覆工具。 4. The coated tool according to claim 1, wherein the half-value width Hw value of the (001) plane in the X-ray diffraction of the boride film is 0.6 ≦ Hw ≦ 1.1. Coated tool characterized by 請求項1乃至請求項4の何れかに記載の被覆工具において、該硼化物皮膜は、I(001)>I(111)>I(101)であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 4, wherein the boride coating satisfies I (001)> I (111)> I (101).
JP2007078325A 2007-03-26 2007-03-26 Coated tool Pending JP2008238281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078325A JP2008238281A (en) 2007-03-26 2007-03-26 Coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078325A JP2008238281A (en) 2007-03-26 2007-03-26 Coated tool

Publications (1)

Publication Number Publication Date
JP2008238281A true JP2008238281A (en) 2008-10-09

Family

ID=39910236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078325A Pending JP2008238281A (en) 2007-03-26 2007-03-26 Coated tool

Country Status (1)

Country Link
JP (1) JP2008238281A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115704A (en) * 2008-10-15 2010-05-27 Hitachi Metals Ltd Coated metallic mold for plastic processing
CN103212728A (en) * 2012-01-23 2013-07-24 三菱综合材料株式会社 Surface coating cutting tool provided with rigid coating layer with excellent heat resistance and wear resistance
US20130309469A1 (en) * 2011-02-01 2013-11-21 Osg Corporation Hard laminar coating
US20130309467A1 (en) * 2011-02-01 2013-11-21 Osg Corporation Hard laminar coating
US20150037612A1 (en) * 2012-02-27 2015-02-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
US20160002772A1 (en) * 2013-02-21 2016-01-07 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing same
WO2021193445A1 (en) * 2020-03-25 2021-09-30 三菱マテリアル株式会社 Surface-coated cutting tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355704A (en) * 2001-03-28 2002-12-10 Seco Tools Ab Cutting tool insert

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355704A (en) * 2001-03-28 2002-12-10 Seco Tools Ab Cutting tool insert

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115704A (en) * 2008-10-15 2010-05-27 Hitachi Metals Ltd Coated metallic mold for plastic processing
US20130309469A1 (en) * 2011-02-01 2013-11-21 Osg Corporation Hard laminar coating
US20130309467A1 (en) * 2011-02-01 2013-11-21 Osg Corporation Hard laminar coating
US9074279B2 (en) * 2011-02-01 2015-07-07 Osg Corporation Hard laminar coating
US9109280B2 (en) * 2011-02-01 2015-08-18 Osg Corporation Hard laminar coating
CN103212728A (en) * 2012-01-23 2013-07-24 三菱综合材料株式会社 Surface coating cutting tool provided with rigid coating layer with excellent heat resistance and wear resistance
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
US20150037612A1 (en) * 2012-02-27 2015-02-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
US9381575B2 (en) * 2012-02-27 2016-07-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
US20160002772A1 (en) * 2013-02-21 2016-01-07 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing same
US9920423B2 (en) * 2013-02-21 2018-03-20 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing same
WO2021193445A1 (en) * 2020-03-25 2021-09-30 三菱マテリアル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP2018521862A (en) Tool with multilayer arc PVD coating
JP4522285B2 (en) Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating
JP4707541B2 (en) Hard coating coated member
JP2015530270A (en) Tool with TiAlCrSiN coating by PVD
JP2010504439A (en) Workpiece with hard coating
JP4383407B2 (en) Hard coating coated member
CN110691662B (en) Coated cutting tool
JP2008238281A (en) Coated tool
JP4072155B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP7061603B2 (en) Multi-layer hard film coating cutting tool
JPWO2018100849A1 (en) Surface coated cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP3963354B2 (en) Coated cutting tool
JP5261981B2 (en) Coated cutting tool
JP4916021B2 (en) Film
JP2002018606A (en) Coated cutting tool
JP2007084899A (en) Coating member, and method for coating coating member
JP2016185589A (en) Surface-coated cutting tool
JP2012152878A (en) Coating tool having superior wear resistance and slide resistance, and manufacturing method of the same
JP7067689B2 (en) Surface coating cutting tool and its manufacturing method
JP6995202B2 (en) Hard coating and hard coating covering member
WO2019171653A1 (en) Surface-coated cutting tool and method for producing same
JP2007291471A (en) Oxidation-resistant coating film, and member coated by the coating film
WO2019035219A1 (en) Coated cutting tool
JP5681094B2 (en) Laminated hard coating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Effective date: 20101101

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302