WO2021193445A1 - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
WO2021193445A1
WO2021193445A1 PCT/JP2021/011434 JP2021011434W WO2021193445A1 WO 2021193445 A1 WO2021193445 A1 WO 2021193445A1 JP 2021011434 W JP2021011434 W JP 2021011434W WO 2021193445 A1 WO2021193445 A1 WO 2021193445A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tool
cutting
crystal
cutting tool
Prior art date
Application number
PCT/JP2021/011434
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 引田
英彰 高島
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2022510431A priority Critical patent/JPWO2021193445A1/ja
Publication of WO2021193445A1 publication Critical patent/WO2021193445A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool).
  • a coated tool This application claims priority based on Japanese Patent Application No. 2020-55010, which is a Japanese patent application filed on March 25, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
  • a coated tool in which a cemented carbide or the like is used as a tool substrate and a coating layer is formed on the surface of the tool substrate by a vapor deposition method.
  • this covering tool has wear resistance
  • various proposals have been made to further improve the wear resistance, and a coating layer containing boron has also been proposed.
  • Patent Document 1 has a Ti borodate layer having an average layer thickness of 0.5 to 5 ⁇ m on the surface of a tool substrate, and the layer is configured as a composite structure of crystal grain structures having a plurality of average particle sizes.
  • the composite structure has an average particle size of 300, which is composed of an aggregate of primary crystal grains having an average particle size of 10 to 15 nm and a secondary crystal grain having an average particle size of 20 to 70 nm, and an aggregate of the secondary crystal grains.
  • a coating tool composed of tertiary crystal grains having a diameter of about 600 nm has been proposed. It is said that this coating tool can suppress the peeling of the soft coating layer due to welding in high-speed cutting of soft difficult-to-cut materials.
  • Patent Document 2 the chemical bond between the element M (M is one or more elements selected from Ti, W, Zr, Hf, V, Nb, Ta, Mo, and Cr) and B.
  • the present invention has been made in view of the above circumstances and proposals, and in particular, excellent crack resistance and wear resistance can be used for a long period of time even when subjected to high-speed intermittent cutting of Ti-based alloys and austenitic stainless steels.
  • the purpose is to provide a covering tool that can be used for a long time.
  • the high-speed intermittent cutting process for Ti-based alloy refers to a process in which the cutting edge of a cutting tool repeats cutting and idling at a cutting speed faster than 70 m / min, and the high-speed intermittent cutting process for austenite stainless steel is 100 m / min.
  • the surface-coated cutting tool according to the embodiment of the present invention has a tool substrate and a coating layer on the tool substrate.
  • the average layer thickness of the coating layer is 0.5 to 5.0 ⁇ m.
  • the coating layer has a Ti boride layer and
  • the Ti boronized layer has an average composition in which the atomic ratio x satisfies 1.5 ⁇ x ⁇ 3.0 when the composition is represented by the composition formula: TiB x, and further, a crystal having a hexagonal structure. It has a crystalline phase and an amorphous phase formed by grains.
  • the surface coating cutting tool according to the embodiment may satisfy one or more of the following items (1) to (3).
  • the hexagonal crystal grains constituting the crystal phase have an average particle size of 2 to 30 nm, and the area ratio to the Ti boride layer is 50 to 95 area%.
  • the nano-intention hardness of the Ti boride layer is 30 to 50 GPa.
  • the peak intensities of the 001 diffraction line, the 100 diffraction line, and the 101 diffraction line in the X-ray diffraction are set to Ih (001), respectively.
  • Ih (100) and Ih (101) are set, 0.01 ⁇ Ih (001) / ⁇ Ih (001) + Ih (100) + Ih (101) ⁇ ⁇ 0.80 shall be satisfied.
  • the present inventor has recognized the following matters regarding the covering tools described in Patent Documents 1 and 2.
  • Patent Document 1 enables high-speed cutting of soft difficult-to-cut materials such as Al-based alloys.
  • sufficient consideration has not been given to high-speed intermittent cutting of materials such as Ti-based alloys and austenitic stainless steel, which are prone to welding during cutting.
  • Patent Document 2 suppresses the occurrence of welding during cutting of hard-to-cut materials such as Ti-based alloys and high-Si-containing Al—Si alloys, and has peeling resistance and abrasion resistance. However, further improvement in wear resistance is required.
  • the present inventor diligently studied the Ti boride layer as a coating layer. As a result, we obtained a new finding that the wear resistance is improved when the Ti boride layer of the coating layer has a crystalline phase and an amorphous phase.
  • the surface coating cutting tool according to the embodiment of the present invention.
  • the numerical range is expressed as "A to B" (both A and B are numerical values) in the present specification and the claims, the range includes the numerical values of the upper limit (B) and the lower limit (A).
  • the unit of the upper limit (B) and the lower limit (A) is the same.
  • the numerical values include tolerances.
  • the coating layer has a Ti boride layer, and the average layer thickness thereof is preferably 0.5 to 5.0 ⁇ m. The reason is that if the average layer thickness is less than 0.5 ⁇ m, it is difficult to exhibit wear resistance for a long period of time, while if it exceeds 5.0 ⁇ m, chipping is likely to occur. A more preferable range of the average layer thickness is 1.0 to 2.5 ⁇ m.
  • the average layer thickness of the coating layer is measured as follows. For example, using a focused ion beam device (FIB: Focused Ion Beam system), a cross section polisher device (CP: Cross section Policeher), or the like, the coating layer is placed in a vertical cross section at an arbitrary position (ignoring minute irregularities on the surface of the tool substrate). Then, when the surface of the tool substrate is treated as a flat surface, it is cut at a cross section in the direction perpendicular to this surface) to prepare a sample for observation.
  • the vertical cross section can be obtained by observing a plurality of locations (for example, 5 locations) with a scanning electron microscope (SEM) and arithmetically averaging the obtained layer thickness.
  • SEM scanning electron microscope
  • the Ti boride layer preferably has an average composition in which the atomic ratio x satisfies 1.5 ⁇ x ⁇ 3.0 when the composition is represented by the composition formula: TiB x.
  • the reason is that when x is less than 1.5, adhesion wear is likely to proceed at the contact portion between the Ti boride layer and the work material such as Ti-based alloy, while when it exceeds 3.0, Ti boride is likely to proceed. This is because the crystal structure of the above is disturbed and the hardness is reduced.
  • a more preferable range of x is 1.8 to 2.2.
  • the boron content is measured as follows. Using an electron probe microanalyzer (EPMA), electron beams are applied to the surface of the coating layer or five points in the longitudinal section at an arbitrary position of the coating layer. The content of each element is quantified by analyzing the characteristic X-rays corresponding to the elements constituting the coating layer obtained from each location, and the results are arithmetically averaged.
  • EPMA electron probe microanalyzer
  • Crystalline and amorphous phase of Ti boride layer The Ti boride layer preferably has a crystalline phase and an amorphous phase.
  • the preferred reason is not clear, but the presence of the amorphous phase causes boron oxide to be generated on the scraped surface between the Ti boride layer and the Ti-based alloy as the work material during cutting. As a result, it is presumed that solid lubricity is imparted to the Ti boride layer and the wear resistance of the Ti boride layer is improved.
  • the hexagonal crystal grains (hexagonal crystals) constituting the crystal phase are preferably microcrystal grains, and the average particle size is more preferably in the range of 2 to 30 nm.
  • the reason is considered as follows. Since the fracture unit of the coating layer due to welding is a crystal unit, the fracture unit becomes smaller if it is a microcrystal, that is, if the crystal grain is small. As a result, wear of the Ti boride layer accompanied by fracture is suppressed, and the wear resistance of the same layer is improved.
  • the average particle size of the crystal grains constituting the crystal phase is obtained as follows. That is, the grain boundary is defined by performing an analysis using automatic crystal orientation mapping (ACOM: Automatic Crystal Orientation Mapping) -TEM by a transmission electron microscope (TEM: Transmission Electron Microscope). After that, the range closed by the grain boundary is defined as a crystal grain, and the maximum length of the crystal grain is defined as the particle size. For each of the five arbitrary crystal grains, determine the particle size, and use the arithmetic mean as the average particle size.
  • ACOM Automatic Crystal Orientation Mapping
  • TEM Transmission Electron Microscope
  • the crystalline phase and the amorphous phase are distinguished from each other as follows. That is, a vertical cross section is observed using a TEM, and an image having a magnification such that a size of, for example, several nm can be identified on the observation surface is obtained. Then, FFT image conversion processing is performed on this image, and bright points corresponding to the lattice constants (for example, each bright point (including a circular shape) corresponding to the (001) plane of the hexagonal structure) are selected. Further, the inverse FFT conversion process is performed, and then the binarization process is performed. By this process, it is possible to emphasize the crystal structure of the lattice fringes / angles having the lattice constant selected as each bright point.
  • each lattice constant is created an emphasized image corresponding to each lattice constant such as (001) surface-enhanced image and (100) surface-enhanced image. Then, each emphasized image is combined by performing OR combination for each of the above-mentioned emphasized images.
  • the filled portion is the crystalline phase
  • the unfilled portion is the amorphous phase.
  • the magnification is not particularly limited as long as the above lattice constant can be observed.
  • the crystalline phase and the amorphous phase are discriminated from each of the five fields of view.
  • the area ratio of the crystal phase in each field of view is obtained, and the arithmetic mean thereof is taken as the area ratio of the crystal phase.
  • the area ratio of the crystal phase is more preferably 50 to 95 area%. The reason is as follows.
  • the area ratio of the crystal phase is less than 50 area%, the hardness may decrease due to the small number of crystal phases in the Ti boride layer, and the performance as a coating layer may not be exhibited.
  • the area ratio of the crystal phase exceeds 95 area%, the abrasion resistance is lowered and the grain boundary fracture becomes dominant, and the crystal grains fall off at the grain boundary, resulting in inferior cutting performance.
  • the reason why the wear resistance is lowered is that it becomes difficult for the Ti boride layer to form boron oxide during cutting.
  • Nano-intention hardness of Ti boride layer The Ti boride layer preferably has a nanointention hardness of 30 to 50 GPa. If the nano-intention hardness is within this range, the chipping resistance and wear resistance will be further improved. It is presumed that the reason is that when the nanointention hardness is in this range, the wear resistance is surely improved by having the Ti boride layer having a crystalline phase and an amorphous phase.
  • the surface of the Ti boride layer is polished based on the nanoindentation test method (ISO14577), and a diamond Berkovich indenter is used, and the pushing load is 1.96 ⁇ 10 -3. It is carried out at N (200 mgf). In that case, the measurement is performed on at least 10 arbitrary points, and the arithmetic mean thereof is used as the measured value of hardness. In this measurement, the distance between the measurement points is 20 times or more the indentation depth at the time of the test.
  • Crystal orientation of the crystal phase of the Ti boride layer The hexagonal 011 diffraction line, 100 diffraction line, and 101 diffraction line by the X-ray diffraction method are measured as diffraction peaks by the (001) plane, the (100) plane, and the (101) plane, respectively.
  • the peak intensities are Ih (001), Ih (100), and Ih (101), respectively, 0.01 ⁇ Ih (001) / ⁇ Ih (001) + Ih (100) + Ih (101) ⁇ ⁇ It is more preferable to satisfy 0.80. When this relational expression is satisfied, the wear resistance is further improved.
  • the measurement of the diffraction peak intensities of the (001) plane, the (100) plane, and the (101) plane of the hexagonal crystal is performed by 2 ⁇ / ⁇ concentrated optics using Cu—K ⁇ rays (wavelength ⁇ : 0.15405 nm).
  • the X-ray diffraction method of the system can be used.
  • the (001) plane of the hexagonal crystal may be expressed as the (0001) plane.
  • the (100) plane is the (10-10) plane, the (1-100) plane, the (01-10) plane, the (-1100) plane, the (-1010) plane, and the (0-110) plane. Will be done.
  • the (101) plane includes the (10-11) plane, the (1-101) plane, the (01-11) plane, the (-1101) plane, the (-1011) plane, and the (0-111) plane. May be represented. These are surface indices that are in an equivalent relationship with each other.
  • lower layer in addition to the coating layer, it is composed of one or more layers of a carbide layer, a nitride layer, a nitride layer, a coal oxide layer and a carbonitride oxide layer of Ti, and is composed of 0.1.
  • a lower layer including a Ti compound (not limited to stoichiometric compound) layer having a total average layer thickness of ⁇ 2.0 ⁇ m is provided adjacent to the tool substrate, the effect of this layer is combined. Therefore, it is possible to exhibit even more excellent chipping resistance and heat-resistant crack resistance.
  • the total average layer thickness of the lower layer is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 2.0 ⁇ m, the crystal grains of the lower layer tend to be coarsened and chipping occurs. It will be easier to do.
  • Tool base any base material conventionally known as this type of tool base can be used as long as it does not hinder the achievement of the above-mentioned object.
  • cemented carbide WC-based cemented carbide, WC, as well as those containing Co, or those containing carbides such as Ti, Ta, Nb), cermet (TiC). , TiN, TiCN, etc. as the main component
  • ceramics titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.
  • cBN sintered body is assumed, and any of these is preferable. ..
  • the shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, and the shape of the insert and the shape of the end mill can be exemplified.
  • WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder having an average particle size of 1 to 3 ⁇ m were prepared. These raw material powders were blended into the blending composition shown in Table 1, wet-mixed with a ball mill for 72 hours, and dried. Then, it was press-molded into a green compact at a pressure of 100 MPa. This green compact was sintered in a vacuum of 6 Pa under the condition of holding at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to prepare tool bases 1 and 2 made of WC-based cemented carbide having an insert shape of ISO standard CNMG120408.
  • these tool bases 1 to 4 were formed into a lower layer (provided only for some tool bases) and a coating layer by the following procedures (a) to (d).
  • Each of the tool substrates 1 to 4 is ultrasonically cleaned in acetone, and in a dry state, the outer circumference is located at a position radially separated from the central axis on the rotary table in the high-power pulse sputtering apparatus. It was attached along the part.
  • a Ti target and a Ti and boron sintered body target were arranged at four locations facing each other across the rotary table.
  • Comparative coated inserts 1 to 7 and comparative coated end mills 11 to 17 (8 to 10 are missing numbers, hereinafter collectively referred to as Comparative Examples 1 to 7 and 11 to 17) were manufactured. However, not all tool substrates have a lower layer.
  • a dry high-speed intermittent cutting test (cutting test 1) is performed under the following conditions in a state where the tip of the tool steel cutting tool is screwed with a fixing jig. Was carried out.
  • Cutting test 1 Work material: JIS / SUS316L, round bar with 4 vertical grooves at equal intervals in the length direction Cutting speed: 180 m / min Notch: 2 mm Feed: 0.2 mm / rev Cutting time: 10 minutes
  • the cutting time (minutes) to reach the life of the comparative example indicates the cutting time (minutes) to reach the life due to the occurrence of chipping.
  • Cutting test 2 Work material: Ti-based alloy (mass%, Ti-6% Al-4% V alloy) block material (width 100 mm x length 250 mm) Cutting speed: 130m / min Rotation speed: 20690min -1 Notch: 2.0 mm Feed: 0.05 mm / rev End mill blade outer diameter: 2 mm
  • the cutting length was cut to 150 m (cutting time was about 144 minutes), the flank wear width was measured, and the presence or absence of chipping was observed. However, if chipping occurred before the cutting length reached 150 m, the cutting was stopped and the time from the start of cutting was measured. Table 7 shows the test results.
  • the cutting time (minutes) to reach the life of the comparative example indicates the cutting time (minutes) to reach the life due to the occurrence of chipping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A surface-coated cutting tool comprising a tool body and a coating layer on the tool body, wherein: the average thickness of the coating layer is 0.5-5.0 µm; the coating layer has a Ti-boride composite layer; and the Ti-boride composite layer has a crystalline phase and an amorphous phase, and has an average composition such that when expressed by the compositional formula TiBx, the atomic ratio x satisfies 1.5≤x≤3.0.

Description

表面被覆切削工具Surface coating cutting tool
 本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。本出願は、2020年3月25日に出願した日本特許出願である特願2020-55010号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present invention relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool). This application claims priority based on Japanese Patent Application No. 2020-55010, which is a Japanese patent application filed on March 25, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
 従来、超硬合金等を工具基体とし、この工具基体の表面に被覆層を蒸着法により形成した被覆工具が知られている。この被覆工具は耐摩耗性を有しているが、この耐摩耗性をさらに向上させるべく、種々の提案がなされ、硼素を含む被覆層に関する提案もなされている。 Conventionally, a coated tool is known in which a cemented carbide or the like is used as a tool substrate and a coating layer is formed on the surface of the tool substrate by a vapor deposition method. Although this covering tool has wear resistance, various proposals have been made to further improve the wear resistance, and a coating layer containing boron has also been proposed.
 例えば、特許文献1には、工具基体の表面に0.5~5μmの平均層厚のTi硼化物層を有し、該層は複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、10~15nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径20~70nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径300~600nmの三次結晶粒とから構成される被覆工具が提案されている。この被覆工具は軟質難削材の高速切削加工において溶着に起因する軟質被覆層の剥離を抑制できるとされている。 For example, Patent Document 1 has a Ti borodate layer having an average layer thickness of 0.5 to 5 μm on the surface of a tool substrate, and the layer is configured as a composite structure of crystal grain structures having a plurality of average particle sizes. The composite structure has an average particle size of 300, which is composed of an aggregate of primary crystal grains having an average particle size of 10 to 15 nm and a secondary crystal grain having an average particle size of 20 to 70 nm, and an aggregate of the secondary crystal grains. A coating tool composed of tertiary crystal grains having a diameter of about 600 nm has been proposed. It is said that this coating tool can suppress the peeling of the soft coating layer due to welding in high-speed cutting of soft difficult-to-cut materials.
 また、例えば、特許文献2には、元素M(Mは、Ti、W、Zr、Hf、V、Nb、Ta、Mo、Crから選択される1または2以上の元素)とBとの化学結合を含む領域である硼化物相と、前記元素MとCとの化学結合を含む領域である炭化物相を有する被覆工具が提案されている。この被覆工具は被覆層がTiBのみの被覆工具よりも耐摩耗性に優れているとされている。 Further, for example, in Patent Document 2, the chemical bond between the element M (M is one or more elements selected from Ti, W, Zr, Hf, V, Nb, Ta, Mo, and Cr) and B. A coating tool having a boride phase, which is a region containing, and a carbide phase, which is a region containing a chemical bond between the elements M and C, has been proposed. It is said that this covering tool has better wear resistance than a covering tool having only TiB 2 as a coating layer.
特開2012-139795号公報Japanese Unexamined Patent Publication No. 2012-139795 特開2017-166055号公報Japanese Unexamined Patent Publication No. 2017-166055
 切削加工装置の高性能化や自動化はめざましく、その一方で、難削材と呼ばれる材料の切削加工が求められている。例えば、Ti基合金、オーステナイトステンレス鋼のような切削時に溶着の発生しやすい材料の高速断続切削加工も例外ではない。 The high performance and automation of cutting equipment is remarkable, while cutting of materials called difficult-to-cut materials is required. For example, high-speed intermittent cutting of materials that are prone to welding during cutting, such as Ti-based alloys and austenitic stainless steel, is no exception.
 本発明は、前記事情や提案を鑑みてなされたものであって、特に、Ti基合金、オーステナイトステンレス鋼の高速断続切削加工に供しても、優れた耐クラック性、耐摩耗性を長期の使用にわたって発揮する被覆工具の提供を目的とする。 The present invention has been made in view of the above circumstances and proposals, and in particular, excellent crack resistance and wear resistance can be used for a long period of time even when subjected to high-speed intermittent cutting of Ti-based alloys and austenitic stainless steels. The purpose is to provide a covering tool that can be used for a long time.
 ここで、Ti基合金に対する高速断続切削加工とは、70m/minよりも速い切削速度において切削工具の刃先が切削と空転を繰り返す加工をいい、オーステナイトステンレス鋼に対する高速断続切削加工とは、100m/minよりも速い切削速度において切削工具の刃先が切削と空転を繰り返す加工をいう。 Here, the high-speed intermittent cutting process for Ti-based alloy refers to a process in which the cutting edge of a cutting tool repeats cutting and idling at a cutting speed faster than 70 m / min, and the high-speed intermittent cutting process for austenite stainless steel is 100 m / min. A process in which the cutting edge of a cutting tool repeats cutting and idling at a cutting speed faster than min.
 本発明の実施形態に係る表面被覆切削工具は、工具基体と該工具基体上の被覆層とを有し、
前記被覆層の平均層厚は0.5~5.0μmであり、
前記被覆層はTi硼化物層を有し、
前記Ti硼化物層は、その組成を組成式:TiBで表したとき、原子比xが、1.5≦x≦3.0を満足する平均組成を有し、さらに、六方晶構造の結晶粒が構成する結晶相と非晶質相を有する。
The surface-coated cutting tool according to the embodiment of the present invention has a tool substrate and a coating layer on the tool substrate.
The average layer thickness of the coating layer is 0.5 to 5.0 μm.
The coating layer has a Ti boride layer and
The Ti boronized layer has an average composition in which the atomic ratio x satisfies 1.5 ≦ x ≦ 3.0 when the composition is represented by the composition formula: TiB x, and further, a crystal having a hexagonal structure. It has a crystalline phase and an amorphous phase formed by grains.
 更に、前記実施形態に係る表面被覆切削工具は、以下の(1)~(3)の事項の1または2以上を満足してもよい。 Further, the surface coating cutting tool according to the embodiment may satisfy one or more of the following items (1) to (3).
(1)前記結晶相を構成する六方晶構造の結晶粒は、平均粒径が2~30nmであり、前記Ti硼化物層に占める面積割合が50~95面積%であること。 (1) The hexagonal crystal grains constituting the crystal phase have an average particle size of 2 to 30 nm, and the area ratio to the Ti boride layer is 50 to 95 area%.
(2)前記Ti硼化物層のナノインテンデーション硬さが30~50GPaであること。 (2) The nano-intention hardness of the Ti boride layer is 30 to 50 GPa.
(3)前記Ti硼化物層の結晶相を構成する六方晶構造の結晶粒について、X線回折における001回折線、100回折線、101回折線の各ピーク強度を、それぞれ、Ih(001)、Ih(100)、Ih(101)とするとき、0.01≦Ih(001)/{Ih(001)+Ih(100)+Ih(101)}≦0.80を満足すること。 (3) With respect to the hexagonal structure crystal grains constituting the crystal phase of the Ti borochrome layer, the peak intensities of the 001 diffraction line, the 100 diffraction line, and the 101 diffraction line in the X-ray diffraction are set to Ih (001), respectively. When Ih (100) and Ih (101) are set, 0.01 ≦ Ih (001) / {Ih (001) + Ih (100) + Ih (101)} ≦ 0.80 shall be satisfied.
 前記によれば、特に、Ti基合金、オーステナイトステンレス鋼の高速断続切削加工に供した場合であっても、優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮する。 According to the above, excellent crack resistance and wear resistance are exhibited over a long period of time, even when subjected to high-speed intermittent cutting of Ti-based alloys and austenitic stainless steels.
 本発明者は、前記特許文献1および2に記載された被覆工具について、以下の事項を認識した。 The present inventor has recognized the following matters regarding the covering tools described in Patent Documents 1 and 2.
(1)前記特許文献1に記載された被覆工具は、Al系合金などの軟質難削材の高速切削加工を可能とするものである。しかし、特に、Ti基合金、オーステナイトステンレス鋼のような切削時に溶着の発生しやすい材料の高速断続切削加工に対しては、十分な考慮がなされていない。 (1) The covering tool described in Patent Document 1 enables high-speed cutting of soft difficult-to-cut materials such as Al-based alloys. However, in particular, sufficient consideration has not been given to high-speed intermittent cutting of materials such as Ti-based alloys and austenitic stainless steel, which are prone to welding during cutting.
(2)前記特許文献2に記載された被覆工具は、Ti基合金や高Si含有Al-Si系合金等の硬質難削材の切削時に溶着の発生が抑えられて耐剥離性と耐摩耗性を有しているものの、さらなる耐摩耗性の向上が求められている。 (2) The covering tool described in Patent Document 2 suppresses the occurrence of welding during cutting of hard-to-cut materials such as Ti-based alloys and high-Si-containing Al—Si alloys, and has peeling resistance and abrasion resistance. However, further improvement in wear resistance is required.
 本発明者は、上記認識を基に、被覆層としてのTi硼化物層について、鋭意検討した。その結果、被覆層のTi硼化物層が結晶相と非晶質相を有するとき、耐摩耗性が向上するという新規な知見を得た。 Based on the above recognition, the present inventor diligently studied the Ti boride layer as a coating layer. As a result, we obtained a new finding that the wear resistance is improved when the Ti boride layer of the coating layer has a crystalline phase and an amorphous phase.
 以下、本発明の一実施形態の表面被覆切削工具について、説明する。なお、本明細書および特許請求の範囲において数値範囲を「A~B」(A、Bはともに数値である)と表現するとき、その範囲は上限(B)および下限(A)の数値を含んでおり、上限(B)と下限(A)の単位は同じである。また、数値は公差を含む。 Hereinafter, the surface coating cutting tool according to the embodiment of the present invention will be described. When the numerical range is expressed as "A to B" (both A and B are numerical values) in the present specification and the claims, the range includes the numerical values of the upper limit (B) and the lower limit (A). The unit of the upper limit (B) and the lower limit (A) is the same. In addition, the numerical values include tolerances.
被覆層の平均層厚:
 被覆層は、Ti硼化物層を有し、その平均層厚は0.5~5.0μmが好ましい。その理由は、平均層厚が、0.5μm未満であると耐摩耗性を長期間にわたって発揮することが困難であり、一方、5.0μmを超えるとチッピングが発生しやすくなるためである。より好ましい平均層厚の範囲は、1.0~2.5μmである。
Average thickness of coating layer:
The coating layer has a Ti boride layer, and the average layer thickness thereof is preferably 0.5 to 5.0 μm. The reason is that if the average layer thickness is less than 0.5 μm, it is difficult to exhibit wear resistance for a long period of time, while if it exceeds 5.0 μm, chipping is likely to occur. A more preferable range of the average layer thickness is 1.0 to 2.5 μm.
 ここで、被覆層の平均層厚は、次のように測定する。例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)等を用いて、被覆層を任意の位置の縦断面(工具基体表面の微小な凹凸を無視して、工具基体の表面が平らな面として扱ったときのこの面に対する垂直方向の断面)で切断して観察用の試料を作製する。その縦断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)により複数箇所(例えば、5箇所)を観察して、得られた層厚を算術平均することにより得ることができる。 Here, the average layer thickness of the coating layer is measured as follows. For example, using a focused ion beam device (FIB: Focused Ion Beam system), a cross section polisher device (CP: Cross section Policeher), or the like, the coating layer is placed in a vertical cross section at an arbitrary position (ignoring minute irregularities on the surface of the tool substrate). Then, when the surface of the tool substrate is treated as a flat surface, it is cut at a cross section in the direction perpendicular to this surface) to prepare a sample for observation. The vertical cross section can be obtained by observing a plurality of locations (for example, 5 locations) with a scanning electron microscope (SEM) and arithmetically averaging the obtained layer thickness.
Ti硼化物層の平均組成:
 Ti硼化物層は、その組成を組成式:TiBで表したとき、原子比xが、1.5≦x≦3.0を満足する平均組成を有することが好ましい。その理由は、xが1.5未満となるとTi硼化物層とTi基合金等の被削材との接触部分における凝着摩耗が進行しやすくなり、一方、3.0を超えるとTi硼化物の結晶構造が乱れて硬さが低下するためである。より好ましいxの範囲は1.8~2.2である。
Average composition of Ti boride layer:
The Ti boride layer preferably has an average composition in which the atomic ratio x satisfies 1.5 ≦ x ≦ 3.0 when the composition is represented by the composition formula: TiB x. The reason is that when x is less than 1.5, adhesion wear is likely to proceed at the contact portion between the Ti boride layer and the work material such as Ti-based alloy, while when it exceeds 3.0, Ti boride is likely to proceed. This is because the crystal structure of the above is disturbed and the hardness is reduced. A more preferable range of x is 1.8 to 2.2.
 なお、硼素の含有量は以下のようにして測定する。
 電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用い、電子線を被覆層の表面、もしくは、被覆層の任意の位置の縦断面の5箇所に照射する。それぞれの箇所から得られた被覆層を構成する元素に対応する特性X線を解析することで各元素の含有量の定量化を行い、その結果を算術平均する。
The boron content is measured as follows.
Using an electron probe microanalyzer (EPMA), electron beams are applied to the surface of the coating layer or five points in the longitudinal section at an arbitrary position of the coating layer. The content of each element is quantified by analyzing the characteristic X-rays corresponding to the elements constituting the coating layer obtained from each location, and the results are arithmetically averaged.
Ti硼化物層の結晶相と非晶質相:
 Ti硼化物層が結晶相と非晶質相を有することが好ましい。好ましい理由は、定かではないが、非晶質相が存在することにより、切削時にTi硼化物層と被削材であるTi基合金との擦過面に酸化硼素が生成する。その結果、Ti硼化物層に固体潤滑性が付与され、Ti硼化物層の耐摩耗性が向上するためと推定している。
Crystalline and amorphous phase of Ti boride layer:
The Ti boride layer preferably has a crystalline phase and an amorphous phase. The preferred reason is not clear, but the presence of the amorphous phase causes boron oxide to be generated on the scraped surface between the Ti boride layer and the Ti-based alloy as the work material during cutting. As a result, it is presumed that solid lubricity is imparted to the Ti boride layer and the wear resistance of the Ti boride layer is improved.
 また、結晶相を構成する六方晶構造の結晶粒(六方晶)は微結晶粒であることが好ましく、その平均粒径が2~30nmの範囲にあることがより好ましい。その理由は以下のように考えられる。溶着に起因する被覆層の破壊単位は結晶単位であるから、微結晶であれば、すなわち結晶粒が小さければ、この破壊単位が小さくなる。この結果、破壊を伴うTi硼化物層の損耗が抑えられ、同層の耐摩耗性が向上する。 Further, the hexagonal crystal grains (hexagonal crystals) constituting the crystal phase are preferably microcrystal grains, and the average particle size is more preferably in the range of 2 to 30 nm. The reason is considered as follows. Since the fracture unit of the coating layer due to welding is a crystal unit, the fracture unit becomes smaller if it is a microcrystal, that is, if the crystal grain is small. As a result, wear of the Ti boride layer accompanied by fracture is suppressed, and the wear resistance of the same layer is improved.
 結晶相を構成する結晶粒の平均粒径は、次のようにして求める。すなわち、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による、自動結晶方位マッピング(ACOM:Automated Crystal Orientation Mapping)-TEMを用いた解析を行い、粒界を規定する。その後、粒界によって閉じた範囲を結晶粒とし、その結晶粒の最大長さを粒径と定める。任意の5個の結晶粒に対し、それぞれ粒径を求め、その算術平均を平均粒径とする。 The average particle size of the crystal grains constituting the crystal phase is obtained as follows. That is, the grain boundary is defined by performing an analysis using automatic crystal orientation mapping (ACOM: Automatic Crystal Orientation Mapping) -TEM by a transmission electron microscope (TEM: Transmission Electron Microscope). After that, the range closed by the grain boundary is defined as a crystal grain, and the maximum length of the crystal grain is defined as the particle size. For each of the five arbitrary crystal grains, determine the particle size, and use the arithmetic mean as the average particle size.
 ここで、結晶相と非晶質相との鑑別は、以下のように行う。すなわち、TEMを用いて、縦断面の観察を行い、観察面において、例えば、数nm程度の大きさが識別できる程度の倍率である画像を得る。そして、この画像に関して、FFT画像変換処理を行い、格子定数に対応した明点(例えば、六方晶構造の(001)面に対応する各明点(円形状を含む))を選択する。さらに、逆FFT変換処理を行い、続いて、二値化処理を行う。この処理により前記各明点として選択した格子定数を持つ格子縞・角度の結晶構造を強調することができる。同様の処理を各格子定数に対して行い、(001)面強調画像、(100)面強調画像、といった各格子定数に対応した強調画像を作成する。そして、前述の各強調画像についてOR結合を行うことで各々の強調画像を結合する。 Here, the crystalline phase and the amorphous phase are distinguished from each other as follows. That is, a vertical cross section is observed using a TEM, and an image having a magnification such that a size of, for example, several nm can be identified on the observation surface is obtained. Then, FFT image conversion processing is performed on this image, and bright points corresponding to the lattice constants (for example, each bright point (including a circular shape) corresponding to the (001) plane of the hexagonal structure) are selected. Further, the inverse FFT conversion process is performed, and then the binarization process is performed. By this process, it is possible to emphasize the crystal structure of the lattice fringes / angles having the lattice constant selected as each bright point. The same processing is performed for each lattice constant to create an emphasized image corresponding to each lattice constant such as (001) surface-enhanced image and (100) surface-enhanced image. Then, each emphasized image is combined by performing OR combination for each of the above-mentioned emphasized images.
 その後、格子定数が最大の格子間隔が充填されるように二値化画像の膨張処理を行うことで、少なくとも最大格子幅の格子間隔が密に塗りつぶされた像が得られる。このとき、塗りつぶされた部分が結晶相であり、塗りつぶされていない部分が非晶質相である。なお、前記倍率は、上記の格子定数が観察できる程度であれば特段の限定はしないものとする。 After that, by performing the expansion processing of the binarized image so that the grid spacing with the maximum grid constant is filled, an image in which the grid spacing with at least the maximum grid width is densely filled can be obtained. At this time, the filled portion is the crystalline phase, and the unfilled portion is the amorphous phase. The magnification is not particularly limited as long as the above lattice constant can be observed.
 なお、OR結合とは異なる2つ以上の画像において、画像上のすべてのピクセルにおいて各々同一位置のピクセルの論理和を求め、その画像を得る処理である。具体的には、特定ピクセルにおいて、いずれか1つの画像が明点であれば明点とし、すべての画像において暗点であれば、そのピクセルは暗点とする処理である。 In addition, in two or more images different from the OR combination, it is a process of obtaining the logical sum of the pixels at the same position in all the pixels on the image and obtaining the image. Specifically, in a specific pixel, if any one image is a bright point, it is set as a bright point, and if it is a dark point in all images, that pixel is set as a dark point.
 前述の結晶相と非晶質相の鑑別方法を用いて、任意の5視野に対してそれぞれ結晶相と非晶質相の鑑別を行う。これによって、各視野における結晶相の面積割合を求め、その算術平均を結晶相の面積割合とする。その結晶相の面積割合は、50~95面積%であることがより好ましい。その理由は次のとおりである。 Using the above-mentioned method for distinguishing between the crystalline phase and the amorphous phase, the crystalline phase and the amorphous phase are discriminated from each of the five fields of view. In this way, the area ratio of the crystal phase in each field of view is obtained, and the arithmetic mean thereof is taken as the area ratio of the crystal phase. The area ratio of the crystal phase is more preferably 50 to 95 area%. The reason is as follows.
 結晶相の面積割合が50面積%未満の場合は、Ti硼化物層内の結晶相が少ないことに起因して硬さが低下し、被覆層としての性能を発現できないことがある。一方、結晶相の面積割合が95面積%を超える場合は、耐摩耗性が低下するとともに、粒界破壊が支配的となって、粒界において結晶粒ごと脱落してしまうため、切削性能に劣ることがある。ここで、耐摩耗性が低下する理由は、Ti硼化物層が切削時に酸化硼素を形成しづらくなるためと考えられる。 If the area ratio of the crystal phase is less than 50 area%, the hardness may decrease due to the small number of crystal phases in the Ti boride layer, and the performance as a coating layer may not be exhibited. On the other hand, when the area ratio of the crystal phase exceeds 95 area%, the abrasion resistance is lowered and the grain boundary fracture becomes dominant, and the crystal grains fall off at the grain boundary, resulting in inferior cutting performance. Sometimes. Here, it is considered that the reason why the wear resistance is lowered is that it becomes difficult for the Ti boride layer to form boron oxide during cutting.
Ti硼化物層のナノインテンデーション硬さ:
 Ti硼化物層は、そのナノインテンデーション硬さが30~50GPaであることがより好ましい。ナノインテンデーション硬さがこの範囲にあれば、より一層、耐チッピング性や耐摩耗性が向上する。その理由は、ナノインテンデーション硬さがこの範囲にあるとき、Ti硼化物層が結晶相と非晶質相を有することによる耐摩耗性の向上が確実になされるためと推定される。
Nano-intention hardness of Ti boride layer:
The Ti boride layer preferably has a nanointention hardness of 30 to 50 GPa. If the nano-intention hardness is within this range, the chipping resistance and wear resistance will be further improved. It is presumed that the reason is that when the nanointention hardness is in this range, the wear resistance is surely improved by having the Ti boride layer having a crystalline phase and an amorphous phase.
 ここで、ナノインデンテーション硬さについては、ナノインデンテーション試験法(ISO14577)に基づき、Ti硼化物層の表面を研磨し、ダイヤモンド製のBerkovich圧子を用い、押し込み荷重として1.96×10-3N(200mgf)にて実施する。その際には、少なくとも任意の10点に対して測定を行い、その算術平均を硬さの測定値とする。この測定において、各測定点間の距離は、試験時の押し込み深さの20倍以上離れた距離とする。 Here, regarding the nanoindentation hardness, the surface of the Ti boride layer is polished based on the nanoindentation test method (ISO14577), and a diamond Berkovich indenter is used, and the pushing load is 1.96 × 10 -3. It is carried out at N (200 mgf). In that case, the measurement is performed on at least 10 arbitrary points, and the arithmetic mean thereof is used as the measured value of hardness. In this measurement, the distance between the measurement points is 20 times or more the indentation depth at the time of the test.
Ti硼化物層の結晶相の結晶配向:
 X線回折法による六方晶の011回折線、100回折線、101回折線は、それぞれ、(001)面、(100)面、(101)面による回折ピークとして測定される。それらのピーク強度を、それぞれ、Ih(001)、Ih(100)、Ih(101)とするとき、0.01≦Ih(001)/{Ih(001)+Ih(100)+Ih(101)}≦0.80を満足することがより好ましい。この関係式を満足すると、より一層耐摩耗性が向上する。
Crystal orientation of the crystal phase of the Ti boride layer:
The hexagonal 011 diffraction line, 100 diffraction line, and 101 diffraction line by the X-ray diffraction method are measured as diffraction peaks by the (001) plane, the (100) plane, and the (101) plane, respectively. When the peak intensities are Ih (001), Ih (100), and Ih (101), respectively, 0.01 ≦ Ih (001) / {Ih (001) + Ih (100) + Ih (101)} ≦ It is more preferable to satisfy 0.80. When this relational expression is satisfied, the wear resistance is further improved.
 ここで、六方晶の(001)面、(100)面、(101)面の各回折ピーク強度の測定は、Cu-Kα線(波長λ:0.15405nm)を用いた2θ/θ集中法光学系のX線回折法を用いることができる。 Here, the measurement of the diffraction peak intensities of the (001) plane, the (100) plane, and the (101) plane of the hexagonal crystal is performed by 2θ / θ concentrated optics using Cu—Kα rays (wavelength λ: 0.15405 nm). The X-ray diffraction method of the system can be used.
 六方晶の(001)面は、(0001)面と表すこともある。同様に、(100)面は、(10-10)面、(1-100)面、(01-10)面、(-1100)面、(-1010)面、(0-110)面と表される。また同様に、(101)面は、(10-11)面、(1-101)面、(01-11)面、(-1101)面、(-1011)面、(0-111)面と表わされることがある。これらはそれぞれ等価な関係にある面指数である。 The (001) plane of the hexagonal crystal may be expressed as the (0001) plane. Similarly, the (100) plane is the (10-10) plane, the (1-100) plane, the (01-10) plane, the (-1100) plane, the (-1010) plane, and the (0-110) plane. Will be done. Similarly, the (101) plane includes the (10-11) plane, the (1-101) plane, the (01-11) plane, the (-1101) plane, the (-1011) plane, and the (0-111) plane. May be represented. These are surface indices that are in an equivalent relationship with each other.
その他の層(下部層):
 本実施形態において、前記被覆層とは別に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~2.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合には、この層が奏する効果と相俟って、より一層優れた耐チッピング性、および、耐熱亀裂性を発揮することができる。
Other layers (lower layer):
In the present embodiment, in addition to the coating layer, it is composed of one or more layers of a carbide layer, a nitride layer, a nitride layer, a coal oxide layer and a carbonitride oxide layer of Ti, and is composed of 0.1. When a lower layer including a Ti compound (not limited to stoichiometric compound) layer having a total average layer thickness of ~ 2.0 μm is provided adjacent to the tool substrate, the effect of this layer is combined. Therefore, it is possible to exhibit even more excellent chipping resistance and heat-resistant crack resistance.
 ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、2.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。 Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 2.0 μm, the crystal grains of the lower layer tend to be coarsened and chipping occurs. It will be easier to do.
工具基体:
(1)材質
 工具基体は、この種の工具基体として従来公知の基材であれば、前述の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含むもの、あるいはさらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)、またはcBN焼結体が想定され、これらのいずれかであることが好ましい。
Tool base:
(1) Material As the tool base, any base material conventionally known as this type of tool base can be used as long as it does not hinder the achievement of the above-mentioned object. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co, or those containing carbides such as Ti, Ta, Nb), cermet (TiC). , TiN, TiCN, etc. as the main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body is assumed, and any of these is preferable. ..
(2)形状
 工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、エンドミル形状が例示できる。
(2) Shape The shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, and the shape of the insert and the shape of the end mill can be exemplified.
 次に、実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples will be described, but the present invention is not limited to these examples.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した。その後、100MPa の圧力で圧粉体にプレス成形した。この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結した。焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体1~2を作製した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder having an average particle size of 1 to 3 μm were prepared. These raw material powders were blended into the blending composition shown in Table 1, wet-mixed with a ball mill for 72 hours, and dried. Then, it was press-molded into a green compact at a pressure of 100 MPa. This green compact was sintered in a vacuum of 6 Pa under the condition of holding at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to prepare tool bases 1 and 2 made of WC-based cemented carbide having an insert shape of ISO standard CNMG120408.
 さらに、前記と同じ原料粉末を表1に示される配合組成に配合した。ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形した。この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が4mmの超硬基体成形用丸棒焼結体を作製した。さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ2mm×4mm、ねじれ角40度の4枚刃スクエア形状を持ったWC基超硬合金製の工具基体(エンドミル形状)3~4を製造した。 Further, the same raw material powder as described above was blended into the blending composition shown in Table 1. The mixture was wet-mixed with a ball mill for 72 hours, dried, and then press-molded into a green compact at a pressure of 100 MPa. This green compact was sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour to prepare a round bar sintered body for forming a cemented carbide substrate having a diameter of 4 mm. Furthermore, a tool made of WC-based cemented carbide having a 4-flute square shape with a cutting edge diameter x length of 2 mm x 4 mm and a twist angle of 40 degrees by grinding from the above-mentioned round bar sintered body. Substrate (end mill shape) 3 to 4 were manufactured.
 続いて、これら工具基体1~4を以下の(a)~(d)の手順により下部層(一部の工具基体に対してのみ設けた)と被覆層を形成した。 Subsequently, these tool bases 1 to 4 were formed into a lower layer (provided only for some tool bases) and a coating layer by the following procedures (a) to (d).
(a)前記工具基体1~4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着した。一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所にTiターゲットとTiと硼素の焼結体ターゲットを配置した。 (A) Each of the tool substrates 1 to 4 is ultrasonically cleaned in acetone, and in a dry state, the outer circumference is located at a position radially separated from the central axis on the rotary table in the high-power pulse sputtering apparatus. It was attached along the part. On the other hand, in the high-power pulse sputtering apparatus, a Ti target and a Ti and boron sintered body target were arranged at four locations facing each other across the rotary table.
(b)前記装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した。その後、前記回転テーブル上で自転しながら公転する工具基体に-200Vの直流バイアス電圧を印加した。その後、前記装置内へ反応ガスとしてアルゴン(以下Arと表記する)ガスを導入し、2.0Paの雰囲気とした。さらに前記装置内に具備されるタングステンフィラメントへ40Aの電流を流すことによりArイオンを励起させ、前記工具基体を1時間、Arボンバード処理した。 (B) The inside of the device was heated to 500 ° C. with a heater while the inside of the device was exhausted and kept in a vacuum of 0.1 Pa or less. Then, a DC bias voltage of −200 V was applied to the tool substrate that revolves while rotating on the rotary table. Then, argon (hereinafter referred to as Ar) gas was introduced into the apparatus as a reaction gas to create an atmosphere of 2.0 Pa. Further, Ar ions were excited by passing a current of 40 A through the tungsten filament provided in the apparatus, and the tool substrate was subjected to Ar bombard treatment for 1 hour.
(c)前記装置内に反応ガスとしてArガスと窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Tiターゲットに表2に示される所定のパルススパッタ条件で高出力パルススパッタを行った。これによって前記工具基体の表面に、表3に示される平均層厚のTiN層を被覆層の下部層として成膜した。ただし、すべての工具基体に下部層を形成したわけではない。 (C) Ar gas and nitrogen gas are introduced into the apparatus as reaction gases to create a reaction atmosphere of 0.6 Pa, and high-power pulse sputtering is performed on the Ti target under the predetermined pulse sputtering conditions shown in Table 2. rice field. As a result, a TiN layer having an average layer thickness shown in Table 3 was formed on the surface of the tool substrate as a lower layer of the coating layer. However, not all tool substrates have a lower layer.
(d)引き続き、装置内に導入するガスのうち窒素ガスを閉じ、Arガスに切り替えると共に、装置内雰囲気を0.5Paとし、十分に窒素ガスの排出がなされ、Arガスのみの装置内雰囲気とした。その後、Tiと硼素からなる焼結体ターゲットに表2に示される所定のパルススパッタ条件で、層厚に対応した時間で高出力パルススパッタを行い、表3に示す実施例被覆インサート1~13と実施例被覆エンドミル14~26(以下、実施例1~26と総称する)をそれぞれ製造した。 (D) Subsequently, of the gases introduced into the device, the nitrogen gas was closed and switched to Ar gas, the atmosphere inside the device was set to 0.5 Pa, the nitrogen gas was sufficiently discharged, and the atmosphere inside the device was only Ar gas. bottom. After that, high-power pulse sputtering was performed on the sintered target composed of Ti and boron under the predetermined pulse sputtering conditions shown in Table 2 for a time corresponding to the layer thickness, and the coated inserts 1 to 13 shown in Table 3 were subjected to. Examples coated end mills 14 to 26 (hereinafter, collectively referred to as Examples 1 to 26) were manufactured.
 また、比較の目的で、これら工具基体1~4に対して、表4に示す条件で前記(a)~(d)の手順により下部層と被覆層を形成し、表5に示す比較被覆工具としての比較被覆インサート1~7と比較被覆エンドミル11~17(8~10は欠番で、以下、比較例1~7、11~17と総称する)をそれぞれ製造した。ただし、すべての工具基体に下部層を形成したわけではない。 Further, for the purpose of comparison, the lower layer and the covering layer are formed on the tool substrates 1 to 4 according to the procedures (a) to (d) above under the conditions shown in Table 4, and the comparative covering tools shown in Table 5 are formed. Comparative coated inserts 1 to 7 and comparative coated end mills 11 to 17 (8 to 10 are missing numbers, hereinafter collectively referred to as Comparative Examples 1 to 7 and 11 to 17) were manufactured. However, not all tool substrates have a lower layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、「-」は、含有されていないことを示す。 In Table 1, "-" indicates that it is not contained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、実施例がa、bで工具基体記号がα、βのとき、実施例aは工具基体α、実施例bは工具基体βを使った(a、b、α、βは数字)ことを示し、また、「-」は、該当する処理を行っていないことを示す。 In Table 2, when the examples are a and b and the tool base symbols * are α and β, the tool base α is used in Example a and the tool base β is used in Example b (a, b, α and β are numbers). ), And "-" indicates that the corresponding processing has not been performed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、実施例がa、bで工具基体記号がα、βのとき、実施例aは工具基体α、実施例bは工具基体βを使った(a、b、α、βは数字)ことを示し、また、強度比**とは、Ih{001}/{Ih{001}+Ih{100}+Ih{101}}の値であり、「-」は、存在しないことを示す。 In Table 3, when the examples are a and b and the tool base symbols * are α and β, the tool base α is used in Example a and the tool base β is used in Example b (a, b, α and β are numbers). ), And the intensity ratio ** is the value of Ih {001} / {Ih {001} + Ih {100} + Ih {101}}, and "-" indicates that it does not exist.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4において、比較例がa、bで工具基体記号がα、βのとき、比較例aは工具基体α、比較例bは工具基体βを使った(a、b、α、βは数字)ことを示し、また、「-」は、該当する処理を行っていないことを示す。 In Table 4, when the comparative examples are a and b and the tool base symbols * are α and β, the tool base α is used for the comparative example a and the tool base β is used for the comparative example b (a, b, α and β are numbers). ), And "-" indicates that the corresponding processing has not been performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5において、比較例がa、bで工具基体記号がα、βのとき、比較例aは工具基体α、比較例bは工具基体βを使った(a、b、α、βは数字)ことを示し、また、強度比**とは、Ih{001}/{Ih{001}+Ih{100}+Ih{101}}の値であり、「-」は、存在しないことを示す。 In Table 5, when the comparative examples are a and b and the tool base symbols * are α and β, the tool base α is used for the comparative example a and the tool base β is used for the comparative example b (a, b, α and β are numbers). ), And the intensity ratio ** is the value of Ih {001} / {Ih {001} + Ih {100} + Ih {101}}, and "-" indicates that it does not exist.
 次に、実施例1~26、比較例1~17に対して、以下の切削試験1および2を行い、その結果を表6、および表7に示す。 Next, the following cutting tests 1 and 2 were performed on Examples 1 to 26 and Comparative Examples 1 to 17, and the results are shown in Tables 6 and 7.
 実施例1~13および比較例1~7について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の条件で、乾式高速断続切削加工試験(切削試験1)を実施した。 In both Examples 1 to 13 and Comparative Examples 1 to 7, a dry high-speed intermittent cutting test (cutting test 1) is performed under the following conditions in a state where the tip of the tool steel cutting tool is screwed with a fixing jig. Was carried out.
切削試験1
 被削材:JIS・SUS316Lの長さ方向等間隔4本縦溝入り丸棒
 切削速度:180m/min
 切り込み:2mm
 送り:0.2mm/rev
 切削時間:10分
Cutting test 1
Work material: JIS / SUS316L, round bar with 4 vertical grooves at equal intervals in the length direction Cutting speed: 180 m / min
Notch: 2 mm
Feed: 0.2 mm / rev
Cutting time: 10 minutes
 切削試験終了後に逃げ面摩耗幅を測定し、チッピングの有無を観察した。ただし、切削時間の満了前にチッピングが発生した場合は、切削を中止し切削開始からの時間を計測した。
 表6に、試験結果を示す。
After the cutting test was completed, the flank wear width was measured and the presence or absence of chipping was observed. However, if chipping occurred before the cutting time expired, cutting was stopped and the time from the start of cutting was measured.
Table 6 shows the test results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6において、比較例の寿命に至る切削時間(分)とは、チッピング発生が原因で寿命に至るまでの切削時間(分)を示す。 In Table 6, the cutting time (minutes) to reach the life of the comparative example indicates the cutting time (minutes) to reach the life due to the occurrence of chipping.
 次いで、実施例14~26および比較例11~17について、以下の条件で、エンドミルによる側面加工において湿式高速断続切削試験(切削試験2)を実施した。 Next, with respect to Examples 14 to 26 and Comparative Examples 11 to 17, a wet high-speed intermittent cutting test (cutting test 2) was carried out in side surface machining with an end mill under the following conditions.
切削試験2
 被削材:Ti基合金(質量%で、Ti-6%Al-4%V合金)のブロック材(幅100mm×長さ250mm)
 切削速度:130m/min
 回転速度:20690min-1
 切り込み:2.0mm
 送り:0.05mm/rev
 エンドミル刃外径:2mm
Cutting test 2
Work material: Ti-based alloy (mass%, Ti-6% Al-4% V alloy) block material (width 100 mm x length 250 mm)
Cutting speed: 130m / min
Rotation speed: 20690min -1
Notch: 2.0 mm
Feed: 0.05 mm / rev
End mill blade outer diameter: 2 mm
 切削長150mまで切削し(切削時間は約144分)、逃げ面摩耗幅を測定し、チッピング発生の有無を観察した。ただし、切削長が150mに達する前にチッピングが発生した場合は、切削を中止し切削開始からの時間を計測した。
 表7に、試験結果を示す。
The cutting length was cut to 150 m (cutting time was about 144 minutes), the flank wear width was measured, and the presence or absence of chipping was observed. However, if chipping occurred before the cutting length reached 150 m, the cutting was stopped and the time from the start of cutting was measured.
Table 7 shows the test results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7において、比較例の寿命に至る切削時間(分)とは、チッピング発生が原因で寿命に至るまでの切削時間(分)を示す。 In Table 7, the cutting time (minutes) to reach the life of the comparative example indicates the cutting time (minutes) to reach the life due to the occurrence of chipping.
 表6~7に示される結果から、Ti硼化物層を用いた被覆層が結晶相と非晶質相を有する実施例は、各種のTi基合金や、オーステナイトステンレス鋼のような被覆工具に対する溶着性の高い材料の高速断続切削加工で、優れた耐溶着性と耐摩耗性を発揮する。
 これに対して、比較例は、前記溶着性の高い材料の高速断続切削加工において切刃部の摩耗進行が早く、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 7, the examples in which the coating layer using the Ti borocarbonate layer has a crystalline phase and an amorphous phase are welded to various Ti-based alloys and coating tools such as austenite stainless steel. Demonstrates excellent welding resistance and abrasion resistance in high-speed intermittent cutting of highly resistant materials.
On the other hand, in the comparative example, it is clear that the cutting edge portion wears quickly in the high-speed intermittent cutting of the highly weldable material, and the service life is reached in a relatively short time.
 前記開示した実施の形態はすべての点で例示にすぎず、制限的なものではない。本発明の範囲は前記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiment is merely an example in all respects and is not restrictive. The scope of the present invention is indicated by the scope of claims rather than the embodiment described above, and is intended to include meaning equivalent to the scope of claims and all modifications within the scope.

Claims (4)

  1.  工具基体と該工具基体上の被覆層とを有する表面被覆切削工具であって、
    前記被覆層の平均層厚は0.5~5.0μmであり、
    前記被覆層はTi硼化物層を有し、
    前記Ti硼化物層は、その組成を組成式:TiBで表したとき、原子比xが、1.5≦x≦3.0を満足する平均組成を有し、さらに、六方晶構造の結晶粒が構成する結晶相と非晶質相を有する、
    ことを特徴とする表面被覆切削工具。
    A surface-coated cutting tool having a tool substrate and a coating layer on the tool substrate.
    The average layer thickness of the coating layer is 0.5 to 5.0 μm.
    The coating layer has a Ti boride layer and
    The Ti boronized layer has an average composition in which the atomic ratio x satisfies 1.5 ≦ x ≦ 3.0 when the composition is represented by the composition formula: TiB x, and further, a crystal having a hexagonal structure. It has a crystalline phase and an amorphous phase formed by grains.
    A surface coating cutting tool characterized by that.
  2.  前記結晶相を構成する六方晶構造の結晶粒は、平均粒径が2~30nmであり、前記Ti硼化物層に占める面積割合が50~95面積%であることを特徴とする請求項1に記載された表面被覆切削工具。 The first aspect of claim 1 is that the hexagonal crystal grains constituting the crystal phase have an average particle size of 2 to 30 nm and an area ratio of 50 to 95 area% in the Ti boride layer. Described surface coating cutting tools.
  3.  前記Ti硼化物層のナノインテンデーション硬さが30~50GPaであることを特徴とする請求項1または2に記載された表面被覆切削工具。 The surface coating cutting tool according to claim 1 or 2, wherein the nano-intention hardness of the Ti boride layer is 30 to 50 GPa.
  4.  前記Ti硼化物層の結晶相を構成する六方晶構造の結晶粒について、X線回折における001回折線、100回折線、101回折線の各ピーク強度を、それぞれ、Ih(001)、Ih(100)、Ih(101)とするとき、0.01≦Ih(001)/{Ih(001)+Ih(100)+Ih(101)}≦0.80を満足することを特徴とする請求項1乃至3のいずれかに記載された表面被覆切削工具。 Regarding the crystal grains having a hexagonal structure constituting the crystal phase of the Ti boronized layer, the peak intensities of the 001 diffraction line, the 100 diffraction line, and the 101 diffraction line in the X-ray diffraction are set to Ih (001) and Ih (100), respectively. ), Ih (101), claims 1 to 3 satisfying 0.01 ≦ Ih (001) / {Ih (001) + Ih (100) + Ih (101)} ≦ 0.80. The surface coating cutting tool described in any of.
PCT/JP2021/011434 2020-03-25 2021-03-19 Surface-coated cutting tool WO2021193445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510431A JPWO2021193445A1 (en) 2020-03-25 2021-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055010 2020-03-25
JP2020055010 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021193445A1 true WO2021193445A1 (en) 2021-09-30

Family

ID=77892550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011434 WO2021193445A1 (en) 2020-03-25 2021-03-19 Surface-coated cutting tool

Country Status (2)

Country Link
JP (1) JPWO2021193445A1 (en)
WO (1) WO2021193445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117283004A (en) * 2023-11-27 2023-12-26 赣州澳克泰工具技术有限公司 TiB containing twin crystal reinforcement x Coated cutting tool and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238281A (en) * 2007-03-26 2008-10-09 Hitachi Tool Engineering Ltd Coated tool
JP2012228735A (en) * 2011-04-25 2012-11-22 Hitachi Tool Engineering Ltd Coated tool excellent in wear resistance and method for manufacturing the same
WO2013128673A1 (en) * 2012-02-27 2013-09-06 住友電工ハードメタル株式会社 Coated surface cutting tool and manufacturing method therefor
WO2018140990A1 (en) * 2017-01-31 2018-08-09 Ceratizit Austria Gesellschaft M.B.H. Coated tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238281A (en) * 2007-03-26 2008-10-09 Hitachi Tool Engineering Ltd Coated tool
JP2012228735A (en) * 2011-04-25 2012-11-22 Hitachi Tool Engineering Ltd Coated tool excellent in wear resistance and method for manufacturing the same
WO2013128673A1 (en) * 2012-02-27 2013-09-06 住友電工ハードメタル株式会社 Coated surface cutting tool and manufacturing method therefor
WO2018140990A1 (en) * 2017-01-31 2018-08-09 Ceratizit Austria Gesellschaft M.B.H. Coated tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117283004A (en) * 2023-11-27 2023-12-26 赣州澳克泰工具技术有限公司 TiB containing twin crystal reinforcement x Coated cutting tool and method for producing same
CN117283004B (en) * 2023-11-27 2024-02-13 赣州澳克泰工具技术有限公司 TiB containing twin crystal reinforcement x Coated cutting tool and method for producing same

Also Published As

Publication number Publication date
JPWO2021193445A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3103572B1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
EP3269478B1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6798534B2 (en) Cover cutting tool
JP6992232B2 (en) Cutting tools
EP3275577B1 (en) Coated cutting tool
JP7021607B2 (en) Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3447166B1 (en) Coated cutting tool
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
WO2021085253A1 (en) Surface-coated cutting tool
WO2021193445A1 (en) Surface-coated cutting tool
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP7069984B2 (en) Cover cutting tool
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
US20180369927A1 (en) Coated cutting tool
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
WO2021193446A1 (en) Surface-coated cutting tool
WO2020166466A1 (en) Hard coating cutting tool
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2021154410A (en) Surface coating cutting tool
JP7486045B2 (en) Surface-coated cutting tools
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776758

Country of ref document: EP

Kind code of ref document: A1