JP2007291471A - Oxidation-resistant coating film, and member coated by the coating film - Google Patents

Oxidation-resistant coating film, and member coated by the coating film Download PDF

Info

Publication number
JP2007291471A
JP2007291471A JP2006122749A JP2006122749A JP2007291471A JP 2007291471 A JP2007291471 A JP 2007291471A JP 2006122749 A JP2006122749 A JP 2006122749A JP 2006122749 A JP2006122749 A JP 2006122749A JP 2007291471 A JP2007291471 A JP 2007291471A
Authority
JP
Japan
Prior art keywords
film
oxidation
resistant film
resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122749A
Other languages
Japanese (ja)
Other versions
JP4721281B2 (en
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006122749A priority Critical patent/JP4721281B2/en
Publication of JP2007291471A publication Critical patent/JP2007291471A/en
Application granted granted Critical
Publication of JP4721281B2 publication Critical patent/JP4721281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation-resistant coating film which is considerably excellent by enhancing the oxidation resistance, the wear resistance and the heat resistance, and a member coated by the coating. <P>SOLUTION: In the oxidation-resistant coating film, at least one layer of a coating film coating a surface of a substrate is one or two or more selected from a nitride, a carbide, a boride, an oxide and a sulfide containing Al and Nb as metal components, and the Al content is 0.51-0.95, and the Nb content is 0.05-0.49 in terms of the atom ratio to the total metal components. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、耐摩耗性及び耐熱性を改善した耐酸化性皮膜、該酸化性皮膜を切削工具、金型、軸受けダイスロール等に被覆した被覆部材に関する。   The present invention relates to an oxidation-resistant film having improved wear resistance and heat resistance, and a covering member obtained by coating the oxidation film on a cutting tool, a mold, a bearing die roll, or the like.

本願発明の請求項1に記載した組成を有する耐酸化性皮膜、耐摩耗皮膜の技術は、以下の特許文献1から7に開示されている。   The techniques of an oxidation resistant film and an abrasion resistant film having the composition described in claim 1 of the present invention are disclosed in the following Patent Documents 1 to 7.

特開2003−321764号公報Japanese Patent Laid-Open No. 2003-321764 特開2004−176085号公報JP 2004-176085 A 特開2005−256095号公報JP 2005-256095 A 特開2005−111574号公報JP 2005-111574 A 特開2005−198723号公報JP 2005-198723 A 特開2005−199420号公報JP-A-2005-199420 特開平11−302831号公報JP-A-11-302831

特許文献1は、AlCrSi複合酸化皮膜が高温酸化雰囲気に曝された場合酸素の進入が防止されるため優れた耐高温酸化性が得られることが開示されている。特許文献2は、(AlCrSi)(NBCO)皮膜が金属成分の4原子%未満を4a5a6a族の金属成分の1種以上で置換可能であって耐高温酸化特性高硬度基体との密着性に優れる被膜が開示されている。特許文献3、4は、硬質皮膜の選択される金属成分がAlNbTiCrSiであることが記載され皮膜硬度耐熱性耐剥離性に優れることが開示されている。特許文献5は、同様被膜を被覆した超硬エンドミルを開示している。しかし、特許文献1〜5は、AlとNbの両者を含有する皮膜を具体的には全く検討していない。特許文献6は、AlTi含有の硬質皮膜にNbを含有することにより酸化された時表面に緻密なTi酸化物が形成され酸化抑制効果を有し耐熱安定性と耐溶着性が向上して高硬度化耐摩耗性も向上することが開示されている。しかし、AlとNbの両者を含有する皮膜は開示しているがAl含有量が少ないため耐酸化性が得られず耐摩耗性と耐熱性も充分でない欠点がある。即ち、Alが50at%を超える組成、Nbが20at%を超える範囲は好ましくないとして意図的に排除し、原子比で0.51〜0.95のAlと20at%を超えるNbを含有していない。これにより緻密で結晶粒界強度の高い膜が形成できず実切削加工時に被削材中のFe成分などが皮膜中に内向拡散する欠点が発生すると考えられる。特許文献7は、AlTi含有の硬質皮膜にNbを添加した皮膜が記載されている。Nb添加は皮膜硬度及び耐熱性の向上を図り耐熱性向上の理由はアルミ酸化物中にNb酸化物が析出し保護性の優れる皮膜を形成することを開示している。また皮膜中のTiの添加を必須としTi含有量は0.20≦x≦0.55の範囲か好ましいとしている。しかし、切削速度が高速化した切削加工に対しては耐酸化性が十分ではない。
そこで、本願発明の課題は耐酸化性耐摩耗性及び耐熱性を改善し格段に優れた耐酸化性皮膜及び該皮膜を被覆した被覆部材を提供することである。
Patent Document 1 discloses that when the AlCrSi composite oxide film is exposed to a high-temperature oxidizing atmosphere, oxygen entry is prevented and excellent high-temperature oxidation resistance is obtained. Patent Document 2 discloses that an (AlCrSi) (NBCO) film can replace less than 4 atomic% of a metal component with one or more of the 4a5a6a group metal components, and has high temperature oxidation resistance and excellent adhesion to a high-hardness substrate. Is disclosed. Patent Documents 3 and 4 disclose that the metal component selected for the hard coating is AlNbTiCrSi, and discloses that the coating hardness is excellent in heat resistance and peel resistance. Patent Document 5 discloses a carbide end mill similarly coated with a coating. However, Patent Documents 1 to 5 do not specifically examine a film containing both Al and Nb. Patent Document 6 discloses that when a hard coating containing AlTi is oxidized by containing Nb, a dense Ti oxide is formed on the surface, which has an oxidation inhibiting effect and has improved heat resistance and welding resistance, and has high hardness. It is disclosed that the wear resistance is improved. However, although a film containing both Al and Nb has been disclosed, there is a drawback that oxidation resistance cannot be obtained because the Al content is low, and wear resistance and heat resistance are not sufficient. That is, a composition in which Al exceeds 50 at% and a range in which Nb exceeds 20 at% are intentionally excluded as not preferable, and Al in an atomic ratio of 0.51 to 0.95 and Nb exceeding 20 at% are not contained. . As a result, a dense film with high grain boundary strength cannot be formed, and it is considered that a defect occurs in which the Fe component in the work material diffuses inward into the film during actual cutting. Patent Document 7 describes a film obtained by adding Nb to an AlTi-containing hard film. The addition of Nb improves the film hardness and heat resistance, and the reason for the improvement in heat resistance is that Nb oxide is precipitated in the aluminum oxide to form a film with excellent protection. Further, the addition of Ti in the film is essential, and the Ti content is preferably in the range of 0.20 ≦ x ≦ 0.55. However, the oxidation resistance is not sufficient for a cutting process with an increased cutting speed.
Accordingly, an object of the present invention is to provide an oxidation-resistant film with improved oxidation resistance and wear resistance and heat resistance, and a coating member coated with the film.

本願発明は、基材表面に被覆する皮膜の少なくとも1層は、金属成分としてAlとNbを含有する窒化物、炭化物、硼化物、酸化物、硫化物から選択される1種若しくは2種以上であり、金属成分の総和に対する原子比で、Al含有量が0.51〜0.95、Nb含有量が0.05〜0.49であることを特徴とする耐酸化性皮膜である。上記の構成を採用することにより耐酸化性耐摩耗性及び耐熱性を改善し格段に優れた耐酸化性皮膜及びこれを被覆した被覆部材を提供することができる。   In the present invention, at least one layer of the coating covering the substrate surface is one or more selected from nitrides, carbides, borides, oxides and sulfides containing Al and Nb as metal components. The oxidation-resistant film is characterized in that the Al content is 0.51 to 0.95 and the Nb content is 0.05 to 0.49 in terms of an atomic ratio with respect to the sum of the metal components. By adopting the above-described configuration, it is possible to improve the oxidation resistance, wear resistance, and heat resistance, and to provide a remarkably excellent oxidation resistance film and a covering member covering the same.

本願発明の耐酸化性皮膜は、金属成分としてAlとNbの他にTiCrSiから選択される1種以上を含有し(AlxNbyTiuCrvSiw)で示され、x、y、u、v、wは、夫々対金属元素の原子比を示し0.56≦x+y≦0.95、0≦u≦0.2、0≦v≦0.4、0≦w≦0.2、x+y+u+v+w=1、u+v+w>0を満足することが好ましい。また、皮膜のX線回折における回折ピークのうち面心立方構造の(111)又は(200)ピークの半価幅が2θで1度以上であることが好ましく特に(200)ピーク強度が(111)ピーク強度よりも高いことが好ましい。皮膜の破断面組織は粒状組織ブロック状組織又は明確に粒界が認められない組織の何れかであることが好ましい。皮膜は押し込み硬さ測定法から算出される弾性回復率Rが、30%≦R≦40%であることが好ましい。該耐酸化性皮膜の膜厚が、総膜厚の10〜98%であり、残部にSiと金属成分を含有する別の皮膜を有し、該別の皮膜におけるSiの原子濃度比a、Si以外の金属成分の原子濃度比の総和bとしたとき、a/(a+b)が0.1〜1であり、Si以外の金属成分がCr、Y、Al、Nb、Tiから選択される少なくとも1種以上であることが好ましい。また、本願発明の耐酸化性皮膜を被覆部材に適用することが好ましい。   The oxidation-resistant film of the present invention contains at least one selected from TiCrSi in addition to Al and Nb as metal components (AlxNbyTiuCrvSiw), and x, y, u, v, and w are respectively metal-to-metal. Indicates the atomic ratio of the elements and satisfies 0.56 ≦ x + y ≦ 0.95, 0 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.4, 0 ≦ w ≦ 0.2, x + y + u + v + w = 1, u + v + w> 0 It is preferable. The half-value width of the (111) or (200) peak of the face-centered cubic structure among the diffraction peaks in X-ray diffraction of the film is preferably 1 ° or more at 2θ, and the (200) peak intensity is (111). It is preferably higher than the peak intensity. The fracture surface structure of the film is preferably either a granular structure block structure or a structure in which no grain boundary is clearly recognized. The film preferably has an elastic recovery rate R calculated from an indentation hardness measurement method of 30% ≦ R ≦ 40%. The film thickness of the oxidation resistant film is 10 to 98% of the total film thickness, and the remaining film has another film containing Si and a metal component, and the atomic concentration ratio a of Si in the other film, Si A / (a + b) is 0.1 to 1 and the metal component other than Si is at least one selected from Cr, Y, Al, Nb and Ti. It is preferable that it is a seed or more. Moreover, it is preferable to apply the oxidation resistant film of the present invention to the covering member.

本願発明により、耐酸化性耐摩耗性及び耐熱性を改善し、格段に優れた耐酸化性皮膜及びこの皮膜を被覆した被覆部材を提供することができる。   According to the present invention, oxidation resistance wear resistance and heat resistance can be improved, and an excellent oxidation resistance film and a covering member coated with this film can be provided.

本願発明は、Al含有量を金属元素の原子比で0.51〜0.95にすることにより耐酸化性が格段に向上する。またNb含有量を金属元素の原子比で0.05〜0.49にすることにより耐熱安定性と膜硬度が格段に高くなる。しかも原子比が0.51〜0.95のAlと0.05〜0.49のNbとをともに含有させることによりAl含有量が0.51以上であるにもかかわらず緻密で結晶粒界強度の高い皮膜が実現できる。その結果、たとえ本願発明の皮膜が酸化条件に曝された場合も皮膜表面に格段に緻密で耐熱安定性の優れる酸化膜が形成され皮膜の内部の酸化進行を抑制する。更に、被削材中のFe成分などが皮膜中に内向拡散する欠点が大幅に抑制されまたは発生しなくなった。Al含有量が0.51未満になると耐酸化性が急激に低下する欠点が現れ0.95を超えるような多量になると耐熱安定性と膜硬度が急激に低下する欠点が現れる。Nb含有量が0.05未満の少量になるとAl含有量の高い領域において面心立方構造を得ることが困難になる他耐熱安定性と膜硬度が急激に低下する欠点が現れ0.49を超えるような多量になると耐酸化性と膜強度が急激に低下する欠点が現れる。本願発明の皮膜は、Alの含有量が0.51以上であってもNbを含有して面心立方構造が得られる範囲のAl含有量であることによって特に優れた耐酸化性と高い皮膜硬度が得られる。Nbの含有量は原子比で0.05〜0.20であると特に優れた耐酸化性と高い皮膜硬度が得られることから好ましく、一方Nbの含有量が0.20〜0.49であると特に耐酸化性の改善に効果的であることから好ましい。本願発明のAlとNbを含有する皮膜が窒化物、炭化物、硼化物、酸化物、硫化物から選択される1種若しくは2種以上であることにより、それぞれ、窒化物は優れた耐酸化性、炭化物は耐摩耗性、硼化物は耐熱性、硫化物は高潤滑性、低摩擦抵抗性が得られ優れた機械特性を有する皮膜が実現できる。特に、窒化物の場合、耐摩耗性、耐熱性と基材との密着強度とのバランスが最適であることから優れた特性が実現できる。更に、炭窒化物、酸窒化物、硼窒化物、硫窒化物とすることにより耐酸化性、耐摩耗性及び摺動性がバランス良く優れ好ましい。この場合C、O、B、SがNに対して原子比で30%未満であることにより耐摩耗性が優れ特に好ましい。また、本願発明のAlとNbを含有する皮膜は必ずしも窒化物炭化物硼化物酸化物硫化物から選択される1種若しくは2種以上のみから構成されなくともよく1部金属として存在してもよい。   In the present invention, the oxidation resistance is remarkably improved by setting the Al content to 0.51 to 0.95 in terms of the atomic ratio of metal elements. Further, by setting the Nb content to 0.05 to 0.49 in terms of the atomic ratio of the metal element, the heat resistance stability and the film hardness are remarkably increased. In addition, by containing both Al having an atomic ratio of 0.51 to 0.95 and Nb having a ratio of 0.05 to 0.49, the grain boundary strength is dense even though the Al content is 0.51 or more. High film can be realized. As a result, even when the coating of the present invention is exposed to oxidizing conditions, an extremely dense oxide film with excellent heat stability is formed on the surface of the coating, and the progress of oxidation inside the coating is suppressed. Furthermore, the defect that the Fe component or the like in the work material diffuses inward into the film is greatly suppressed or does not occur. When the Al content is less than 0.51, there is a drawback that the oxidation resistance rapidly decreases, and when it exceeds 0.95, there is a disadvantage that the heat resistance stability and the film hardness are rapidly decreased. If the Nb content is less than 0.05, it becomes difficult to obtain a face-centered cubic structure in a region where the Al content is high. When such a large amount is used, there is a drawback that the oxidation resistance and the film strength rapidly decrease. The film of the present invention has particularly excellent oxidation resistance and high film hardness due to the Al content in a range where a face-centered cubic structure is obtained by containing Nb even if the Al content is 0.51 or more. Is obtained. The Nb content is preferably from 0.05 to 0.20 in terms of atomic ratio because particularly excellent oxidation resistance and high film hardness can be obtained, while the Nb content is from 0.20 to 0.49. And is particularly preferable because it is effective in improving oxidation resistance. Since the coating containing Al and Nb of the present invention is one or more selected from nitride, carbide, boride, oxide, and sulfide, each nitride has excellent oxidation resistance, Carbides have wear resistance, borides have heat resistance, sulfides have high lubricity and low friction resistance, and a film having excellent mechanical properties can be realized. In particular, in the case of nitrides, excellent characteristics can be realized because the balance between wear resistance, heat resistance and adhesion strength with the base material is optimal. Furthermore, it is preferable to use carbonitride, oxynitride, boronitride, or sulfitride in a good balance of oxidation resistance, wear resistance, and slidability. In this case, when C, O, B, and S are less than 30% in terms of atomic ratio with respect to N, wear resistance is particularly excellent. Further, the coating containing Al and Nb of the present invention may not necessarily be composed of only one or two or more selected from nitride carbide boride oxide sulfide, and may exist as one part metal.

本願発明の耐酸化性皮膜は、金属成分として(AlxNbyTiuCrvSiw)で示されx、y、u、v、wは夫々0.56≦x+y≦0.95、0≦u≦0.2、0≦v≦0.4、0≦w≦0.2、x+y+u+v+w=1を満足することにより優れた耐摩耗性を発揮し好ましい。x+y値が0.56≦x+y≦0.95を満足することにより耐酸化性を低下させることなく優れた密着性組織の微細化が進み好ましい。また、x値が0.55〜0.70、y値が0.05〜0.20であることにより最も優れた耐酸化性と密着性のバランスが得られ好ましい。AlとNbの他にTiCrSiから選択される1種以上を含有することが好ましい。Ti添加は組織が粗大になり耐酸化性が低下するものの結晶化が進み皮膜硬度が向上する。u値が0.2を超える場合Nb含有の効果が薄れ耐酸化性が急激に低下し耐摩耗性が低下する。また、摩耗環境化において相手材中のFeなどが皮膜内へ拡散し易くなる。耐酸化性もしくは耐Fe拡散性をより要求される環境化においては、Tiは含有しなくとも良い。比較的温度が上昇しない環境下における耐摩耗性の改善を目的としてuの値が0.2未満より好ましくは0.12未満の範囲で添加することが好ましい。ここで言う比較的温度が上昇しない環境下とは例えば切削工具においてHRC40未満の鉄鋼材料の切削加工若しくは切削速度が100m/分以下の切削加工があげられ金型においては冷間金型があげられる。これらの摩耗環境においてTiの添加効果が確認できる。Cr添加は潤滑性並びに耐熱性を向上させる。Cr添加は耐酸化性を害することなくTiよりも格段に皮膜の結晶化が進められAlとNbの含有量をより高めることができ耐酸化性を向上させる。CrはTiよりも立方晶AlNの範囲を拡大即ちAlNbの含有量を高めることができる。また結晶化による皮膜硬度の向上に効果的である。v値は0.4以下が特に有効である。vの下限値を0.05以上とすることが好ましい。0.10〜0.30が特に好ましい。CrはTi添加による耐酸化性の低下及びFeなどが皮膜内へ拡散する現象を大幅に抑制しTiを添加する場合はCrを同時に添加することが有効である。この場合Ti添加量と同量以上のCrを添加することが好ましい。Si添加は組織の微細化に効果的であり皮膜の高硬度化並びに耐酸化性を改善することができる。w値は0.2以下でその効果が得られ0.2を超えて含有すると六方晶AlNを形成し易くなり耐摩耗性が低下する。耐酸化性と耐摩耗性のバランスからw値は0.03〜0.08が最適である。その他添加元素としてはW、Yが耐酸化性を改善して好ましい。W、Yの添加量は金属元素全体に対して夫々0.005〜0.05原子%未満が好ましい。本願発明の皮膜が特に耐酸化性に優れ硬度とのバランスが最適となる最も好ましい組成は(AlxNbyTiuCrvSiw)においてx、y、u、v、wは、夫々、xが0.55〜0.70、yが0.05〜0.20、uが0〜0.12、vが0.10〜0.30、wが0.03〜0.08v≧uである。   The oxidation resistant film of the present invention is represented by (AlxNbyTiuCrvSiw) as a metal component, and x, y, u, v, and w are 0.56 ≦ x + y ≦ 0.95, 0 ≦ u ≦ 0.2, and 0 ≦ v, respectively. By satisfying ≦ 0.4, 0 ≦ w ≦ 0.2, and x + y + u + v + w = 1, it is preferable that excellent wear resistance is exhibited. When the x + y value satisfies 0.56 ≦ x + y ≦ 0.95, it is preferable that fine adhesion structure is improved without decreasing the oxidation resistance. Further, the x value of 0.55 to 0.70 and the y value of 0.05 to 0.20 are preferred because the most excellent balance between oxidation resistance and adhesion is obtained. It is preferable to contain at least one selected from TiCrSi in addition to Al and Nb. The addition of Ti coarsens the structure and decreases the oxidation resistance, but the crystallization progresses and the film hardness is improved. When the u value exceeds 0.2, the effect of containing Nb is reduced, the oxidation resistance is drastically lowered, and the wear resistance is lowered. Further, in the wear environment, Fe or the like in the counterpart material is easily diffused into the film. In an environment where oxidation resistance or Fe diffusion resistance is more required, Ti may not be contained. For the purpose of improving the wear resistance in an environment where the temperature does not rise relatively, it is preferable to add u in a range of less than 0.2, more preferably less than 0.12. In this environment where the temperature does not rise relatively, for example, cutting of a steel material having an HRC of less than 40 in a cutting tool or cutting with a cutting speed of 100 m / min or less is used, and a cold mold is used as a mold. . The effect of adding Ti can be confirmed in these wear environments. Addition of Cr improves lubricity and heat resistance. Addition of Cr does not impair the oxidation resistance, and the crystallization of the film is advanced much more than Ti, and the contents of Al and Nb can be further increased and the oxidation resistance is improved. Cr can expand the range of cubic AlN more than Ti, that is, increase the content of AlNb. It is also effective for improving the film hardness by crystallization. A v value of 0.4 or less is particularly effective. The lower limit value of v is preferably 0.05 or more. 0.10 to 0.30 is particularly preferable. Cr greatly suppresses the deterioration of oxidation resistance due to the addition of Ti and the phenomenon of Fe or the like diffusing into the film. When adding Ti, it is effective to add Cr simultaneously. In this case, it is preferable to add Cr equal to or more than the amount of Ti added. The addition of Si is effective for refining the structure, and can increase the hardness of the film and improve the oxidation resistance. The effect is obtained when the w value is 0.2 or less, and when it exceeds 0.2, hexagonal AlN is easily formed and the wear resistance is lowered. From the balance of oxidation resistance and wear resistance, the optimum w value is 0.03 to 0.08. As other additive elements, W and Y are preferable because they improve oxidation resistance. The addition amount of W and Y is preferably 0.005 to less than 0.05 atomic% with respect to the entire metal element. The most preferable composition in which the film of the present invention has particularly excellent oxidation resistance and the optimum balance with hardness is (AlxNbyTiuCrvSiw), where x, y, u, v, and w are each 0.5 to 0.70, y is 0.05 to 0.20, u is 0 to 0.12, v is 0.10 to 0.30, and w is 0.03 to 0.08v ≧ u.

本願発明の耐酸化性皮膜は、X線回折における回折ピークのうち面心立方構造の(111)もしくは(200)ピークの半価幅が2θで1度以上であることにより皮膜内に歪を多く含有し組織が微細になる。従って、弾性回復する比率が高くなり優れた耐酸化性及び密着性を有する皮膜が実現でき好ましい。より好ましくは半価幅が1.2〜3.5度である。これにより皮膜内に歪を多く含有し組織が微細になり弾性回復する比率が高くなり優れた耐酸化性と密着性を有する皮膜が実現できる。本願発明の皮膜は、X線回折において面心立方構造である立方晶B1構造、最密六方構造である六方晶B4構造を含んでいても良い。また、半価幅測定は、立方晶B1構造の(200)により算出することにより基材からのピークと比較的容易に分離できることが多く好ましい。本願発明の皮膜はX線回折において(111)よりも(200)に強く配向した方が緻密で耐熱性が高いことから好ましい。本願発明の耐酸化性皮膜は、破断面組織が粒状状破断面組織、ブロック状破断面組織又は明確に粒界が認められない組織の何れかであることにより弾性回復する比率が高くなり優れた耐酸化性及び密着性を有する皮膜が実現できて好ましい。Al含有量が原子比で0.51〜0.95の範囲、Nbが0.05〜0.49の範囲とすることにより組織が格段に微細な構造となる。成膜条件の最適化により結晶粒の成長を大幅に抑制し皮膜の組織を微細化できる。また皮膜の微細組織を非晶質若しくは非晶質に近い構造にすることが出来酸素の内向拡散を抑制する。これによって皮膜基材の酸化を大幅に抑制することが出来て好ましい。上記の構成は耐熱性を改善し相手材中のFe成分などの皮膜への内向拡散の抑制に有効に作用するため好ましい。更に、粒界強度が向上しクラック進展の抑制に有効であり皮膜強度も向上する効果が得られため好ましい。耐酸化性皮膜の破断面組織の形態は、電界放射型走査型電子顕微鏡(以下FE−SEMと称す。)により皮膜の破断面を観察することにより同定する。明確に粒界が認められない組織とはとは結晶構造を規定するものではなくFE−SEMによる破断面観察において結晶粒界が明確に認められない破断面構造を示す。例えば、本発明例28の破断面写真を図1、従来例50の(TiAl)N系の皮膜の破断面写真を図2に示す。図2の(TiAl)N系の皮膜は一般的に柱状晶と呼称される破断面組織である。図1と比較すると明らかに破断面構造が異なる。図1、図2は、FE−SEMにより加速電圧5kV倍率5000倍〜20000倍で皮膜の破断面を観察したとき、基材表面に対し略垂直方向の粒界をA、基材表面と略平行方向の粒界をB、としたときのアスペクト比であるA/Bが1以下である破断面組織であるとも表現できる。上記観察においてA/Bが1以下のものをブロック状破断面組織一部粒界が認められるがA/Bを特定できないものを粒状破断面組織明確に粒界が認められない組織と表現できる。本願発明の耐酸化性皮膜は押し込み硬さ測定法から算出される弾性回復率Rが30%≦R≦40%であることにより基材との間に優れた密着強度を有する皮膜が実現できる。従って、耐剥離性、耐チッピング性を有する皮膜が実現でき好ましい。R値が30%未満のとき塑性変形量が多く耐摩耗性が低下する傾向が現れる。一方R値が40%を超えると皮膜のチッピングや皮膜剥離が生じ異常摩耗が発生し易くなる傾向が現れる。ここで弾性回復率RはW.C.Oliver and G.M.Pharr著の文献「J.Mater.Res.,Vol.7,No.6,June19921572−1574」記載の方法を参考にしてナノインデンテーション装置により三角錐圧子に圧子定数εが0.75のBerkovich圧子を使用して荷重変位曲線から初期除荷の点における除荷の初期スロープに相当する接触剛性のS値を求めS値及び最大荷重のPmax値から化1により接触深さのhc値を求めた後、弾性回復率のR値を化2により求める。   The oxidation resistant film of the present invention has a large amount of distortion in the film because the half-value width of the (111) or (200) peak of the face-centered cubic structure among diffraction peaks in X-ray diffraction is 1 ° or more at 2θ. Contains and makes the structure fine. Accordingly, the ratio of elastic recovery is increased, and a film having excellent oxidation resistance and adhesion can be realized, which is preferable. More preferably, the half width is 1.2 to 3.5 degrees. As a result, a film having a large amount of strain in the film, a finer structure, and a higher ratio of elastic recovery is obtained, and a film having excellent oxidation resistance and adhesion can be realized. The film of the present invention may include a cubic B1 structure that is a face-centered cubic structure and a hexagonal B4 structure that is a close-packed hexagonal structure in X-ray diffraction. In addition, it is often preferable that the half width measurement can be relatively easily separated from the peak from the base material by calculating from (200) of the cubic B1 structure. The film of the present invention is preferably oriented more strongly in (200) than (111) in X-ray diffraction because it is dense and has high heat resistance. The oxidation-resistant film of the present invention has an excellent ratio of elastic recovery due to the fracture surface structure being either a granular fracture surface structure, a block-like fracture surface structure, or a structure in which no grain boundary is clearly recognized. A film having oxidation resistance and adhesion can be realized, which is preferable. When the Al content is in the range of 0.51 to 0.95 by atomic ratio and Nb is in the range of 0.05 to 0.49, the structure becomes a remarkably fine structure. By optimizing the film forming conditions, the growth of crystal grains can be greatly suppressed and the structure of the film can be refined. In addition, the microstructure of the film can be made amorphous or nearly amorphous, and oxygen inward diffusion can be suppressed. This is preferable because the oxidation of the coating substrate can be greatly suppressed. The above configuration is preferable because it improves the heat resistance and effectively acts to suppress inward diffusion of the Fe component in the counterpart material into the coating. Furthermore, it is preferable because the grain boundary strength is improved, effective in suppressing crack progress, and the effect of improving the film strength is obtained. The form of the fracture surface structure of the oxidation-resistant film is identified by observing the fracture surface of the film with a field emission scanning electron microscope (hereinafter referred to as FE-SEM). The structure in which the grain boundary is not clearly recognized does not define the crystal structure, but indicates a fracture surface structure in which the crystal grain boundary is not clearly recognized in the fracture surface observation by the FE-SEM. For example, FIG. 1 shows a fracture surface photograph of Invention Example 28, and FIG. 2 shows a fracture surface photograph of a (TiAl) N-based film of Conventional Example 50. The (TiAl) N-based film in FIG. 2 has a fracture surface structure generally called columnar crystals. Compared to FIG. 1, the fracture surface structure is clearly different. 1 and 2 show the grain boundary in a direction substantially perpendicular to the surface of the base material when the fracture surface of the film is observed with an FE-SEM at an acceleration voltage of 5 kV and a magnification of 5000 to 20000 times. It can also be expressed as a fracture surface structure in which A / B, which is an aspect ratio when the grain boundary in the direction is B, is 1 or less. In the above observation, those having A / B of 1 or less can be expressed as a structure in which a grain boundary is not clearly recognized when a grain fracture surface structure is clearly identified, although a grain boundary with a block-like fracture surface structure is recognized. In the oxidation resistant film of the present invention, the elastic recovery rate R calculated from the indentation hardness measurement method is 30% ≦ R ≦ 40%, whereby a film having excellent adhesion strength with the substrate can be realized. Therefore, it is preferable that a film having peeling resistance and chipping resistance can be realized. When the R value is less than 30%, the amount of plastic deformation is large, and the wear resistance tends to decrease. On the other hand, if the R value exceeds 40%, chipping of the film or peeling of the film occurs and abnormal wear tends to occur. Here, the elastic recovery rate R is W.W. C. Oliver and G.M. M.M. A Berkovich indenter having an indentation constant ε of 0.75 in a triangular pyramid indenter by a nanoindentation device with reference to a method described by Pharr, “J. Mater. Res., Vol. 7, No. 6, June 19921572-1574” The contact stiffness S value corresponding to the initial unload slope at the point of initial unloading is obtained from the load displacement curve using the sq. And the hc value of the contact depth is obtained from the S value and the Pmax value of the maximum load. Thereafter, the R value of the elastic recovery rate is obtained by the chemical formula 2.

図3にこの測定方法で測定した代表的な荷重変位曲線を示す。本願発明においてR値は例えば被覆条件により制御することができる。即ち、皮膜を成膜するときに基板に負のバイアス電圧を加えバイアス電圧の絶対値を大きくするとR値がある一定値まで増加したのちにゆるやかに減少する傾向を示す。また、Ar流量を増加しても同様な傾向を示す。また、基材温度を上昇させるとR値がある一定値までは減少する傾向を示しその後増加に転じる。また、皮膜を成膜するときに基板に正負パルス状のバイアス電圧を印加して負パルス状バイアス電圧の絶対値の幅を大きくすると幅が大きくなるにつれてある一定値までは増加する傾向を示しその後ゆるやかに減少する傾向を示す。本願発明はAlとNbを含有する皮膜の他にSiと金属成分を含有する別の皮膜を有する。以降はAlとNbを含有する皮膜を第1の皮膜、Siと金属成分を含有する別の皮膜を第2の皮膜と記す。第2の皮膜は、特に緻密な膜組織を有し、高硬度であることから第1の皮膜に残留圧縮応力を付与することが出来る。これにより第1、2の皮膜の耐熱性耐クラック性を向上させることが出来て好ましい。第1、2の皮膜は、R値が同程度に制御できるため互いの密着強度が高く優れた耐膜剥離性を実現できるため好ましい。第1の皮膜の膜厚が総膜厚の10〜98%であることにより耐酸化性膜密着強度耐摩耗性が向上する。一方10%未満では第1の皮膜の特徴が薄くなり98%を超えると第2の皮膜を加える効果が薄くなる。第2の皮膜においてSi原子濃度比aとSi以外の金属成分の原子濃度比の総和bとしたとき、a/(a+b)が0.1〜1であることにより優れた膜硬度と耐酸化性を有する皮膜が実現できる。a/(a+b)が0.1未満になると皮膜の効果が薄れる。また、a/(a+b)が1であっても良い。その場合は金属成分を含まずSi含有による緻密な膜組織と耐酸化性とが顕著に現れる。金属成分はCr、Y、Al、Nb、Tiから選択される少なくとも1種以上である。夫々金属成分がCrであるとき結晶性、摺動性、耐酸化性を、Yであるとき結晶性、耐酸化性、Alであるとき耐酸化性、密着性を、Nbであるとき耐熱性、密着性をTiであるとき硬度、耐摩耗性を向上させる。第1、2の皮膜が相まって優れた機械耐熱特性を有する皮膜が実現できる。第1の皮膜の占める割合が60〜98%であり第2の皮膜が2〜40%であることにより高硬度と全皮膜内に適度の平均残留圧縮応力を有し耐摩耗性と耐剥離性のバランスが最適となって優れた耐チッピング性が実現でき好ましい。このバランスが最適となる平均残留圧縮応力値は、1GPa〜2.5GPaである。この場合、耐チッピング性が重視される切削工具、特に多刃エンドミル、汎用エンドミル、ドリル、インサート工具への適用が好ましい。また、第1の皮膜の占める割合が10〜60%であり、第2の皮膜が40〜90%であることにより両皮膜内の平均残留圧縮応力を高めることが出来るため、優れた耐熱性と耐クラック性が得られて好ましい。好ましい平均残留圧縮応力値は、2.5GPa〜4.5GPaである。この場合、断続性が強く比較的熱クラックが発生し易く、刃先の欠損性、耐摩耗性が重視される切削工具、特にボールエンドミルへの適用が好ましい。第1、2の皮膜が交互に積層されることにより破断面組織を緻密にすることができる。従って、耐酸化性及び皮膜硬度を向上させることが出来て好ましい。積層数が、500層〜2000層のとき積層効果が顕著に得られるため好ましい。第2の皮膜が最表層に被覆されることにより高硬度と高残留圧縮応力の効果が現れ例えば耐摩耗性や耐クラック性が顕著に改善されるため好ましい。また、密着強化層として基材と第1の皮膜との間にTiN、CrN、(TiAl)N、(AlCr)N等の皮膜、摩擦を低減するために表層に硬質炭素膜等の低摩擦を有する公知の皮膜を被覆しても良い。本願発明の皮膜は、耐酸化性、密着性が優れ高温・高負荷・高衝撃・高酸化条件下等の比較的過酷な環境下で使用される被覆部材切削工具に被覆し使用することにより効果が顕著に実現できるため好ましい。本願発明の耐酸化性皮膜の被覆方法は特に限定するものではないが物理蒸着法により被覆することが好ましい。物理蒸着法の中でも、特にアークイオンプレーティング(以下、AIPと記す。)法、スパッタリング(以下、SPと記す。)法が好適である。また、AIP法において本発明の皮膜はAl含有量が多く皮膜内のマクロパーティクルが存在し易いこととまた、高融点のNbを含有することからターゲット表面でのアーク放電の安定化及び得られる皮膜の特性改善のためにターゲット表面に対して垂直方向に作用する磁束密度の絶対値が最大部で1mT〜100mT、特に2mT〜60mTのアーク蒸発源で被覆することにより成膜時のイオン化率が上昇し皮膜内に混入するマクロパーティクルの減少優れた結晶性皮膜の高硬度化耐熱性改善にさらに有効である。また、磁場によりターゲットから放出した元素成分を偏向させ基材に到達するように成膜するイオン輸送型(Filtered)AIP法においても皮膜内に混入するマクロパーティクルの減少優れた結晶性皮膜の高硬度化耐熱性改善にさらに有効であり本発明皮膜を成膜する上で好ましい。以下本、願発明を実施例に基づいて説明する。   FIG. 3 shows a typical load displacement curve measured by this measuring method. In the present invention, the R value can be controlled by, for example, coating conditions. That is, when a negative bias voltage is applied to the substrate when the film is formed and the absolute value of the bias voltage is increased, the R value increases to a certain value and then gradually decreases. Moreover, the same tendency is shown even if the Ar flow rate is increased. Further, when the substrate temperature is raised, the R value tends to decrease to a certain value, and then increases. Also, when applying a positive and negative pulsed bias voltage to the substrate to increase the absolute value width of the negative pulsed bias voltage when forming a film, it tends to increase to a certain value as the width increases. It shows a tendency to decrease gradually. The present invention has another film containing Si and a metal component in addition to the film containing Al and Nb. Hereinafter, a film containing Al and Nb is referred to as a first film, and another film containing Si and a metal component is referred to as a second film. Since the second film has a particularly dense film structure and high hardness, it is possible to apply a residual compressive stress to the first film. This is preferable because the heat resistance and crack resistance of the first and second films can be improved. The first and second films are preferable because the R values can be controlled to the same extent, and thus the mutual adhesion strength is high and excellent film peeling resistance can be realized. When the film thickness of the first film is 10 to 98% of the total film thickness, the oxidation resistance film adhesion strength and wear resistance are improved. On the other hand, if it is less than 10%, the characteristics of the first film become thin, and if it exceeds 98%, the effect of adding the second film becomes thin. Excellent film hardness and oxidation resistance when a / (a + b) is 0.1 to 1 when the Si film atomic ratio a and the total atomic ratio of metal components other than Si are b in the second film. A film having the following can be realized. When a / (a + b) is less than 0.1, the effect of the coating is reduced. Further, a / (a + b) may be 1. In such a case, a dense film structure and oxidation resistance due to the inclusion of Si with no metal component appear remarkably. The metal component is at least one selected from Cr, Y, Al, Nb, and Ti. Crystallinity, slidability and oxidation resistance when the metal component is Cr, crystallinity and oxidation resistance when Y, and oxidation resistance and adhesion when Al, respectively, heat resistance when Nb, When the adhesion is Ti, hardness and wear resistance are improved. A film having excellent mechanical heat resistance can be realized by combining the first and second films. Since the proportion of the first film is 60 to 98% and the second film is 2 to 40%, it has high hardness, moderate average residual compressive stress in the entire film, and wear resistance and peeling resistance. It is preferable that the balance of the above can be optimized and excellent chipping resistance can be realized. The average residual compressive stress value at which this balance is optimal is 1 GPa to 2.5 GPa. In this case, it is preferable to apply to cutting tools in which chipping resistance is important, in particular, multi-blade end mills, general-purpose end mills, drills, and insert tools. In addition, since the ratio of the first film is 10 to 60% and the second film is 40 to 90%, the average residual compressive stress in both films can be increased, and thus excellent heat resistance and Crack resistance is obtained, which is preferable. A preferable average residual compressive stress value is 2.5 GPa to 4.5 GPa. In this case, it is preferable to apply to a cutting tool, particularly a ball end mill, which has a strong interruptability and relatively easily generates thermal cracks, and attaches importance to the cutting edge property and wear resistance. The fracture surface structure can be made dense by alternately laminating the first and second films. Therefore, oxidation resistance and film hardness can be improved, which is preferable. When the number of stacked layers is 500 to 2000, the stacking effect is remarkably obtained, which is preferable. By covering the outermost layer with the second film, an effect of high hardness and high residual compressive stress appears, and for example, wear resistance and crack resistance are remarkably improved, which is preferable. Also, as an adhesion strengthening layer, a coating such as TiN, CrN, (TiAl) N, (AlCr) N or the like between the substrate and the first coating, and a low friction such as a hard carbon film on the surface layer in order to reduce friction. You may coat | cover the well-known film | membrane which has. The coating of the present invention has excellent oxidation resistance and adhesion, and is effective when coated on a cutting tool for coated members used in relatively harsh environments such as high temperature, high load, high impact, and high oxidation conditions. Is preferable because it can be realized remarkably. Although the coating method of the oxidation resistant film of the present invention is not particularly limited, it is preferable to coat by a physical vapor deposition method. Among the physical vapor deposition methods, an arc ion plating (hereinafter referred to as AIP) method and a sputtering (hereinafter referred to as SP) method are particularly suitable. Further, in the AIP method, the coating of the present invention has a high Al content and the presence of macroparticles in the coating easily and also contains Nb having a high melting point, so that the arc discharge on the target surface is stabilized and the coating obtained. In order to improve the characteristics, the ionization rate at the time of film formation is increased by covering with an arc evaporation source whose absolute value of the magnetic flux density acting in the direction perpendicular to the target surface is 1 mT to 100 mT at the maximum, especially 2 mT to 60 mT. Reduction of macro particles mixed in the coating film is more effective in improving the heat resistance and increasing the hardness of the crystalline film. In addition, in the ion transport type (Filtered) AIP method in which the element component emitted from the target is deflected by the magnetic field and reaches the substrate, the macro particles mixed in the film are reduced. This is more effective for improving the heat resistance and is preferable for forming the coating of the present invention. Hereinafter, the present invention will be described based on examples.

本願発明の耐酸化性皮膜をAIP法により被覆した。皮膜の半価幅、破断面組織、弾性回復率、押し込み硬さ及び耐酸化性を評価するためにSNGA432形状でCo含有量が10重量%の超微粒子超硬合金製超硬試験片を用意した。残留圧縮応力を測定するために鏡面加工を施したCo含有量が13.5質量%の超微粒子超硬合金製の薄板状試験片を用いた。また、皮膜の耐摩耗性の評価に用いる切削工具としてCo、V、Crの含有量が合計8.4質量%の直径10mmの超微粒子超硬合金製2枚刃ボールエンドミルを用いた。耐酸化性皮膜は以下の被覆条件で被覆した。まず、各基材を十分に脱脂洗浄した後AIP装置内の基材ホルダー上の自公転機能を有した冶具に固定した。基材ホルダーは3回転/分で回転する。基材は530℃に加熱し装置内の真空度を4×10−4Pa以下に排気した。その後Arを容器内に導入し8×10−1Paにした。装置内の電極間で放電することによりArのイオン化を行い基材に−500Vのバイアス電圧を印加して基材のクリーニング及び活性化処理を30分間実施した。所望の膜組織が得られるように合金ターゲット材成膜ガス成膜条件等を調整し本発明例比較例従来例を作製した。いずれの成膜も次の成膜条件を基本としそれぞれの試料で特記する成膜条件のみを変更した。即ち基本となる成膜条件は反応ガスを容器内に導入し全体の圧力を5Pa基材温度を500℃にしバイアス電圧−100Vを印加し皮膜の金属元素元になるアーク蒸発源として容器内に配置した所望の元素を含むAlNb系合金ターゲットに150Aの電流を供給しアーク放電させることにより皮膜を略3μm厚被覆した。被覆後基材の温度が200℃以下になるまで冷却し容器から取り出した。皮膜組成は電子プローブマイクロアナライザー(日本電子(株)製JXA−8900R、以下、EPMAと記す。)を用いて加速電圧15kV、試料電流0.2μA、計数時間10秒測定を5回実施しその平均値とした。作製した試料と皮膜の組成分析結果を表1にまとめて記す。 The oxidation resistant film of the present invention was coated by the AIP method. In order to evaluate the half width of the film, the fracture surface structure, the elastic recovery rate, the indentation hardness and the oxidation resistance, a carbide test piece made of an ultrafine particle cemented carbide with a Co content of 10% by weight was prepared. . In order to measure the residual compressive stress, a thin plate-shaped test piece made of ultrafine particle cemented carbide having a Co content of 13.5% by mass subjected to mirror finishing was used. Further, as a cutting tool used for evaluating the wear resistance of the coating, a two-blade ball end mill made of ultrafine cemented carbide with a diameter of 10 mm and a total content of Co, V, and Cr of 8.4% by mass was used. The oxidation resistant film was coated under the following coating conditions. First, each base material was sufficiently degreased and washed, and then fixed to a jig having a self-revolving function on the base material holder in the AIP apparatus. The substrate holder rotates at 3 rotations / minute. The substrate was heated to 530 ° C. and the degree of vacuum in the apparatus was evacuated to 4 × 10 −4 Pa or less. Thereafter, Ar was introduced into the container to 8 × 10 −1 Pa. The substrate was cleaned and activated for 30 minutes by ionizing Ar by discharging between the electrodes in the apparatus and applying a bias voltage of −500 V to the substrate. The alloy target material film forming gas film forming conditions and the like were adjusted so that a desired film structure was obtained. All film formations were based on the following film formation conditions, and only the film formation conditions specified for each sample were changed. That is, the basic film forming conditions are that the reaction gas is introduced into the container, the entire pressure is 5 Pa, the base material temperature is 500 ° C., the bias voltage is −100 V, and it is placed in the container as the arc evaporation source that is the metal element of the film The AlNb-based alloy target containing the desired element was supplied with a current of 150 A and subjected to arc discharge to coat the coating with a thickness of about 3 μm. After the coating, the substrate was cooled to 200 ° C. or lower and taken out from the container. The coating composition was measured using an electron probe microanalyzer (JXA-8900R manufactured by JEOL Ltd., hereinafter referred to as EPMA), and the average of the measurement was carried out 5 times by measuring acceleration voltage 15 kV, sample current 0.2 μA, and counting time 10 seconds. Value. Table 1 summarizes the composition analysis results of the prepared samples and coatings.

本発明例1〜5は、反応ガスに窒素を用い皮膜のAl含有量に対してターゲットのAl含有量を若干高めに設定することにより所望の皮膜組成を得た。本発明例6は、本発明例3と略同じターゲットと成膜条件とし反応ガスは窒素に対して体積比10%のアセチレンガスを導入して炭窒化物の皮膜を成膜した。本発明例7は、本発明例3と略同じ成膜条件でAlNbにBを加えた合金ターゲットを用いて硼窒化物からなる皮膜を成膜した。本発明例8は、本発明例3と略同じターゲットと成膜条件とし窒素に対して体積比5%の酸素を導入して酸窒化物からなる皮膜を成膜した。本発明例9〜13は、本発明例3と略同じ成膜条件とし(AlNbCr)からなる合金ターゲットを用い、本発明例14〜17は、(AlNbCrTi)からなる合金ターゲットを用い、本発明例18、19は、(AlNbSi)からなる合金ターゲットを用い、本発明例20は、(AlNbSi)とYからなる合金ターゲットを用い、本発明例21、22は、(AlNbCrSi)の合金ターゲットを用いて窒化物からなる皮膜を成膜した。本発明例23〜25は、本発明例3と略同じ条件でAlNb系窒化物の成膜のバイアス電圧のみを変化させ、本発明例23、24、25は、夫々40V、150V、200Vとした。本発明例26〜28は、本発明例3と略同じ条件で成膜時の窒素ガス流量を変化させ装置内圧力のみを変化させた。本発明例26、27、28は、夫々15Pa、7Pa、3Paとした。本発明例29〜31は、本発明例3と略同じ条件で成膜時の温度のみを変化させ、本発明例29、30、31は、夫々700℃、450℃、400℃とした。本発明例32〜40は、本発明例3と略同じ条件で(AlNb)N膜の成膜後、その直上に組成が異なるSi含有皮膜を成膜した。総膜厚は略3μm厚になるようにした。本発明例32は(AlNb)Nを略2.25μm成膜した後、装置内圧力を5Pa、基材温度500℃、バイアス電圧−50Vで別のアーク蒸発源として容器内に配置した(TiSi)合金ターゲットに150Aの電流を供給し(TiSi)Nを略0.75μm被覆した。同様に本発明例33は(AlNb)Nを略1.5μm、(TiSi)Nを略1.5μm、本発明例34は(AlNb)Nを略0.3μm、(TiSi)Nを略2.7μm、本発明例35は(AlNb)Nを略0.15μm、(TiSi)Nを略2.85μm、本発明例36は(AlNb)Nを略2.25μm、(AlSi)Nを略0.75μm成膜した。本発明例37は、(AlNb)Nを略2.25μm成膜後、装置内にアルゴンと窒素を導入し炉内圧力を0.6Pa、ヒーター加熱を停止した状態で基材温度300〜400℃とし、バイアス電圧−100VでSP法により容器内に配置したSiCターゲットに2kWの電力を供給し、Si(CN)を略0.75μm成膜した。同様に本発明例38は、(AlNb)Nを略2.25μm成膜後、SiCターゲットと、B4Cターゲットに夫々同時に2kWの電力を供給して略0.75μm厚のSi(BCN)を成膜した。本発明例39は、装置内にアルゴン及び窒素と酸素を導入し容器内の一方に配置したSiCターゲット2kWの電力を供給することにより略0.75μm厚のSi(CNO)を成膜した。本発明例40は、SiCターゲットと、MoS2ターゲットに夫々同時に2kWの電力を供給して略0.75μm厚の(SiMo)(CNS)を成膜した。本発明例41は、(AlNb)Nを略0.3μm成膜後(AlNb)Nの上層に(TiSi)Nを略0.3μm成膜した。この成膜工程を繰り返すことにより(AlNb)N(TiSi)Nを交互積層して10層成膜し総厚を略3μmとした。同様に本発明例42は、(AlNb)Nを0.1μm成膜後AlNbターゲットとTiSiターゲットとを同時に放電し、且つ、基材ホルダーの回転数を1回転/分に変更して成膜することにより(AlNb)Nと(TiSi)Nとを交互積層した。層総数を略100層とし総厚を略3μm厚とした。本発明例43は、基材ホルダーの回転数を3回転/分に変更して交互積層総数を略800層とし総厚を略3μm厚とした。本発明例43は、基材ホルダーの回転数を5回転/分に変更して交互積層総数を略1200層とし総厚を略3μm厚とした。次に、比較例45〜48を、本発明例1と略同じ成膜条件を用い夫々AlとNbの原子比が本発明の範囲外である窒化物皮膜を成膜した。比較例49は本発明例3と略同じ成膜条件を用い成膜時に窒素ガスを供給せずアルゴンガスのみを導入して成膜した。従来例50〜従来例53は、本発明例1と略同じ成膜条件を、従来例54は、特許文献3の成膜方法により成膜した。各試料を表1にあわせて示す。
本発明例と比較例の耐酸化性の差異を評価した。各試料を1100℃の大気中に保持し酸化物の厚さが1μm厚に達した時の保持時間を耐酸化性の指標とした。試料形状はSNGA432形状を用い、酸化膜厚は酸化後の膜断面をFE−SEMを用い1万倍で測定した。その結果を表2に示す。
In Invention Examples 1 to 5, the desired coating composition was obtained by using nitrogen as the reaction gas and setting the Al content of the target slightly higher than the Al content of the coating. Inventive Example 6 uses substantially the same target and film forming conditions as Inventive Example 3, and a reactive gas was used to form a carbonitride film by introducing acetylene gas having a volume ratio of 10% with respect to nitrogen. In Invention Example 7, a film made of boronitride was formed using an alloy target obtained by adding B to AlNb under substantially the same film formation conditions as in Invention Example 3. In Invention Example 8, a film made of oxynitride was formed by introducing oxygen at a volume ratio of 5% with respect to nitrogen under the same target and film formation conditions as in Invention Example 3. Invention Examples 9 to 13 have substantially the same film formation conditions as Invention Example 3, and use an alloy target made of (AlNbCr). Invention Examples 14 to 17 use an alloy target made of (AlNbCrTi). 18 and 19 use an alloy target made of (AlNbSi), Example 20 of the invention uses an alloy target made of (AlNbSi) and Y, and Examples 21 and 22 of the invention use an alloy target of (AlNbCrSi). A film made of nitride was formed. Inventive Examples 23-25 changed only the bias voltage of the AlNb-based nitride film formation under substantially the same conditions as Inventive Example 3, and Inventive Examples 23, 24, and 25 were set to 40V, 150V, and 200V, respectively. . In Invention Examples 26 to 28, the nitrogen gas flow rate during film formation was changed under substantially the same conditions as in Invention Example 3, and only the pressure in the apparatus was changed. Invention Examples 26, 27, and 28 were set to 15 Pa, 7 Pa, and 3 Pa, respectively. Inventive Examples 29 to 31 were changed only in the temperature during film formation under substantially the same conditions as Inventive Example 3, and Inventive Examples 29, 30, and 31 were set to 700 ° C., 450 ° C., and 400 ° C., respectively. In inventive examples 32 to 40, after the (AlNb) N film was formed under substantially the same conditions as in inventive example 3, a Si-containing film having a different composition was formed immediately above. The total film thickness was about 3 μm. In Example 32 of the present invention, (AlNb) N was deposited to a thickness of about 2.25 μm, and then placed in a container as another arc evaporation source at an internal pressure of 5 Pa, a substrate temperature of 500 ° C., and a bias voltage of −50 V (TiSi) A current of 150 A was supplied to the alloy target, and (TiSi) N was coated with about 0.75 μm. Similarly, Example 33 of the present invention has (AlNb) N of about 1.5 μm, (TiSi) N of about 1.5 μm, and Example 34 of the present invention has (AlNb) N of about 0.3 μm and (TiSi) N of about 2. Inventive Example 35 is approximately 0.15 μm in (AlNb) N, approximately 2.85 μm in (TiSi) N, and Inventive Example 36 is approximately 2.25 μm in (AlNb) N, and approximately 0.2 in (AlSi) N. A 75 μm film was formed. In Invention Example 37, after forming a film of (AlNb) N to approximately 2.25 μm, argon and nitrogen were introduced into the apparatus, the furnace pressure was 0.6 Pa, and the substrate temperature was 300 to 400 ° C. while the heater heating was stopped. Then, 2 kW of power was supplied to the SiC target placed in the container by the SP method at a bias voltage of −100 V, and a film of Si (CN) was formed to a thickness of about 0.75 μm. Similarly, Example 38 of the present invention forms (AlNb) N with a film thickness of about 2.25 μm, and then simultaneously supplies power of 2 kW to the SiC target and the B4C target to form a film of Si (BCN) with a thickness of about 0.75 μm. did. In Invention Example 39, Si (CNO) having a thickness of about 0.75 μm was formed by introducing argon, nitrogen, and oxygen into the apparatus and supplying power of an SiC target 2 kW disposed on one side of the container. In Example 40 of the present invention, (SiMo) (CNS) having a thickness of about 0.75 μm was formed by simultaneously supplying power of 2 kW to the SiC target and the MoS2 target. In Invention Example 41, (AlNb) N was deposited to a thickness of approximately 0.3 μm, and (TiSi) N was deposited to a thickness of approximately 0.3 μm on the upper layer of (AlNb) N. By repeating this film formation step, 10 layers were formed by alternately laminating (AlNb) N (TiSi) N, and the total thickness was about 3 μm. Similarly, in Example 42 of the present invention, (AlNb) N is formed to a thickness of 0.1 μm, and the AlNb target and the TiSi target are simultaneously discharged, and the number of rotations of the substrate holder is changed to 1 rotation / min. Thus, (AlNb) N and (TiSi) N were alternately laminated. The total number of layers was about 100, and the total thickness was about 3 μm. In Invention Example 43, the number of rotations of the substrate holder was changed to 3 rotations / minute, the total number of alternately laminated layers was about 800 layers, and the total thickness was about 3 μm. In Invention Example 43, the number of rotations of the substrate holder was changed to 5 rotations / minute, the total number of alternately laminated layers was approximately 1200 layers, and the total thickness was approximately 3 μm. Next, in Comparative Examples 45 to 48, a nitride film having an Al / Nb atomic ratio outside the range of the present invention was formed using substantially the same film forming conditions as in Inventive Example 1. Comparative Example 49 was formed using substantially the same film formation conditions as Example 3 of the present invention, without introducing nitrogen gas during film formation, and introducing only argon gas. Conventional Example 50 to Conventional Example 53 were formed using substantially the same film forming conditions as Example 1 of the present invention, and Conventional Example 54 was formed using the film forming method of Patent Document 3. Each sample is shown together in Table 1.
The difference in oxidation resistance between the inventive example and the comparative example was evaluated. Each sample was held in the air at 1100 ° C., and the holding time when the oxide thickness reached 1 μm was used as an index of oxidation resistance. SNGA432 shape was used for the sample shape, and the oxide film thickness was measured 10,000 times using FE-SEM for the cross section of the oxidized film. The results are shown in Table 2.

表2より、本発明例1、2、6は6hr保持後酸化層の厚みが約1μm厚に達した。本発明例3〜5は、9時間保持後も酸化層の厚さは約1μm厚以下であった。比較例45は4hr保持後酸化層の厚みが約1μm厚に達した。比較例46、47、48は2hr保持後酸化層の厚みが約1μm厚に達した。比較例49は1hr保持後基材まで酸化が進行しており基材の酸化が激しく試料が大幅に膨張していた。本発明例1〜5のAlとNbを含有した皮膜は、比較例46〜49に対して格段に耐酸化性が優れており1100℃においても殆ど酸化が進行しておらず優れた耐酸化性を示した。また、表2中に記載の本発明皮膜の耐酸化性は何れの皮膜も上記酸化環境下において6hr以上酸化層の厚みが約1μm以下であり耐酸化性に優れていた。Tiを添加した本発明例14〜本発明例17は同様にCrを含有した本発明例9〜本発明例13に対して耐酸化性が低下していた。Tiを添加することによりTiを含有しない本発明例と比較して酸化物が粗大化又酸化物と本発明皮膜との密着強度が不十分となり酸化の進行を早める結果となった。また、本発明例23から皮膜のX線回折による半価幅が1度以上であることにより更に耐酸化性に優れる結果が得られた。また、本発明例26から破断面組織は柱状よりも粒状ブロック状明確に粒界が認められない破断面組織の順に優れた。これは形成される酸化物粒径が減少したためである。特にAlとNbを含有する皮膜にCr、Si、Yを添加することにより酸化後に形成される酸化物粒径がさらに減少し耐酸化性が改善できることが確認できた。耐酸化性皮膜の硬度と弾性回復率の測定には、被覆したSNGA432形状の試料を5度傾けて鏡面研磨しAlとNbを含有する皮膜の露出面内で膜厚が最大押込み深さの10倍以上になる領域を選び押込み荷重49mN最大荷重保持時間1秒荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、その平均値を求めた。その結果を表2に併記する。同時に測定した皮膜の押し込み硬さを表2に併記する。本発明例1〜5のAlNb含有皮膜は、比較例46〜49に対して弾性回復率が高く格段に高硬度であった。本発明例9〜13の結果から、Cr添加により結晶性に優れ皮膜が高硬度化した。本発明例14〜17の結果から、Cr及びTiの複合添加により更に皮膜が高硬度化した。本発明例18〜22の結果から、Si添加により組織が微細化され皮膜が高硬度化した。本発明例41〜44は、AlとNbを含有する皮膜とSiを含有する皮膜を10層〜1200層の範囲で積層した場合であるが、硬度の測定はこの積層部で実施した。積層数が800層〜1200層において急激に硬度が向上した。これはAlとNbを含有する皮膜とSiを含有する皮膜が相互拡散した結果である。
耐酸化性皮膜の破断面組織の観察方法を図4に示す概略図を用いて説明する。基材2に皮膜3が被覆された試料の基材側にノッチを入れた後矢印の方向に破断し、破断面をFE−SEMにより観察した。条件は加速電圧5kV倍率を10k倍で観察した。基材表面に対し略垂直方向の粒界をA基材表面と略平行方向の粒界をBとしたときのアスペクト比であるA/Bが1以下のものをブロック状破断面組織明確に粒界が認められない組織を明確に粒界が認められない破断面組織一部粒界が認められるがA/Bを特定できないものを粒状破断面組織としその評価結果を表2に併記する。耐酸化性皮膜のX線回折における回折ピークのうち、面心立方構造の(111)又は(200)ピークの半価幅を測定した。測定はX線回折装置により管電圧を120kV、電流を40μA、X線源をCukα、入射角を5度入射スリットを0.4mm、2θを30から70度の範囲で実施した。得られた皮膜からのX線回折プロファイルのうち立方晶B1構造の2θで38度から45度の範囲の最大ピーク強度を示すピーク即ち(200)面に相当するピークの半価幅を測定した。その評価結果を表2に併記する。耐酸化性皮膜の残留圧縮応力を次の方法で評価した。試験片は8mm×25mm×厚み0.7mm〜0.9mmで両面鏡面加工した超硬合金製の薄板を準備した。この薄板の被覆処理前の変形量を事前に測定しておきその後薄板の片面に皮膜を成膜し成膜後の変形量から成膜処理におけるたわみ量のδ膜厚の試験片厚さdのD測定長さのlを測定した。化3から残留圧縮応力σを算出した。残留圧縮応力測定に用いた超硬合金材の弾性係数Eは、517.54GPa、ポアソン比vは0.238とした。結果を表2に併記する。
From Table 2, Examples 1, 2, and 6 of the present invention showed that the thickness of the oxidized layer reached about 1 μm after holding for 6 hours. In Examples 3 to 5 of the present invention, the thickness of the oxide layer was about 1 μm or less even after holding for 9 hours. In Comparative Example 45, the thickness of the oxide layer reached about 1 μm after holding for 4 hours. In Comparative Examples 46, 47 and 48, the thickness of the oxide layer reached about 1 μm after holding for 2 hours. In Comparative Example 49, the oxidation progressed to the base material after holding for 1 hr, and the base material was intensely oxidized, and the sample expanded significantly. The coatings containing Al and Nb of Examples 1 to 5 of the present invention have markedly superior oxidation resistance compared to Comparative Examples 46 to 49, and oxidation has hardly progressed even at 1100 ° C. and excellent oxidation resistance. showed that. In addition, the oxidation resistance of the coatings of the present invention described in Table 2 was excellent in oxidation resistance because all the coatings were 6 hr or more and the thickness of the oxide layer was about 1 μm or less in the above oxidizing environment. Inventive Example 14 to Inventive Example 17 to which Ti was added similarly had lower oxidation resistance than Inventive Example 9 to Inventive Example 13 containing Cr. By adding Ti, the oxide was coarsened or the adhesion strength between the oxide and the coating of the present invention was insufficient as compared with the inventive examples not containing Ti, resulting in accelerated oxidation. Further, from Example 23 of the present invention, a result that the half-value width by X-ray diffraction of the film was 1 degree or more was further improved in oxidation resistance. Further, from Example 26 of the present invention, the fracture surface structure was superior to the columnar shape in the order of the fracture surface structure in which the grain boundaries were not clearly recognized. This is because the particle size of the oxide formed is reduced. In particular, it was confirmed that by adding Cr, Si, and Y to the film containing Al and Nb, the particle size of the oxide formed after the oxidation was further reduced and the oxidation resistance could be improved. To measure the hardness and elastic recovery rate of the oxidation-resistant film, the coated SNGA432-shaped sample was tilted by 5 degrees and mirror-polished, and the film thickness was 10 in the maximum indentation depth within the exposed surface of the film containing Al and Nb. A region that is doubled or more was selected, the indentation load was 49 mN, the maximum load retention time was 1 second, and 10 points were measured under a measurement condition of a removal rate of 0.49 mN / sec after a load load, and the average value was obtained. The results are also shown in Table 2. The indentation hardness of the film measured simultaneously is also shown in Table 2. The AlNb-containing coatings of Inventive Examples 1 to 5 had a higher elastic recovery rate than those of Comparative Examples 46 to 49, and extremely high hardness. From the results of Examples 9 to 13 of the present invention, the film was excellent in crystallinity and increased in hardness by adding Cr. From the results of Invention Examples 14 to 17, the film was further hardened by the combined addition of Cr and Ti. From the results of Invention Examples 18 to 22, the structure was refined by adding Si, and the film became harder. Inventive Examples 41 to 44 are cases where a film containing Al and Nb and a film containing Si were laminated in the range of 10 layers to 1200 layers, and the hardness was measured in this laminated portion. The hardness was drastically improved in the number of stacked layers from 800 layers to 1200 layers. This is a result of mutual diffusion of a film containing Al and Nb and a film containing Si.
An observation method of the fracture surface structure of the oxidation-resistant film will be described with reference to the schematic diagram shown in FIG. A notch was made on the base material side of the sample in which the film 2 was coated on the base material 2 and then fractured in the direction of the arrow, and the fracture surface was observed by FE-SEM. Conditions were observed at an acceleration voltage of 5 kV and a magnification of 10 k. When the grain boundary in the direction substantially perpendicular to the surface of the base material is A, and the grain boundary in the direction substantially parallel to the surface of the base material is B, the aspect ratio A / B is 1 or less. The structure in which no boundary is observed is a fractured surface structure in which no grain boundary is clearly recognized. The grain fracture surface structure in which a part of the grain boundary is recognized but A / B cannot be specified is shown in Table 2. Of the diffraction peaks in the X-ray diffraction of the oxidation resistant film, the half width of the (111) or (200) peak of the face-centered cubic structure was measured. The measurement was performed by an X-ray diffractometer with a tube voltage of 120 kV, a current of 40 μA, an X-ray source of Cukα, an incident angle of 5 degrees, an incident slit of 0.4 mm, and 2θ of 30 to 70 degrees. Of the X-ray diffraction profile obtained from the film, the half-value width of the peak corresponding to the peak (200) plane showing the maximum peak intensity in the range of 38 ° to 45 ° at 2θ of the cubic B1 structure was measured. The evaluation results are also shown in Table 2. The residual compressive stress of the oxidation resistant film was evaluated by the following method. The test piece prepared the thin plate made from the cemented carbide alloy which carried out double-sided mirror-finishing by 8 mm x 25 mm x thickness 0.7mm-0.9mm. The amount of deformation of the thin plate before the coating treatment is measured in advance, and then a film is formed on one surface of the thin plate. From the amount of deformation after the film formation, the deflection amount δ film thickness of the test piece is d. 1 of the D measurement length was measured. From the chemical formula 3, the residual compressive stress σ was calculated. The elastic modulus E of the cemented carbide material used for residual compressive stress measurement was 517.54 GPa, and the Poisson's ratio v was 0.238. The results are also shown in Table 2.

工具寿命は、工具の逃げ面摩耗幅が0.1mmに達した切削長又は著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ・焼け等などの状態に至った時の切削長とし、10m未満は切り捨てた。工具寿命の結果を表2にあわせて示す。
(切削試験)
工具:2枚刃ボールエンドミル直径10mm
被削材:マルテンサイト系ステンレス鋼、HRC52
切り込み:軸方向1.5mm×径方向0.1mm
主軸回転数:12kmin−1
テーブル送り:4m/min
切削油:外部ミスト供給
Tool life is the cutting length when the flank wear width of the tool has reached 0.1 mm or extremely unstable machining conditions such as sparks, noise, flaking / burning of the machined surface, etc. The cutting length was cut off for less than 10 m. Table 2 shows the results of tool life.
(Cutting test)
Tool: 2-flute ball end mill diameter 10mm
Work material: Martensitic stainless steel, HRC52
Cutting depth: 1.5mm in the axial direction x 0.1mm in the radial direction
Spindle speed: 12kmin-1
Table feed: 4m / min
Cutting oil: External mist supply

本発明例と比較例及び従来例の超硬2枚刃ボールエンドミルの工具寿命を比較すると、本発明例1〜44は、2倍以上の工具寿命であった。本願発明の皮膜を被覆した被覆部材は高温・高負荷・高衝撃・高酸化条件下等、比較的過酷な環境下で使用される被覆部材特に切削工具に被覆し使用することにより効果が顕著になった。本発明例1〜5は、工具寿命が400〜590mであり、比較例45〜48とを比較すると2倍以上の工具寿命が得られ、格段に優れた耐酸化性と耐摩耗性及び耐熱性を有する皮膜と該皮膜を被覆した被覆部材が実現した。本発明例1〜5が示すようにAlとNb含有量が工具の工具寿命に極めて大きな影響を及ぼしていた。即ちAl含有量が0.51Nb含有量が0.49において格段に工具寿命が向上しAl含有量が0.7Nb含有量が0.3において工具寿命が最大値を示した。その後緩やかに低下する傾向を示した。破断面組織は、Al含有量が0.51以上Nb含有量が0.49以下において急激に皮膜組織の微細化が進行しはじめAl含有量が0.7Nb含有量が0.3において最も微細な組織構造を示した。その後Al含有量の増加に伴い緩やかに組織が粗大化する傾向を示した。皮膜の破断面組織と工具寿命にも相関が認められた。本発明例6〜8は、夫々AlNbの炭窒化膜、硼窒化膜、酸窒化膜を被覆した場合であるが同様に工具寿命が570〜610mと格段に優れていた。そこで本願発明の構成を満たすことにより耐酸化性と耐摩耗性及び耐熱性が格段に優れる皮膜を実現できた。次に、本発明例内を比較する。Crを含有していない本発明例1〜5が590m以下であるのに対してCr含有量が0.05〜0.40である本発明例9〜13は640〜830mであり優れていた。特にCr含有量が0.10〜0.30の本発明例9〜11は、本発明例1〜5に対して1.3倍以上であった。本発明例14、15はCr、Ti含有量が夫々0.20、0.05〜0.10であり工具寿命が820〜830mとなって本発明例1〜5に対して1.3倍以上であった。TiとCrの含有量が同じである本発明例16は、本発明例1〜5に対して1.1倍程度であり本発明例14、15に比べ改善効果が少なかった。TiがCrの含有量よりも多い本発明例17は、(TiCr)の添加効果が確認されず、本発明例4と比較すると工具寿命が低下した。これはAlNbを含有する皮膜にCrよりもTiを多く添加することにより皮膜の耐酸化性が低下したためである。従って、Tiを添加する場合はTiと同量以上のCrを添加することが工具寿命の改善に有効であった。   When comparing the tool life of the carbide two-blade ball end mills of the inventive example, the comparative example, and the conventional example, the inventive examples 1 to 44 had a tool life of twice or more. The coated member coated with the coating of the present invention is remarkably effective when coated on a cutting member, particularly a cutting tool used under relatively harsh environments such as high temperature, high load, high impact, and high oxidation conditions. became. Inventive Examples 1 to 5 have a tool life of 400 to 590 m, and compared with Comparative Examples 45 to 48, a tool life of twice or more is obtained, and the oxidation resistance, wear resistance, and heat resistance are excellent. And a coated member coated with the film. As shown in Examples 1 to 5 of the present invention, the contents of Al and Nb had an extremely large influence on the tool life of the tool. That is, the tool life was remarkably improved when the Al content was 0.51 Nb content was 0.49, and the tool life was maximum when the Al content was 0.7 Nb content 0.3. After that, it showed a gradual decline. The fracture surface structure is the finest when the Al content is 0.51 or more and the Nb content is 0.49 or less, and the refinement of the film structure starts to progress rapidly. The organizational structure is shown. After that, the structure tended to become coarser as the Al content increased. A correlation was also observed between the fracture surface structure of the coating and the tool life. Examples 6 to 8 of the present invention were cases where AlNb carbonitride film, boronitride film, and oxynitride film were coated, respectively, but the tool life was 570 to 610 m, which was remarkably excellent. Therefore, by satisfying the configuration of the present invention, a film having remarkably excellent oxidation resistance, wear resistance, and heat resistance can be realized. Next, the examples of the present invention will be compared. Invention Examples 1 to 5 which do not contain Cr are 590 m or less, whereas Invention Examples 9 to 13 whose Cr content is 0.05 to 0.40 are 640 to 830 m, which are excellent. In particular, Invention Examples 9 to 11 having a Cr content of 0.10 to 0.30 were 1.3 times or more of Invention Examples 1 to 5. Invention Examples 14 and 15 have Cr and Ti contents of 0.20 and 0.05 to 0.10, respectively, and the tool life is 820 to 830 m, which is 1.3 times or more of Invention Examples 1 to 5. Met. Invention Example 16 in which the contents of Ti and Cr were the same was about 1.1 times that of Invention Examples 1 to 5, and the improvement effect was less than Invention Examples 14 and 15. In Invention Example 17 in which Ti is larger than the Cr content, the effect of adding (TiCr) was not confirmed, and the tool life was reduced as compared with Invention Example 4. This is because the oxidation resistance of the film was reduced by adding more Ti than Cr to the film containing AlNb. Therefore, when adding Ti, adding Cr equal to or more than Ti was effective in improving the tool life.

本発明例18〜22はSi含有量が0.05〜0.1であり工具寿命が700〜950mと長く優れていた。本発明例18にYを0.01添加した本発明例20は870mとなりCrを0.1添加した本発明例20は920mとなり、0.25添加した本発明例22は950mとなり優れていた。従って、本願発明の皮膜が(AlxNbyTiuCrvSiw)で示され0.56≦x+y≦0.95、0≦u≦0.2、0≦v≦0.4、0≦w≦0.2、x+y+u+v+w=1、u+v+w>0を満足することが好ましい。その理由は、Ti添加により皮膜硬度が向上しSi添加により組織の微細化並びに耐熱性が向上しCr添加により皮膜の結晶化が進むためである。但し、これらの含有量を超えると夫々の元素含有の欠点が現れやすくなった。本発明例3と本発明例23〜25の同一皮膜組成において半価幅が異なる試料を比較した。皮膜の面心立方構造の(111)又は(200)ピークの半価幅が1度未満の本発明例23は、工具寿命が400mであるのに対し1度以上の本発明例3、24、25は550〜630mであり、1.3倍以上長かった。従って、本願発明はピークの半価幅が1度以上であることが好ましい。その理由は、面心立方構造の(111)又は(200)ピークの半価幅を1度以上とすることにより皮膜内に歪を多く含有し組織が微細になり弾性回復する比率が高くなり優れた耐酸化性及び密着性を有する皮膜が実現できやすくなるためである。本発明例3と本発明例26〜28の同一皮膜組成において、破断面組織が異なる試料を比較した。破断面組織が柱状の本発明例26は工具寿命が420mであるのに対し、破断面組織が粒状、ブロック状、明確に粒界が認められない破断面組織の本発明例3、27、28は、530〜620mであり1.2倍以上長かった。図1、5、6、7に夫々本発明例28、27、26、3の破断面組織写真を示す。本発明例26の破断面組織が柱状であるのに比べ明確に粒界が認められない破断面組織である本発明例28は1.4倍以上長かった。本発明例26は切削長420mにおいて相手材からのFe及び酸素の内向拡散が激しくチッピングや異常摩耗が観察された。しかし粒状ブロック状明確に粒界が認められない破断面組織の場合は均一摩耗であった。そこで本願発明の皮膜の破断面組織は粒状ブロック状又は明確に粒界が認められない破断面組織の何れかとすることにより弾性回復する比率が高くなり優れた耐酸化性及び密着性を有する皮膜が実現できやすくなった。本発明例3と本発明例29〜31の同一皮膜組成において弾性回復率が異なる試料を比較した。弾性回復率が27%、42%である本発明例29、31に対して32%、37%である本発明例3、30は1.3倍以上長かった。そこで本願発明は、30%≦R≦40%とすることにより基材との間に密着強度を有する皮膜が実現でき耐剥離性耐チッピング性に優れた皮膜を実現できた。本発明例3と本発明例32〜40は、第1の皮膜であるAlNb皮膜の直上に第2の皮膜であるSi含有皮膜を成膜し単一層と比較した。単一皮膜の本発明例3が550mであるのに対し本発明例32〜40は640〜960mであり1.1〜1.7倍であった。特に膜厚比が50%の本発明例33は本発明例3に対して1.7倍であった。本発明例33と本発明例41〜44を比較した。第1、2の皮膜を交互に積層し積層数が略10〜100層の本発明例41、42は、本発明例33と比較して工具寿命の改善は認められなかった。しかし積層数で略800層〜1200層被覆した本発明例43、44は本発明例33と比較して1.2倍以上向上した。そこで本願発明は、AlとNbを含有する皮膜の膜厚が総膜厚の10%〜98%であり残部にSiと、Si以外の金属成分を含有する皮膜を有しa/(a+b)が0.1〜1であり金属成分がCr、Y、Al、Nb、Tiから選択される少なくとも1種以上とすることによりAl、Nbを含有する皮膜の格段に優れた耐酸化性膜密着強度耐摩耗性が向上し相乗効果が発揮しやすくなった。比較例45は切削初期において皮膜の剥離が現れ工具寿命は120mであった。比較例46〜48は工具寿命が200、150、140mであった。これは比較例4648の皮膜は組織が粗大であり、切削時に皮膜中に酸素Fe等が激しく内向拡散し皮膜自体の耐酸化性と皮膜硬度が劣り耐摩耗性が十分でなかったためである。比較例49は40mと短かった。比較例49はAlNbの金属膜を被覆し耐摩耗性が十分でなかったためであり、逃げ面摩耗幅が早期に0.1mmに達した。比較例45〜49と従来例50〜54は、切削評価時に何れも切削速度が最大となる境界域即ち切削中の温度が最大で且つ空転時に冷却されるため熱サイクルが発生する領域において皮膜内へのFe酸素の内向拡散が発生した。この為皮膜強度の低下が発生し多数の熱クラックが確認された。また、皮膜の剥離が観察されチッピング先行型の摩耗状態であった。   Inventive Examples 18 to 22 had an Si content of 0.05 to 0.1 and a tool life of 700 to 950 m, which was excellent for a long time. Invention Example 20 in which Y was added to 0.01 of Invention Example 18 was 870 m, and Invention Example 20 in which 0.1 Cr was added was 920 m, and Invention Example 22 in which 0.25 was added was 950 m, which was excellent. Therefore, the film of the present invention is represented by (AlxNbyTiuCrvSiw), and 0.56 ≦ x + y ≦ 0.95, 0 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.4, 0 ≦ w ≦ 0.2, x + y + u + v + w = 1 , U + v + w> 0 is preferably satisfied. The reason is that the film hardness is improved by the addition of Ti, the refinement of the structure and the heat resistance are improved by the addition of Si, and the crystallization of the film proceeds by the addition of Cr. However, when these contents are exceeded, defects of the respective element contents tend to appear. Samples having different half widths in the same coating composition of Invention Example 3 and Invention Examples 23 to 25 were compared. Inventive Example 23, in which the half width of the (111) or (200) peak of the face-centered cubic structure of the film is less than 1 degree, the tool life is 400 m, whereas Inventive Examples 3, 24, 25 was 550-630 m, 1.3 times longer. Therefore, in the present invention, the half width of the peak is preferably 1 degree or more. The reason for this is that by setting the half width of the (111) or (200) peak of the face-centered cubic structure to 1 degree or more, the coating contains a lot of strain, the structure becomes fine, and the ratio of elastic recovery becomes high. This is because a film having high oxidation resistance and adhesion can be easily realized. In the same coating composition of Invention Example 3 and Invention Examples 26 to 28, samples having different fracture surface structures were compared. Inventive Example 26 having a columnar fracture surface structure has a tool life of 420 m, whereas the fracture surface structure is granular, block-like, and Inventive Examples 3, 27, and 28 having a fractured surface structure in which no grain boundary is clearly recognized. Was 530-620 m, 1.2 times longer. FIGS. 1, 5, 6, and 7 show fracture surface structure photographs of inventive examples 28, 27, 26, and 3, respectively. Inventive Example 28, which is a fractured surface structure in which no grain boundary is clearly observed, was 1.4 times longer than that of Inventive Example 26 in which the fracture surface structure was columnar. In the inventive example 26, inward diffusion of Fe and oxygen from the counterpart material was severe at a cutting length of 420 m, and chipping and abnormal wear were observed. However, uniform wear was observed in the case of a fractured surface structure in which grain boundaries were not clearly observed in the form of granular blocks. Therefore, the fracture surface structure of the film of the present invention is either a granular block shape or a fracture surface structure in which no grain boundary is clearly recognized, so that the ratio of elastic recovery is increased and the film having excellent oxidation resistance and adhesion is obtained. It became easy to realize. Samples having different elastic recovery rates in the same film composition of Invention Example 3 and Invention Examples 29 to 31 were compared. Inventive Examples 3 and 30, which are 32% and 37% of Inventive Examples 29 and 31 in which the elastic recovery rates are 27% and 42%, were 1.3 times or longer. Therefore, in the present invention, by setting 30% ≦ R ≦ 40%, a film having adhesion strength with the substrate can be realized, and a film excellent in peeling resistance and chipping resistance can be realized. In Invention Example 3 and Invention Examples 32 to 40, the Si-containing film as the second film was formed immediately above the AlNb film as the first film, and compared with a single layer. Inventive Example 3 of a single film was 550 m, while Inventive Examples 32 to 40 were 640 to 960 m, 1.1 to 1.7 times. In particular, Invention Example 33 having a film thickness ratio of 50% was 1.7 times that of Invention Example 3. Invention Example 33 and Invention Examples 41 to 44 were compared. Inventive Examples 41 and 42, in which the first and second films were alternately laminated and the number of laminated layers was approximately 10 to 100, showed no improvement in tool life compared to Inventive Example 33. However, the inventive examples 43 and 44 coated with approximately 800 to 1200 layers in terms of the number of laminated layers improved 1.2 times or more compared to the inventive example 33. Therefore, the present invention has a film thickness of 10% to 98% of the total film thickness containing Al and Nb, and the remaining film has a film containing Si and a metal component other than Si, and a / (a + b) is Oxidation resistance film adhesion strength with excellent resistance of a film containing Al and Nb by being at least one selected from 0.1, 1 and at least one metal component selected from Cr, Y, Al, Nb, Ti Abrasion was improved and synergistic effects were easily exhibited. In Comparative Example 45, peeling of the film appeared at the beginning of cutting, and the tool life was 120 m. In Comparative Examples 46 to 48, the tool life was 200, 150, and 140 m. This is because the film of Comparative Example 4648 has a coarse structure, and oxygen Fe or the like diffuses inwardly into the film during cutting, resulting in poor oxidation resistance and film hardness of the film itself and insufficient wear resistance. The comparative example 49 was as short as 40 m. In Comparative Example 49, the AlNb metal film was coated and the wear resistance was not sufficient, and the flank wear width reached 0.1 mm early. In Comparative Examples 45 to 49 and Conventional Examples 50 to 54, the boundary area where the cutting speed is maximum at the time of cutting evaluation, that is, the area where the temperature during cutting is maximum and the heat cycle occurs because it is cooled during idling, Inward diffusion of Fe oxygen into the surface occurred. For this reason, the strength of the film was reduced, and many thermal cracks were confirmed. Further, peeling of the film was observed, and the chipping-preceding wear state was observed.

図1は、本発明例28の破断面組織写真を示す。FIG. 1 shows a fracture cross-sectional structure photograph of Example 28 of the present invention. 図2は、従来例50の破断面組織写真を示す。FIG. 2 shows a fracture surface structure photograph of Conventional Example 50. 図3は、ナノインデンテーション法による荷重変位曲線を示す。FIG. 3 shows a load displacement curve by the nanoindentation method. 図4は、破断面組織の観察方法を示す概略図である。FIG. 4 is a schematic view showing a method for observing a fractured surface structure. 図5は、本発明例27の破断面組織写真を示す。FIG. 5 shows a fracture cross-sectional structure photograph of Example 27 of the present invention. 図6は、本発明例26の破断面組織写真を示す。FIG. 6 shows a fracture cross-sectional structure photograph of Example 26 of the present invention. 図7は、本発明例3の破断面組織写真を示す。FIG. 7 shows a fracture cross-sectional structure photograph of Example 3 of the present invention.

符号の説明Explanation of symbols

1:荷重変位曲線
2:基材
3:耐酸化性皮膜
1: Load displacement curve 2: Base material 3: Oxidation resistant film

Claims (7)

基材表面に被覆する皮膜の少なくとも1層は、金属成分としてAlとNbを含有する窒化物、炭化物、硼化物、酸化物、硫化物から選択される1種若しくは2種以上であり、金属成分の総和に対する原子比で、Al含有量が0.51〜0.95、Nb含有量が0.05〜0.49であることを特徴とする耐酸化性皮膜。 At least one layer of the coating covering the substrate surface is one or more selected from nitrides, carbides, borides, oxides and sulfides containing Al and Nb as metal components. An oxidation-resistant film characterized in that the Al content is 0.51 to 0.95 and the Nb content is 0.05 to 0.49 in terms of an atomic ratio relative to the sum of the above. 請求項1記載の耐酸化性皮膜において、耐酸化性皮膜は、金属成分としてAlとNbの他にTi、Cr、Siから選択される1種以上を含有し、(AlxNbyTiuCrvSiw)で示され、x、y、u、v、wは夫々、対金属元素の原子比を示し、0.56≦x+y≦0.95、0≦u≦0.2、0≦v≦0.4、0≦w≦0.2、x+y+u+v+w=1、u+v+w>0、を満足することを特徴とする耐酸化性皮膜。 The oxidation-resistant film according to claim 1, wherein the oxidation-resistant film contains at least one selected from Ti, Cr and Si in addition to Al and Nb as a metal component, and is represented by (AlxNbyTiuCrvSiw), x , Y, u, v, and w represent atomic ratios of metal elements to each other, and 0.56 ≦ x + y ≦ 0.95, 0 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.4, 0 ≦ w ≦ 0.2, x + y + u + v + w = 1, and u + v + w> 0. 請求項1又は2記載のの耐酸化性皮膜において、該耐酸化性皮膜のX線回折における回折ピークのうち、面心立方構造の(111)又は(200)ピークの半価幅が1度以上であることを特徴とする耐酸化性皮膜。 The oxidation resistant film according to claim 1 or 2, wherein the half-value width of the (111) or (200) peak of the face-centered cubic structure among diffraction peaks in X-ray diffraction of the oxidation resistant film is 1 degree or more. An oxidation-resistant film characterized by 請求項1乃至3何れかに記載のの耐酸化性皮膜において、該耐酸化性皮膜の破断面組織は、粒状破断面組織、ブロック状破断面組織又は明確に粒界が認められない組織の何れかであることを特徴とする耐酸化性皮膜。 The oxidation resistant film according to any one of claims 1 to 3, wherein the fracture surface structure of the oxidation resistant film is any of a granular fracture surface structure, a block-like fracture surface structure, or a structure in which no grain boundary is clearly observed. An oxidation-resistant film characterized by 請求項1乃至4何れかに記載のの耐酸化性皮膜において、該耐酸化性皮膜は、押し込み硬さ測定法から算出される弾性回復率Rが、30%≦R≦40%、であることを特徴とする耐酸化性皮膜。 5. The oxidation-resistant film according to claim 1, wherein the oxidation-resistant film has an elastic recovery rate R calculated from an indentation hardness measurement method of 30% ≦ R ≦ 40%. An oxidation-resistant film characterized by 請求項1乃至5何れかに記載のの耐酸化性皮膜において、該耐酸化性皮膜の膜厚が、総膜厚の10〜98%であり、残部にSiと金属成分を含有する別の皮膜を有し、該別の皮膜におけるSiの原子濃度比a、Si以外の金属成分の原子濃度比の総和bとしたとき、a/(a+b)が0.1〜1であり、Si以外の金属成分がCr、Y、Al、Nb、Tiから選択される少なくとも1種以上であることを特徴とする耐酸化性皮膜。 6. The oxidation-resistant film according to claim 1, wherein the film thickness of the oxidation-resistant film is 10 to 98% of the total film thickness, and the remainder contains Si and a metal component. And the sum of the atomic concentration ratio a of Si and the atomic concentration ratio b of metal components other than Si in the other film, a / (a + b) is 0.1 to 1, and a metal other than Si An oxidation resistant film, wherein the component is at least one selected from Cr, Y, Al, Nb, and Ti. 請求項1乃至6何れかに記載の耐酸化性皮膜を被覆したことを特徴とする被覆部材。
A covering member, which is coated with the oxidation-resistant film according to any one of claims 1 to 6.
JP2006122749A 2006-04-27 2006-04-27 Oxidation resistant film and member coated with the film Expired - Fee Related JP4721281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122749A JP4721281B2 (en) 2006-04-27 2006-04-27 Oxidation resistant film and member coated with the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122749A JP4721281B2 (en) 2006-04-27 2006-04-27 Oxidation resistant film and member coated with the film

Publications (2)

Publication Number Publication Date
JP2007291471A true JP2007291471A (en) 2007-11-08
JP4721281B2 JP4721281B2 (en) 2011-07-13

Family

ID=38762366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122749A Expired - Fee Related JP4721281B2 (en) 2006-04-27 2006-04-27 Oxidation resistant film and member coated with the film

Country Status (1)

Country Link
JP (1) JP4721281B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150887A1 (en) * 2008-06-09 2009-12-17 株式会社神戸製鋼所 Hard coating layer and method for forming the same
WO2010052184A2 (en) 2008-11-04 2010-05-14 Oerlikon Trading Ag, Trübbach Wear protection layer and method for the manufacture thereof
US20100189835A1 (en) * 2007-08-02 2010-07-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
JP2011005575A (en) * 2009-06-24 2011-01-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and method of manufacturing the same
JP2012072500A (en) * 2011-11-22 2012-04-12 Kobe Steel Ltd Hard film and hard film coated tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302831A (en) * 1998-04-24 1999-11-02 Kobe Steel Ltd Hard coating excellent in wear resistance
JPH11302832A (en) * 1998-04-24 1999-11-02 Kobe Steel Ltd Hard film and hard film coated member, excellent in wear resistance and cracking resistance
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2006249527A (en) * 2005-03-11 2006-09-21 Kobe Steel Ltd Hard coating, and its forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302831A (en) * 1998-04-24 1999-11-02 Kobe Steel Ltd Hard coating excellent in wear resistance
JPH11302832A (en) * 1998-04-24 1999-11-02 Kobe Steel Ltd Hard film and hard film coated member, excellent in wear resistance and cracking resistance
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2006249527A (en) * 2005-03-11 2006-09-21 Kobe Steel Ltd Hard coating, and its forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189835A1 (en) * 2007-08-02 2010-07-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
US8828562B2 (en) 2007-08-02 2014-09-09 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
US8580406B2 (en) * 2007-08-02 2013-11-12 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
US8460803B2 (en) 2008-06-09 2013-06-11 Kabushiki Kaisha Kobe Seiko Sho Hard coating layer and method for forming the same
KR101211256B1 (en) * 2008-06-09 2012-12-11 이스카 엘티디. Hard coating layer and method for forming the same
WO2009150887A1 (en) * 2008-06-09 2009-12-17 株式会社神戸製鋼所 Hard coating layer and method for forming the same
CN102224273A (en) * 2008-11-04 2011-10-19 欧瑞康贸易股份公司(特吕巴赫) Wear protection layer and method for the manufacture thereof
JP2012507635A (en) * 2008-11-04 2012-03-29 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Abrasion protection layer and method for manufacturing the same
WO2010052184A3 (en) * 2008-11-04 2010-07-22 Oerlikon Trading Ag, Trübbach Wear protection layer and method for the manufacture thereof
WO2010052184A2 (en) 2008-11-04 2010-05-14 Oerlikon Trading Ag, Trübbach Wear protection layer and method for the manufacture thereof
RU2528298C2 (en) * 2008-11-04 2014-09-10 Ёрликон Трейдинг Аг, Трюббах Wear-resistant protective coating and method of obtaining thereof
CN102224273B (en) * 2008-11-04 2014-09-24 欧瑞康贸易股份公司(特吕巴赫) Wear protection layer and method for the manufacture thereof
JP2011005575A (en) * 2009-06-24 2011-01-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and method of manufacturing the same
JP2012072500A (en) * 2011-11-22 2012-04-12 Kobe Steel Ltd Hard film and hard film coated tool

Also Published As

Publication number Publication date
JP4721281B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US7901796B2 (en) Coated cutting tool and manufacturing method thereof
KR100937072B1 (en) Hard coating having excellent wear resistance and oxidation resistance and target for forming the same, and hard coating having excellent high-temperature lubricating ability and wear resistance and target for forming the same
EP1710326B1 (en) Surface-coated cutting tool
JP3934136B2 (en) Hard film coating member and coating method thereof
EP1842610B1 (en) Surface-coated cutting tool and process for producing the same
JP4578382B2 (en) Hard coating and hard coating tool
JP2008073800A (en) Hard film and hard film coated tool
JP2004238736A (en) Hard film, and hard film-coated tool
JP5443403B2 (en) Hard coating excellent in high temperature lubricity and wear resistance and target for forming the hard coating
JP3766003B2 (en) Coated cutting tool
JP3963354B2 (en) Coated cutting tool
JP4405835B2 (en) Surface coated cutting tool
JP2006307323A (en) Hard film coated member
JP4268558B2 (en) Coated cutting tool
JP4721281B2 (en) Oxidation resistant film and member coated with the film
JP2008013852A (en) Hard film, and hard film-coated tool
JP4991244B2 (en) Surface coated cutting tool
JP4850189B2 (en) Coated tool
JP3586218B2 (en) Coated cutting tool
JP4353949B2 (en) Covering member
JP2007119810A (en) Coated member
WO2020166466A1 (en) Hard coating cutting tool
JP2004136430A (en) Coated tool
JP3779948B2 (en) Hard coating tool
JP3679076B2 (en) Hard coating tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4721281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees