JP4578382B2 - Hard coating and hard coating tool - Google Patents

Hard coating and hard coating tool Download PDF

Info

Publication number
JP4578382B2
JP4578382B2 JP2005309223A JP2005309223A JP4578382B2 JP 4578382 B2 JP4578382 B2 JP 4578382B2 JP 2005309223 A JP2005309223 A JP 2005309223A JP 2005309223 A JP2005309223 A JP 2005309223A JP 4578382 B2 JP4578382 B2 JP 4578382B2
Authority
JP
Japan
Prior art keywords
film
coating
hard
hard coating
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005309223A
Other languages
Japanese (ja)
Other versions
JP2007119795A (en
Inventor
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005309223A priority Critical patent/JP4578382B2/en
Publication of JP2007119795A publication Critical patent/JP2007119795A/en
Application granted granted Critical
Publication of JP4578382B2 publication Critical patent/JP4578382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、耐摩耗性及び耐熱性が要求される切削工具、金型、軸受け、ダイス、ロール及び内燃機関部品等の耐熱部材などの表面に被覆する硬質皮膜と硬質皮膜を被覆した被覆工具に関する。   TECHNICAL FIELD The present invention relates to a hard tool for coating a surface of a cutting tool, a die, a bearing, a die, a roll, and a heat-resistant member such as an internal combustion engine component that requires wear resistance and heat resistance, and a coated tool coated with the hard coat. .

被覆工具等の耐摩耗性を向上させることを目的として硬質皮膜をコーティングする技術が開示されている。特許文献1は、硬質皮膜の組成式が(Al100−cで示され、M成分の選択肢から、Nb、Crが存在することが開示されている。特許文献2は、Al、Cr、Siの窒化物からなる皮膜が開示されている。特許文献3は、(AlCr)(NBCO)の組成を有する硬質皮膜が開示されている。特許文献4は、(AlTiNbSi)(ON)の組成を有する硬質皮膜が開示されている。 A technique for coating a hard film for the purpose of improving the wear resistance of a coated tool or the like is disclosed. Patent Document 1 discloses that the composition formula of the hard coating is (Al a M b ) 100-c X c , and Nb and Cr are present from the choice of the M component. Patent Document 2 discloses a film made of a nitride of Al, Cr, or Si. Patent Document 3 discloses a hard film having a composition of (AlCr) (NBCO). Patent Document 4 discloses a hard film having a composition of (AlTiNbSi) (ON).

特許第3027502号公報Japanese Patent No. 3027502 特開2003−321764号公報Japanese Patent Laid-Open No. 2003-321764 特開2004−169076号公報JP 2004-169076 A 特開2005−199420号公報JP 2005-199420 A

本願発明の課題は、(AlCr)N系皮膜又は(AlCrSi)N系皮膜よりも高硬度で耐酸化性に優れ、同時に熱応力が作用する環境下においても安定して優れた耐摩耗性密着強度を発揮し、高温における強度・靱性を高めた硬質皮膜又は該硬質皮膜を被覆した被覆工具を提供することである。 The problem of the present invention is that it has higher hardness and better oxidation resistance than (AlCr) N-based coatings or (AlCrSi) N-based coatings, and at the same time has stable and excellent wear resistance and adhesion even in an environment where thermal stress acts. The object is to provide a hard coating that exhibits strength and has improved strength and toughness at high temperatures, or a coated tool coated with the hard coating.

本発明の硬質皮膜は、基材表面に被覆する硬質皮膜であって、この硬質皮膜は、(Al1−x−yNbCr)の窒化物からなるAl必須硬質皮膜(但し、x及びyは夫々原子比率を示し、0.04<x<0.40、0.06<y<0.40及び0.10<x+y<0.50を満足する。)と、(SiTi1−u)の窒化物からなるSi必須硬質皮膜(但し、uは原子比率を示し、0.04<u<0.80を満足する。)とを積層した構造を有し、Al必須硬質皮膜の膜厚とSi必須硬質皮膜の膜厚との総膜厚を100%としたとき、Al必須硬質皮膜の膜厚比が10%以上99%未満であることを特徴とする
上記の構成を採用することにより、高硬度で耐酸化性に優れ、また同時に熱応力が作用する環境下においても安定して優れた耐摩耗性及び密着強度を発揮する硬質皮膜を提供することができる。
また、該硬質皮膜を工具等へ被覆することにより優れた耐摩耗性を発揮するため、好適である。
The hard film of the present invention is a hard film that coats the surface of a substrate, and this hard film is an Al essential hard film made of a nitride of (Al 1-xy Nb x Cr y ) (provided that x and y represents an atomic ratio, and satisfies 0.04 <x <0.40, 0.06 <y <0.40, and 0.10 <x + y <0.50), and (Si u Ti 1− a film of an Al essential hard film having a structure in which an Si essential hard film (where u represents an atomic ratio and satisfies 0.04 <u <0.80) is formed of a nitride of u ) When the total film thickness of the thickness and the film thickness of the Si essential hard coating is 100%, the Al essential hard coating thickness ratio is 10% or more and less than 99% .
By adopting the above-mentioned configuration, it is possible to provide a hard film that exhibits high hardness and excellent oxidation resistance, and at the same time stably exhibits excellent wear resistance and adhesion strength even in an environment where thermal stress acts. it can.
In addition, it is preferable because excellent wear resistance is exhibited by coating the hard film on a tool or the like.

本願発明の硬質皮膜は、高硬度で耐酸化性に優れ、同時に硬度、ヤング率皮膜内に残留する圧縮応力等に代表される皮膜強度が高く、熱応力が作用する環境下においても皮膜剥離を抑制し、安定して優れた耐摩耗性を発揮し、高温における強度・靱性を高めた硬質皮膜及びこれら硬質皮膜を被覆した被覆工具を提供することができる。 The hard coating of the present invention has high hardness and excellent oxidation resistance, and at the same time has high coating strength represented by hardness, Young's modulus , compressive stress remaining in the coating, etc., and even in an environment where thermal stress acts suppressed, exhibit stable and excellent abrasion resistance, it is possible to provide a coated tool coated with a hard coating and their hard film with improved strength and toughness at high temperatures.

本願発明の硬質皮膜は、(AlCr)N系(AlCrSi)N系皮膜のAl、Si含有量が多い組成範囲を対象にして、皮膜強度向上に関する検討を行った。その結果、(AlCr)N系(AlCrSi)N系皮膜へNbを最適量添加し、組成を最適化することによって、皮膜の密着強度耐酸化性を改善できることを見出し、本願発明を完成させた。以下、本願発明の(AlCrNb)N系を皮膜A、(AlCrNbSi)系を皮膜Bと記す。
皮膜A又は皮膜BにおけるNb添加効果は、ZnS型のAlNの析出を抑制することができる。皮膜硬度ヤング率を向上させることが可能となり、優れた密着強度が得られる。AlSi含有量を向上させることができるため、耐酸化性に関しても良好となる。Nb添加は、酸化後に皮膜表面に形成される表面酸化物が、従来の(AlCr)N系(AlCrSi)N系皮膜よりも微細構造を示し、酸素の内向拡散を抑制することができる。更に、Nbは融点が1000度以上と高く、密度が小さく、高温における強度と靭性とのバランスに優れている。即ち、Nbは他の高融点金属と広い濃度領域で固溶体、化合物相をもつことができるため、これらの固溶体、化合物相とを複合化させることで高温強度と靭性に優れた特性を有することができる。例えば、析出強化型のNb基合金材料のNb−Si等や、金属間化合物のNb−Al系等、この他にも固溶強化型Nb基合金材料等のNb系耐熱材料を硬質皮膜に存在させることが好適である。窒化Nbも高温域で安定な材料として硬質皮膜に存在させることが好適である。窒化Nbには、種々の元素比を有する材料が存在し、NbN、Nb、NbN等がある。この中でもNbNは高温環境における安定性が優れている。この理由は、NbとNの原子間の結合力が高いことによるものと考えられ、高温強度と靭性に優れた特性に影響を及ぼす。
皮膜A又は皮膜BにおけるNb含有量であるx値は、原子比率で、0.04<x<0.40とする。x値が0.04以下の場合、ヤング率が小さく添加効果が確認されず耐摩耗性の改善には至らなかった。x値が0.40以上の場合、硬度と耐熱性改善には至らなかった。好ましいx値は、0.05以上、0.25未満である。
皮膜A又は皮膜BにおけるCr含有量であるy値は、0.06<y<0.40とする。y値が0.06以下の場合、皮膜硬度が低く耐摩耗性に乏しい。y値が、0.40以上の場合、ヤング率即ち皮膜強度が低く、耐剥離性に乏しい。Crの一部を、Mo、Wで置換しても良い。
皮膜BにおけるSi含有量であるz値は、0≦z<0.20とする。Si添加は皮膜の高硬度化耐酸化性の改善の観点から、含有することが好ましい。しかし、z値が0.20以上の場合、耐酸化性を示すものの、皮膜硬度ヤング率が低く耐摩耗性が十分ではない。
皮膜A又は皮膜BにおけるAl含有量は残り、すなわち(1−x−y−z)値で表す。この時の(x+y+z)値の範囲は、0.10<x+y+z<0.50とする。従って、Al含有量は、0.50以上、0.90以下である。Al含有量が0.50未満の場合、皮膜硬度耐酸化性が十分ではない。Al含有量が0.90を超える場合、皮膜硬度が低く耐摩耗性に乏しい。好ましいAl含有量としては、皮膜硬度と耐酸化性の観点から0.55以上、0.75未満である。
皮膜A又は皮膜Bは、AlSiの含有量のバランスから基材の直上に被覆する場合は、FCC単一相から構成されることが好ましい。FCCと六方晶の混合相、非晶質相を含む場合も優れた耐酸化特性を示し、耐熱性が要求される部材等への被覆においてもその効果を発揮する。FCC相の場合は、X線回折において(111)面又は(200)面に最大強度を示す場合が好適である。
For the hard coating of the present invention, studies were made on improving the coating strength in the composition range where the Al and Si contents of the (AlCr) N-based and (AlCrSi) N-based coatings are large. As a result, it was found that the adhesion strength and oxidation resistance of the coating can be improved by adding the optimum amount of Nb to the (AlCr) N-based and (AlCrSi) N-based coatings and optimizing the composition, thereby completing the present invention. It was. Hereinafter, the (AlCrNb) N system of the present invention is referred to as coating A, and the (AlCrNbSi) N system is referred to as coating B.
The Nb addition effect in the film A or the film B can suppress the precipitation of ZnS-type AlN. The film hardness and Young's modulus can be improved, and excellent adhesion strength can be obtained. Since the Al and Si contents can be improved, the oxidation resistance is also improved. When Nb is added, the surface oxide formed on the surface of the film after oxidation exhibits a finer structure than conventional (AlCr) N-based and (AlCrSi) N-based films, and can suppress inward diffusion of oxygen. Further, Nb has a high melting point of 1000 ° C. or higher, a low density, and an excellent balance between strength and toughness at high temperatures. That is, Nb can have a solid solution and a compound phase in a wide concentration range with other refractory metals. Therefore, by combining these solid solution and compound phase, Nb has excellent properties at high temperature strength and toughness. it can. For example, precipitation hardened Nb-based alloy materials such as Nb-Si, intermetallic compounds such as Nb-Al, and other Nb-based heat-resistant materials such as solid solution strengthened Nb-based alloy materials are present in the hard coating. Is preferable. Nb nitride is also preferably present in the hard coating as a stable material at high temperatures. Nb nitride includes materials having various element ratios, such as NbN, Nb 4 N 3 , and Nb 2 N. Among these, Nb 2 N is excellent in stability in a high temperature environment. The reason for this is considered to be due to the high bonding force between the Nb and N atoms, which affects the properties excellent in high-temperature strength and toughness.
X value which is Nb content in the film A or the film B is an atomic ratio, and 0.04 <x <0.40. When the x value was 0.04 or less, the Young's modulus was small and the effect of addition was not confirmed, and the wear resistance was not improved. When the x value was 0.40 or more, the hardness and heat resistance were not improved. A preferable x value is 0.05 or more and less than 0.25.
The y value that is the Cr content in the coating A or the coating B is 0.06 <y <0.40. When the y value is 0.06 or less, the film hardness is low and the wear resistance is poor. When the y value is 0.40 or more, the Young's modulus, that is, the film strength is low, and the peel resistance is poor. A part of Cr may be replaced with Mo or W.
The z value, which is the Si content in the coating B , is 0 ≦ z <0.20. Si addition is preferably contained from the viewpoint of increasing the hardness of the film and improving the oxidation resistance. However, when the z value is 0.20 or more, although the oxidation resistance is exhibited, the film hardness and Young's modulus are low and the wear resistance is not sufficient.
The Al content in the coating A or the coating B is the rest, that is, expressed by a (1-xyz) value. The range of (x + y + z) values at this time is 0.10 <x + y + z <0.50. Therefore, the Al content is 0.50 or more and 0.90 or less. When the Al content is less than 0.50, the film hardness and oxidation resistance are not sufficient. When the Al content exceeds 0.90, the film hardness is low and the wear resistance is poor. The preferable Al content is 0.55 or more and less than 0.75 from the viewpoint of film hardness and oxidation resistance.
The coating A or coating B is preferably composed of an FCC single phase in the case of coating directly on the substrate from the balance of the contents of Al and Si. Even when it contains a mixed phase of FCC and hexagonal crystal and an amorphous phase, it exhibits excellent oxidation resistance characteristics, and also exhibits its effect in coating on a member or the like that requires heat resistance. In the case of the FCC phase, it is preferable that the maximum intensity is shown on the (111) plane or the (200) plane in X-ray diffraction.

皮膜A又は皮膜Bは、単一層積層膜において優れた耐摩耗性を示す。その他、優れた特性を有する機能皮膜との積層をすることも可能であり、好ましい形態である。皮膜A又は皮膜Bと積層する、優れた特性を有する皮膜Cは、(SiMe1−u)の窒化物、炭化物、硼化物、酸化物、硫化物から選択される1種以上もしくはこれらの固溶体からなり、但し、MeはCr、Ti、Al、Nb、Yから選択される1種以上、uは原子比率を示し、0.04<u<0.80、を満足する。この皮膜Cは、本願発明の皮膜A又は皮膜Bよりも、高硬度耐酸化性に優れる。皮膜A又は皮膜B、皮膜Cとは特に優れた密着強度を有するため、その相互作用により優れた耐摩耗性を発揮する。
皮膜CのSi含有量であるu値は、0.04<u<0.80、とする。u値が0.04以下の場合は、単一層の場合に比べ、耐摩耗性を改善するには至らない。u値が0.8以上の場合は、皮膜硬度の低下が著しく、その効果が顕著に確認できない。
皮膜A又は皮膜B皮膜Cとを積層する場合の最適な積層構造は、硬質皮膜の総膜厚を1としたとき、皮膜A又は皮膜Bが10%以上、99%未満である。この範囲であれば、積層する効果が顕著になり優れた耐摩耗性を発揮することができる。皮膜Aが60%以上、99%未満の場合、残留圧縮応力が比較的低く耐チッピング性を重視した切削工具の中でも、特に多刃エンドミル、汎用エンドミル、ドリル、インサート工具に最適である。皮膜Aが10%以上、60%未満の場合、残留圧縮応力が比較的高く、耐クラック性を重視した切削工具の中でも、特にボールエンドミルに最適である。皮膜Aが10%以上、99%未満とは、2層以上積層することが可能であり、上記範囲の中で積層することも本発明に含まれる。具体的には、2層以上、3000層未満の積層構造が、耐摩耗性の観点から好ましい範囲である。
皮膜Cは、高い皮膜硬度残留圧縮応力を有する場合、硬質皮膜の最表層に被覆されることが好ましい積層構造である。皮膜C以外にも、例えば密着強化層として、TiN、CrN、(TiAl)N、(AlCr)N等、また摩擦を低減するために硬質皮膜の表層に硬質炭素膜等を被覆する場合等は、本発明の効果を損なわない範囲であれば本発明の効果が確認され、使用分野に応じて適宜変更を施すことができる。
本発明の硬質皮膜は、特に耐熱性に優れ、耐摩耗性に優れることから切削工具へ被覆するとにより、その効果が顕著に確認できる。本願発明の硬質皮膜の被覆方法に関しては、特に限定するものではないが物理蒸着法による被覆が好ましい。物理蒸着法の中でも特にアーク放電式イオンプレーティング(以下、AIPと記す。)法、スパッタリング(以下、SPと記す。)法が好適である。以下、本願発明を実施例に基づいて説明する。
Film A or film B exhibits excellent wear resistance in a single layer or laminated film. In addition, it is also possible to laminate with a functional film having excellent characteristics, which is a preferred form. The film C having excellent characteristics laminated with the film A or the film B is one or more selected from nitrides, carbides, borides, oxides and sulfides of (Si u Me 1-u ), or these It consists of a solid solution, where Me is one or more selected from Cr, Ti, Al, Nb, and Y, u indicates an atomic ratio, and satisfies 0.04 <u <0.80. This film C is higher in hardness and oxidation resistance than the film A or film B of the present invention. Since the coating A or the coating B and the coating C have particularly excellent adhesion strength, they exhibit excellent wear resistance due to their interaction.
The u value, which is the Si content of the film C, is 0.04 <u <0.80. When the u value is 0.04 or less, the wear resistance cannot be improved as compared with the case of a single layer. When the u value is 0.8 or more, the film hardness is remarkably lowered, and the effect cannot be remarkably confirmed.
The optimum laminated structure in the case of laminating the film A or the film B and the film C , when the total film thickness of the hard film is 1, the film A or the film B is 10% or more and less than 99%. If it is this range, the effect to laminate | stack will become remarkable and the outstanding abrasion resistance can be exhibited. When the coating A is 60% or more and less than 99%, the cutting force with relatively low residual compressive stress and importance for chipping resistance is particularly suitable for a multi-blade end mill, a general-purpose end mill, a drill, and an insert tool. When the film A is 10% or more and less than 60%, the residual compressive stress is relatively high, and it is particularly suitable for a ball end mill among cutting tools that place importance on crack resistance. When the film A is 10% or more and less than 99%, it is possible to laminate two or more layers, and laminating within the above range is also included in the present invention. Specifically, a laminated structure of 2 layers or more and less than 3000 layers is a preferable range from the viewpoint of wear resistance.
When the film C has high film hardness and residual compressive stress, it is a laminated structure that is preferably coated on the outermost layer of the hard film. In addition to the coating C , for example, as an adhesion strengthening layer, TiN, CrN, (TiAl) N, (AlCr) N, etc., and when a hard carbon film is coated on the surface of the hard coating to reduce friction, etc. As long as the effects of the present invention are not impaired, the effects of the present invention are confirmed, and appropriate changes can be made according to the field of use.
The effect of the hard coating of the present invention can be remarkably confirmed when it is coated on a cutting tool because it is particularly excellent in heat resistance and wear resistance. Although it does not specifically limit regarding the coating method of the hard film of this invention, Coating by the physical vapor deposition method is preferable. Among the physical vapor deposition methods, the arc discharge ion plating (hereinafter referred to as AIP) method and the sputtering (hereinafter referred to as SP) method are particularly suitable. Hereinafter, the present invention will be described based on examples.

本願発明の皮膜A又は皮膜BをAIP法により被覆した。皮膜A又は皮膜Bの皮膜硬度、ヤング率耐酸化性を評価するために、試料1として、SNGA432形状、Co含有量が10重量%の超微粒子超硬合金、試料2として、Co、V含有量が合計8重量%の超微粒子超硬合金製2枚刃ボールエンドミルを用いた
本発明例1は、試料1、2を脱脂洗浄を十分に実施し、AIP装置の容器内の冶具に配置した。冶具は3回転/分で自公転する。被覆基材温度が500℃となるよう加熱排気を行い、Arを容器内に導入した。容器内に設けられた電極間で放電することによりArのイオン化を行い、同時に基材にパルス状のバイアス電圧を印加した。イオン化されたArが基材に衝突することにより基材のクリーニング活性化処理を行った。処理後、反応ガスである窒素を容器内に導入し、全体の圧力を3.2Pa、バイアス電圧−80Vを印加することによって硬質皮膜を被覆した。容器内に複数配置したアーク蒸発源に設置された硬質皮膜の金属成分となるターゲットに硬質皮膜の金属成分となる合金ターゲットを設置し、夫々150Aを供給し、ターゲット上で放電を開始し、硬質皮膜を約3μm被覆した。被覆後、基材の温度が200℃以下になるまで冷却し、容器から取り出した。
本発明例2〜16の皮膜A又は皮膜Bの組成を表1に示す。表1中には、皮膜A又は皮膜Bの組成、皮膜Cとの層構造の詳細について併記する。比較例17〜19、従来例20〜23に関しても表1に併記する。
The film A or film B of the present invention was coated by the AIP method. In order to evaluate the film hardness, Young's modulus , and oxidation resistance of film A or film B , as sample 1, SNGA432 shape, ultrafine cemented carbide with a Co content of 10% by weight, sample 2 , containing Co and V A two-blade ball end mill made of ultrafine particle cemented carbide with a total amount of 8% by weight was used .
In Example 1 of the present invention, samples 1 and 2 were sufficiently degreased and cleaned and placed on a jig in a container of an AIP apparatus. The jig revolves at 3 revolutions / minute. Heating and evacuation were performed so that the coating substrate temperature was 500 ° C., and Ar was introduced into the container. Ar was ionized by discharging between the electrodes provided in the container, and at the same time, a pulsed bias voltage was applied to the substrate. The substrate was cleaned and activated by the ionized Ar colliding with the substrate. After the treatment, nitrogen as a reaction gas was introduced into the vessel, and the hard film was coated by applying an overall pressure of 3.2 Pa and a bias voltage of −80V. An alloy target that is a metal component of a hard coating is installed on a target that is a metal component of a hard coating that is installed in a plurality of arc evaporation sources arranged in the container, 150A is supplied to each target, and discharge is started on the target. The film was coated about 3 μm. After coating, the substrate was cooled until the temperature of the substrate became 200 ° C. or less, and taken out from the container.
Table 1 shows the composition of coating A or coating B of Invention Examples 2 to 16 . In Table 1, the composition of film A or film B and the details of the layer structure with film C are also shown. The comparative examples 17 to 19 and conventional examples 20 to 23 are also shown in Table 1.

図1には表1に示した、本発明例1、2、3、比較例17、18、従来例20、21、22に対して皮膜硬度、ヤング率を測定した結果を示す。測定はナノインデンテーションによる硬度測定法を用いた。詳細は、以下の文献による方法を参照した(W.C.Oliver and、G.M.Pharr:J.Mater.Res.,Vol.7,No.6,June 1992、1564−1583)。
試料1の逃げ面を斜め5度方向に鏡面研摩した面において、最大押込み深さの10倍以上の膜厚を有する場所を選定し、押込み荷重を49mN、最大荷重保持時間を1秒、荷重負荷、除去速度を0.49mN/秒の測定条件で10点測定した。これらの測定は圧子形状の僅かな変化により、測定結果が左右される場合があるため、従来例20の(TiAl)Nを基準試料として測定し、得られた数値を補正することが好ましい。図1より、本発明例1、2、3は、比較例17、18、従来例21、22に対して、押し込み硬さ、ヤング率が伴に高い値を示した。一方、従来例20に対して、従来例21、従来例22は高硬度を示すものの、ヤング率が低く、基材との密着強度に乏しかった。比較例17、比較例18は、何れも皮膜硬度が従来例20に対して低い結果となった。
FIG. 1 shows the results of measurement of film hardness and Young's modulus for Inventive Examples 1, 2, and 3, Comparative Examples 17 and 18, and Conventional Examples 20, 21, and 22 shown in Table 1. The measurement used the hardness measurement method by nanoindentation. For details, reference was made to the following literature method (WC Oliver and GM Pharr: J. Mater. Res., Vol. 7, No. 6, June 1992, 1564-1583).
On the surface of sample 1 that has been mirror-polished in the direction of 5 degrees diagonally, select a location that has a film thickness of 10 times or more of the maximum indentation depth, indentation load of 49 mN, maximum load retention time of 1 second, load load The removal rate was measured at 10 points under the measurement condition of 0.49 mN / sec. In these measurements, the measurement result may be affected by a slight change in the shape of the indenter. Therefore, it is preferable to measure (TiAl) N in Conventional Example 20 as a reference sample and correct the obtained numerical value. As shown in FIG. 1, Examples 1, 2, and 3 of the present invention showed higher values with indentation hardness and Young's modulus than Comparative Examples 17 and 18 and Conventional Examples 21 and 22. On the other hand, Conventional Example 21 and Conventional Example 22 showed high hardness compared to Conventional Example 20, but the Young's modulus was low and the adhesion strength with the substrate was poor. Comparative Example 17 and Comparative Example 18 both had lower film hardness than Conventional Example 20.

本発明例1、2、従来例20、21の試料1を、高温環境下における耐酸化性能を、大気中1100℃で各々0.2、0.5、1、3、9時間保持した後、皮膜A、B、Cの表面を走査電子顕微鏡(以下、SEMと記す。)にて酸化物の形態を観察した。評価後の試料に関しX線回折(以下、XRDと記す。)を行い、皮膜A又は皮膜B、超硬基材の酸化について確認した。
図2〜図6より、上記酸化環境化において超硬合金基材は複雑な複数の酸化物を形成していることが確認される。即ち、これらの酸化物が形成される場合、硬質皮膜の耐酸化性が乏しいことを示す。従来例20の表面は、0.2時間保持後で、(AlTi)N皮膜がほぼ消滅しており、酸化した超硬合金基材が剥き出しになっていた。従来例21は、1時間保持後、巨大な酸化物が硬質皮膜表面に形成され、図6から、超硬合金の基材表面には硬質皮膜はほぼ消滅しており、酸化した超硬合金基材であると考えられる複数のピークが確認された。
図7、図8より、本発明例1は9時間保持後、皮膜A表面に酸化物を形成した。図9、図10より、本発明例2は9時間保持後も皮膜B表面は微細な表面構造をしており、大幅に酸化特性が改善された。これらの結果から(AlCr)N系、(AlCrSi)N系皮膜にNbを添加することにより、高温環境下における耐酸化性が大幅に改善されることがわかった。これらは何れもAl含有量一定化で評価した結果であることから、Nb添加による効果である。
Samples 1 of Invention Examples 1 and 2 and Conventional Examples 20 and 21 were kept at 1100 ° C. in the atmosphere for 0.2, 0.5, 1, 3 , and 9 hours, respectively. The form of the oxide was observed on the surfaces of the coatings A, B, and C with a scanning electron microscope (hereinafter referred to as SEM). The sample after the evaluation was subjected to X-ray diffraction (hereinafter referred to as XRD), and the film A or film B and the oxidation of the cemented carbide substrate were confirmed.
2 to 6, it is confirmed that the cemented carbide base material forms a plurality of complex oxides in the oxidation environment. That is, when these oxides are formed, the oxidation resistance of the hard film is poor. The surface of Conventional Example 20 had the (AlTi) N film almost disappeared after being held for 0.2 hours , and the oxidized cemented carbide base material was exposed. In Conventional Example 21, after holding for 1 hour, a huge oxide is formed on the surface of the hard film, and from FIG. 6, the hard film almost disappears on the surface of the base material of the cemented carbide, and the oxidized cemented carbide base Several peaks considered to be the material were confirmed.
7 and 8, Example 1 of the present invention formed an oxide on the surface of the coating A after being held for 9 hours. 9 and 10, Example 2 of the present invention had a fine surface structure on the surface of the coating B even after being held for 9 hours, and the oxidation characteristics were greatly improved. From these results, it was found that by adding Nb to the (AlCr) N-based and (AlCrSi) N-based coatings , the oxidation resistance under a high temperature environment is greatly improved. Since these are the results of evaluation with the Al content being made constant, the effect is due to the addition of Nb.

試料2の切削試験を以下に示す。切削工具の逃げ面摩耗幅が0.1mmに達した切削長又は著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ、焼け等などの状態に達した時点における切削長を切削寿命として表1中に示した。10m未満の切削寿命は切り捨てて表記した。
(切削条件)
切削方法:高速仕上げ加工
被削材:マルテンサイト系ステンレス鋼(HRC52)
切り込み:軸方向、1.0mm、径方向、0.2mm
主軸回転数:20kmin−1
テーブル送り:4m/min
切削油:無し、ドライ切削(エアーブロー)
The cutting test of Sample 2 is shown below. The cutting length when the flank wear width of the cutting tool has reached 0.1 mm or the extremely unstable machining state, for example, the occurrence of sparks, abnormal noise, flaking of the machining surface, burning, etc. The cutting life is shown in Table 1. The cutting life of less than 10 m was rounded down.
(Cutting conditions)
Cutting method: High-speed finishing Work material: Martensitic stainless steel (HRC52)
Cutting: axial direction, 1.0 mm, radial direction, 0.2 mm
Spindle speed: 20kmin- 1
Table feed: 4m / min
Cutting oil: None, dry cutting (air blow)

表1より、切削工具における耐摩耗性の評価結果、本発明例は、従来例、比較例に比べ、耐摩耗性に優れる結果となった。本発明例1から3は、耐摩耗評価においても剥離が著しく抑制され、従来例21、22に対して飛躍的に切削寿命を向上させることができた。Nbを添加することにより、ヤング率の低下を抑制でき、密着強度を大幅に改善することによるものである。
本発明例1、6から11は、皮膜Aの場合を示す。何れの組成においても、従来例、比較例に対して耐摩耗性に優れる結果となった。これらの結果より耐摩耗性の観点から、硬質皮膜内のNbとCr含有量としてはNb含有量よりもCr含有量が多いほうが好ましく、Al含有量としては、0.55を超え、0.80未満がより好ましい結果であった。
本発明例2から5は、皮膜Bの場合を示す。Siを添加することにより更に耐摩耗性を改善することができた。皮膜Bは、Nbに対してCr含有量が多いことが好ましく、AlとSiとの総含有量は、0.80未満が耐摩耗性の観点から好ましい結果である。AlとSiとの総含有量は、0.70が最も優れた耐摩耗性を示した。
本発明例12から16は、皮膜A皮膜Cの積層構造とした場合を示す。(TiSi)N系皮膜との積層構造とすることにより更に優れた耐摩耗性を示すことが確認された。本発明例12、13から、皮膜Aの膜厚比の小さいほうが、より優れた耐摩耗性を示した。しかし、ドリルやスクエアエンドミルにおいては逆に皮膜Aの膜厚比を大きくした方が耐摩耗性に優れる結果が得られている。このときの最適な膜厚比は、80%のときに最も優れた耐摩耗性を示した。積層数積層厚さとしては、すべての試料に関し膜厚を3μm前後に固定していることから、積層数を増加させることにより更に耐摩耗性を改善できた。積層する厚さは薄い方が好ましい結果となった。
以上のように本発明の硬質皮膜は従来例に比べ、極めて優れた耐摩耗性を示し、同一摩耗条件下において耐摩耗性に優れていることから、更に切削能率を向上させて加工することができた。従来例21、従来例22は高硬度を示すものの、基材との密着強度に乏しく、剥離進行型の摩耗形態を示した。
From Table 1 , the evaluation results of the wear resistance of the cutting tool, the results of the present invention example were superior to the conventional example and the comparative example in terms of wear resistance. In Examples 1 to 3 of the present invention, peeling was remarkably suppressed even in the wear resistance evaluation, and the cutting life could be dramatically improved as compared with Conventional Examples 21 and 22. By adding Nb, the decrease in Young's modulus can be suppressed, and the adhesion strength is greatly improved.
Invention Examples 1 and 6 to 11 show the case of film A. In any composition, the result was excellent in wear resistance compared to the conventional example and the comparative example. From these results, from the viewpoint of wear resistance, it is preferable that the Nb and Cr contents in the hard coating have a larger Cr content than the Nb content, and the Al content exceeds 0.55 and is 0.80. Less than was a more preferable result.
Invention Examples 2 to 5 show the case of the coating B. The wear resistance could be further improved by adding Si. The film B preferably has a large Cr content relative to Nb, and the total content of Al and Si is preferably less than 0.80 from the viewpoint of wear resistance. The total content of Al and Si was 0.70, which showed the most excellent wear resistance.
Invention Examples 12 to 16 show the case where a laminated structure of film A and film C is used. It was confirmed that a more excellent wear resistance was exhibited by adopting a laminated structure with the (TiSi) N-based film. From Examples 12 and 13 of the present invention, the smaller the film thickness ratio of the coating A , the better the wear resistance. However, in the case of a drill or a square end mill, conversely, increasing the film thickness ratio of the coating A has resulted in excellent wear resistance. The optimum film thickness ratio at this time showed the most excellent wear resistance at 80%. As the number of laminated layers and the laminated thickness, since the film thickness was fixed to about 3 μm for all the samples, the wear resistance could be further improved by increasing the number of laminated layers. The thinner the thickness, the better.
As described above, the hard coating of the present invention exhibits extremely superior wear resistance compared to conventional examples, and is excellent in wear resistance under the same wear conditions, so that it can be processed with further improved cutting efficiency. did it. Although Conventional Example 21 and Conventional Example 22 showed high hardness, they had poor adhesion strength with the base material, and showed a delamination progressive wear mode.

図1は、皮膜硬度とヤング率との測定結果を示す。FIG. 1 shows the measurement results of film hardness and Young's modulus. 図2は、超硬合金基材の耐酸化試験前後のXRD結果を示す。FIG. 2 shows the XRD results before and after the oxidation resistance test of the cemented carbide substrate. 図3は、従来例20の0.2時間保持後のSEM観察結果を示す。FIG. 3 shows the SEM observation result of Conventional Example 20 after holding for 0.2 hours. 図4は、従来例20の成膜後、0.2時間保持後のXRD結果を示す。FIG. 4 shows the XRD result after holding for 0.2 hours after the film formation of Conventional Example 20. 図5は、従来例21の1時間保持後のSEM観察結果を示す。FIG. 5 shows the SEM observation result of Conventional Example 21 after holding for 1 hour. 図6は、従来例21の成膜後、0.2、0.5、1時間保持後のXRD結果を示す。FIG. 6 shows the XRD results after 0.2 hours , 0.5 hours , and 1 hour after the film formation of Conventional Example 21. 図7は、本発明例1の9時間保持後のSEM観察結果を示す。FIG. 7 shows the SEM observation results after holding for 9 hours in Example 1 of the present invention. 図8は、本発明例1の成膜後、0.2、0.5、1、3、9時間保持後のXRD結果を示す。FIG. 8 shows the XRD results after holding for 0.2, 0.5, 1, 3, and 9 hours after the film formation of Example 1 of the present invention. 図9は、本発明例2の9時間保持後のSEM観察結果を示す。FIG. 9 shows the result of SEM observation after holding for 9 hours in Invention Example 2. 図10は、本発明例2の成膜後、0.2、0.5、1、3、9時間保持後のXRD結果を示す。FIG. 10 shows XRD results after holding for 0.2, 0.5, 1, 3, and 9 hours after the film formation of Example 2 of the present invention.

Claims (2)

基材表面に被覆する硬質皮膜であって、
この硬質皮膜は、(Al1−x−yNbCr)の窒化物からなるAl必須硬質皮膜(但し、x及びyは夫々原子比率を示し、0.04<x<0.40、0.06<y<0.40及び0.10<x+y<0.50を満足する。)と、(SiTi1−u)の窒化物からなるSi必須硬質皮膜(但し、uは原子比率を示し、0.04<u<0.80を満足する。)とを積層した構造を有し、
Al必須硬質皮膜の膜厚とSi必須硬質皮膜の膜厚との総膜厚を100%としたとき、Al必須硬質皮膜の膜厚比が10%以上99%未満であることを特徴とする硬質皮膜。
A hard film covering the surface of the substrate,
This hard film is an Al essential hard film made of a nitride of (Al 1-xy Nb x Cr y ), where x and y each indicate an atomic ratio, and 0.04 <x <0.40, 0 .06 <y <0.40 and 0.10 <x + y <0.50) and a Si essential hard coating made of a nitride of (Si u Ti 1-u ) (where u is the atomic ratio) And satisfying 0.04 <u <0.80.),
Hardness characterized in that the film thickness ratio of the Al essential hard coating is 10% or more and less than 99% when the total film thickness of the Al essential hard coating and the Si essential hard coating is 100%. Film.
請求項に記載の硬質皮膜を被覆したことを特徴とする硬質皮膜被覆工具。 A hard film-coated tool coated with the hard film according to claim 1 .
JP2005309223A 2005-10-25 2005-10-25 Hard coating and hard coating tool Active JP4578382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309223A JP4578382B2 (en) 2005-10-25 2005-10-25 Hard coating and hard coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309223A JP4578382B2 (en) 2005-10-25 2005-10-25 Hard coating and hard coating tool

Publications (2)

Publication Number Publication Date
JP2007119795A JP2007119795A (en) 2007-05-17
JP4578382B2 true JP4578382B2 (en) 2010-11-10

Family

ID=38143943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309223A Active JP4578382B2 (en) 2005-10-25 2005-10-25 Hard coating and hard coating tool

Country Status (1)

Country Link
JP (1) JP4578382B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016938A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film
JP4774080B2 (en) 2007-08-02 2011-09-14 株式会社神戸製鋼所 Hard coating material and cold plastic working mold
JP5234931B2 (en) * 2008-06-23 2013-07-10 株式会社神戸製鋼所 Hard coating member and molding tool
RU2528930C2 (en) * 2008-07-09 2014-09-20 Эрликон Трейдинг Аг, Трюббах Coating system, coated component and method for production thereof
JP5424103B2 (en) * 2008-09-24 2014-02-26 日立金属株式会社 Covering mold for plastic working
CN102224273B (en) * 2008-11-04 2014-09-24 欧瑞康贸易股份公司(特吕巴赫) Wear protection layer and method for the manufacture thereof
DE112009005368B4 (en) 2009-11-12 2023-12-28 Osg Corp. HARD COATE AND HARD COATED TOOL
JP5459618B2 (en) * 2010-04-20 2014-04-02 三菱マテリアル株式会社 Surface coated cutting tool
JP5975214B2 (en) * 2012-10-09 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool
JP5975338B2 (en) * 2012-10-16 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool
JP5975339B2 (en) * 2012-10-16 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505771A (en) * 2004-07-15 2008-02-28 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト High oxidation resistant hard coat for cutting tools

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524748A (en) * 2003-04-28 2006-11-02 ユナキス・バルツェルス・アクチェンゲゼルシャフト Workpiece having hard material layer containing AlCr and manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505771A (en) * 2004-07-15 2008-02-28 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト High oxidation resistant hard coat for cutting tools

Also Published As

Publication number Publication date
JP2007119795A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4578382B2 (en) Hard coating and hard coating tool
CN1470350B (en) Coating tool
JP4966580B2 (en) Coated tool
JP2005344148A (en) Wear-resistant film, and surface-coated cutting tool using the same
JP4824989B2 (en) Hard coating
JP3963354B2 (en) Coated cutting tool
JP4405835B2 (en) Surface coated cutting tool
JP2006307323A (en) Hard film coated member
JP2008013852A (en) Hard film, and hard film-coated tool
CN110603342A (en) Metal cutting tool with multi-layer coating
JP2005305576A (en) Coated-cutting tool
JP2002018606A (en) Coated cutting tool
JPWO2020075356A1 (en) Cutting tools and their manufacturing methods
JP2007084899A (en) Coating member, and method for coating coating member
JP4393650B2 (en) Wear-resistant coated tool
JP4721281B2 (en) Oxidation resistant film and member coated with the film
JP2008284642A (en) Coated cutting tool
JP2007119810A (en) Coated member
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP4353949B2 (en) Covering member
JP2005271106A (en) Coated cutting tool
JP2004176085A (en) Hard film
Braun et al. Oxidation behaviour of TiAlYN/CrN and CrAlYN/CrN nanoscale multilayer coatings with Al2O3 topcoat deposited on γ-TiAl alloys
JP2004136430A (en) Coated tool
JP4575009B2 (en) Coated cutting tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350