JP3392115B2 - Hard coating tool - Google Patents
Hard coating toolInfo
- Publication number
- JP3392115B2 JP3392115B2 JP2000283575A JP2000283575A JP3392115B2 JP 3392115 B2 JP3392115 B2 JP 3392115B2 JP 2000283575 A JP2000283575 A JP 2000283575A JP 2000283575 A JP2000283575 A JP 2000283575A JP 3392115 B2 JP3392115 B2 JP 3392115B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- coating
- hard
- film
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】[0001]
【発明が属する技術分野】本発明は、金属材料等の切削
加工等に使用される被覆工具において、特に高速切削、
乾式切削に適用される被覆工具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated tool used for cutting metal materials and the like, particularly high speed cutting,
The present invention relates to a coated tool applied to dry cutting.
【0002】[0002]
【従来の技術】金属加工の高能率化を目的とした調質鋼
の直切削においては、特開昭62−56565号、特開
平2−194159号に代表されるTiAlN皮膜が開
発され切削工具に適用されている。TiAlN皮膜は、
TiN、TiCNに比べ耐酸化性が優れるため、刃先が
高温に達する調質鋼の切削においては、切削工具の性能
を著しく向上させるものである。2. Description of the Related Art In the direct cutting of heat-treated steel for the purpose of improving the efficiency of metal working, TiAlN coatings represented by JP-A-62-56565 and JP-A-2-194159 have been developed and used as cutting tools. Has been applied. The TiAlN coating is
Since it has better oxidation resistance than TiN and TiCN, it significantly improves the performance of the cutting tool in the cutting of heat-treated steel where the cutting edge reaches a high temperature.
【0003】しかしながら、近年では更なる加工の高能
率、高精度化の要求を満たす為、切削速度の高速化に加
え、環境問題及び加工コスト低減の観点から乾式での切
削加工が重要視されている。こうような切削環境下にお
いては、切削工具表面に被覆される耐摩耗皮膜と切削さ
れる材料との間に化学反応が発生し、工具寿命が逃げ面
のこすり摩耗だけではなく、すくい面のクレーター摩耗
により強く支配される傾向が強くなってきた。従来まで
の前記TiN、TiCNおよびTiAlN皮膜はこのよ
うな苛酷な切削環境下においては、切削温度の上昇に伴
い被加工物との化学反応に起因したクレーター摩耗の増
加、及びアブレッシブ摩耗の進行に伴う切削熱の上昇に
起因する熱クラックの発生により、十分な切削寿命を得
られないのが実状である。また比較的連続切削である旋
盤加工においてPVD被覆を適用する場合は、このクレ
ーター摩耗を抑制することが、極めて重要なことであ
る。従って、これらの問題を解決するためには、切削温
度の上昇を抑制するか、もしくはある程度高温になって
も皮膜が軟化せず、耐クレーター摩耗性を維持するかの
2点の改善が必要である。However, in recent years, in order to meet the demands for higher efficiency and higher accuracy of machining, dry machining is regarded as important in view of environmental problems and machining cost reduction in addition to high cutting speed. There is. Under such a cutting environment, a chemical reaction occurs between the wear-resistant coating on the surface of the cutting tool and the material to be cut, and the tool life is not limited to the scrape wear of the flank but also the crater of the rake face. The tendency to be strongly controlled by wear has become stronger. Under the severe cutting environment, the conventional TiN, TiCN and TiAlN coatings are accompanied by an increase in crater wear due to a chemical reaction with a workpiece and an increase in abrasive wear under the severe cutting environment. The actual situation is that a sufficient cutting life cannot be obtained due to the generation of thermal cracks due to an increase in cutting heat. Further, when applying a PVD coating in lathe machining, which is relatively continuous cutting, it is extremely important to suppress this crater wear. Therefore, in order to solve these problems, it is necessary to improve the cutting temperature, or to improve the crater wear resistance without softening the coating even if the temperature rises to some extent. is there.
【0004】このような問題を解決する為に、まず切削
温度の上昇を抑制する観点からは、潤滑性皮膜を被覆す
る提案がなされている。例えば特表平11−50277
5号公報に示される二硫化モリブデンや、特開平7−1
64211号公報に示される炭化タングステンおよびダ
イヤモンドライクカーボンからなる潤滑性皮膜を耐摩耗
性を有する硬質皮膜を最表面に積層し、切削温度上昇抑
制に基づく、皮膜と被加工物間の拡散現象を抑制しよう
とする切削工具が開発されているが、いずれも下地硬質
皮膜との密着性が悪い上に皮膜そのものが非常に脆い
為、これら潤滑皮膜は切削時に容易に剥離または破壊な
どを発生し、上記切削環境下においては何ら効果を発揮
するには至っていない。また特開平11−156992
号公報に示される、Cr系潤滑皮膜を被覆した工具が提
案されているが、Cr系皮膜は硬度そのものが低く耐摩
耗性が極めて悪く、耐クレーター摩耗性を改善するには
至っていない。皮膜の高温硬度を維持し耐クレーター摩
耗性を高温で維持する観点からは、具体的提案は未だな
い。比較的似た事例として、特開平7−310171号
公報にみられるようにTiAlN系皮膜にSiや硼素を
添加した事例が提案されているが、単純な添加では耐酸
化性は改善するものの、高温硬度を高める結果には至っ
ていない。その他特開平10−176259号公報にみ
られるように、各種の第3成分を添加する提案もなされ
ているが、いずれも皮膜の高温硬度を改善せしめるもの
ではない。In order to solve such a problem, first, from the viewpoint of suppressing an increase in cutting temperature, it has been proposed to coat a lubricating film. For example, Tokuyohei 11-50277
And molybdenum disulfide disclosed in Japanese Patent Laid-Open No. 7-1.
A hard coating having wear resistance is laminated on the outermost surface of a lubricating coating made of tungsten carbide and diamond-like carbon disclosed in Japanese Patent No. 64211, and the diffusion phenomenon between the coating and the work piece is suppressed based on suppression of a rise in cutting temperature. Cutting tools have been developed, but in any case, since the adhesion to the underlying hard coating is poor and the coating itself is extremely brittle, these lubricating coatings easily peel or break during cutting. No effect has been achieved in the cutting environment. Also, JP-A-11-156992
Although a tool coated with a Cr-based lubricating coating is disclosed in Japanese Patent Laid-Open Publication No. JP-A-2003-242242, the Cr-based coating has low hardness itself and extremely poor wear resistance, and has not yet improved crater wear resistance. From the viewpoint of maintaining the high temperature hardness of the coating and maintaining the crater abrasion resistance at high temperatures, no specific proposal has been made yet. As a comparatively similar case, there is proposed a case where Si or boron is added to a TiAlN-based film as seen in JP-A-7-310171, but oxidation resistance is improved by simple addition, but high temperature The result has not been to increase hardness. In addition, as disclosed in JP-A-10-176259, it has been proposed to add various third components, but none of them improves the high temperature hardness of the coating.
【0005】[0005]
【発明が解決しようとする課題】本発明はこうした事情
に鑑み、切削加工の乾式化、高速化に対応可能な、即
ち、従来の耐酸化性を損なわないために、この特性に優
れるTiAlを主成分とする硬質皮膜の耐アブレッシブ
摩耗性及び耐クレーター摩耗性を著しく改善した物理蒸
着硬質皮膜被覆工具を提供することを課題とする。In view of these circumstances, the present invention mainly uses TiAl, which is excellent in this property, in order to be able to cope with dry cutting and high speed cutting, that is, not to impair the conventional oxidation resistance. An object of the present invention is to provide a physical vapor deposition hard film coated tool in which the abrasive wear resistance and crater wear resistance of a hard film as a component are remarkably improved.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、工具基
体にTi、Al、Bを主成分とする金属元素と、C、
N、Oから選択される少なくとも1種以上の元素とから
構成される硬質層を1層以上被覆した硬質皮膜被覆工具
において、該硬質層の少なくとも1層内にBの窒化物相
を介在させたことを特徴とする硬質皮膜被覆工具であ
る。SUMMARY OF THE INVENTION The gist of the present invention is to provide a tool base with a metal element containing Ti, Al, and B as main components, and C,
In a hard coating tool coated with one or more hard layers composed of at least one or more elements selected from N and O, a nitride phase of B is interposed in at least one of the hard layers. A hard film-coated tool characterized by the above.
【0007】[0007]
【作用】本発明者らはTiAlN皮膜を例に、アークイ
オンプレーティング法において、種々の添加成分の効果
を鋭意研究した結果B(硼素)の添加と被覆条件の最適
化により、TiAlNの耐アブレッシブ摩耗性と耐クレ
ーター摩耗性を著しく改善できる知見を得るに至った。
原因を鋭意調査した結果、TiAlN皮膜内部にこれら
Bの窒化物が極めて微細に分散していること、及びTi
AlN皮膜の硬度がビッカースで2800から3300
に著しく上昇していることが確認された。すなわち、セ
ラミック系の硬質皮膜を分散強化せしめることが可能で
あるという驚くべき事実とその方法を発見した。With the TiAlN coating as an example, the inventors of the present invention have earnestly studied the effects of various additive components in the arc ion plating method. As a result, the addition of B (boron) and the optimization of the coating conditions have made the TiAlN anti-abrasive. We have come to the knowledge that the wear resistance and crater wear resistance can be significantly improved.
As a result of diligent investigation of the cause, it was found that these B nitrides were extremely finely dispersed inside the TiAlN film, and
The hardness of AlN coating is Vickers from 2800 to 3300
It was confirmed that it was rising significantly. That is, the surprising fact that a ceramic hard coating can be dispersion strengthened and the method thereof have been discovered.
【0008】図1はTiAlBターゲットを用い、基体
バイアス350V、反応圧0.5Pa、300℃で被覆
された皮膜のESCA解析結果を示す。図1より、この
皮膜からは、BNの結合エネルギーから発生する回折ピ
ークが確認され、皮膜がTiAlN相とBN相より構成
されていることが確認された。さらに透過電子顕微鏡に
より詳細に観察すると、このBの窒化物層は25nm程
度のナノ結晶であり、fcc構造を有し柱状に成長する
TiAlN層内にナノ結晶が分散されたものであること
を確認した。このナノ結晶が格子歪を発生し分散強化機
構により、TiAlNの硬度を大幅に上昇せしめたもの
と考えられる。この結果、Bの添加による皮膜硬度の大
幅向上により耐アブレッシブ摩耗性及び耐クレーター摩
耗性が大幅に改善されるに至った。さらに他の理由を詳
細に調査した結果、切削中にBNが皮膜表面に内部拡散
し摩擦係数を低減させ、切削温度の上昇を抑制し、結果
耐アブレッシブ摩耗性、耐クレーター摩耗性を向上せし
めていることが明らかになった。FIG. 1 shows an ESCA analysis result of a film coated with a TiAlB target at a substrate bias of 350 V, a reaction pressure of 0.5 Pa and 300 ° C. From FIG. 1, it was confirmed from this film that a diffraction peak generated from the binding energy of BN was confirmed, and that the film was composed of a TiAlN phase and a BN phase. Further detailed observation with a transmission electron microscope confirmed that the B nitride layer was a nanocrystal of about 25 nm, and that the nanocrystal was dispersed in a TiAlN layer having a fcc structure and growing in a columnar shape. did. It is considered that the nanocrystals generated lattice strain and significantly increased the hardness of TiAlN by the dispersion strengthening mechanism. As a result, the addition of B greatly improved the film hardness, resulting in a significant improvement in the abrasive wear resistance and the crater wear resistance. As a result of further detailed investigation of other reasons, BN internally diffuses into the coating surface during cutting to reduce the friction coefficient, suppress the rise of cutting temperature, and as a result, improve abrasive wear resistance and crater wear resistance. It became clear that there is.
【0009】しかしながら、この分散ナノ結晶は常に形
成されるものではない。その被覆条件が極めて重要な要
素となる。被覆時におけるイオンエネルギーが小さい場
合、例えば印可バイアス電圧が比較的低い50Vの場合
はBはfcc構造におけるTiAlNの金属原子と置換
し固溶体である(TiAlB)Nを形成し、硬度の上昇
は僅かしか確認されなかった。ナノ結晶で介在せしめる
ためには極めて高いイオンエネルギーで成膜する必要が
ある。被覆時の基体に印可するバイアスは300V以上
で被覆された場合にこのナノ結晶相が介在する結果とな
る。このように、被覆時のイオンエネルギーが結晶形態
を左右していることは明らかであるが、理由については
さらに研究が必要である。However, the dispersed nanocrystals are not always formed. The coating condition is a very important factor. When the ion energy at the time of coating is small, for example, when the applied bias voltage is relatively low at 50 V, B replaces the metal atom of TiAlN in the fcc structure to form (TiAlB) N which is a solid solution, and the hardness rises only slightly. Not confirmed. In order to intervene with nanocrystals, it is necessary to form a film with extremely high ion energy. The bias applied to the substrate during coating results in the inclusion of this nanocrystalline phase when coated above 300V. Thus, it is clear that the ion energy at the time of coating influences the crystal morphology, but further research is needed on the reason.
【0010】また被覆温度に関しては450℃を越えた
温度で被覆するとBは拡散エネルギーが高くなり、表面
で移動拡散しTiAlNに固溶し、(TiAlB)Nを
形成する。従って、バイアス電圧と被覆温度の最適化が
ナノ結晶を介在せしめるために必要である。Regarding the coating temperature, when coating is performed at a temperature exceeding 450 ° C., the diffusion energy of B becomes high, and B migrates and diffuses on the surface to form a solid solution in TiAlN to form (TiAlB) N. Therefore, optimization of the bias voltage and coating temperature is needed to interpose the nanocrystals.
【0011】硬度の上昇はBと硼素の添加量にほぼ比例
する傾向にあった。硬度上昇に伴い、皮膜に残留する圧
縮応力が増大し、TiAlを主成分とする硬質層とTi
を主成分とする硬質層間の密着性は劣化する傾向にある
ためBの添加量はTiAlに対し好ましくは30原子%
以下に抑えたほうがより良いと考えられる。The increase in hardness tended to be substantially proportional to the amounts of B and boron added. As the hardness increases, the compressive stress remaining in the coating increases, and the hard layer containing TiAl as the main component and Ti
Since the adhesion between the hard layers containing as a main component tends to deteriorate, the addition amount of B is preferably 30 atomic% with respect to TiAl.
It is considered better to keep below.
【0012】さらにTiAlを主成分とする硬質皮膜に
おいては、結晶成長の優先方位が切削性能に影響を及ぼ
す。X線回折における最強回折ピークが(200)であ
る場合は、皮膜硬度は軟らかいものの結晶が明瞭な柱状
結晶を呈し、耐クレーター摩耗性に優れる結果となる。
一方最強回折ピークが(111)の場合、皮膜は明瞭な
柱状結晶ではなくなり柱状結晶が分断されたブロック状
結晶を呈する。この場合個々のブロックが切削中に切粉
とともに脱落する傾向にあり、クレーター摩耗の進行が
幾分速くなるため、TiAl系皮膜は(200)に配向
する方が、より好ましい。配向は被覆条件に依存する
が、被覆初期に(200)配向となる核を最適条件にお
いて形成せしめれば、それ以降の被覆条件は特に限定さ
れるものではない。それはこの核より皮膜はエピタキシ
ャルに成長することによる。Further, in the hard coating containing TiAl as a main component, the preferential orientation of crystal growth affects the cutting performance. When the strongest diffraction peak in X-ray diffraction is (200), although the film hardness is soft, the crystals show clear columnar crystals, resulting in excellent crater abrasion resistance.
On the other hand, when the strongest diffraction peak is (111), the film is not a clear columnar crystal but exhibits a block crystal in which the columnar crystal is divided. In this case, the individual blocks tend to fall off together with the cutting chips during cutting, and the crater wear progresses somewhat faster. Therefore, it is more preferable that the TiAl-based coating be oriented in (200). The orientation depends on the coating conditions, but if the nuclei having the (200) orientation are formed under the optimum conditions at the initial stage of the coating, the coating conditions thereafter are not particularly limited. This is because the film grows epitaxially from this nucleus.
【0013】Tiの一部を他成分で置換することにおい
て、TiAlを主成分とする硬質層の耐摩耗性もしくは
耐酸化性をさらに向上させることが可能である。周期律
表の4、5、6族成分での置換はTiAl主成分硬質層
の硬度上昇させる傾向にあり、Yでの置換は本成分が粒
界に偏析し、粒界での酸素拡散を抑制し、結果耐酸化性
を改善せしめる傾向にある。置換量は30原子%を超え
ると、結晶が柱状に成長しなくなり、皮膜の靭性が劣化
するため、30原子%以下でなければならない。特に、
Siの添加においてもほぼ同一の被覆条件下でSi3N
4のナノ結晶を介在させることが可能であることを見出
した。BNナノ結晶に加えSiNナノ結晶を介在させる
ことにより、皮膜硬度をさらに向上させることが可能で
あり、Siの添加量によりビッカース硬度でさらに36
00〜4200の高硬度化が可能であった。BNの有す
る潤滑性と相俟ってさらに長寿命化が可能である。By substituting a part of Ti with another component, it is possible to further improve the wear resistance or the oxidation resistance of the hard layer containing TiAl as the main component. Substitution with components of groups 4, 5 and 6 of the periodic table tends to increase the hardness of the TiAl main component hard layer, and substitution with Y segregates this component at the grain boundaries and suppresses oxygen diffusion at the grain boundaries. However, as a result, the oxidation resistance tends to be improved. If the amount of substitution exceeds 30 atomic%, the crystals will not grow in columns and the toughness of the film will deteriorate, so it should be 30 atomic% or less. In particular,
Even if Si is added, under the same coating conditions, Si 3 N
It was found that it is possible to interpose 4 nanocrystals. It is possible to further improve the film hardness by interposing SiN nanocrystals in addition to BN nanocrystals, and further increase the Vickers hardness by 36 depending on the amount of Si added.
A high hardness of 00 to 4200 was possible. Along with the lubricity of BN, the life can be further extended.
【0014】以上のごとく、耐クレーター摩耗性を大幅
に改善した結果、本発明による多層硬質皮膜被覆工具
は、ミーリング切削加工に使用される工具に対しても効
果的であるが、さらに従来アルミナ皮膜を有するCVD
被覆工具が使用されていた旋盤加工分野へも適用が可能
となった。旋削加工は比較的連続切削であるため特にク
レーター摩耗に工具寿命が支配される場合が多い。本発
明においても皮膜の膜厚が薄いとCVD皮膜に耐クレー
ター摩耗性が劣る結果になるが、6ミクロン以上被覆す
ることにより、CVD皮膜と同等以上の耐クレーター摩
耗性を持たせることが可能であることを確認した。さら
に、工具の耐欠損性においては、本発明はPVD法によ
るものであり、皮膜には圧縮の応力が残留し、クラック
の発生が少なく、皮膜に引っ張りの残留応力が存在する
CVD被覆工具に比べ10倍以上の圧倒的に優れる耐欠
損性を有する結果となった。As described above, as a result of greatly improving the crater wear resistance, the tool coated with a multilayer hard coating according to the present invention is effective for a tool used for milling cutting, but it is still more conventional than an alumina coating. CVD with
It has become possible to apply it to the lathe processing field where coated tools were used. Since turning is relatively continuous cutting, tool life is often dominated by crater wear. Also in the present invention, if the film thickness is thin, the crater wear resistance will be inferior to the CVD film, but by coating at least 6 microns, it is possible to give crater wear resistance equal to or higher than that of the CVD film. I confirmed that there is. Further, in terms of the fracture resistance of the tool, the present invention is based on the PVD method. As compared with a CVD-coated tool in which a compressive stress remains in the coating, cracks are less likely to occur, and a residual tensile stress is present in the coating. As a result, the chipping resistance was over 10 times overwhelmingly excellent.
【0015】さらに本発明のPVD被覆工具を旋削に適
用する場合、基体である超硬インサートの表面が研磨さ
れていると、研磨によるミクロクラックがインサート表
面に内在している場合があり、PVD皮膜の場合時とし
てこのミクロクラックが起点となり皮膜剥離が発生して
しまうことがある。従って表面がダイヤモンド砥石によ
り研磨されていない、ISO分類におけるCNMG、D
NMG、VNMG、SNMG、TNMGタイプのインサ
ートを用いると、より皮膜密着性に優れ、長寿命を実現
することが可能である。Further, when the PVD-coated tool of the present invention is applied to turning, if the surface of the cemented carbide substrate, which is a substrate, is polished, microcracks due to polishing may be present internally on the insert surface. In some cases, this microcrack may be the starting point and film peeling may occur. Therefore, the surface is not polished by a diamond grindstone, CNMG, D in ISO classification
When NMG, VNMG, SNMG, and TNMG type inserts are used, it is possible to achieve better film adhesion and a longer life.
【0016】本発明の硬質皮膜被覆工具は、その被覆方
法については、特に限定されるものではないが、被覆母
材への熱影響、工具の疲労強度、皮膜の密着性等を考慮
した場合、アーク放電方式イオンプレーティング物理蒸
着法であることが望ましい。以下、本発明を実施例に基
づいて説明する。The coating method of the hard coating tool of the present invention is not particularly limited, but in consideration of the thermal influence on the coating base material, the fatigue strength of the tool, the adhesion of the coating, etc. The arc discharge type ion plating physical vapor deposition method is desirable. Hereinafter, the present invention will be described based on examples.
【0017】[0017]
【実施例】(実施例1)アークイオンプレーティング装
置を用い、金属成分の蒸発源である各種合金製ターゲッ
ト、ならびに反応ガスである窒素ガス、酸素ガス、メタ
ンガスから目的の皮膜が得られるものを選択し、被覆基
体温度350℃、反応ガス圧力0.5Pa、基体印可バ
イアス電圧320Vの条件下にて、被覆基体である外径
10mmの超硬合金製6枚刃エンドミル、ミーリング用
超硬インサートに各種の表1に示すA層を被覆した。EXAMPLES Example 1 Using an arc ion plating apparatus, various alloy targets that are evaporation sources of metal components, and reaction gases such as nitrogen gas, oxygen gas, and methane gas that can obtain a target film can be obtained. Under the conditions of the coated substrate temperature of 350 ° C., the reaction gas pressure of 0.5 Pa, and the substrate applying bias voltage of 320 V, the coated substrate is a cemented carbide 6-blade end mill with an outer diameter of 10 mm, and a carbide insert for milling. Various A layers shown in Table 1 were coated.
【0018】[0018]
【表1】 [Table 1]
【0019】またB層は被覆温度450℃、基体印可バ
イアス70V、反応ガス圧1.0Paにおいて被覆し本
発明例を作成した。比較例においてはA層、B層欄に便
宜上記載したTiAl系及びそれ以外の皮膜も本発明例
におけるB層と同一条件で被覆した。皮膜の総厚さは4
μとした。BはTiAlターゲットに必要量添加するこ
とにより皮膜に含有させた。尚、エンドミルに使用した
超硬合金はCo7wt%、WC平均粒径0.9ミクロン
の微粒超硬合金である。インサートに使用した超硬合金
はJIS−P20グレード超硬合金である。硬質皮膜の
膜厚は総厚3.5μに統一した。The B layer was coated at a coating temperature of 450 ° C., a substrate applied bias of 70 V, and a reaction gas pressure of 1.0 Pa to prepare an example of the present invention. In the comparative examples, the TiAl-based films described for convenience in the A layer and B layer columns and other films were also coated under the same conditions as the B layer in the present invention example. Total thickness of film is 4
was set to μ. B was contained in the film by adding a necessary amount to the TiAl target. The cemented carbide used for the end mill is a fine grained cemented carbide with 7 wt% Co and a WC average particle size of 0.9 micron. The cemented carbide used for the insert is JIS-P20 grade cemented carbide. The film thickness of the hard film was unified to a total thickness of 3.5μ.
【0020】得られた硬質皮膜被覆エンドミルを用い切
削試験を行った。工具寿命は本切削条件下ではクレータ
ー摩耗もしくはアブレッシブ摩耗の進行による切削熱上
昇に起因する熱クラック発生による欠損が支配するた
め、これらにより工具が切削不能となった時の切削長と
した。切削諸元を次に示す。A cutting test was conducted using the obtained hard film-coated end mill. Under this cutting condition, the tool life is dominated by defects caused by the generation of thermal cracks due to the increase in cutting heat due to the progress of crater wear or abrasive wear. Therefore, the tool life was taken as the cutting length when the tool became uncut. The cutting specifications are shown below.
【0021】6枚刃超硬エンドミルの切削条件は、側面
切削ダウンカット、被削材SKD11(硬さHRC6
5)、切り込みAd10mm×Rd0.1mm、切削速
度200m/min、送り0.03mm/刃、エアーブ
ロー使用、とした。切削不能になった時を寿命と判定
し、その結果を表1に併記する。The cutting conditions for the 6-flute carbide end mill are as follows: side surface cutting down cut, work material SKD11 (hardness HRC6
5), cut Ad 10 mm × Rd 0.1 mm, cutting speed 200 m / min, feed 0.03 mm / blade, air blow used. When it becomes impossible to cut, it is judged as the life, and the results are also shown in Table 1.
【0022】インサート切削条件は、工具形状SEE4
2TN、被削材は巾100mm×長さ250mmの面取
り加工で、被削材SKD61(硬さHRC45)、切り
込み1.5mm、切削速度350m/min、送り0.
15mm/刃、乾式切削とした。この場合もクレーター
摩耗が工具寿命を支配しクレーター摩耗の進行からチッ
プは欠損するかもしくはアブレッシブ摩耗の進行により
切削温度が上昇し熱クラックが発生しこれにより欠損す
るかいずれかである。欠損に至る切削長を表1に併記す
る。The insert cutting conditions are the tool shape SEE4.
2 TN, the work material is chamfered with a width of 100 mm and a length of 250 mm, and the work material SKD61 (hardness HRC45), cut depth of 1.5 mm, cutting speed of 350 m / min, feed of 0.
15 mm / blade, dry cutting. Also in this case, the crater wear controls the tool life, and the chips are damaged due to the progress of the crater wear, or the cutting temperature rises due to the progress of the abrasive wear and thermal cracks are generated, and the chips are damaged. Table 1 also shows the cutting length leading to the chipping.
【0023】表1より明らかなように、本発明例は著し
い寿命改善が認められる。本発明例1〜5は各種組成に
おいてナノ結晶を介在させた単層皮膜の例、本発明例5
はその中で結晶配向を(111)とした例である。若干
(200)配向に比べ切削寿命は低下する傾向にあっ
た。本発明例6、7はナノ結晶を介在させた層とTiA
lN系皮膜の多層の例であり、多層にすることにより若
干の切削寿命の向上が認められた。本発明例9〜11は
窒素に酸素、炭素を含有するガスを用いてC、Oを添加
した例で、ここでも若干の切削寿命の向上が確認され
た。これらは比較例が全て、短寿命であったことより、
耐アブレッシブ摩耗性、耐クレーター摩耗性の改善によ
るところが大きいことが確認された。比較例12〜15
は周知な組成の皮膜の例、比較例16〜19は周知な多
層皮膜の例、比較例20、21はBを含有するものの、
被覆条件が異なり、ナノ結晶が介在していなく、固溶体
の(TiAlB)N皮膜の例である。いずれにおいて
も、切削寿命は満足のいくものではない。As is clear from Table 1, the examples of the present invention show remarkable improvement in life. Inventive Examples 1 to 5 are examples of single-layer coatings in which nanocrystals are interposed in various compositions, Inventive Example 5
Is an example in which the crystal orientation is (111). The cutting life tended to be slightly shorter than that of the (200) orientation. Inventive Examples 6 and 7 are a layer in which nanocrystals are interposed and TiA.
This is an example of a multilayer of 1N-based coating, and it was recognized that the cutting life was slightly improved by using a multilayer. Inventive Examples 9 to 11 are examples in which C and O are added to nitrogen using a gas containing oxygen and carbon, and a slight improvement in cutting life was confirmed here. Since all of these comparative examples had a short life,
It was confirmed that it was largely due to the improvement of the abrasive wear resistance and the crater wear resistance. Comparative Examples 12 to 15
Is an example of a film having a known composition, Comparative Examples 16 to 19 are examples of a known multilayer film, and Comparative Examples 20 and 21 contain B,
This is an example of a solid solution (TiAlB) N film with different coating conditions and no intervening nanocrystals. In all cases, the cutting life is not satisfactory.
【0024】(実施例2)TiAlB金属ターゲットの
Tiの一部を他成分で置換したターゲットを用い実施例
1と同一条件にて本発明例を作成した。実施例1と同一
切削評価を実施し、その結果を表2に併記する。Example 2 An example of the present invention was prepared under the same conditions as in Example 1 using a target in which a part of Ti of the TiAlB metal target was replaced with another component. The same cutting evaluation as in Example 1 was performed, and the results are also shown in Table 2.
【0025】[0025]
【表2】 [Table 2]
【0026】表2の結果から明らかなように、TiAl
B系硬質皮膜に第4の成分を添加することにより、より
一層の寿命向上が可能である。本発明例はいづれもTi
AlBN系に第4成分を添加したものでナノ結晶を構成
するB量は5at%に統一したものの例である。B量は
5at%以外においても実施例1と同様な傾向を示すも
のである。As is clear from the results in Table 2, TiAl
The life can be further improved by adding the fourth component to the B-based hard coating. In each of the examples of the present invention, Ti
This is an example in which the fourth component is added to the AlBN system and the amount of B constituting the nanocrystal is unified to 5 at%. Even when the B content is other than 5 at%, the same tendency as in Example 1 is exhibited.
【0027】(実施例3)各試料において旋削加工によ
り切削評価を実施した。旋削用の超硬インサートはJI
S−M20グレードを用いた。用いたインサートは型押
しCNMG432タイプ(表3中、型押しと表示。)
と、砥石によりRブレーカーを施した同様の形状(表3
中、R加工と表示。)を有するものである。先ず、実施
例1及び2で示したものと同一の方法により、本発明例
34〜47、比較例48〜53を製作した。次に、周知
なCVD被覆により、TiCl4、AlCl3、C
O2、H2、N2ガスを使用し、800℃〜1000℃
の反応温度により、比較例54〜57を作成した。Example 3 Cutting evaluation was performed on each sample by turning. Carbide insert for turning is JI
S-M20 grade was used. The insert used was an embossed CNMG432 type (indicated as embossed in Table 3).
And a similar shape with an R breaker using a grindstone (Table 3
Displayed as medium and R processing. ). First, inventive examples 34 to 47 and comparative examples 48 to 53 were manufactured by the same method as that shown in Examples 1 and 2. Next, by well-known CVD coating, TiCl 4 , AlCl 3 , C
Using O 2 , H 2 and N 2 gas, 800 ° C. to 1000 ° C.
Comparative Examples 54 to 57 were prepared according to the reaction temperature of.
【0028】耐摩耗性評価は被削材としてS53C(H
B220)を用い、切削条件は切削速度200m/mi
n、切りこみ2mm、一刃あたりの送り0.3mm/r
ev、乾式とした。本切削条件下では、クレーター摩耗
で寿命となり欠損が発生する。欠損までの切削時間を表
3に併記する。耐欠損性は4つ溝を有するS53Cを用
い、切削条件は100m/min、切りこみ2mm、一
刃あたりの送り0.4mm/revで、欠損するまでの
衝撃回数により評価した。欠損は皮膜に切削での繰り返
し衝撃が作用する結果、皮膜に微細クラックが多発し、
このクラックの母材への伝播により発生した。結果を表
3に併記する。The wear resistance was evaluated by using S53C (H
B220), and the cutting condition is a cutting speed of 200 m / mi.
n, cut 2 mm, feed per blade 0.3 mm / r
ev and dry type. Under this cutting condition, the crater wears out and reaches the end of its life. Table 3 also shows the cutting time until chipping. The fracture resistance was evaluated by using S53C having four grooves, cutting conditions of 100 m / min, incision of 2 mm, feed per blade of 0.4 mm / rev, and the number of impacts before fracture. Defects are caused by repeated impacts on the coating during cutting, resulting in frequent occurrence of fine cracks in the coating.
It was generated by the propagation of these cracks to the base material. The results are also shown in Table 3.
【0029】[0029]
【表3】 [Table 3]
【0030】本発明例はいずれにおいても長手連続切削
での寿命も比較例のCVD皮膜と同等以上であるに加
え、耐欠損性が圧倒的に優れるものである。従って、本
発明は旋削加工における、高速切削や乾式高速切削加工
に特に顕著な効果を示すものである。また、ナノ結晶が
介在しなく軟らかい皮膜と多層化することにより、耐欠
損性が向上する傾向が確認された。比較例48〜53の
PVDの例に対し本発明例34〜47は、切削時のクレ
ーター摩耗の進行する速度が遅く総合して工具寿命が著
しく向上する結果となった。比較例48〜50は通常の
PVD被覆であり、膜厚が薄く連続切削での寿命が極端
に短い。比較例51、52は膜厚を厚く10μに設定し
たものであるが、クレーター摩耗進行がはやく短寿命で
ある。比較例53はBを添加したものであるが、ナノ結
晶が介在されるものではなく、満足のいく寿命は達成さ
れていない。また比較例54〜57の周知なCVD例に
おいては、耐クレーター摩耗に優れるため比較的連続切
削における寿命はあるものの、皮膜に引っ張り応力が残
留するために、耐欠損性が著しく劣る結果である。In all the examples of the present invention, the life in continuous longitudinal cutting is equal to or more than that of the CVD film of the comparative example, and the fracture resistance is overwhelmingly excellent. Therefore, the present invention has a particularly remarkable effect on high-speed cutting and dry high-speed cutting in turning. It was also confirmed that the fracture resistance was improved by forming a multilayer with a soft film without intervening nanocrystals. As compared with the PVD examples of Comparative Examples 48 to 53, the invention examples 34 to 47 resulted in a slower rate of progress of crater wear during cutting, resulting in a significant improvement in tool life. Comparative Examples 48 to 50 are ordinary PVD coatings, which have a thin film thickness and have an extremely short life in continuous cutting. In Comparative Examples 51 and 52, the film thickness was set thicker to 10 μ, but the crater wear progressed rapidly and the life was short. In Comparative Example 53, B was added, but no nanocrystal was interposed, and a satisfactory life was not achieved. Further, in the well-known CVD examples of Comparative Examples 54 to 57, although the crater wear is excellent and the life is relatively long in continuous cutting, the tensile stress remains in the coating, resulting in a markedly poor fracture resistance.
【0031】(実施例4)表4に示す各種皮膜を実施例
1と同一条件で超硬合金に被覆した。皮膜の厚さは下地
の影響を避けるため、10μとし、700℃Ar雰囲気
下でスクラッチテストを実施し、荷重50N時の圧痕キ
ズの深さを比較し、700℃における皮膜硬度の比較を
検討した。結果を表4に併記する。Example 4 Various coatings shown in Table 4 were coated on the cemented carbide under the same conditions as in Example 1. In order to avoid the influence of the base, the film thickness was set to 10 μm, a scratch test was performed in an Ar atmosphere at 700 ° C., the depth of the indentation scratch at a load of 50 N was compared, and the hardness of the film at 700 ° C. was examined. . The results are also shown in Table 4.
【0032】[0032]
【表4】 [Table 4]
【0033】直接皮膜の高温硬度を測定することは、現
状では装置上の問題があり、技術的に不可能であるが、
スクラッチテストにおける高温下でのキズの深さは高温
高度と相関を有するものと考えられる。周知な皮膜であ
る比較例67〜70やナノ結晶の介在しないTiAlB
N皮膜では比較例71、72では高温硬度が軟らかく、
キズの深さが700ミクロン以上となった。本発明例5
8〜66のナノ結晶が介在した皮膜ではキズの深さが1
00〜160ミクロンとなり、高温硬度が極めて高いこ
とが示唆される。特にBN、SiN双方のナノ結晶を介
在させた64、65、66においては極めて高温硬度が
高いものと考えられる。Although it is technically impossible to directly measure the high temperature hardness of the coating film because of problems in the apparatus at present,
It is considered that the scratch depth at high temperature in the scratch test correlates with the high temperature altitude. Comparative Examples 67 to 70, which are well-known films, and TiAlB without intervening nanocrystals
In the N film, the high temperature hardness is soft in Comparative Examples 71 and 72,
The depth of the scratch became 700 microns or more. Invention Example 5
The depth of the scratches is 1 in the film in which 8 to 66 nanocrystals intervene.
It becomes 0 to 160 microns, which suggests that the high temperature hardness is extremely high. In particular, it is considered that 64, 65 and 66 in which nanocrystals of both BN and SiN are interposed have extremely high high temperature hardness.
【0034】[0034]
【発明の効果】以上の如く、本発明の硬質皮膜被覆工具
は、従来のPVD被覆工具に比べ耐クレータ摩耗性に優
れ、乾式高速切削加工において格段に長い工具寿命が得
られ、切削加工における生産性の向上、コスト低減、環
境改善に極めて有効である。INDUSTRIAL APPLICABILITY As described above, the hard film-coated tool of the present invention is superior in crater wear resistance to the conventional PVD-coated tool, has a remarkably long tool life in dry high-speed cutting, and is produced in cutting. It is extremely effective in improving the productivity, reducing the cost, and improving the environment.
【図1】図1は本発明例の硬質層のESCA解析結果の
一例を示す図である。FIG. 1 is a diagram showing an example of an ESCA analysis result of a hard layer of an example of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−140330(JP,A) 特開 平10−176288(JP,A) 特開 平7−310171(JP,A) 特開2002−18606(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C23C 14/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-10-140330 (JP, A) JP-A-10-176288 (JP, A) JP-A-7-310171 (JP, A) JP-A-2002-18606 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23B 27/14 C23C 14/06
Claims (5)
素とC、N、Oから選択される少なくとも1種以上の元
素とから構成される硬質層を1層以上被覆した硬質皮膜
被覆工具において、該硬質層にBの窒化物相を介在させ
たことを特徴とする硬質皮膜被覆工具。1. A hard-coated tool in which a tool base is coated with one or more hard layers composed of a metal element consisting of Ti, Al and B and at least one element selected from C, N and O. 2. A hard film-coated tool characterized in that a nitride phase of B is interposed in the hard layer.
て、該硬質層のX腺回折における最強ピーク面指数が
(200)であることを特徴とする硬質皮膜被覆工具。2. The hard coating tool according to claim 1, wherein the hard layer has a strongest peak surface index in X-ray diffraction of (200).
膜被覆工具において、該硬質層のTiの一部を30原子
%以下の範囲でTiを除く周期率表4、5、6族元素、
Si、Yのうちの一種以上の元素で置換したことを特徴
とする硬質皮膜被覆工具。3. The hard coating tool according to claim 1, wherein a part of Ti in the hard layer is excluded from Ti within a range of 30 atomic% or less. element,
A hard film-coated tool characterized by being replaced with one or more elements of Si and Y.
て、該硬質層内にBの窒化物相とSiの窒化物相とを介
在させたことを特徴とする硬質皮膜被覆工具。4. A hard coating tool according to claim 3, wherein a B nitride phase and a Si nitride phase are interposed in the hard layer.
膜被覆工具において、該工具基体が旋削用超硬インサー
トであり、皮膜の総厚さがすくい面において6μm以上
であることを特徴とする硬質皮膜被覆工具5. The hard coating tool according to any one of claims 1 to 4, wherein the tool base is a carbide insert for turning, and the coating has a total thickness of 6 μm or more on the rake face. Hard coating tool
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000283575A JP3392115B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000283575A JP3392115B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002096206A JP2002096206A (en) | 2002-04-02 |
JP3392115B2 true JP3392115B2 (en) | 2003-03-31 |
Family
ID=18767917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000283575A Expired - Lifetime JP3392115B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3392115B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4616213B2 (en) * | 2001-06-19 | 2011-01-19 | 株式会社神戸製鋼所 | Hard coating for cutting tools |
JP4951101B2 (en) * | 2001-06-19 | 2012-06-13 | 株式会社神戸製鋼所 | Method for producing hard coating with excellent wear resistance |
JP4112296B2 (en) * | 2002-07-01 | 2008-07-02 | 日立ツール株式会社 | Coated cutting tool and coating method thereof |
JP4958135B2 (en) * | 2003-12-26 | 2012-06-20 | 日立ツール株式会社 | Hard coating tool |
JP2005262389A (en) * | 2004-03-18 | 2005-09-29 | Sumitomo Electric Hardmetal Corp | Surface-coated cutting tool for processing titanium alloy |
JP2005262414A (en) * | 2004-03-22 | 2005-09-29 | Mitsubishi Materials Kobe Tools Corp | Surface-coated cermet cutting tool with hard coating layer having excellent abrasion resistance by high speed double cutting work of hard-to-cut material |
JP2005288668A (en) * | 2004-04-06 | 2005-10-20 | Mitsubishi Materials Kobe Tools Corp | Cutting tool made of surface-coated cermet having excellent anti-chipping property of hard coating layer in high-speed heavy cutting of difficult-to-cut material |
JP2005297075A (en) * | 2004-04-06 | 2005-10-27 | Mitsubishi Materials Kobe Tools Corp | Surface-coated cermet cutting tool with hard coating layer exhibiting superior abrasion resistance in high speed cutting work of hard-to-cut material |
JP2005297149A (en) * | 2004-04-14 | 2005-10-27 | Mitsubishi Materials Kobe Tools Corp | Surface-coated cermet cutting tool with hard coating layer exhibiting superior abrasion resistance by high speed double cutting work |
JP4621974B2 (en) * | 2004-06-18 | 2011-02-02 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys. |
JP4697391B2 (en) * | 2004-12-01 | 2011-06-08 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys. |
JP4771200B2 (en) * | 2005-02-16 | 2011-09-14 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys |
JP4720986B2 (en) * | 2005-07-08 | 2011-07-13 | 三菱マテリアル株式会社 | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel |
JP4720989B2 (en) * | 2005-07-29 | 2011-07-13 | 三菱マテリアル株式会社 | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel |
JP5594577B2 (en) * | 2010-04-20 | 2014-09-24 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP5995076B2 (en) * | 2012-10-24 | 2016-09-21 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP2018069433A (en) * | 2016-11-04 | 2018-05-10 | 住友電気工業株式会社 | Surface coated cutting tool |
US11224921B2 (en) | 2017-09-27 | 2022-01-18 | Moldino Tool Engineering, Ltd. | Coated cutting tool |
JP7137149B2 (en) * | 2019-03-01 | 2022-09-14 | 三菱マテリアル株式会社 | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance |
-
2000
- 2000-09-19 JP JP2000283575A patent/JP3392115B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002096206A (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3392115B2 (en) | Hard coating tool | |
JP3598074B2 (en) | Hard coating tool | |
JP3417907B2 (en) | Multi-layer coating tool | |
KR102033188B1 (en) | Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance | |
KR101635488B1 (en) | Cutting tool | |
JP5472529B2 (en) | Hard film coating member and blade-tip-exchange-type rotary tool having the same | |
JP3877124B2 (en) | Hard coating coated member | |
WO2011055813A1 (en) | Coated tool | |
EP2262924B1 (en) | Thermally stabilized (ti, si)n layer for cutting tool insert | |
JP3382781B2 (en) | Multi-layer coated hard tool | |
JP3781374B2 (en) | Hard film coated tool and manufacturing method thereof | |
JP3963354B2 (en) | Coated cutting tool | |
CN110603342A (en) | Metal cutting tool with multi-layer coating | |
JP3404012B2 (en) | Hard coating tool | |
JP3016703B2 (en) | Coated hard member | |
JP7415223B2 (en) | A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting. | |
JP2019084671A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance | |
JP3586216B2 (en) | Hard coating tool | |
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP7190111B2 (en) | surface coated cutting tools | |
JP2005153098A (en) | Surface coated cutting tool | |
JP2004136430A (en) | Coated tool | |
JP2004130514A (en) | Hard film coated tool and its manufacturing method | |
JP3615728B2 (en) | Physical vapor deposition hard coating tool with excellent crater wear resistance | |
Okuno et al. | New Coating Technology “Nano-Lamellae CVD-AlTiN” |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3392115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |