JP4958135B2 - Hard coating tool - Google Patents

Hard coating tool Download PDF

Info

Publication number
JP4958135B2
JP4958135B2 JP2004365330A JP2004365330A JP4958135B2 JP 4958135 B2 JP4958135 B2 JP 4958135B2 JP 2004365330 A JP2004365330 A JP 2004365330A JP 2004365330 A JP2004365330 A JP 2004365330A JP 4958135 B2 JP4958135 B2 JP 4958135B2
Authority
JP
Japan
Prior art keywords
hard
film
hard coating
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004365330A
Other languages
Japanese (ja)
Other versions
JP2005205592A (en
Inventor
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004365330A priority Critical patent/JP4958135B2/en
Publication of JP2005205592A publication Critical patent/JP2005205592A/en
Application granted granted Critical
Publication of JP4958135B2 publication Critical patent/JP4958135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本願発明は、金属材料等の切削加工に使用される硬質皮膜被覆工具に関する。   The present invention relates to a hard film-coated tool used for cutting a metal material or the like.

金属加工の高能率化を目的とした切削速度の高速化並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜被覆工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。特許文献1、2には硬質皮膜に濃度分布を形成させる技術や、連続的に組成の変化する組成変化の繰り返し層を持った膜を形成することによって、耐摩耗性を向上させる技術が開示されている。しかし、何れも物理蒸着法におけるアーク放電型イオンプレーティング方式のみを利用した試みである。   In conventional hard coating coated tools, high-speed cutting with the aim of increasing the efficiency of metal processing and high-feed cutting with a feed rate per blade exceeding 0.3 mm under cutting conditions However, satisfactory performance is not obtained in terms of oxidation resistance and wear resistance, which are mechanical characteristics of the hard coating. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. Patent Documents 1 and 2 disclose a technique for forming a concentration distribution in a hard film and a technique for improving wear resistance by forming a film having a repeated layer of composition change in which the composition continuously changes. ing. However, both are attempts using only the arc discharge ion plating method in the physical vapor deposition method.

特開2003−225807号公報JP 2003-225807 A 特許第3460288号公報Japanese Patent No. 3460288

本願発明は、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を向上させ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することが目的である。   The present invention improves the adhesion of the hard coating, improves the oxidation resistance and wear resistance, further suppresses the welding resistance at high temperatures and the diffusion of the work material elements into the hard coating, cutting processing It is an object of the present invention to provide a hard film-coated tool that can be used for drying, high speed, and high feed.

本願発明の硬質皮膜被覆工具は、基体表面に硬質皮膜を被覆した被覆工具において、該硬質皮膜の組成は、(AlTiNb)、但し、w、x、y、zは原子比率で、20≦w≦50、25≦x≦75、2≦y≦20、0.1≦z≦15、w+x+y+z=100、w≦x+y+zで表される金属成分と、(O100−a)、但し、0.3≦a≦5で表される非金属成分であり、該硬質皮膜は、アークイオンプレーティング法による蒸発源と、マグネトロンスパッタ法による蒸発源とを併設した装置を用いて、該蒸発源の組成を同一とし、被覆時に夫々の蒸発源で放電を発生させ、高密度プラズマの該アークイオンプレーティング法により被覆されたA層と、低密度プラズマの該マグネトロンスパッタ法により被覆されたC層とが多層構造をなし、該硬質皮膜は、B含有量の相対的に大きいA層と、B含有量の相対的に小さいC層、とを含み、該A層、C層のB含有量の差が、原子比率で、0.2以上、5以下であることを特徴とする硬質皮膜被覆工具である。上記構成を採用することにより、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を著しく向上させ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することができる。ここでの高送り加工とは、切削条件における1刃当たりの送り量が0.3mm/刃を越えるような切削と定義する。 The hard film-coated tool of the present invention is a coated tool in which a hard film is coated on the surface of a substrate, and the composition of the hard film is (Al w Ti x Nb y B z ), where w, x, y, and z are atoms. A metal component represented by 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20, 0.1 ≦ z ≦ 15, w + x + y + z = 100, w ≦ x + y + z, and (O a N 100− a ) However, it is a nonmetallic component represented by 0.3 ≦ a ≦ 5, and the hard coating uses an apparatus provided with an evaporation source by an arc ion plating method and an evaporation source by a magnetron sputtering method. Thus, the composition of the evaporation source is the same, a discharge is generated in each evaporation source during coating, and the A layer coated by the arc ion plating method of high-density plasma and the magnetron sputtering method of low-density plasma Covered C layer and forms the multilayer structure, hard coating comprises a relatively large said A layer of B content, relatively small the C layer of B content, the city, the A layer, the C layer The hard coating tool is characterized in that the difference in B content is 0.2 or more and 5 or less in terms of atomic ratio. By adopting the above configuration, the adhesion of the hard coating is improved, the oxidation resistance and the wear resistance are remarkably improved, the welding resistance at high temperature conditions and the diffusion of the work material elements into the hard coating are also achieved. Therefore, it is possible to provide a hard film coated tool which can be controlled and can cope with dry machining, high speed, and high feed of cutting. High feed processing here is defined as cutting in which the feed amount per blade under the cutting conditions exceeds 0.3 mm / tooth.

本願発明の該硬質皮膜の総膜厚は、該硬質皮膜の総膜厚は、平均厚さで0.5〜10μmであり、該硬質皮膜の面心立方構造の(200)面と、基体のWCの(100)面とがヘテロエピタキシャル関係を有し、該硬質皮膜の破断面組織形態が、基体との界面から表面まで連続した柱状組織をなし、該硬質皮膜はX線回折における該面心立方構造の(111)面に検出されるピーク強度値をIa、該(200)面に検出されるピーク強度値をIbとした時に、Ib/Ia≧2.0であり、該(200)面の格子定数λ(nm)が0.4155≦λ≦0.4220の範囲にあります。更に、該硬質皮膜と基体との界面から該総膜厚の1〜30%の酸素含有量Mと、該硬質皮膜の表面から該総膜厚の1〜30%の酸素含有量Nとの差を(N−M)とした時、(N−M)≧0.3であり、該硬質皮膜の表面近傍には、ESCA分析においてBと酸素との結合状態を示すピークが検出され、該BとOとの結合状態を示すピーク位置が188eVから195eVの範囲内にある。更に、該硬質皮膜の基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設け、該硬質皮膜を被覆後に、硬質皮膜表面の凸部を機械的処理により、平滑化したことを特徴とする硬質皮膜工具である。   The total thickness of the hard coating of the present invention is such that the total thickness of the hard coating is 0.5 to 10 μm in average thickness, the (200) plane of the face-centered cubic structure of the hard coating, and the substrate The (100) plane of WC has a heteroepitaxial relationship, and the fracture surface texture form of the hard coating forms a columnar structure continuous from the interface with the substrate to the surface, and the hard coating is the face center in X-ray diffraction. When the peak intensity value detected on the (111) plane of the cubic structure is Ia and the peak intensity value detected on the (200) plane is Ib, Ib / Ia ≧ 2.0, and the (200) plane The lattice constant λ (nm) is in the range of 0.4155 ≦ λ ≦ 0.4220. Further, the difference between the oxygen content M of 1-30% of the total film thickness from the interface between the hard film and the substrate and the oxygen content N of 1-30% of the total film thickness from the surface of the hard film. When (NM) is (NM), (NM) ≧ 0.3, and in the vicinity of the surface of the hard film, a peak indicating a bonding state between B and oxygen is detected by ESCA analysis. The peak position indicating the bonding state between O and O is in the range of 188 eV to 195 eV. Furthermore, at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the base of the hard coating, and the hard coating is covered. Later, the hard coating tool is characterized in that the convex portions on the surface of the hard coating are smoothed by mechanical treatment.

本願発明の硬質皮膜被覆工具は、硬質皮膜の密着性を改善し、優れた耐酸化性、耐摩耗、潤滑性、耐欠損性を有すことから、乾式高能率切削加工をはじめ、金型加工時の断続切削状況下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。   The hard film coated tool of the present invention improves the adhesion of the hard film and has excellent oxidation resistance, wear resistance, lubricity, and fracture resistance. Even under intermittent cutting conditions, stability and a long tool life can be obtained, which is extremely effective for improving productivity in cutting.

本願発明は、(TiAl)N系の硬質皮膜へB、Nbを添加することは、被削材の溶着現象を防ぐために有効である。皮膜にBを適量添加することにより、溶着現象の原因となるAlの移動を抑制し、化学的に安定なAl層の耐剥離性を改善することができる。また、Nbを適量添加することにより、Ti酸化物を緻密微細化させることができる。これらにより切削時の高温環境下においても耐溶着現象に優れ、耐熱性を向上させることが可能となる。
基体表面に皮膜を有する被覆工具の皮膜を、例えば電子顕微鏡により観察した際に、明暗を示す複数の層が存在し、これらから無作為に選択した層であって、B含有量の相対的に大きい層をA層、B含有量の相対的に小さい層をC層とし、組成分析、例えば、EPMA(Electron Probe Micro analyser、島津製作所製EPM−1610型)分析等におけるB含有量分析の結果を原子比率による平均値で求め、A層、C層の差が、0.2以上、5以下であることを特徴とする硬質皮膜被覆工具である。A層、C層の平均値の差を、上記の規定範囲内とすることにより、硬質皮膜の耐衝撃性を向上させることが可能となった。ここで、B含有量の相対的に大きい層、小さい層とは、皮膜の組成分析をφ1μmの面積領域において行い、この測定値を基準としている。
In the present invention, it is effective to add B and Nb to a (TiAl) N-based hard coating in order to prevent the welding phenomenon of the work material. By adding an appropriate amount of B to the film, it is possible to suppress the movement of Al causing the welding phenomenon and improve the peel resistance of the chemically stable Al 2 O 3 layer. Further, by adding an appropriate amount of Nb, the Ti oxide can be made dense and fine. As a result, the welding phenomenon is excellent even in a high-temperature environment during cutting, and the heat resistance can be improved.
When the coating of the coated tool having a coating on the surface of the substrate is observed with, for example, an electron microscope, there are a plurality of layers showing light and darkness, which are randomly selected from these layers, and have a relatively high B content. A layer is a large layer and a layer with a relatively small B content is a C layer. The results of B content analysis in composition analysis, for example, EPMA (Electron Probe Micro analyzer, EPM-1610 manufactured by Shimadzu Corporation) analysis, etc. The hard coating tool is characterized in that the difference between the A layer and the C layer is 0.2 or more and 5 or less, as determined by an average value based on the atomic ratio. By making the difference between the average values of the A layer and the C layer within the above specified range, the impact resistance of the hard coating can be improved. Here, the layer having a relatively large B content and the layer having a relatively small B content are subjected to composition analysis of the film in an area of φ1 μm and are based on the measured values.

本願発明の硬質皮膜は、B含有濃度を成膜時に意図的に制御し、組成差を発生させ、膜厚に沿って含有される元素量が原子%で変化していることが好ましい。これは、真空装置に2種以上の蒸発源を設置し、その蒸発源には同一組成の金属蒸発源を取り付けた場合に、高密度プラズマでの被覆が優先される領域と低密度プラズマ領域での被覆が優先される領域で組成を意図的に変化させるためである。このことにより、優れた潤滑特性を維持しながら耐衝撃性を向上させ、硬質皮膜そのものに高い靭性を与えることが可能となった。更に、高硬度、低硬度の皮膜を連続的に交互に形成することから、耐衝撃特性を向上させる。A層は、高密度プラズマの蒸発源近傍で、硬質結晶が主体に層をなし、C層は、低密度プラズマの蒸発源近傍で、軟質結晶が主体の層をなして多層構造を有する。A層とC層とが混在して基体表面で層として堆積する。その際に、C層がA層の結晶間に存在すると、いわばクッション効果を示し、その結果、皮膜全体として靭性に富むようになる。この効果によって、被覆工具の耐衝撃特性が向上する。この事の他にも、密着性に影響を及ぼす残留圧縮応力の抑制にも効果があることを確認した。
図1に示す様に、本願発明の硬質皮膜の被覆は、硬質皮膜にBの組成差を意図的に発生させるために、高密度プラズマを用いたアーク放電型イオンプレーティング(以下、AIPと記す。)方式と、低密度プラズマを利用したマグネトロンスパッタ(以下、MSと記す。)方式を併設した装置を用いている。本装置を用いることにより、B含有量を意図的に制御し組成差を発生させることが可能となった。本願発明で採用した様に、発生するプラズマ密度の異なる方式の蒸発源を同一真空装置内に設置し、被覆時に夫々の蒸発源で放電を発生させて被覆するのである。本願発明で採用したAIPとMSとの併用方式は、硬質皮膜の耐衝撃特性を向上させるため、更に硬質皮膜内部において組成差を発生させるために意図的に選択したものである。特にそれぞれの方式で必要なターゲットの組成は限定されない。MSには、エレクトロンビーム方式もしくは閉磁場方式等があるが、これ以外の方式も含め、限定されない。一方、例えば上記以外の方法には、高密度プラズマのAIP方式を用いる場合として、真空装置内に複数の蒸発源を設置し、夫々の蒸発源に組成の異なる合金ターゲットを設置することや、複数の蒸発源において夫々異なった放電出力を設定することも考えられる。しかし、AIP方式による被覆では、被覆時に発生するプラズマ密度が非常に高いため、良質な皮膜が形成されるものの、プラズマ中で発生したイオンが基体に入射する際のエネルギーも大きく、残留圧縮応力の抑制が困難である。また、複数層の硬質皮膜の組成差、硬度差を出すことが難しく、硬質皮膜の耐衝撃特性を向上させ、耐欠損性、靭性を付与させることが困難である。本願発明の硬質皮膜は、AIP方式を単独で使用した場合と比較して、同一組成の被膜であっても、硬質皮膜の高硬度化をはかることができた。
In the hard coating of the present invention, it is preferable that the B content concentration is intentionally controlled at the time of film formation to generate a compositional difference, and the amount of elements contained along the film thickness is changed by atomic%. This is because when two or more evaporation sources are installed in a vacuum apparatus and a metal evaporation source having the same composition is attached to the evaporation source, the coating with high-density plasma has priority and the low-density plasma region. This is because the composition is intentionally changed in a region where the coating of this material is prioritized. As a result, it was possible to improve impact resistance while maintaining excellent lubrication characteristics and to impart high toughness to the hard coating itself. Furthermore, since the high hardness and low hardness films are alternately formed alternately, the impact resistance is improved. The A layer has a multilayer structure mainly composed of hard crystals in the vicinity of the high-density plasma evaporation source, and the C layer has a multilayer structure mainly composed of soft crystals in the vicinity of the low-density plasma evaporation source. A layer and C layer are mixed and deposited as a layer on the substrate surface. At that time, if the C layer exists between the crystals of the A layer, a so-called cushioning effect is exhibited, and as a result, the entire film becomes rich in toughness. This effect improves the impact resistance characteristics of the coated tool. In addition to this, it was confirmed that there is an effect in suppressing residual compressive stress that affects the adhesion.
As shown in FIG. 1, the coating of the hard coating of the present invention is an arc discharge ion plating (hereinafter referred to as AIP) using high-density plasma in order to intentionally generate a B composition difference in the hard coating. .) And a magnetron sputtering (hereinafter referred to as MS) method using low-density plasma. By using this apparatus, it became possible to intentionally control the B content and generate a compositional difference. As employed in the present invention, evaporation sources of different plasma density generated are installed in the same vacuum apparatus, and during the coating, a discharge is generated at each evaporation source and the coating is performed. The combined method of AIP and MS employed in the present invention is intentionally selected in order to improve the impact resistance characteristics of the hard coating and to further generate a compositional difference inside the hard coating. In particular, the composition of the target required for each method is not limited. MS includes an electron beam method or a closed magnetic field method, but is not limited to other methods. On the other hand, for the method other than the above, for example, when using the AIP method of high-density plasma, a plurality of evaporation sources are installed in the vacuum apparatus, and alloy targets having different compositions are installed in the respective evaporation sources. It is also conceivable to set different discharge outputs at the respective evaporation sources. However, in the coating by the AIP method, the plasma density generated at the time of coating is very high, so that a good quality film is formed, but the energy generated when ions generated in the plasma are incident on the substrate is large, and the residual compressive stress It is difficult to suppress. In addition, it is difficult to produce a difference in composition and hardness between the hard coatings of a plurality of layers, and it is difficult to improve the impact resistance characteristics of the hard coating and to impart fracture resistance and toughness. The hard coating of the present invention was able to increase the hardness of the hard coating even when it was a coating having the same composition as compared to the case where the AIP method was used alone.

本願発明の硬質皮膜は物理蒸着方式で被覆され、金属成分のNb、Bと、他の金属成分である例えばAl、Tiは放電出力の異なる複数の蒸発源により被覆されることが好ましい。本願発明の硬質皮膜被覆方法は、被覆基体側にバイアス電圧を印加する物理蒸着法であることが望ましい。被覆基体への熱的影響、工具の疲労強度、皮膜の密着性等を考慮した場合、比較的低温で被覆でき、被覆した皮膜に発生する圧縮応力が制御可能なAIPとMS等の、プラズマ密度の異なる複数の蒸発源を設置した製膜装置による処理が最も安定した切削性能を発揮する。必要によってはプラズマ支援型の化学蒸着装置と物理蒸着方式を併用した装置を用いてもよい。
図2は、後述の本発明例3の皮膜断面観察結果を示す。観察には、透過型電子顕微鏡を用いて行った。図2より、高密度プラズマによるAIPにより被覆した層と、低密度プラズマによるMSにより被覆した層とが多層構造をなし、各層が連続的に分断されることなく成長していることを確認した。また硬質皮膜の元素組成を確認した。透過電子顕微鏡による解析の結果、皮膜断面で明暗を示す各層毎に組成差が観察された。更に、所定の組成の硬質膜を被覆する際に結晶が分断されることなく成長させることが、皮膜に靭性を与えるために重要である。
The hard coating of the present invention is preferably coated by physical vapor deposition, and the metal components Nb and B and other metal components such as Al and Ti are preferably coated by a plurality of evaporation sources having different discharge outputs. The hard film coating method of the present invention is preferably a physical vapor deposition method in which a bias voltage is applied to the coated substrate side. Plasma density, such as AIP and MS , which can be coated at a relatively low temperature and can control the compressive stress generated in the coated film, taking into account thermal effects on the coated substrate, tool fatigue strength, film adhesion, etc. The most stable cutting performance is exhibited by the film-forming apparatus provided with a plurality of different evaporation sources. If necessary, an apparatus using a plasma-assisted chemical vapor deposition apparatus and a physical vapor deposition method together may be used.
FIG. 2 shows the results of observation of the film cross section of Example 3 of the present invention described later. Observation was performed using a transmission electron microscope. From FIG. 2, confirm that the A layer coated by AIP by high-density plasma, the C layer coated by MS by a low density plasma without the multi-layer structure, has been grown without the layers are continuously separated did. The elemental composition of the hard coating was also confirmed. As a result of analysis by a transmission electron microscope, a compositional difference was observed for each layer showing light and dark in the cross section of the film. Furthermore, it is important to provide toughness to the film to be grown without crystals is divided in coating the hard skin layer of predetermined composition.

本願発明の硬質皮膜被覆工具は、基体に被覆される硬質皮膜への被削材の溶着現象を防ぐことにより、密着性と耐摩耗性の改善を可能にした。即ち、切削加工における溶着発生現象を考察し、これより硬質皮膜を構成する各種元素の耐溶着効果の検討を行い、高温下における耐溶着性に有効な添加元素を見出した。本願発明の硬質皮膜の組成における金属成分は、AlTiNb 、で表される。
Al含有量wの数値規定範囲は20≦w≦50である。w≦50とする理由は、金属組成バランスにおいてwが大きくなると、表層にAlを形成し静的な耐熱性は優れるが、実際の切削加工においては、硬質皮膜のAlが多い程、被削材中のFe成分などが皮膜に内向拡散を誘発するためである。そこで、wは50以下、w≦x+y+zとすることである。一方、wが20未満の場合は、Alの添加効果が得られず、皮膜の耐摩耗性、耐酸化性が劣るため、不都合である。
B含有量zの数値限定範囲は、0.1≦z≦15である。B添加は、切削工具に適用した際に、切削時の発熱により皮膜表層付近に、Alの酸化物よりもBの緻密な酸化物が早く形成されることで、被削材に含まれるFeが硬質膜中へ内向拡散するのを抑制し、その結果、溶着発生を抑制できることにある。zが15を超えて大きいと、皮膜硬度と耐熱性は向上する傾向にあるが、硬質皮膜の破断面組織形態が柱状組織から微細粒状組織に変化する。微細粒状組織になると、硬質皮膜の結晶粒界が多くなり、切削熱が上昇した時、大気中の酸素や被削材のFeが内向拡散する経路を増やしてしまい、不都合である。これは、切れ刃に溶着が発生し、潤滑性が損なわれるためである。従って、硬質皮膜の破断面組織形態の最適化も重要な必要条件の1つであり、特に高送り加工では、硬質皮膜材料によらず柱状組織を維持する技術は重要である。更に、zが15を超えて大きいと、皮膜内部の残留応力が増大する。この場合、基体と硬質皮膜界面からの剥離が発生しやすくなり、特に耐衝撃性の強い切削加工において容易に剥離が発生する。この剥離部を中心に溶着が発生するため不都合である。一方、zを0.1以上とした理由は、B分析上の容易な検出点であるからである。量産時の安定性を配慮し、また量産稼動を滞りなく行うためには分析を短時間で行う必要がある。
The hard film coated tool of the present invention can improve adhesion and wear resistance by preventing the welding phenomenon of the work material to the hard film coated on the substrate. That is, the phenomenon of occurrence of welding in the cutting process was considered, and the effect of welding resistance of various elements constituting the hard film was examined from this, and an additive element effective for welding resistance at high temperatures was found. The metal component in the composition of the hard film of the present invention is represented by ( Al w Ti x Nb y B z ) .
The numerical range of the Al content w is 20 ≦ w ≦ 50. The reason why w ≦ 50 is that when w increases in the metal composition balance, Al 2 O 3 is formed on the surface layer and the static heat resistance is excellent. However, in actual cutting, the more the hard coating Al, This is because an Fe component or the like in the work material induces inward diffusion in the film. Therefore, w is 50 or less and w ≦ x + y + z. On the other hand, when w is less than 20, the effect of addition of Al cannot be obtained, and the wear resistance and oxidation resistance of the film are inferior.
The numerical limit range of the B content z is 0.1 ≦ z ≦ 15. When B is applied to a cutting tool, the dense oxide of B is formed earlier than the oxide of Al near the surface of the film due to heat generated during cutting, so that Fe contained in the work material is contained. suppressed to inward diffusing into the hard skin film, the result is to be suppressed weld generation. When z exceeds 15 and the film hardness and heat resistance tend to improve, the fracture surface structure of the hard film changes from a columnar structure to a fine granular structure. A fine grain structure is disadvantageous because the crystal grain boundaries of the hard coating increase, and when the cutting heat rises, the routes in which oxygen in the atmosphere and Fe of the work material diffuse inwardly increase. This is because welding occurs on the cutting edge and the lubricity is impaired. Therefore, optimization of the fracture surface structure of the hard coating is one of the important requirements. Particularly in high feed processing, a technique for maintaining the columnar structure regardless of the hard coating material is important. Furthermore, if z exceeds 15 and the residual stress inside the coating increases. In this case, peeling from the interface between the substrate and the hard coating is likely to occur, and peeling easily occurs particularly in cutting with strong impact resistance. This is inconvenient because welding occurs around the peeled portion. On the other hand, the reason why z is set to 0.1 or more is that it is an easy detection point in the B analysis. In consideration of stability during mass production, it is necessary to perform analysis in a short time in order to perform mass production without delay.

Nb含有量yの数値限定範囲は、2≦y≦20である。Nbは、耐熱性向上に必要なBをベースに、硬質皮膜が酸化した時に形成される表層直下のTi酸化物を緻密な結晶組織にすることである。この緻密な結晶組織を有する酸化物層は、表層付近に形成するBやAlの酸化物を通過して内向拡散する酸素の侵入を抑制する効果がある。これにより、Ti酸化物の結晶組織の緻密化は表層のAl層の剥離を抑制することができる。Nbの添加は、耐熱安定性による溶着抑制効果以外にも、硬質皮膜の高硬度化に有効であるが、y値が20を超えて大きいと、硬質皮膜の硬度が低下する。また、物理蒸着法で被覆した際に、皮膜の破断面組織形態が耐衝撃特性の優れる柱状組織から微細粒状組織となり、切削初期にチッピングや漉き取り摩耗が発生することから添加効果を示さないためである。更に、硬質皮膜被覆時に蒸着源の放電が不安定となり、均一で安定した皮膜形成が困難となる。これは、Nbが高融点金属であることによる。一方、値が2未満の場合、硬質皮膜の高硬度化の効果が無く、工具性能の改善が期待できない。Nbの添加は、実質的にはTiもしくはAlに置き換わるものである。 The numerical limit range of the Nb content y is 2 ≦ y ≦ 20. Nb is based on B, which is necessary for improving heat resistance, to make the Ti oxide formed immediately when the hard coating is oxidized into a dense crystal structure. This oxide layer having a dense crystal structure has an effect of suppressing intrusion of oxygen that diffuses inwardly through the oxides of B and Al formed near the surface layer. Thereby, densification of the crystal structure of the Ti oxide can suppress peeling of the surface Al 2 O 3 layer. The addition of Nb is effective for increasing the hardness of the hard coating in addition to the effect of suppressing welding due to heat resistance stability. However, if the y value exceeds 20 and the hardness is high, the hardness of the hard coating decreases. In addition, when coated by physical vapor deposition, the fracture surface structure of the film changes from a columnar structure with excellent impact resistance properties to a fine granular structure, and chipping and scraping wear occurs at the beginning of cutting, so there is no additive effect. It is. Further, the discharge of the vapor deposition source becomes unstable when the hard film is coated, and it becomes difficult to form a uniform and stable film. This is because Nb is a refractory metal. On the other hand, when the y value is less than 2, there is no effect of increasing the hardness of the hard coating, and improvement in tool performance cannot be expected. The addition of Nb substantially replaces Ti or Al.

非金属成分(O 100−a )、但し、0.3≦a≦5は、O元素を添加する有効性は、潤滑性の改善にある。図3は、硬質皮膜にOを添加した際の摩擦係数を測定した結果である。本発明例2は0.6at%のO添加、本発明例5は4.6at%のO含有量である。比較例31のO添加の無い場合と比較して、本願発明例2、5は摩擦係数が低下する傾向を示した。高能率加工時において、O含有量aを0.3以上とすることにより被加工物の硬質膜への溶着が抑制され、潤滑性が向上した。物理蒸着方法においては、被覆時に真空装置内に残る残留酸素の影響から、硬質膜中の酸素含有量を分析すると0.1程度の含有が検出される。この現象を踏まえた上で0.3以上の添加で、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。しかし、Oの添加は、含有量によっては悪影響をもたらすこともある。aが5を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下する。また、硬質皮膜断面の結晶組織形態が微細化し、漉き取り摩耗が発生しやすくなるといった不都合が発生する。そこで、本願発明においてaは0.3≦a≦5と規定した。 Nonmetallic component (O a N 100-a ), where 0.3 ≦ a ≦ 5, the effectiveness of adding the O element is to improve lubricity. FIG. 3 shows the result of measuring the friction coefficient when O is added to the hard coating. Invention Example 2 has an O content of 0.6 at%, and Invention Example 5 has an O content of 4.6 at%. Compared with the case of Comparative Example 31 where no O was added, Invention Examples 2 and 5 showed a tendency for the friction coefficient to decrease. During high-efficiency machining, welding of the hard skin layer of the workpiece is prevented by the O content a least 0.3, lubricity is improved. In the physical vapor deposition method, the influence of the residual oxygen remaining in the vacuum apparatus during the coating, containing about 0.1 An analysis of the oxygen content of the hard skin film is detected. Based on this phenomenon, it was confirmed that the addition of 0.3 or more reduces the friction coefficient even under high temperature conditions corresponding to cutting. However, the addition of O may have an adverse effect depending on the content . When a exceeds 5 and the lubrication characteristics are excellent, the hardness of the hard coating decreases. Moreover, the crystal structure form of the hard coating cross-section becomes finer, and there arises a problem that scuffing wear is likely to occur. Therefore, in the present invention, a is defined as 0.3 ≦ a ≦ 5.

本願発明の硬質皮膜の総膜厚は、平均厚さで0.5〜10μmであり、該硬質皮膜と基体との界面から該総膜厚の1〜30%酸素含有量Mと、該硬質皮膜の表面から該総膜厚の1〜30%酸素含有量Nとの差をN−Mとした時、N−M≧0.3である。このように範囲規定する理由は次の通りである。即ち、O添加により残留圧縮応力が増大するため、皮膜の密着性に影響を及ぼすことから、膜時におけるOの添加方法には、相当の配慮が必要である。皮膜の密着性を維持するための工夫として、成膜開始から終了まで徐々にO含有量を上げていくことが適切である。その結果、N−M≧0.3となり、潤滑性、耐衝撃性の優れる硬質皮膜を得ることが可能になる。本願発明の硬質膜はO添加により、硬質皮膜表面付近では硬質膜中に含まれるO含有量が多くなり、硬質膜の金属元素の酸化物が形成され易い。従って潤滑特性を改善することができる。一方、例えば物理的蒸着法により、成膜初期よりO元素を多量に添加することは、基体表面や処理装置の内壁が絶縁化するため好ましくない。金属元素の合計量A(Al+Ti+Nb+B)に対する非金属元素の合計量B(O+N)の比B/A>1.0であり、1.02以上であるのが好ましい。この比の上限は1.7であるのが好ましい。 The total film thickness of the hard film of the present invention is 0.5 to 10 μm in average thickness , and the oxygen content M is 1 to 30% of the total film thickness from the interface between the hard film and the substrate, and the hard film when the surface of the coating was the difference between 1% to 30% of the oxygen content N of the total film thickness and (N-M), a (N-M) ≧ 0.3. The reason for defining the range in this way is as follows. That is, since the residual compressive stress by O added is increased, since the influence on the adhesion of the coating, the method of adding O during deposition, it requires considerable care. As a device for maintaining the adhesion of the film, it is appropriate to gradually increase the O content from the start to the end of film formation. As a result, ( N−M ) ≧ 0.3, which makes it possible to obtain a hard film having excellent lubricity and impact resistance. The hard skin layer is O addition of the present invention, increases the O content in the hard skin film in the vicinity of the hard coating surface is likely oxides of metal elements of the hard skin layer is formed. Accordingly, the lubrication characteristics can be improved. On the other hand, it is not preferable to add a large amount of O element from the initial stage of film formation, for example, by physical vapor deposition, because the substrate surface and the inner wall of the processing apparatus are insulated. The ratio B / A> 1.0 of the total amount B (O + N) of the nonmetallic elements to the total amount A (Al + Ti + Nb + B) of the metal elements is preferably 1.02 or more. The upper limit of this ratio is preferably 1.7.

本願発明の硬質皮膜の表面近傍には、ESCA分析においてBと酸素との結合状態を示すピークが検出され、該BOの結合状態を示すピーク位置が188eVから195eVの範囲内にある。図4に本願発明例1の硬質皮膜の表面近傍について化学結合状態をESCA分析により解析した結果を示す。図4より、本願発明の硬質皮膜は188eVから195eVの範囲にBと酸素との結合状態を示すピークが検出されることを確認した。これはAl−OとB−Oとの生成自由エネルギーの差により、B−Oが優先的に形成されたものである。この緻密な酸化物の形成が、潤滑特性を高め、高能率切削加工時において発生する被加工物の溶着現象を低下させる。 In the vicinity of the surface of the hard coating of the present invention, a peak indicating the bonding state of B and oxygen is detected by ESCA analysis, and the peak position indicating the bonding state of B O is in the range of 188 eV to 195 eV. FIG. 4 shows the result of analyzing the chemical bonding state by ESCA analysis in the vicinity of the surface of the hard coating of Example 1 of the present invention. From FIG. 4, it was confirmed that the hard film of the present invention detected a peak indicating the bonding state of B and oxygen in the range of 188 eV to 195 eV. This is because B—O is formed preferentially due to the difference in free energy of formation between Al—O and B—O. The formation of this dense oxide enhances the lubrication characteristics and reduces the workpiece welding phenomenon that occurs during high-efficiency cutting.

本願発明の硬質皮膜は、高送り切削加工の条件で性能を発揮させるため、基体との密着性が強固でなければならない。そのためには基体と硬質皮膜との界面でへテロエピタキシャルの関係をもつように、基体直上にある硬質皮膜の配向面を制御しなければならない。へテロエピタキシャルの関係をもつことにより、硬質皮膜と基体界面の分子間力を強めることができる。図5に示すように、電子線回折を行ったときに基体に含まれるWCの(100)面と、(TiAlNbB)(ON)硬質皮膜の(200)面を整合させることにより、分子間力を高め、密着性を向上させることができる。本願発明の硬質皮膜は、残留圧縮応力が大きいため、基体と硬質皮膜との界面でへテロエピタキシャルの関係を形成しなければならない。これにより、密着性の問題を解決し、高機能化した硬質皮膜の特徴が発揮される。   The hard coating of the present invention must have strong adhesion to the substrate in order to exhibit performance under the conditions of high feed cutting. For this purpose, the orientation plane of the hard film directly above the base must be controlled so that there is a heteroepitaxial relationship at the interface between the base and the hard film. By having a heteroepitaxial relationship, the intermolecular force between the hard coating and the substrate interface can be increased. As shown in FIG. 5, the intermolecular force is adjusted by aligning the (100) surface of WC contained in the substrate and the (200) surface of the (TiAlNbB) (ON) hard film when electron beam diffraction is performed. And can improve adhesion. Since the hard coating of the present invention has a large residual compressive stress, a heteroepitaxial relationship must be formed at the interface between the substrate and the hard coating. Thereby, the feature of the hard film which solved the problem of adhesiveness and improved functionality is exhibited.

本願発明の硬質皮膜は結晶配向性の制御を行い、基体と硬質皮膜との界面の歪発生を最小限に抑制している。基体が超硬合金のような多結晶の場合、焼結後のWC優先方位である(100)面上に、面心立方構造を有する硬質皮膜を被覆させるためには、(200)面を配向させるように制御しなければならない。硬質皮膜のX線回折における(111)面の検出強度をIa、(200)面の検出強度をIbとした時に、Ib/Iaが2未満となると、基体と硬質皮膜との界面に大きな歪を持ったまま結晶が成長するため、接合強度が不十分となる。更に、硬質皮膜の内部応力が増大し容易に剥離する。そこで本願発明の硬質皮膜が激しい切削加工条件にも耐え得る密着性を確保するためには、Ib/Ia≧2.0でなければならない。本願発明の硬質皮膜が更に強固な密着性を有するためには、硬質皮膜の格子定数λの制御を行うことである。λは残留応力値に影響を及ぼす。残留応力値が大きくなると、密着性を維持することが困難になる。そこで、密着性を維持するための最適な(200)面のλを求め、0.4155≦λ≦0.422を得た。λが0.4220nmを超えて大きい場合、硬質皮膜中に残留する圧縮応力は10GPaを越える為、大きな応力が基体と硬質皮膜との界面に負荷される。たとえ両者の間にヘテロエピタキシャル関係が成立していても皮膜剥離が発生し、工具として優位性が損なわれる。従って、λは0.4220nmを超えてはならない。一方、λの下限値は0.4155nmである。λは0.4155nm未満では、硬質皮膜の潤滑特性の低下が目立つようになり、好ましくない。硬質皮膜の優れた特徴を十分に引き出すことのできる範囲は、0.4155≦λ≦0.4220である。λを規定範囲内に制御し、残留応力を制御するためには、本願発明の構成元素上、Al含有量の制御によって調整が可能であり、生産的にも安定性のあることが確認された。λはAlを多くした場合、或いはBを多く添加した場合、元素の原子半径の影響を受けて低下する。一方、Al添加を抑えることや被覆時にプラズマ密度が大きくなるような成膜条件を設定した時に増大し、同時に残留圧縮応力も増大する傾向にある。 The hard coating of the present invention controls the crystal orientation and suppresses the occurrence of strain at the interface between the substrate and the hard coating to a minimum. When the substrate is polycrystalline such as cemented carbide, the (200) plane is oriented to cover the hard film having a face-centered cubic structure on the (100) plane, which is the preferred WC orientation after sintering. You have to control it. When the detected intensity of the (111) plane in the X-ray diffraction of the hard film is Ia and the detected intensity of the (200) plane is Ib, if Ib / Ia is less than 2, a large strain is applied to the interface between the substrate and the hard film. Since the crystal grows as it is, the bonding strength becomes insufficient. In addition, the internal stress of the hard coating increases and peels easily. Therefore, in order to ensure adhesion that the hard coating of the present invention can withstand severe cutting conditions, Ib / Ia ≧ 2.0. In order for the hard coating of the present invention to have stronger adhesion, it is necessary to control the lattice constant λ of the hard coating. λ affects the residual stress value. When the residual stress value increases, it becomes difficult to maintain the adhesion. Therefore, the optimal (200) plane λ for maintaining the adhesion was obtained, and 0.4155 ≦ λ ≦ 0.422 was obtained. When λ is larger than 0.4220 nm, the compressive stress remaining in the hard film exceeds 10 GPa, so that a large stress is applied to the interface between the substrate and the hard film. Even if a heteroepitaxial relationship is established between the two, film peeling occurs and the superiority of the tool is impaired. Therefore, λ should not exceed 0.4220 nm. On the other hand, the lower limit of λ is 0.4155 nm. If λ is less than 0.4155 nm, the lubrication characteristics of the hard film will be noticeably deteriorated, which is not preferable. The range in which the excellent characteristics of the hard coating can be sufficiently extracted is 0.4155 ≦ λ ≦ 0.4220. In order to control λ within the specified range and control the residual stress, it is possible to adjust by controlling the Al content on the constituent elements of the present invention, and it has been confirmed that it is stable in terms of productivity. . λ decreases under the influence of the atomic radius of the element when Al is increased or when B is added in a large amount. On the other hand, when Al is added or when film forming conditions are set such that the plasma density is increased during coating, the residual compressive stress tends to increase.

本願発明の硬質皮膜は基体直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けることが好ましい。この中間層は、硬質皮膜と基体との間に存在し、密着性を向上させる効果がある。本願発明の硬質皮膜は、乾式高能率切削加工に優れた性能を示す。しかし、湿式切削に使用する場合、基体と硬質皮膜界面の密着性を更に強固にする必要がある。この理由は、湿式加工状況においては、切削熱により高温になった工具が切削液により急冷されるためである。一般的には切削温度を低減し工具寿命を向上させる手段として浸透しているが、高能率加工においては切削熱が非常に高いため、切削液等で急冷されると膨張、収縮の差が大きくなり、硬質皮膜が接合されている界面に非常に大きな負荷をもたらすことになる。この中間層の存在によって、繰り返し疲労による皮膜破壊の発生を回避することができる。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜被覆工具の摩擦特性が安定し好ましい。切削寿命のばらつきを低減することができ、好ましい工具を得ることができる。以下、本願発明を実施例に基づいて説明する。   In the hard coating of the present invention, it is preferable to provide at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal and W metal on the upper surface of the substrate. This intermediate layer exists between the hard coating and the substrate and has the effect of improving the adhesion. The hard film of the present invention exhibits excellent performance in dry high-efficiency cutting. However, when used for wet cutting, it is necessary to further strengthen the adhesion between the substrate and the hard coating interface. This is because, in a wet machining situation, a tool that has become hot due to cutting heat is rapidly cooled by the cutting fluid. In general, it has penetrated as a means to reduce the cutting temperature and improve the tool life, but in high-efficiency machining, the cutting heat is very high, so when quenched with cutting fluid, the difference between expansion and contraction is large. Thus, a very large load is brought to the interface where the hard coating is bonded. Due to the presence of this intermediate layer, it is possible to avoid the occurrence of film destruction due to repeated fatigue. By smoothing the convex portions on the surface of the hard film by mechanical treatment after the hard film is coated, the friction characteristics of the hard film-coated tool are stabilized, which is preferable. Variation in cutting life can be reduced, and a preferable tool can be obtained. Hereinafter, the present invention will be described based on examples.

本発明例1〜16は、小型真空装置内にAIPによる蒸発源と、MSによる蒸発源とを併設した装置を用いて、基体となる超硬合金製インサートに被覆を行った。蒸発源は各種合金製ターゲットを用い、反応ガスはNガス、CHガス、Ar/O混合ガスから目的の皮膜が得られるものを選択した。被覆条件は、基体温度400℃、バイアス電圧は、−40Vから−150Vの範囲の電圧を印加した。得られた硬質皮膜被覆インサートを用い、次に示す切削条件1及び切削条件2にて切削試験を行った。評価方法は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に硬質皮膜の組成表2、表3に本発明例1〜16の硬質皮膜の詳細及び切削試験の結果を示す。
比較例17〜26、比較例31〜40、比較例43〜47、従来例29、30、41、42は、プラズマ密度の同じ単一の蒸発源を用い、比較例27、28はAIPとMSとを併用し、表1の硬質皮膜の組成を被覆した、本発明例同様に、硬質皮膜の詳細及び切削試験の結果を、表2、表3に併記した。
In Examples 1 to 16 of the present invention , a cemented carbide insert serving as a substrate was coated using a device in which a vapor source by AIP and a vapor source by MS were provided in a small vacuum device. Various evaporation targets were used as the evaporation source, and the reaction gas was selected from N 2 gas, CH 4 gas, and Ar / O 2 mixed gas to obtain a desired film. As the coating conditions, a substrate temperature of 400 ° C. and a bias voltage of −40V to −150V were applied. Using the obtained hard coating-coated insert, a cutting test was performed under the following cutting conditions 1 and 2. In the evaluation method, processing was performed until the tool became uncut due to chipping or wear of the blade edge, and the cutting length at that time was defined as the tool life. Table 1 shows the composition of the hard coating , Tables 2 and 3 show the details of the hard coatings of Examples 1 to 16 of the present invention and the results of the cutting test.
Comparative Examples 17 to 26, Comparative Examples 31 to 40, Comparative Examples 43 to 47, Conventional Examples 29, 30, 41, and 42 use a single evaporation source having the same plasma density, and Comparative Examples 27 and 28 are AIP and MS. The details of the hard coating and the results of the cutting test are also shown in Tables 2 and 3 in the same manner as in the present invention example.

(切削条件1)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)、Φ6ドリル穴多孔面在り
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
(切削条件2)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
表2より、切削条件1の耐欠損性について、被削材表面に予めドリルにて等間隔に穴をあけたものを使用した。この被削材表面を高能率加工条件にて切削を行う事により断続加工を想定し、インサートが衝撃を受けて欠損に至るまでの切削可能長を評価した。
(Cutting condition 1)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30), Φ6 drill hole porous surface cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None (Cutting condition 2)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30)
Cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None From Table 2 , with respect to fracture resistance under cutting condition 1 , the surface of the work material previously drilled at equal intervals was used. By cutting the surface of the work material under high-efficiency machining conditions, intermittent cutting was assumed, and the possible cutting length until the insert was impacted and damaged was evaluated.

本発明例1〜16のほうが優れた切削性能を示した。これは、プラズマ密度の異なるAIPとMSの手法を被覆時に併用し、高硬度膜と低硬度の皮膜とを連続して交互に被覆することによって、硬質皮膜の耐摩耗性、潤滑性を保持したまま、皮膜強度を向上させることができた。硬質皮膜に組成の異なる層を形成し、B含有量に差をつけるための方法には、ターゲット組成や被覆条件を断続的、連続的に変化させる方法が考えられるが、本発明で採用した様なプラズマ密度の異なる蒸発源を用いた方が、より優れた耐欠損特性を得ることができた。比較例17、24、26は単一の蒸発源を用いて、組成差が発生しないように被覆した場合である。比較例17は、MSによる被覆であるが、AIPに比べ、プラズマ密度を高めることができないため、皮膜の高硬度化ができなかった。そのため、耐摩耗性が十分ではなく、初期欠損に至ってしまった。比較例24、26は硬質皮膜が高硬度化する傾向にあったが、靭性が乏しくなり、断続切削性能を向上させることができなかった。比較例18、19、21〜23はAIPを使用し、硬質膜に組成差が発生するように被覆した場合である。組成差は発生しているが、目標とする切削性能は得られなかった。AIPのみの被覆の場合、ターゲット組成によらず放電時に発生するプラズマ密度が大きいため、硬質皮膜は高硬度化しやすい傾向にある。従って靭性が不足する。比較例に示したように皮膜に組成差を発生させても残留応力の増大を招いてしまうため、耐欠損性、密着性に悪影響となる。比較例の中には皮膜硬度がHvで33(GPa)を越えるような物も得られたが、皮膜の靭性が低い為に断続切削状況下で欠損が発生し、工具は短寿命であった。比較例27、28はAIPとMSとを併用することにより、硬質皮膜内に組成差を発生させた。しかし、組成差が目標の範囲を越えてしまったため、硬質皮膜の破断面組織形態が連続した柱状形態を示さず、組成の異なる層が断続的に連なり成長していた。そのため層間の接合力が弱く膜破壊が発生し、目標の切削性能が得られなかった。しかし、比較例27、28はプラズマ密度の異なる手法を併用することにより、耐欠損性が向上することを確認できた。以上の様に、AIPとMSを被覆時に併用した様に、プラズマ密度の異なる方式を併用した時に、硬質皮膜のB組成差を制御することができ、硬質皮膜を被覆したインサートは、優れた耐欠損特性を発揮させることができた。 Inventive Examples 1 to 16 showed superior cutting performance. This is because the AIP and MS methods with different plasma densities are used at the time of coating, and the high hardness film and the low hardness film are alternately and continuously coated to maintain the wear resistance and lubricity of the hard film. The film strength could be improved as it was. As a method for forming a layer having a different composition on the hard film and making a difference in the B content, a method of intermittently and continuously changing the target composition and coating conditions can be considered. The use of evaporation sources with different plasma densities provided better fracture resistance. Comparative Examples 17, 24, and 26 are cases where coating was performed using a single evaporation source so as not to cause a compositional difference. Although the comparative example 17 is the coating by MS , since the plasma density cannot be increased as compared with AIP, the hardness of the coating could not be increased. Therefore, the wear resistance is not sufficient, leading to initial defects. In Comparative Examples 24 and 26, the hard coating tended to increase in hardness, but the toughness became poor and the intermittent cutting performance could not be improved. Comparative Example 18,19,21~23 is when coated so as to use the AIP, composition difference hard skin layer is produced. Although there was a difference in composition, the target cutting performance was not obtained. In the case of coating only with AIP, the hard film tends to have a high hardness because the plasma density generated during discharge is large regardless of the target composition. Accordingly, the toughness is insufficient. As shown in the comparative example, even if a compositional difference is generated in the film, the residual stress is increased, which adversely affects fracture resistance and adhesion. Some of the comparative examples had a coating hardness of Hv exceeding 33 (GPa), but due to the low toughness of the coating, chipping occurred under intermittent cutting conditions, and the tool had a short life. . In Comparative Examples 27 and 28, a composition difference was generated in the hard coating by using AIP and MS in combination. However, since the compositional difference has exceeded the target range, the fracture surface texture form of the hard coating does not show a continuous columnar form, and layers having different compositions are intermittently grown. Therefore, the bonding force between the layers was weak and the film was broken, and the target cutting performance could not be obtained. However, in Comparative Examples 27 and 28, it was confirmed that the fracture resistance was improved by using the methods having different plasma densities. As described above, when AIP and MS are used together during coating, the difference in the B composition of the hard coating can be controlled when using a method with different plasma density, and the insert coated with the hard coating has excellent resistance. Defect characteristics were able to be demonstrated.

表3の切削条件2の評価は突発的な欠損や異常摩耗、剥離を伴う損傷形態が観察されない場合は、逃げ面最大摩耗量が0.3mmに達した時点を工具寿命とした。本発明例1〜16は、硬質皮膜の硬度を改善し耐摩耗特性を向上させ、優れた切削特性を有すること示した。本発明例は密着性、潤滑性、耐摩耗特性の課題を改善し、性能を大幅に改善することで満足のいく結果を得ることができた。本発明例7、12は、今回の切削評価において長い切削寿命を示し、従来例30、41に対し、切削寿命の改善を得ることがでた。本発明例12は、切削初期の被加工物の刃先への溶着現象が低減し、比較例31〜40の切削評価結果に見られる切削距離では、ほとんど摩耗の発生していないことが観察された。これより本発明の効果を確認できた。本発明例12は、従来例の中で最も寿命の長かった従来例42に対し、2.4倍の長寿命を得ることができた。本発明例に記載の金属成分組成と切削寿命の相関関係は、O添加や表層酸化物の有無、ヘテロエピタキシャルの有無にも影響を受けている。更にNbとBの含有量のバランスも大切である。今回の試験で、平均的に切削特性が優れ、工具寿命が上位にあるものは、Nb>Bの傾向を示した。本発明例のB含有量が規定の範囲内でNb含有量よりも多くなっても、従来例や比較例と比べた場合、十分な切削性能を発揮することが認められた。しかし、切削性能を考慮すると、Nb>Bの硬質皮膜が望ましい。本発明の硬質皮膜はO添加により潤滑特性が大幅に向上した。例えば、比較例31は、金属成分組成は本発明の範囲内にあるが、切削性能は従来例とほとんど変わらない結果となった。比較例34の様に、金属成分が本発明の範囲内でも、O含有量が非金属成分に対し5at%を越えると、潤滑特性は認められが、動的な切削に対し早期摩耗が発生する。これは、Oを多量添加することで硬質皮膜の破断面組織形態が柱状から微細組織状に変化し、高硬度が得られずに低硬度化してしまったためと考えられる。比較例34は、密着性が考慮されているため初期欠損は発生せずに摩耗寿命に到達したが、比較例34の場合は密着性も考慮されていないため、インサートすくい面の硬質皮膜の剥離が顕著に現われた。本発明の硬質皮膜組成の範囲内で被覆しても、密着性が考慮されていない場合は、今回の切削条件下において剥離を発生し、安定した加工を行うことがでなかった。比較例36は、Al成分が規定範囲外であり、密着性も考慮していない場合である。比較例40は、Nb成分が規定範囲外である場合である。硬質皮膜の金属成分が規定範囲外となると破断面組織形態が微細化し、この状態で切削加工を行うと、インサートすくい面での摩耗が急速に発生し、その結果短寿命となるのである。O添加方法によっても切削性能に影響を及ぼすことが明らかとなった。比較例32、35、38は成膜開始時から所定量のO添加を開始して被覆終了時までその量を変化させずに均等に添加して被覆した場合である。これに対し、本発明例並びに比較例33、34、36、37、39、40は被覆開始から終了までO含有量が基体と硬質皮膜界面から表面に向かって勾配を示すように傾斜して添加したものである。切削試験結果は、O添加が勾配を示すよう傾斜して添加する被覆が望ましいと言う結果が得られた。比較例37、39、40はNb、B含有量が規定範囲外にあることによって、残留圧縮応力が増大し、切削初期の皮膜剥離が発生することが明らかとなった。以上の試験結果より、本発明の硬質皮膜の改善効果は、第1の金属成分の組成範囲設定による効果、第2のO添加効果、第3の硬質膜表面に緻密なBの酸化物を形成させる効果により得られ、潤滑特性が大幅に向上し、寿命向上が実現できることが確認できた。 Evaluation of Cutting Conditions 2 shown in Table 3, when the sudden defects or abnormal wear, damage form with the peeling is not observed, a time when the flank maximum wear amount reaches 0.3mm and the tool life. Examples 1 to 16 of the present invention showed that the hardness of the hard coating was improved to improve the wear resistance and have excellent cutting characteristics. In the present invention, the problems of adhesion, lubricity and wear resistance were improved, and satisfactory results could be obtained by greatly improving the performance. Examples 7 and 12 of the present invention showed a long cutting life in this cutting evaluation, and improved the cutting life over the conventional examples 30 and 41. In the inventive example 12, the welding phenomenon to the cutting edge of the workpiece in the initial stage of cutting was reduced, and it was observed that almost no wear was generated at the cutting distances shown in the cutting evaluation results of Comparative Examples 31 to 40. . This confirmed the effect of the present invention. Invention Example 12 was able to obtain 2.4 times longer life than Conventional Example 42, which had the longest lifetime among the conventional examples. The correlation between the metal component composition and the cutting life described in the examples of the present invention is also affected by the addition of O, the presence or absence of surface oxides, and the presence or absence of heteroepitaxiality. Furthermore, the balance between the Nb and B contents is also important. In this test, those having excellent cutting characteristics on average and having the highest tool life showed a tendency of Nb> B. Even when the B content of the present invention example was larger than the Nb content within the specified range, it was confirmed that sufficient cutting performance was exhibited when compared with the conventional example and the comparative example. However, in consideration of cutting performance, a hard coating of Nb> B is desirable. The lubricating properties of the hard coating of the present invention were greatly improved by the addition of O. For example, in Comparative Example 31, the metal component composition was within the range of the present invention, but the cutting performance was almost the same as the conventional example. As in Comparative Example 34, even when the metal component is within the range of the present invention, if the O content exceeds 5 at% with respect to the non-metal component, lubrication characteristics are recognized, but early wear occurs due to dynamic cutting. . This is presumably because the fracture surface texture form of the hard coating changed from a columnar shape to a fine textured state by adding a large amount of O, and the hardness was lowered without obtaining a high hardness. In Comparative Example 34, the wear life was reached without occurrence of initial defects because the adhesiveness was taken into consideration, but in the case of Comparative Example 34, the adhesiveness was not taken into consideration, so that the hard coating on the insert rake face was peeled off. Appeared prominently. Even if the coating is performed within the range of the hard coating composition of the present invention, if adhesion is not considered, peeling occurs under the current cutting conditions, and stable processing cannot be performed. Comparative Example 36 is a case where the Al component is outside the specified range and adhesion is not taken into consideration. Comparative Example 40 is a case where the Nb component is outside the specified range. When the metal component of the hard coating is out of the specified range, the fracture surface structure becomes finer. When cutting is performed in this state, wear on the insert rake face is rapidly generated, resulting in a short life. It became clear that the cutting performance was also affected by the O addition method. In Comparative Examples 32, 35, and 38, a predetermined amount of O is added from the start of film formation and is added uniformly without changing the amount until the end of coating. In contrast, the inventive examples and comparative examples 33, 34, 36, 37, 39, and 40 were added in an inclined manner so that the O content showed a gradient from the substrate and hard coating interface to the surface from the start to the end of coating. It is a thing. As a result of the cutting test, it was found that a coating in which the addition of O is inclined so as to show a gradient is desirable. In Comparative Examples 37, 39, and 40, it was revealed that when the Nb and B contents were outside the specified ranges, the residual compressive stress was increased, and film peeling occurred at the initial stage of cutting. From the above test results, the effect of improving hard coating of the present invention, the effect of the composition range set in the first metal component, a second O addition effect, an oxide of dense B in the third hard skin membrane surface It was obtained by the effect of forming, and it was confirmed that the lubrication characteristics were greatly improved and the life could be improved.

また、表3には硬質皮膜のX線回折による解析結果として面心立方格子(111)面と(200)面の検出ピーク強度比Ib/Ia、(200)面の格子定数λと、切削条件2による切削評価結果を示す。比較例17〜26、43〜47はO添加もなされていたが、X線回折における結晶配向が規定範囲外であったため、容易にクレータ摩耗や剥離が発生した。また、λの調整も必要であることが確認された。比較例18、22〜25、43〜47のように(200)面のλが0.4230nmを越えるような硬質皮膜の場合、硬質皮膜の金属成分組成並びにO含有量とは無関係に、早期に切削寿命に到達した。λの値は硬質皮膜の内部応力の大小に影響を与える。λが大きい場合には、たとえ基体と硬質皮膜との界面でヘテロエピタキシャルを成立させても、残留圧縮応力が増大し界面での応力増大により硬質皮膜が容易に破壊、或いは剥離が発生し、その結果工具寿命が安定せず短寿命になる。従って、本発明の様に切削性能を改善させ安定した切削性能を示すためには、金属成分の規定やO含有量、添加手法以外に、結晶配向も適切に制御することにより、密着性良く成膜することも重要である。 Table 3 also shows the detection peak intensity ratio Ib / Ia between the face-centered cubic lattice (111) and the (200) plane, the lattice constant λ of the (200) plane, and the cutting conditions as the analysis results by X-ray diffraction of the hard coating. The cutting evaluation result by 2 is shown. In Comparative Examples 17 to 26 and 43 to 47, O was also added, but since the crystal orientation in X-ray diffraction was out of the specified range, crater wear and peeling occurred easily. Further, it was confirmed that the adjustment of λ is also necessary. In the case of a hard coating such that the (200) plane λ exceeds 0.4230 nm as in Comparative Examples 18, 22 to 25, 43 to 47, regardless of the metal component composition and O content of the hard coating, The cutting life has been reached. The value of λ affects the internal stress level of the hard coating. When λ is large, even if heteroepitaxial is established at the interface between the substrate and the hard film, the residual compressive stress increases, and the hard film easily breaks or peels off due to the increase in stress at the interface. As a result, the tool life is not stable and the life is shortened. Therefore, in order to improve the cutting performance and show stable cutting performance as in the present invention, in addition to the definition of the metal component, the O content , and the addition method, the crystal orientation is appropriately controlled to achieve good adhesion. It is also important to film.

更に、基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属などの中間層を設けることによって、更に密着力を補強して耐剥離を改善し、耐欠損特性を向上させる効果が認められた。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜被覆工具の摩擦特性が安定し、切削寿命のばらつきを低減することが認められた。   Furthermore, by providing an intermediate layer of Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, W metal, etc. directly on the upper surface of the substrate, the adhesion is further reinforced to improve peeling resistance, The effect of improving the fracture resistance was recognized. It was recognized that by smoothing the convex portions on the surface of the hard coating by mechanical treatment after coating the hard coating, the friction characteristics of the hard coating coated tool are stabilized and the variation in cutting life is reduced.

図1は、硬質皮膜被覆装置の概略図を示す。FIG. 1 shows a schematic view of a hard film coating apparatus. 図2は、本発明例の皮膜断面観察結果を示す。FIG. 2 shows the result of observing the film cross section of the present invention. 図3は、硬質皮膜の摩擦係数の測定結果を示す。FIG. 3 shows the measurement results of the friction coefficient of the hard coating. 図4は、硬質皮膜のESCA分析による化学結合状態の解析結果を示す。FIG. 4 shows the analysis result of the chemical bonding state by ESCA analysis of the hard coating. 図5は、基体と硬質皮膜との界面でへテロエピタキシャルの関係を示す。FIG. 5 shows the heteroepitaxial relationship at the interface between the substrate and the hard coating.

1:真空装置
2:AIP蒸発源
3:MS蒸発源
4:基体保持治具
5:回転方向
1: Vacuum device 2: AIP evaporation source 3: MS evaporation source 4: Substrate holding jig 5: Direction of rotation

Claims (7)

基体表面に硬質皮膜を被覆した被覆工具において、該硬質皮膜の組成は、(AlTiNb)、但し、w、x、y、zは原子比率で、20≦w≦50、25≦x≦75、2≦y≦20、0.1≦z≦15、w+x+y+z=100、w≦x+y+zで表される金属成分と、(O100−a)、但し、0.3≦a≦5で表される非金属成分であり、該硬質皮膜は、アークイオンプレーティング法による蒸発源と、マグネトロンスパッタ法による蒸発源とを併設した装置を用いて、該蒸発源の組成を同一とし、被覆時に夫々の蒸発源で放電を発生させ、高密度プラズマの該アークイオンプレーティング法により被覆されたA層と、低密度プラズマの該マグネトロンスパッタ法により被覆されたC層とが多層構造をなし、該硬質皮膜は、B含有量の相対的に大きいA層と、B含有量の相対的に小さいC層、とを含み、該A層、C層のB含有量の差が、原子比率で、0.2以上、5以下であることを特徴とする硬質皮膜被覆工具。 In the coated tool in which the surface of the substrate is coated with a hard film, the composition of the hard film is (Al w Ti x Nb y B z ), where w, x, y, and z are atomic ratios, 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20, 0.1 ≦ z ≦ 15, w + x + y + z = 100, metal component represented by w ≦ x + y + z, and (O a N 100-a ), where 0.3 ≦ a ≦ 5 is a non-metallic component represented by a ≦ 5, and the hard film has the same composition of the evaporation source using an apparatus provided with an evaporation source by an arc ion plating method and an evaporation source by a magnetron sputtering method. A multi-layer structure in which a discharge is generated at each evaporation source during coating, and the A layer coated by the arc ion plating method of high density plasma and the C layer coated by the magnetron sputtering method of low density plasma None, cured Coating, a relatively large said A layer of B content, relatively small the C layer of B content, include city, the A layer, the difference between the B content of the C layer is in atomic ratio, A hard film-coated tool characterized by having a hardness of 0.2 or more and 5 or less. 請求項1記載の硬質皮膜被覆工具において、該硬質皮膜の総膜厚は、平均厚さで0.5〜10μmであることを特徴とする硬質皮膜被覆工具。   2. The hard film coated tool according to claim 1, wherein the total film thickness of the hard film is 0.5 to 10 [mu] m in average thickness. 請求項1又は2記載の硬質皮膜被覆工具において、該硬質皮膜の面心立方構造の(200)面と、基体のWCの(100)面とがヘテロエピタキシャル関係を有し、該硬質皮膜の破断面組織形態が、基体との界面から表面まで連続した柱状組織をなすことを特徴とする硬質皮膜被覆工具。   3. The hard coating tool according to claim 1, wherein the (200) plane of the face-centered cubic structure of the hard coating and the (100) plane of the WC of the substrate have a heteroepitaxial relationship, and the hard coating is broken. A hard film-coated tool characterized in that the cross-sectional structure forms a continuous columnar structure from the interface with the substrate to the surface. 請求項1乃至3いずれかに記載の硬質皮膜被覆工具において、該硬質皮膜はX線回折における該面心立方構造の(111)面に検出されるピーク強度値をIa、該(200)面に検出されるピーク強度値をIbとした時に、Ib/Ia≧2.0であり、該(200)面の格子定数λ(nm)が0.4155≦λ≦0.4220の範囲にあることを特徴とした硬質皮膜被覆超硬工具。   The hard coating tool according to any one of claims 1 to 3, wherein the hard coating has a peak intensity value detected on the (111) plane of the face-centered cubic structure in X-ray diffraction on Ia and the (200) plane. When the detected peak intensity value is Ib, Ib / Ia ≧ 2.0, and the lattice constant λ (nm) of the (200) plane is in the range of 0.4155 ≦ λ ≦ 0.4220. A hard coating coated carbide tool. 請求項1乃至4いずれかに記載の硬質皮膜被覆工具において、該硬質皮膜と基体との界面から該総膜厚の1〜30%の酸素含有量Mと、該硬質皮膜の表面から該総膜厚の1〜30%の酸素含有量Nとの差を(N−M)とした時、(N−M)≧0.3であり、該硬質皮膜の表面近傍には、ESCA分析においてBと酸素との結合状態を示すピークが検出され、該Bと酸素との結合状態を示すピーク位置が188eVから195eVの範囲内にあることを特徴とした硬質皮膜被覆工具。   The hard film-coated tool according to any one of claims 1 to 4, wherein the oxygen content M is 1 to 30% of the total film thickness from the interface between the hard film and the substrate, and the total film from the surface of the hard film. When the difference from the oxygen content N of 1 to 30% of the thickness is (NM), (NM) ≧ 0.3, and in the vicinity of the surface of the hard coating, A hard film-coated tool characterized in that a peak indicating a bonding state with oxygen is detected, and a peak position indicating a bonding state between B and oxygen is within a range of 188 eV to 195 eV. 請求項1乃至5いずれかに記載の硬質皮膜被覆工具において、該基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けたことを特徴とする硬質皮膜被覆工具。   6. The hard film coated tool according to claim 1, wherein at least one selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the substrate. A hard film coated tool characterized by comprising an intermediate layer. 請求項1乃至請求項6のいずれかに記載の硬質皮膜被覆工具において、該硬質皮膜を被覆後に、該硬質皮膜表面の凸部を機械的処理により、平滑化したことを特徴とする硬質皮膜工具。   The hard coating tool according to any one of claims 1 to 6, wherein a convex portion of the surface of the hard coating is smoothed by mechanical treatment after the hard coating is coated. .
JP2004365330A 2003-12-26 2004-12-17 Hard coating tool Expired - Fee Related JP4958135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365330A JP4958135B2 (en) 2003-12-26 2004-12-17 Hard coating tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003431711 2003-12-26
JP2003431711 2003-12-26
JP2004365330A JP4958135B2 (en) 2003-12-26 2004-12-17 Hard coating tool

Publications (2)

Publication Number Publication Date
JP2005205592A JP2005205592A (en) 2005-08-04
JP4958135B2 true JP4958135B2 (en) 2012-06-20

Family

ID=34914200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365330A Expired - Fee Related JP4958135B2 (en) 2003-12-26 2004-12-17 Hard coating tool

Country Status (1)

Country Link
JP (1) JP4958135B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333081B2 (en) * 1995-12-18 2002-10-07 東芝タンガロイ株式会社 Crystal orientation high strength coated member
JPH11335813A (en) * 1998-05-21 1999-12-07 Sumitomo Electric Ind Ltd Hard coating film and laminated hard coating film
JP3392115B2 (en) * 2000-09-19 2003-03-31 日立ツール株式会社 Hard coating tool
JP2002273607A (en) * 2001-03-16 2002-09-25 Hitachi Tool Engineering Ltd Multilayer coat tool
JP3622846B2 (en) * 2001-09-21 2005-02-23 住友電気工業株式会社 Sticky milling tool
JP4251990B2 (en) * 2002-01-18 2009-04-08 住友電工ハードメタル株式会社 Surface coated cutting tool
JP2003291006A (en) * 2002-04-02 2003-10-14 Hitachi Tool Engineering Ltd Hard-coating coated tool
JP2003291007A (en) * 2002-04-02 2003-10-14 Hitachi Tool Engineering Ltd Hard-coating coated tool

Also Published As

Publication number Publication date
JP2005205592A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
KR101170943B1 (en) Hard coating and its forming method, and hard-coated tool
KR100937072B1 (en) Hard coating having excellent wear resistance and oxidation resistance and target for forming the same, and hard coating having excellent high-temperature lubricating ability and wear resistance and target for forming the same
KR101170396B1 (en) Hard coating and its production method
IL172557A (en) Surface-coated cutting tool
JP5382581B2 (en) Surface coated cutting tool
JP6525310B2 (en) Coated tools
KR102167200B1 (en) Cloth cutting tool
JP4304170B2 (en) Hard coating
JP4958134B2 (en) Hard coating tool
JP4850189B2 (en) Coated tool
JP2006118051A (en) Method for producing hard film
JP2007046103A (en) Hard film
JP2007119810A (en) Coated member
JP4958135B2 (en) Hard coating tool
KR102244795B1 (en) Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same
JP4453902B2 (en) Hard coating and hard coating tool
US11491549B2 (en) Multi-layer coated cutting material, method for manufacturing the same, and cutting tool insert for mechanical machining including the same
JP4615259B2 (en) Manufacturing method of hard coating
KR102600218B1 (en) covered cutting tools
JP2004136430A (en) Coated tool
JP4908767B2 (en) Surface covering member and cutting tool
JP2007056324A (en) Hard film
KR102480241B1 (en) cloth cutting tool
JP2010284788A (en) Hard film coated tool
JP2006307242A (en) Hard film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4958135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees