JP4958134B2 - Hard coating tool - Google Patents

Hard coating tool Download PDF

Info

Publication number
JP4958134B2
JP4958134B2 JP2004362143A JP2004362143A JP4958134B2 JP 4958134 B2 JP4958134 B2 JP 4958134B2 JP 2004362143 A JP2004362143 A JP 2004362143A JP 2004362143 A JP2004362143 A JP 2004362143A JP 4958134 B2 JP4958134 B2 JP 4958134B2
Authority
JP
Japan
Prior art keywords
hard
hard film
film
coating
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004362143A
Other languages
Japanese (ja)
Other versions
JP2005199420A (en
Inventor
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004362143A priority Critical patent/JP4958134B2/en
Publication of JP2005199420A publication Critical patent/JP2005199420A/en
Application granted granted Critical
Publication of JP4958134B2 publication Critical patent/JP4958134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、金属材料等の切削加工に使用される硬質皮膜被覆工具に関する。   The present invention relates to a hard film-coated tool used for cutting a metal material or the like.

金属加工の高能率化を目的とした切削速度の高速化、並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜被覆工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。特許文献1、2には硬質皮膜に濃度分布を形成させる技術や、連続的に組成の変化する組成変化の繰り返し層を持った膜を形成することによって、耐摩耗性を向上させる技術が開示されている。しかし、何れも物理蒸着法におけるアーク放電型イオンプレーティング方式のみを利用した試みである。   Conventional hard-coated tools are used for high-speed cutting that increases the cutting speed for high-efficiency metal processing and high-feed cutting with a cutting amount exceeding 0.3 mm under cutting conditions. Satisfactory performance has not been achieved with respect to oxidation and wear resistance, which are mechanical properties of hard coatings. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. Patent Documents 1 and 2 disclose a technique for forming a concentration distribution in a hard film and a technique for improving wear resistance by forming a film having a repeated layer of composition change in which the composition continuously changes. ing. However, both are attempts using only the arc discharge ion plating method in the physical vapor deposition method.

特開2003−225807号公報JP 2003-225807 A 特許第3460288号公報Japanese Patent No. 3460288

本願発明は、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を向上させ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することが目的である。   The present invention improves the adhesion of the hard coating, improves the oxidation resistance and wear resistance, further suppresses the welding resistance at high temperatures and the diffusion of the work material elements into the hard coating, cutting processing It is an object of the present invention to provide a hard film-coated tool that can be used for drying, high speed, and high feed.

本願発明の硬質皮膜被覆工具は、基体表面に硬質皮膜を有する被覆工具において、該硬質皮膜は(AlTiNbSi)、但し、w、x、y、zは、原子比率で20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦15、w+x+y+z=100、w≦x+y+zで表される金属成分と、(O100−a)、但し、0.3≦a≦5で表される非金属成分とからなる組成を有し、該硬質皮膜は、アークイオンプレーティング法による蒸発源と、マグネトロンスパッタ法による蒸発源とを併設した装置を用いて、該蒸発源の組成を同一とし、被覆時に夫々の蒸発源で放電を発生させ、高密度プラズマの該アークイオンプレーティング法により被覆されたA層と、低密度プラズマの該マグネトロンスパッタ法により被覆されたC層とが多層構造をなし、該硬質皮膜は、Si含有量の相対的に大きいA層と、Si含有量が相対的に小さいB層との多層構造で、該A層、B層のSi含有量の差が、原子比率で、0.2以上、5以下であることを特徴とする硬質皮膜被覆工具である。上記構成を採用することにより、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を著しく向上させ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することができる。ここでの高送り加工とは、切削条件における1刃当たりの送り量が0.3mm/刃を越えるような切削と定義する。 The hard film-coated tool of the present invention is a coated tool having a hard film on the surface of the substrate. The hard film is (Al w Ti x Nb y Si z ), where w, x, y and z are 20 in atomic ratio. ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20, 0.01 ≦ z ≦ 15, w + x + y + z = 100, w ≦ x + y + z, and (O a N 100-a ), , 0.3 ≦ a ≦ 5, and the hard coating comprises an apparatus provided with an evaporation source by an arc ion plating method and an evaporation source by a magnetron sputtering method. And the same composition of the evaporation source, discharge is generated in each evaporation source at the time of coating, and the A layer coated by the arc ion plating method of high-density plasma, and the magnetron sputtering method of low-density plasma By And overturned the layer C form a multilayer structure, hard coating has a relatively large said A layer of Si content, a multilayer structure of the Si content is relatively small the B layer, the A layer The hard film-coated tool is characterized in that the difference in Si content of the B layer is 0.2 to 5 in terms of atomic ratio. By adopting the above configuration, the adhesion of the hard coating is improved, the oxidation resistance and the wear resistance are remarkably improved, the welding resistance at high temperature conditions and the diffusion of the work material elements into the hard coating are also achieved. Therefore, it is possible to provide a hard film coated tool which can be controlled and can cope with dry machining, high speed, and high feed of cutting. High feed processing here is defined as cutting in which the feed amount per blade under the cutting conditions exceeds 0.3 mm / tooth.

次に、該硬質皮膜の破断面組織形態が、基体との界面から表面まで連続した柱状組織をなし、該硬質皮膜の総膜厚は、平均厚さで0.5〜10μmである。該硬質皮膜と基体との界面から該総膜厚の1〜30%酸素含有量Mと、該硬質皮膜表面側から該総膜厚の1〜30%酸素含有量Nとの差をN−Mとした時、N−M≧0.3であり、該硬質皮膜の表面近傍には、ESCA分析においてSiと酸素との結合状態を示すピークが検出され、該ピーク位置は98eVから105eVの範囲内にあり、該硬質皮膜の面心立方構造の(200)面と、基体のWCの(100)面とがヘテロエピタキシャル関係を有することを特徴とした硬質皮膜被覆工具である。該硬質皮膜X線回折における該面心立方構造の(111)面に検出されるピーク強度値をIa、(200)面に検出されるピーク強度値をIbとしたときに、Ib/Ia≧2.0であり、(200)面の格子定数λ(nm)が0.4155≦λ≦0.4220の範囲にある。基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けている。硬質皮膜は物理蒸着方式で被覆され、金属成分のAl、Ti、Nb、Siはプラズマ密度、放電出力の異なる複数の蒸発源により被覆されることが好ましい。 Next, fracture surface morphology of the hard coating, without a continuous columnar structure from the interface with the substrate to the surface, the total thickness of the hard coating is 0.5~10μm in average thickness. A hard coating and an oxygen content from the interface of 1 to 30% of the total thickness and the substrate M, the difference from the hard coating surface 1 to 30% oxygen content N of the total film thickness ( when N-M) and the, (N-M) is ≧ 0.3, in the vicinity of the surface of the hard coating, a peak indicating the bonding state between Si and oxygen in ESCA analysis is detected, the peak position A hard film-coated tool having a heteroepitaxial relationship in which the (200) plane of the face-centered cubic structure of the hard film and the (100) plane of the WC of the substrate are in a range of 98 eV to 105 eV . Hard coating of the X-ray peak intensity values detected in (111) plane of said surface-centered cubic structure in the diffraction Ia, the (200) peak intensity values detected in surface when the Ib, Ib / Ia ≧ 2.0, and the (200) lattice constant of the surface lambda (nm) is in the range of 0.4155 ≦ λ ≦ 0.4220. At least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the substrate. The hard coating is preferably coated by physical vapor deposition, and the metal components Al, Ti, Nb, and Si are preferably coated by a plurality of evaporation sources having different plasma densities and discharge outputs.

本願発明は、硬質皮膜の密着性を改善し、優れた耐酸化性、耐摩耗、潤滑性、耐欠損性を有すことから、乾式高能率切削加工をはじめ、金型加工時の断続切削状況下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。   The present invention improves the adhesion of the hard coating and has excellent oxidation resistance, wear resistance, lubricity, and fracture resistance. Even underneath, stability and a long tool life can be obtained, which is extremely effective in improving productivity in cutting.

本願発明は、(TiAl)N系の硬質皮膜へ、SiとNbを添加することにより、被削材の溶着現象を防ぐ。硬質皮膜にSiを添加することにより、溶着現象の原因となるAlの移動を抑制し、化学的に安定なAl層の耐剥離性を改善することができる。Nbを添加することにより、Ti酸化物を緻密微細化させることができる。これらにより切削時の高温環境下においても耐溶着現象に優れ、耐熱性を向上させることが可能となる。更に、Si添加は、切削工具に適用した際に、切削時の発熱により皮膜表層付近に、Alの酸化物よりもSiの緻密な酸化物が早く形成されることで、被削材に含まれるFeが硬質皮膜中へ内向拡散するのを抑制し、その結果、溶着発生を抑制できることにある。
従って、本願発明は、例えば電子顕微鏡により観察した際に、明暗を示す複数の層が存在し、これらから無作為に選択した層であって、Si含有量の相対的に大きいA層と、Si含有量の相対的に小さいB層とを、組成分析、例えばEPMA(Electron Probe Micro analyser、島津製作所製EPM−1610型)分析等におけるSi含有量分析の結果を原子比率による平均値で求め、A層、B層の差が、0.2以上、5以下であることを特徴とする。
A層、B層のSi含有量の平均値の差を0.2以上、5以下、とすることにより、硬質皮膜の耐衝撃性を向上させることが可能となった。ここで、Si含有量の相対的に大きい層、小さい層とは、皮膜の組成分析をφ1μmの面積領域において行い、この測定値を基準としている。本願発明の硬質皮膜は、Si含有量を成膜時に意図的に制御し組成差を発生させ、膜厚に沿って含有されるSi含有量が変化している。
The present invention prevents welding of the work material by adding Si and Nb to a (TiAl) N-based hard coating. By adding Si to the hard coating, it is possible to suppress the movement of Al that causes the welding phenomenon and to improve the peel resistance of the chemically stable Al 2 O 3 layer. By adding Nb, the Ti oxide can be made fine and fine. As a result, the welding phenomenon is excellent even in a high-temperature environment during cutting, and the heat resistance can be improved. Furthermore, when Si is added to a cutting tool, Si oxide is included in the work material by forming a dense oxide of Si faster than the oxide of Al in the vicinity of the surface of the film due to heat generated during cutting. It is possible to suppress the inward diffusion of Fe into the hard film and, as a result, to suppress the occurrence of welding.
Therefore, in the present invention, for example, when observed with an electron microscope, there are a plurality of layers exhibiting light and darkness, a layer randomly selected from these layers, and a Si layer having a relatively large Si content, and Si The B layer having a relatively small content is obtained as a result of compositional analysis, for example, Si content analysis in EPMA (Electron Probe Microanalyzer, EPM-1610 manufactured by Shimadzu Corporation) analysis, etc., as an average value based on atomic ratio. The difference between layer B and layer B is 0.2 or more and 5 or less.
The impact resistance of the hard coating can be improved by setting the difference between the average values of the Si contents of the A layer and the B layer to 0.2 or more and 5 or less. Here, the layer having a relatively large Si content and the small layer are obtained by performing composition analysis of the film in an area of φ1 μm and using this measurement value as a reference. In the hard coating of the present invention, the Si content is intentionally controlled during film formation to cause a compositional difference, and the Si content contained along the film thickness changes.

本願発明の硬質皮膜の製法は、真空装置に2種以上の蒸発源を設置し、その蒸発源には同一組成の金属蒸発源を取り付けた場合、高密度プラズマでの被覆が優先される領域と低密度プラズマ領域での被覆が優先される領域で組成を意図的に変化させる。プラズマ密度の違いにより、優れた潤滑特性を維持しながら耐衝撃性を向上させ、硬質皮膜そのものに高い靭性を与えることが可能となった。
次に、A層が高密度プラズマでの被覆、B層が低密度プラズマ領域での被覆を連続的に交互に形成することから、耐衝撃特性を向上させる。A層は、高密度プラズマの蒸発源近傍で、硬質結晶が主体に層をなし、B層は、低密度プラズマの蒸発源近傍で、軟質結晶が主体の層をなして多層構造を有する。A層とB層とが混在して基体表面で層として堆積する。その際に、B層がA層の結晶間に存在すると、いわばクッション効果を示し、その結果、皮膜全体として靭性に富むようになる。この効果によって、被覆工具の耐衝撃特性が向上する。この事の他にも、密着性に影響を及ぼす残留圧縮応力の抑制にも効果があることを確認した。図1に示す様に、本願発明の硬質皮膜の製法は、硬質皮膜にSiの組成差を意図的に発生させるために、高密度プラズマを用いたアーク放電型イオンプレーティング(以下、AIPと記す。)方式のA層と、低密度プラズマを利用したマグネトロンスパッタ(以下、MSと記す。)方式を併設した装置を用いている。本装置を用いることにより、Si含有量を意図的に制御し組成差を発生させることが可能となった。本願発明で採用したAIPとMSとの併用方式は、硬質皮膜の耐衝撃特性を向上させるため、更に、硬質皮膜内部において組成差を発生させるために意図的に選択したものである。特にそれぞれの方式で必要なターゲットの組成は限定されない。MS方式には、他にエレクトロンビーム方式もしくは閉磁場方式等があるが、これ以外の方式も含め、限定されない。
更に、AIP方式による被覆では、被覆時に発生するプラズマ密度が非常に高いため、良質な皮膜が形成されるものの、プラズマ中で発生したイオンが基体に入射する際のエネルギーも大きく、残留圧縮応力の抑制が困難である。複数層の硬質皮膜の組成差、硬度差を出すことが難しく、硬質皮膜の耐衝撃特性を向上させ、耐欠損性、靭性を付与させることが困難である。本願発明の硬質皮膜は、AIP方式を単独で使用した場合と比較して、同一組成の被膜であっても、硬質皮膜の高硬度化をはかることができた。
尚、本願発明の硬質皮膜の製造方法は、被覆基体側にバイアス電圧を印加する物理蒸着法であることが望ましい。必要によってはプラズマ支援型の化学蒸着装置と物理蒸着方式を併用した装置を用いてもよい。
図2は、後述の本願発明例8の皮膜断面観察結果を示した。観察には、透過型電子顕微鏡を用いて行った。図2は、高密度プラズマによるAIPにより被覆したA層と、低密度プラズマによるMSにより被覆したB層とが多層構造をなし、A、B各層が連続的に分断されることなく成長していることを確認した。図3は、本発明例8の皮膜分析結果を示した。図3より、硬質皮膜表面から内部に向かってSiの組成分布を調べた結果、組成差が明確に得られていることが確認された。
In the method for producing a hard coating of the present invention, when two or more evaporation sources are installed in a vacuum apparatus and a metal evaporation source having the same composition is attached to the evaporation source, the coating with high-density plasma has priority. The composition is intentionally changed in a region where coating in the low density plasma region is prioritized. Due to the difference in plasma density, it was possible to improve impact resistance while maintaining excellent lubrication characteristics, and to impart high toughness to the hard coating itself.
Next, the A layer is coated with high-density plasma, and the B layer is alternately formed with a coating in the low-density plasma region, so that the impact resistance is improved. The A layer has a multilayer structure mainly composed of hard crystals in the vicinity of the high-density plasma evaporation source, and the B layer has a multilayer structure mainly composed of soft crystals in the vicinity of the low-density plasma evaporation source. A layer and B layer are mixed and deposited as a layer on the substrate surface. At that time, if the B layer exists between the crystals of the A layer, a so-called cushioning effect is exhibited, and as a result, the entire film becomes rich in toughness. This effect improves the impact resistance characteristics of the coated tool. In addition to this, it was confirmed that there is an effect in suppressing residual compressive stress that affects the adhesion. As shown in FIG. 1, the method for producing a hard coating of the present invention is an arc discharge ion plating (hereinafter referred to as AIP) using high-density plasma in order to intentionally generate a Si composition difference in the hard coating. .) System A layer and a magnetron sputtering (hereinafter referred to as MS) system using low density plasma are used. By using this apparatus, it became possible to intentionally control the Si content and generate a compositional difference. The combined system of AIP and MS employed in the present invention is intentionally selected in order to improve the impact resistance characteristics of the hard coating and to further cause a compositional difference inside the hard coating. In particular, the composition of the target required for each method is not limited. Other MS methods include an electron beam method or a closed magnetic field method, but are not limited to other methods.
Furthermore, in the coating by the AIP method, since the plasma density generated at the time of coating is very high, a good quality film is formed, but the energy generated when ions generated in the plasma are incident on the substrate is large, and the residual compressive stress is reduced. It is difficult to suppress. It is difficult to obtain a compositional difference and a hardness difference between the hard coatings of a plurality of layers, and it is difficult to improve the impact resistance characteristics of the hard coating and to impart fracture resistance and toughness. The hard coating of the present invention was able to increase the hardness of the hard coating even when it was a coating having the same composition as compared to the case where the AIP method was used alone.
The method for producing a hard coating of the present invention is preferably a physical vapor deposition method in which a bias voltage is applied to the coated substrate side. If necessary, an apparatus using a plasma-assisted chemical vapor deposition apparatus and a physical vapor deposition method together may be used.
FIG. 2 shows the result of observation of the cross section of the film of Invention Example 8 described later. Observation was performed using a transmission electron microscope. FIG. 2 shows that the A layer coated with AIP using high density plasma and the B layer coated with MS using low density plasma have a multilayer structure, and the A and B layers grow without being continuously divided. It was confirmed. FIG. 3 shows the film analysis result of Example 8 of the present invention. From FIG. 3, as a result of examining the composition distribution of Si from the hard coating surface toward the inside, it was confirmed that a compositional difference was clearly obtained.

本願発明の硬質皮膜の金属成分は、(Al Ti Nb Si )、但し、w、x、y、zは、原子比率で20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦15、w+x+y+z=100、w≦x+y+zで表され、非金属成分は、(O 100−a )、但し、0.3≦a≦5で表される。
Al含有量w、w≦50とする理由は、金属組成バランスにおいてwが大きくなると、表層にAlを形成し静的な耐熱性は優れるが、実際の切削加工においては、硬質皮膜のAlが多い程、被削材中のFe成分などが皮膜に内向拡散を誘発するためである。そこで、w値は50以下、w≦x+y+zとすることである。w値が20未満の場合は、Alの添加効果が得られず、皮膜の耐摩耗性、耐酸化性が劣るため、不都合である。
Si含有量zは0.01≦z≦15である。z値が15を超えて大きいと、皮膜硬度と耐熱性は向上する傾向にあるが、硬質皮膜の破断面組織形態が柱状組織から微細粒状組織に変化する。微細粒状組織になると、硬質皮膜の結晶粒界が多くなり、切削熱が上昇した時、大気中の酸素や被削材のFeが内向拡散する経路を増やしてしまい、不都合である。これは、切れ刃に溶着が発生し、潤滑性が損なわれるためである。従って、硬質皮膜の破断面組織形態の最適化も重要な必要条件の1つであり、特に高送り加工では、硬質皮膜材料によらず柱状組織を維持する技術は重要である。更に、z値が15を超えて大きいと、皮膜内部の残留応力が増大する。この場合、基体と硬質皮膜界面からの剥離が発生しやすくなり、特に耐衝撃性の強い切削加工において容易に剥離が発生する。この剥離部を中心に溶着が発生するため不都合である。z値を0.01以上とした理由は、Si分析上の容易な検出点であるからである。量産時の安定性を配慮し、また量産稼動を滞りなく行うためには分析を短時間で行う必要がある。
Nb含有量yは、2≦y≦20である。Nbは、耐熱性向上に必要なSiをベースに、硬質皮膜が酸化した時に形成される表層直下のTi酸化物を緻密な結晶組織にすることである。この緻密な結晶組織を有する酸化物層は、表層付近に形成するSiやAlの酸化物を通過して内向拡散する酸素の侵入を抑制する効果がある。これにより、Ti酸化物の結晶組織の緻密化は表層のAl層の剥離を抑制することができる。Nbの添加は、耐熱安定性による溶着抑制効果以外にも、硬質皮膜の高硬度化に有効であるが、y値が20を超えて大きいと、硬質皮膜の硬度が低下する。また、物理蒸着法で被覆した際に、皮膜の破断面組織形態が耐衝撃特性の優れる柱状組織から微細粒状組織となり、切削初期にチッピングや漉き取り摩耗が発生することから添加効果を示さないためである。更に、硬質皮膜被覆時に蒸着源の放電が不安定となり、均一で安定した皮膜形成が困難となる。これは、Nbが高融点金属であることによる。一方、値が2未満の場合、硬質皮膜の高硬度化の効果が無く、工具性能の改善が期待できない。Nbの添加は、実質的にはTiもしくはAlに置き換わるものである。
Metal component of the hard film of the present invention, (Al w Ti x Nb y Si z), where, w, x, y, z are, 20 ≦ w ≦ 50,25 ≦ x ≦ 75,2 ≦ y in atomic ratio ≦ 20, 0.01 ≦ z ≦ 15, w + x + y + z = 100, w ≦ x + y + z, and the nonmetallic component is (O a N 100-a ), where 0.3 ≦ a ≦ 5.
The reason for Al content w, w ≦ 50 is that when w increases in the metal composition balance, Al 2 O 3 is formed on the surface layer and the static heat resistance is excellent, but in actual cutting work, This is because as the Al content increases, the Fe component in the work material induces inward diffusion in the film. Therefore, the w value is 50 or less and w ≦ x + y + z. If the w value is less than 20, the effect of addition of Al cannot be obtained, and the wear resistance and oxidation resistance of the film are inferior.
Si content z is 0.01 ≦ z ≦ 15. If the z value exceeds 15 and the film hardness and heat resistance tend to improve, the fracture surface structure of the hard film changes from a columnar structure to a fine granular structure. A fine grain structure is disadvantageous because the crystal grain boundaries of the hard coating increase, and when the cutting heat rises, the routes in which oxygen in the atmosphere and Fe of the work material diffuse inwardly increase. This is because welding occurs on the cutting edge and the lubricity is impaired. Therefore, optimization of the fracture surface structure of the hard coating is one of the important requirements. Particularly in high feed processing, a technique for maintaining the columnar structure regardless of the hard coating material is important. Furthermore, if the z value exceeds 15 and the residual stress inside the film increases. In this case, peeling from the interface between the substrate and the hard coating is likely to occur, and peeling easily occurs particularly in cutting with strong impact resistance. This is inconvenient because welding occurs around the peeled portion. The reason why the z value is 0.01 or more is that it is an easy detection point in Si analysis. In consideration of stability during mass production, it is necessary to perform analysis in a short time in order to perform mass production without delay.
The Nb content y is 2 ≦ y ≦ 20. Nb is based on Si, which is necessary for improving heat resistance, to make the Ti oxide immediately below the surface layer formed when the hard coating is oxidized into a dense crystal structure. This oxide layer having a dense crystal structure has an effect of suppressing the intrusion of oxygen that diffuses inwardly through Si and Al oxides formed in the vicinity of the surface layer. Thereby, densification of the crystal structure of the Ti oxide can suppress peeling of the surface Al 2 O 3 layer. The addition of Nb is effective for increasing the hardness of the hard coating in addition to the effect of suppressing welding due to heat resistance stability. However, if the y value exceeds 20 and the hardness is high, the hardness of the hard coating decreases. In addition, when coated by physical vapor deposition, the fracture surface structure of the film changes from a columnar structure with excellent impact resistance properties to a fine granular structure, and chipping and scraping wear occurs at the beginning of cutting, so there is no additive effect. It is. Further, the discharge of the vapor deposition source becomes unstable when the hard film is coated, and it becomes difficult to form a uniform and stable film. This is because Nb is a refractory metal. On the other hand, when the y value is less than 2, there is no effect of increasing the hardness of the hard coating, and improvement in tool performance cannot be expected. The addition of Nb substantially replaces Ti or Al.

含有量aは0.3≦a≦5である。図4は、硬質皮膜にOを添加した際の摩擦係数を測定した結果である。本発明例2は0.5at%、本発明例5は4.8at%である。比較例17のO添加の無い場合と比較して、本発明例2、5は摩擦係数が低下する傾向を示した。高能率加工時において、a値を0.3以上とすることにより被加工物の硬質膜への溶着が抑制され、潤滑性が向上した。物理蒸着方法においては、被覆時に真空装置内に残る残留酸素の影響から、硬質膜中の酸素量を分析すると、a値は0.1程度の含有が検出される。この現象を踏まえた上で0.3以上の添加で、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。しかし、O含有量によっては悪影響をもたらすこともある。a値が5を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下する。また、硬質皮膜断面の結晶組織形態が微細化し、漉き取り摩耗が発生しやすくなるといった不都合が発生する。そこで、本願発明においてa値は0.3≦a≦5と規定した。 O content a is 0.3 ≦ a ≦ 5. FIG. 4 shows the result of measuring the friction coefficient when O is added to the hard coating. Invention Example 2 is 0.5 at%, and Invention Example 5 is 4.8 at%. Compared with the case of Comparative Example 17 where no O was added, Invention Examples 2 and 5 showed a tendency for the friction coefficient to decrease. During high-efficiency machining, welding of the hard skin layer of the workpiece can be suppressed by setting the a value 0.3 or more, lubricity is improved. In the physical vapor deposition method, the influence of the residual oxygen remaining in the vacuum apparatus during the coating, the analysis of the oxygen content of the hard skin film, a value is detected content of about 0.1. Based on this phenomenon, it was confirmed that the addition of 0.3 or more reduces the friction coefficient even under high temperature conditions corresponding to cutting. However, depending on the O content , there may be adverse effects. When the a value exceeds 5 and the lubrication characteristics are excellent, the hardness of the hard coating decreases. Moreover, the crystal structure form of the hard coating cross-section becomes finer, and there arises a problem that scuffing wear is likely to occur. Therefore, in the present invention, the a value is defined as 0.3 ≦ a ≦ 5.

本願発明の硬質皮膜の総膜厚は、平均厚さで0.5〜10μmであり、該硬質皮膜と基体との界面から該総膜厚の1〜30%酸素含有量Mと、該硬質皮膜表面側から該総膜厚の1〜30%酸素含有量Nとの差をN−Mとした時、N−M≧0.3である。このように範囲規定する理由は次の通りである。即ち、O添加により残留圧縮応力が増大するため、皮膜の密着性に影響を及ぼすことから、製膜時におけるOの添加方法には、相当の配慮が必要である。皮膜の密着性を維持するための工夫として、成膜開始から終了まで徐々にO含有量を上げていくことが適切である。その結果、N−M≧0.3となり、潤滑性、耐衝撃性の優れる硬質皮膜を得ることが可能になる。本願発明の硬質膜はO添加により、皮膜表面付近では硬質膜中に含まれるO含有量が多くなり、硬質膜の金属元素の酸化物が形成され易い。従って、潤滑特性を改善することができる。一方、例えば物理的蒸着法により、成膜初期よりO元素を多量に添加することは、基体表面や処理装置の内壁が絶縁化するため好ましくない。
金属元素の合計量(Al+Ti+Nb+Si)に対する非金属元素の合計量(O+N)の比>1.0であり、1.02以上であるのが好ましい。この比の上限は1.7であるのが好ましい。
The total thickness of the hard coating of the present invention is 0.5~10μm in average thickness, hard coating and the oxygen content M from the interface of 1 to 30% of the total thickness and the substrate, the rigid when the coating surface side is the difference between 1% to 30% of the oxygen content N of the total film thickness and (N-M), a (N-M) ≧ 0.3. The reason for defining the range in this way is as follows. That is, since the residual compressive stress increases with the addition of O, which affects the adhesion of the film, considerable consideration is necessary for the method of adding O during film formation. As a device for maintaining the adhesion of the film, it is appropriate to gradually increase the O content from the start to the end of film formation. As a result, ( N−M ) ≧ 0.3, which makes it possible to obtain a hard film having excellent lubricity and impact resistance. The hard skin layer is O addition of the present invention, the number of O content in the hard skin film in the vicinity of the film surface tends oxide of a metal element of a hard skin layer is formed. Therefore, the lubrication characteristics can be improved. On the other hand, it is not preferable to add a large amount of O element from the initial stage of film formation, for example, by physical vapor deposition, because the substrate surface and the inner wall of the processing apparatus are insulated.
The ratio of the total amount of nonmetallic elements (O + N) to the total amount of metal elements (Al + Ti + Nb + Si)> 1.0, and preferably 1.02 or more. The upper limit of this ratio is preferably 1.7.

本願発明の硬質皮膜は、硬質皮膜の表面近傍のESCA分析において、Siと酸素との結合状態を示すピークが検出され、該ピーク位置が98eVから105eVの範囲内にある。図5に本発明例1の硬質皮膜の表面近傍について化学結合状態をESCA分析により解析した結果を示す。図5より、本願発明の硬質皮膜は98eVから105eVの範囲にSiと酸素との結合状態を示すピークが検出されることを確認した。これはAl−OとSi−Oとの生成自由エネルギーの差により、Si−Oが優先的に形成されたものである。この緻密な酸化物の形成が、潤滑特性を高め、高能率切削加工時において発生する被加工物の溶着現象を低下させる。   In the hard coating of the present invention, in the ESCA analysis near the surface of the hard coating, a peak indicating the bonding state between Si and oxygen is detected, and the peak position is in the range of 98 eV to 105 eV. FIG. 5 shows the results of analyzing the chemical bonding state by ESCA analysis in the vicinity of the surface of the hard coating of Example 1 of the present invention. From FIG. 5, it was confirmed that the hard film of the present invention detected a peak indicating the bonding state between Si and oxygen in the range of 98 eV to 105 eV. This is because Si—O is formed preferentially due to the difference in free energy of formation between Al—O and Si—O. The formation of this dense oxide enhances the lubrication characteristics and reduces the workpiece welding phenomenon that occurs during high-efficiency cutting.

本願発明の硬質皮膜は、高送り切削加工の条件で性能を発揮させるため、基体との密着性が強固でなければならない。そのためには基体と硬質皮膜との界面でへテロエピタキシャルの関係をもつように、基体直上にある硬質皮膜の配向面を制御しなければならない。基体が超硬合金のような多結晶の場合、焼結後のWC優先方位である(100)面上に、面心立方構造を有する硬質皮膜を被覆させるためには、(200)面を配向させるように制御しなければならない。へテロエピタキシャルの関係をもつことにより、硬質皮膜と基体界面の分子間力を強めることができる。
図6に示すように、電子線回折を行ったときに基体に含まれるWCの(100)面と、(TiAlNbSi)(ON)硬質皮膜の(200)面を整合させることにより、分子間力を高め、密着性を向上させることができる。本願発明の硬質皮膜は、残留圧縮応力が大きいため、基体と硬質皮膜との界面でへテロエピタキシャルの関係を形成しなければならない。これにより、密着性の問題を解決し、高機能化した硬質皮膜の特徴が発揮される。
The hard coating of the present invention must have strong adhesion to the substrate in order to exhibit performance under the conditions of high feed cutting. For this purpose, the orientation plane of the hard film directly above the base must be controlled so that there is a heteroepitaxial relationship at the interface between the base and the hard film. When the substrate is polycrystalline such as cemented carbide, the (200) plane is oriented to cover the hard film having a face-centered cubic structure on the (100) plane, which is the preferred WC orientation after sintering. You have to control it. By having a heteroepitaxial relationship, the intermolecular force between the hard coating and the substrate interface can be increased.
As shown in FIG. 6, the intermolecular force is adjusted by aligning the (100) surface of WC contained in the substrate and the (200) surface of the (TiAlNbSi) (ON) hard film when electron beam diffraction is performed. And can improve adhesion. Since the hard coating of the present invention has a large residual compressive stress, a heteroepitaxial relationship must be formed at the interface between the substrate and the hard coating. Thereby, the feature of the hard film which solved the problem of adhesiveness and improved functionality is exhibited.

本願発明の硬質皮膜のX線回折における(111)面の検出強度をIa、(200)面の検出強度をIbとした時に、Ib/Iaが2未満となると、基体と硬質皮膜との界面に大きな歪を持ったまま結晶が成長するため、接合強度が不十分となる。更に、硬質皮膜の内部応力が増大し容易に剥離する。そこで本願発明の硬質皮膜が激しい切削加工条件にも耐え得る密着性を確保するためには、Ib/Ia≧2.0でなければならない。
本願発明の硬質皮膜が更に強固な密着性を有するためには、硬質皮膜の格子定数λの制御を行うことである。λは残留応力値に影響を及ぼす。残留応力値が大きくなると、密着性を維持することが困難になる。そこで、密着性を維持するための最適な(200)面のλを求め、0.4155≦λ≦0.422を得た。λが0.4220nmを超えて大きい場合、硬質皮膜中に残留する圧縮応力は8GPaを越える為、大きな応力が基体と硬質皮膜との界面に負荷される。たとえ両者の間にヘテロエピタキシャル関係が成立していても皮膜剥離が発生し、工具として優位性が損なわれる。従って、λは0.4220nmを超えてはならない。一方、λの下限値は0.4155nmである。λは0.4155nm未満では、硬質皮膜の潤滑特性の低下が目立つようになり、好ましくない。硬質皮膜の優れた特徴を十分に引き出すことのできる範囲は、0.4155≦λ≦0.4220である。λを規定範囲内に制御し、残留応力を制御するためには、本願発明の構成元素上、Al含有量の制御によって調整が可能であり、生産的にも安定性のあることが確認された。λはAlを多くした場合、或いはSiを多く添加した場合、元素の原子半径の影響を受けて低下する。一方、Al添加を抑えることや被覆時にプラズマ密度が大きくなるような成膜条件を設定した時に増大し、同時に残留圧縮応力も増大する傾向にある。
When the detected intensity of the (111) plane in the X-ray diffraction of the hard film of the present invention is Ia and the detected intensity of the (200) plane is Ib, if Ib / Ia is less than 2, the interface between the substrate and the hard film Since the crystal grows with a large strain, the bonding strength becomes insufficient. In addition, the internal stress of the hard coating increases and peels easily. Therefore, in order to ensure adhesion that the hard coating of the present invention can withstand severe cutting conditions, Ib / Ia ≧ 2.0.
In order for the hard coating of the present invention to have stronger adhesion, it is necessary to control the lattice constant λ of the hard coating. λ affects the residual stress value. When the residual stress value increases, it becomes difficult to maintain the adhesion. Therefore, the optimal (200) plane λ for maintaining the adhesion was obtained, and 0.4155 ≦ λ ≦ 0.422 was obtained. When λ is larger than 0.4220 nm, the compressive stress remaining in the hard film exceeds 8 GPa, so that a large stress is applied to the interface between the substrate and the hard film. Even if a heteroepitaxial relationship is established between the two, film peeling occurs and the superiority of the tool is impaired. Therefore, λ should not exceed 0.4220 nm. On the other hand, the lower limit of λ is 0.4155 nm. If λ is less than 0.4155 nm, the lubrication characteristics of the hard film will be noticeably deteriorated, which is not preferable. The range in which the excellent characteristics of the hard coating can be sufficiently extracted is 0.4155 ≦ λ ≦ 0.4220. In order to control λ within the specified range and control the residual stress, it is possible to adjust by controlling the Al content on the constituent elements of the present invention, and it has been confirmed that it is stable in terms of productivity. . λ decreases under the influence of the atomic radius of the element when Al is increased or Si is added. On the other hand, when Al is added or when film forming conditions are set such that the plasma density is increased during coating, the residual compressive stress tends to increase.

本願発明の硬質皮膜は、基体直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けることが好ましい。この中間層は、硬質皮膜と基体との間に存在し、密着性を向上させる効果がある。本願発明の硬質皮膜は、乾式高能率切削加工に使用することを想定している。しかし使用状況が湿式切削の場合、基体と硬質皮膜界面の密着性を更に強固にする必要がある。この理由は、湿式加工状況においては、切削熱により高温になった工具が切削液により急冷されるためである。一般的には切削温度を低減し工具寿命を向上させる手段として浸透しているが、高能率加工においては切削熱が非常に高いため、切削液等で急冷されると膨張、収縮の差が大きくなり、硬質皮膜が接合されている界面に非常に大きな負荷をもたらすことになる。この中間層の存在によって、繰り返し疲労による皮膜破壊の発生を回避することができる。
硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜被覆工具の摩擦特性が安定し好ましい。切削寿命のばらつきを低減することができ、好ましい工具を得ることができる。以下本発明を実施例に基づいて説明する。
In the hard coating of the present invention, it is preferable that at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the substrate. This intermediate layer exists between the hard coating and the substrate and has the effect of improving the adhesion. The hard coating of the present invention is assumed to be used for dry high-efficiency cutting. However, when the usage is wet cutting, it is necessary to further strengthen the adhesion between the substrate and the hard coating interface. This is because, in a wet machining situation, a tool that has become hot due to cutting heat is rapidly cooled by the cutting fluid. In general, it has penetrated as a means to reduce the cutting temperature and improve the tool life, but in high-efficiency machining, the cutting heat is very high, so when quenched with cutting fluid, the difference between expansion and contraction is large. Thus, a very large load is brought to the interface where the hard coating is bonded. Due to the presence of this intermediate layer, it is possible to avoid the occurrence of film destruction due to repeated fatigue.
By smoothing the convex portions on the surface of the hard film by mechanical treatment after the hard film is coated, the friction characteristics of the hard film-coated tool are stabilized, which is preferable. Variation in cutting life can be reduced, and a preferable tool can be obtained. Hereinafter, the present invention will be described based on examples.

本発明例1〜16は、図1に示す小型真空装置内にAIPによる蒸発源と、MSによる蒸発源とを併設した装置を用いて、基体となる超硬合金製インサートに被覆を行った。蒸発源は各種合金製ターゲットを用い、反応ガスはN2ガス、CHガス、Ar/O混合ガスから目的の皮膜が得られるものを選択した。被覆条件は、基体温度400℃、バイアス電圧は、−40Vから−150Vの範囲の電圧を印加した。得られた本発明例1〜16を用い、次に示す切削条件1及び切削条件2にて切削試験を行った。評価方法は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。比較例17〜26、比較例32〜41、比較例44〜48、従来例29〜31はプラズマ密度の同じ単一蒸発源を用いた場合である。比較例27、28はAIPとMS方式とを併用した。表1に、本発明例、比較例及び従来例の硬質皮膜の組成を示す。表2、表3に本発明例比較例、従来例に関する硬質皮膜の詳細及び切削試験の結果を示す。 In Examples 1 to 16 of the present invention , a cemented carbide insert serving as a base was coated using an apparatus in which an evaporation source by AIP and an evaporation source by MS were provided in the small vacuum apparatus shown in FIG . Evaporation source using various alloy targets, the reaction gas was selected that coating of interest is obtained from the N2 gas, CH 4 gas, Ar / O 2 mixed gas. As the coating conditions, a substrate temperature of 400 ° C. and a bias voltage of −40V to −150V were applied. Using the obtained Examples 1 to 16 of the present invention, cutting tests were performed under the following cutting conditions 1 and 2. In the evaluation method, processing was performed until the tool became uncut due to chipping or wear of the blade edge, and the cutting length at that time was defined as the tool life. Comparative Examples 17 to 26, Comparative Examples 32 to 41, Comparative Examples 44 to 48, and Conventional Examples 29 to 31 are cases where a single evaporation source having the same plasma density is used. Comparative Examples 27 and 28 used both AIP and MS. Table 1 shows the compositions of the hard coatings of the invention examples, comparative examples, and conventional examples . Tables 2 and 3 show the details of the hard coating and the results of the cutting test for the inventive examples , comparative examples, and conventional examples.

(切削条件1)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)、Φ6ドリル穴多孔面在り
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
(切削条件2)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
表2より、切削加工におけるインサートの耐欠損性について、切削条件1による切削評価結果を示した。切削条件1で用いた被削材は、表面に予めドリルにて等間隔に穴をあけたものを使用した。この被削材表面を高能率加工条件にて切削を行う事により断続加工を想定し、インサートが衝撃を受けて欠損に至るまでの切削可能長を評価した。
本発明例1〜16の方が優れた切削性能を示した。これは、プラズマ密度の異なるAIPとMSの手法を被覆時に併用し、高硬度膜と低硬度の皮膜とを連続して交互に被覆することによって、硬質皮膜の耐摩耗性、潤滑性を保持したまま、皮膜強度を向上させることができた。硬質皮膜に組成の異なる層を形成し、Si含有量に差をつけるための方法には、ターゲット組成や被覆条件を断続的、連続的に変化させる方法が考えられるが、本発明で採用した様なプラズマ密度の異なる蒸発源を用いた方が、より優れた耐欠損特性を得ることができた。比較例17、20、24、26は単一の蒸発源を用いて、組成差が発生しないように被覆した場合である。比較例17、20は、MSによる被覆であるが、AIPに比べ、プラズマ密度を高めることができないため、皮膜の高硬度化ができなかった。そのため、耐摩耗性が十分ではなく、初期欠損に至ってしまった。比較例24、26は硬質皮膜が高硬度化する傾向にあったが、靭性が乏しくなり、断続切削性能を向上させることができなかった。一方、比較例18、19、21〜23はAIPを使用し、硬質膜に組成差が発生するように被覆した場合である。組成差は発生しているが、目標とする切削性能は得られなかった。AIPのみの被覆の場合、ターゲット組成によらず放電時に発生するプラズマ密度が大きいため、硬質皮膜は高硬度化しやすい傾向にある。従って靭性が不足する。比較例に示したように皮膜に組成差を発生させても残留応力の増大を招いてしまうため、耐欠損性、密着性に悪影響となる。比較例の中には皮膜硬度がHvで3500を越えるような物も得られたが、皮膜の靭性が低い為に断続切削状況下で欠損が発生し、工具は短寿命であった。比較例27、28はAIPとMSとを併用することにより、硬質皮膜内に組成差を発生させた。しかし、組成差が目標の範囲を越えてしまったため、硬質皮膜の破断面組織形態が連続した柱状形態を示さず、組成の異なる層が断続的に連なり成長していた。そのため層間の接合力が弱く膜破壊が発生し、目標の切削性能が得られなかった。しかし、比較例27、28はプラズマ密度の異なる手法を併用することにより、耐欠損性が向上することを確認できた。以上の様に、AIPとMSを被覆時に併用した様に、プラズマ密度の異なる方式を併用した時に、硬質皮膜のSi組成差を制御することができ、硬質皮膜を被覆したインサートは、優れた耐欠損特性を発揮させることができた。
(Cutting condition 1)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30), Φ6 drill hole porous surface cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None (Cutting condition 2)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30)
Cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None From Table 2 , the cutting evaluation result under cutting condition 1 was shown for the fracture resistance of the insert in the cutting process. The work material used in the cutting condition 1 was a material whose holes were previously drilled at equal intervals by a drill. By cutting the surface of the work material under high-efficiency machining conditions, intermittent cutting was assumed, and the possible cutting length until the insert was impacted and damaged was evaluated.
Inventive Examples 1 to 16 showed superior cutting performance. This is because the AIP and MS methods with different plasma densities are used at the time of coating, and the high hardness film and the low hardness film are alternately and continuously coated to maintain the wear resistance and lubricity of the hard film. The film strength could be improved as it was. As a method for forming a layer having a different composition on the hard film and making a difference in the Si content, a method of intermittently and continuously changing the target composition and coating conditions can be considered. The use of evaporation sources with different plasma densities provided better fracture resistance. Comparative Examples 17, 20, 24, and 26 are cases where coating was performed using a single evaporation source so as not to cause a compositional difference. Comparative Examples 17 and 20 were coated with MS , but the plasma density could not be increased as compared with AIP, so that the hardness of the coating could not be increased. Therefore, the wear resistance is not sufficient, leading to initial defects. In Comparative Examples 24 and 26, the hard coating tended to increase in hardness, but the toughness became poor and the intermittent cutting performance could not be improved. On the other hand, Comparative Example 18,19,21~23 is when coated so as to use the AIP, composition difference hard skin layer is produced. Although there was a difference in composition, the target cutting performance was not obtained. In the case of coating only with AIP, the hard film tends to have a high hardness because the plasma density generated during discharge is large regardless of the target composition. Accordingly, the toughness is insufficient. As shown in the comparative example, even if a compositional difference is generated in the film, the residual stress is increased, which adversely affects fracture resistance and adhesion. Some of the comparative examples had a coating hardness exceeding 3500 in Hv, but due to the low toughness of the coating, defects occurred under intermittent cutting conditions, and the tool had a short life. In Comparative Examples 27 and 28, a composition difference was generated in the hard coating by using AIP and MS in combination. However, since the compositional difference has exceeded the target range, the fracture surface texture form of the hard coating does not show a continuous columnar form, and layers having different compositions are intermittently grown. Therefore, the bonding force between the layers was weak and the film was broken, and the target cutting performance could not be obtained. However, in Comparative Examples 27 and 28, it was confirmed that the fracture resistance was improved by using the methods having different plasma densities. As described above, when AIP and MS are used together during coating, when a different plasma density method is used together, the Si composition difference of the hard coating can be controlled, and the insert coated with the hard coating has excellent resistance. Defect characteristics were able to be demonstrated.

表3より、切削条件2の評価は突発的な欠損や異常摩耗、剥離を伴う損傷形態が観察されない場合は、逃げ面最大摩耗量が0.3mmに達した時点を工具寿命とした。本発明例1〜16は、硬質皮膜の硬度を改善し耐摩耗特性を向上させ、優れた切削特性を有すること示した。本発明例は密着性、潤滑性、耐摩耗特性の課題を改善し、性能を大幅に改善することで満足のいく結果を得ることができた。本発明例7、12は、今回の切削評価において長い切削寿命を示し、従来例29、30に対し、切削寿命の改善を得ることがでた。本発明例12は、切削初期の被加工物の刃先への溶着現象が低減し、比較例32〜41の切削評価結果に見られる切削距離では、ほとんど摩耗の発生していないことが観察された。これより本発明の効果を確認できた。本発明例12は、従来例の中で最も寿命の長かった従来例43に対し、2.2倍の長寿命を得ることができた。本発明例に記載の金属成分組成と切削寿命の相関関係は、O添加や表層酸化物の有無、ヘテロエピタキシャルの有無にも影響を受けている。更にNbとSi含有量のバランスも大切である。今回の試験で、平均的に切削特性が優れ、工具寿命が上位にあるものは、Nb>Siの傾向を示した。本発明例のSi含有量が規定量の範囲内でNb含有量よりも多くなっても、従来例や比較例と比べた場合、十分な切削性能を発揮することが認められた。しかし、切削性能を考慮すると、Nb>Siの硬質皮膜が望ましい。本発明の硬質皮膜はO添加により潤滑特性が大幅に向上した。例えば、比較例32は、金属成分組成は本発明の範囲内にあるが、切削性能は従来例とほとんど変わらない結果となった。比較例34、35の様に、金属成分が本発明の範囲内でも、O含有量が非金属成分に対し5at%を越えると、潤滑特性は認められが、動的な切削に対し早期摩耗が発生する。これは、Oを多量添加することで硬質皮膜の破断面組織形態が柱状から微細組織状に変化し、高硬度が得られずに低硬度化してしまったためと考えられる。比較例34は、密着性が考慮されているため初期欠損は発生せずに摩耗寿命に到達したが、比較例35の場合は密着性も考慮されていないため、インサートすくい面の硬質皮膜の剥離が顕著に現われた。本発明の硬質皮膜組成の範囲内で被覆しても、密着性が考慮されていない場合は、今回の切削条件下において剥離を発生し、安定した加工を行うことがでなかった。比較例37は、Al成分が規定範囲外であり、密着性も考慮していない場合である。比較例41は、Nb成分が規定範囲外である場合である。硬質皮膜の金属成分が規定範囲外となると破断面組織形態が微細化し、この状態で切削加工を行うと、インサートすくい面での摩耗が急速に発生し、その結果短寿命となるのである。O添加方法によっても切削性能に影響を及ぼすことが明らかとなった。比較例33、36、39は成膜開始時から所定量のO添加を開始して被覆終了時までその量を変化させずに均等に添加して被覆した場合である。これに対し、本発明例並びに比較例34、35、37、38、40、41は被覆開始から終了までO含有量が基体と硬質皮膜界面から表面に向かって勾配を示すように傾斜して添加したものである。切削試験結果は、O添加が勾配を示すよう傾斜して添加する被覆が望ましいと言う結果が得られた。比較例38、40、41はNb、Si含有量が規定範囲外にあることによって、残留圧縮応力が増大し、切削初期の皮膜剥離が発生することが明らかとなった。以上の試験結果より、本発明の硬質皮膜の改善効果は、第1の金属成分の組成範囲設定による効果、第2のO添加効果、第3の硬質膜表面に緻密なSiの酸化物を形成させる効果により得られ、潤滑特性が大幅に向上し、寿命向上が実現できることが確認できた。 From Table 3, the evaluation is cutting conditions 2, if the sudden defects or abnormal wear, damage form with the peeling is not observed, a time when the flank maximum wear amount reaches 0.3mm and the tool life. Examples 1 to 16 of the present invention showed that the hardness of the hard coating was improved to improve the wear resistance and have excellent cutting characteristics. In the present invention, the problems of adhesion, lubricity and wear resistance were improved, and satisfactory results could be obtained by greatly improving the performance. Inventive Examples 7 and 12 showed a long cutting life in this cutting evaluation, and an improvement in cutting life was obtained with respect to Conventional Examples 29 and 30. In the inventive example 12, the welding phenomenon to the cutting edge of the workpiece in the initial stage of cutting was reduced, and it was observed that almost no wear was generated at the cutting distances seen in the cutting evaluation results of Comparative Examples 32-41. . This confirmed the effect of the present invention. Invention Example 12 was able to obtain a life that was 2.2 times longer than Conventional Example 43, which had the longest lifetime among the conventional examples. The correlation between the metal component composition and the cutting life described in the examples of the present invention is also affected by the addition of O, the presence or absence of surface oxides, and the presence or absence of heteroepitaxiality. Furthermore, the balance between the Nb and Si contents is also important. In this test, the average cutting performance and the highest tool life showed a tendency of Nb> Si. Even when the Si content of the present invention example was larger than the Nb content within the range of the specified amount, it was confirmed that sufficient cutting performance was exhibited when compared with the conventional example and the comparative example. However, in consideration of cutting performance, a hard coating of Nb> Si is desirable. The lubricating properties of the hard coating of the present invention were greatly improved by the addition of O. For example, in Comparative Example 32, the metal component composition was within the range of the present invention, but the cutting performance was almost the same as the conventional example. As in Comparative Examples 34 and 35, even when the metal component is within the range of the present invention, if the O content exceeds 5 at% with respect to the non-metal component, lubrication characteristics are recognized, but early wear is caused by dynamic cutting. appear. This is presumably because the fracture surface texture form of the hard coating changed from a columnar shape to a fine textured state by adding a large amount of O, and the hardness was lowered without obtaining a high hardness. In Comparative Example 34, the wear life was reached without occurrence of initial defects because the adhesiveness was taken into consideration, but in the case of Comparative Example 35, the adhesiveness was not taken into account, so that the hard coating on the insert rake face was peeled off. Appeared prominently. Even if the coating is performed within the range of the hard coating composition of the present invention, if adhesion is not considered, peeling occurs under the current cutting conditions, and stable processing cannot be performed. Comparative Example 37 is a case where the Al component is out of the specified range and adhesion is not taken into consideration. Comparative Example 41 is a case where the Nb component is outside the specified range. When the metal component of the hard coating is out of the specified range, the fracture surface structure becomes finer. When cutting is performed in this state, wear on the insert rake face is rapidly generated, resulting in a short life. It became clear that the cutting performance was also affected by the O addition method. In Comparative Examples 33, 36, and 39, a predetermined amount of O was added from the start of film formation, and the amount was uniformly added and coated until the end of coating. On the other hand, the inventive examples and comparative examples 34, 35, 37, 38, 40, and 41 are added so that the O content is inclined from the start of coating to the end so as to show a gradient from the interface between the substrate and the hard coating to the surface. It is a thing. As a result of the cutting test, it was found that a coating in which the addition of O is inclined so as to show a gradient is desirable. In Comparative Examples 38, 40, and 41, it was revealed that when the Nb and Si contents were outside the specified ranges, the residual compressive stress was increased, and film peeling occurred at the initial stage of cutting. From the above test results, the effect of improving hard coating of the present invention, the effect of the composition range set in the first metal component, a second O addition effect, an oxide of dense Si to the third hard skin membrane surface It was obtained by the effect of forming, and it was confirmed that the lubrication characteristics were greatly improved and the life could be improved.

また、表3には硬質皮膜のX線回折による解析結果として面心立方格子(111)面と(200)面の検出ピーク強度比Ib/Ia、(200)面の格子定数λと、切削条件2による切削評価結果を併記した。比較例17〜26、44〜48は、皮膜組成は規定範囲内であり、O添加もなされていたが、X線回折における結晶配向が規定範囲外であったため、容易にクレータ摩耗や剥離が発生した。また、λの調整も必要であることが確認された。比較例18、22〜25、45〜48のように(200)面のλが0.4230nmを越えるような硬質皮膜の場合、硬質皮膜の金属成分組成並びにO含有量とは無関係に、早期に切削寿命に到達した。λの値は硬質皮膜の内部応力の大小に影響を与える。λが大きい場合には、たとえ基体と硬質皮膜との界面でヘテロエピタキシャルを成立させても、残留圧縮応力が増大し界面での応力増大により硬質皮膜が容易に破壊、或いは剥離が発生し、その結果工具寿命が安定せず短寿命になる。従って、本発明の様に切削性能を改善させ安定した切削性能を示すためには、金属成分の規定やO含有量、添加手法以外に、結晶配向も適切に制御することにより、密着性良く成膜することも重要である。 Table 3 also shows the detection peak intensity ratio Ib / Ia between the face-centered cubic lattice (111) and the (200) plane, the lattice constant λ of the (200) plane, and the cutting conditions, The cutting evaluation result by 2 was also written. In Comparative Examples 17 to 26 and 44 to 48, the film composition was within the specified range and O was added, but the crystal orientation in the X-ray diffraction was out of the specified range, so crater wear and peeling occurred easily. did. Further, it was confirmed that the adjustment of λ is also necessary. In the case of a hard coating such that the (200) plane λ exceeds 0.4230 nm as in Comparative Examples 18, 22 to 25, 45 to 48, early regardless of the metal component composition and O content of the hard coating. The cutting life has been reached. The value of λ affects the internal stress level of the hard coating. When λ is large, even if heteroepitaxial is established at the interface between the substrate and the hard film, the residual compressive stress increases, and the hard film easily breaks or peels off due to the increase in stress at the interface. As a result, the tool life is not stable and the life is shortened. Therefore, in order to improve the cutting performance and show stable cutting performance as in the present invention, in addition to the definition of the metal component, the O content , and the addition method, the crystal orientation is appropriately controlled to achieve good adhesion. It is also important to film.

基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属などの中間層を設けることによって、更に密着力を補強して耐剥離を改善し、耐欠損特性を向上させる効果が認められた。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜被覆工具の摩擦特性が安定し、切削寿命のばらつきを低減することが認められた。   By providing an intermediate layer of Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, W metal, etc. directly on the upper surface of the substrate, it further strengthens the adhesion and improves delamination resistance, resulting in fracture resistance. The effect of improving the characteristics was recognized. It was recognized that by smoothing the convex portions on the surface of the hard coating by mechanical treatment after coating the hard coating, the friction characteristics of the hard coating coated tool are stabilized and the variation in cutting life is reduced.

図1は、硬質皮膜被覆装置の概略図を示す。FIG. 1 shows a schematic view of a hard film coating apparatus. 図2は、本発明例の皮膜断面観察結果を示す。FIG. 2 shows the result of observing the film cross section of the present invention. 図3は、本発明例の皮膜分析結果を示す。FIG. 3 shows a film analysis result of the example of the present invention. 図4は、硬質皮膜の摩擦係数の測定結果を示す。FIG. 4 shows the measurement results of the friction coefficient of the hard coating. 図5は、硬質皮膜のESCA分析による化学結合状態の解析結果を示す。FIG. 5 shows the analysis result of the chemical bonding state of the hard coating by ESCA analysis. 図6は、基体と硬質皮膜との界面でへテロエピタキシャルの関係を示す。FIG. 6 shows the heteroepitaxial relationship at the interface between the substrate and the hard coating.

1:真空装置
2:AIP蒸発源
3:MS蒸発源
4:基体保持治具
5:回転方向
1: Vacuum device 2: AIP evaporation source 3: MS evaporation source 4: Substrate holding jig 5: Direction of rotation

Claims (7)

基体表面に硬質皮膜を有する被覆工具において、該硬質皮膜は(AlTiNbSi)、但し、w、x、y、zは、原子比率で20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦15、w+x+y+z=100、w≦x+y+zで表される金属成分と、(O100−a)、但し、0.3≦a≦5で表される非金属成分とからなる組成を有し、該硬質皮膜は、アークイオンプレーティング法による蒸発源と、マグネトロンスパッタ法による蒸発源とを併設した装置を用いて、該蒸発源の組成を同一とし、被覆時に夫々の蒸発源で放電を発生させ、高密度プラズマの該アークイオンプレーティング法により被覆されたA層と、低密度プラズマの該マグネトロンスパッタ法により被覆されたC層とが多層構造をなし、該硬質皮膜は、Si含有量の相対的に大きいA層と、Si含有量が相対的に小さいB層との多層構造で、該A層、B層のSi含有量の差が、原子比率で、0.2以上、5以下であることを特徴とする硬質皮膜被覆工具。 In coated tool having a hard coating on the substrate surface, the rigid coating (Al w Ti x Nb y Si z), where, w, x, y, z are, 20 ≦ w ≦ 50,25 ≦ x ≦ with atomic ratio 75, 2 ≦ y ≦ 20, 0.01 ≦ z ≦ 15, w + x + y + z = 100, w ≦ x + y + z, and (O a N 100-a ), provided that 0.3 ≦ a ≦ 5 The hard coating has a composition comprising a non-metallic component represented by using an apparatus provided with an evaporation source by an arc ion plating method and an evaporation source by a magnetron sputtering method. It is the same, a discharge is generated at each evaporation source at the time of coating, and a multilayer of A layer coated by the arc ion plating method of high density plasma and C layer coated by the magnetron sputtering method of low density plasma Structure , Hard coating has a relatively large said A layer of Si content, a multilayer structure of the Si content is relatively small the B layer, the A layer, the difference in Si content in the layer B, A hard film-coated tool having an atomic ratio of 0.2 or more and 5 or less. 請求項1記載の硬質皮膜被覆工具において、該硬質皮膜の破断面組織形態が、基体との界面から表面まで連続した柱状組織をなし、該硬質皮膜の総膜厚は、平均厚さで0.5〜10μmであることを特徴とする硬質皮膜被覆工具。   2. The hard film-coated tool according to claim 1, wherein the fracture surface structure of the hard film forms a columnar structure continuous from the interface with the substrate to the surface, and the total film thickness of the hard film is 0.00 on average. A hard film coated tool characterized by being 5 to 10 μm. 請求項1又は2記載の硬質皮膜被覆工具において、該硬質皮膜と基体との界面から該総膜厚の1〜30%の酸素含有量Mと、該硬質皮膜表面から該総膜厚の1〜30%の酸素含有量Nとの差を(N−M)とした時、(N−M)≧0.3であることを特徴とする硬質皮膜被覆工具。   3. The hard film-coated tool according to claim 1, wherein the oxygen content M is 1 to 30% of the total film thickness from the interface between the hard film and the substrate, and 1 to 1 of the total film thickness from the hard film surface. A hard film-coated tool characterized by (NM) ≧ 0.3, where (NM) is the difference from the oxygen content N of 30%. 請求項1乃至3いずれかに記載の硬質皮膜被覆工具において、該硬質皮膜の表面近傍には、ESCA分析において、Siと酸素との結合状態を示すピークが検出され、該ピーク位置が98eVから105eVの範囲内にあり、該硬質皮膜の面心立方構造の(200)面と、基体のWCの(100)面とがヘテロエピタキシャル関係を有することを特徴とした硬質皮膜被覆工具。   4. The hard film coated tool according to claim 1, wherein a peak indicating a bonding state between Si and oxygen is detected in the vicinity of the surface of the hard film by ESCA analysis, and the peak position ranges from 98 eV to 105 eV. A hard film-coated tool characterized in that the (200) plane of the face-centered cubic structure of the hard film and the (100) plane of the WC of the substrate have a heteroepitaxial relationship. 請求項1乃至4いずれかに記載の硬質皮膜被覆工具において、該硬質皮膜のX線回折における面心立方構造の(111)面に検出されるピーク強度値をIa、該(200)面に検出されるピーク強度値をIbとした時、Ib/Ia≧2.0であり、該(200)面の格子定数λnmが0.4155≦λ≦0.4220の範囲にあることを特徴とした硬質皮膜被覆超硬工具。   5. The hard coating tool according to claim 1, wherein a peak intensity value detected on the (111) plane of the face-centered cubic structure in X-ray diffraction of the hard coating is detected on the Ia and the (200) plane. When the peak intensity value obtained is Ib, Ib / Ia ≧ 2.0, and the lattice constant λnm of the (200) plane is in the range of 0.4155 ≦ λ ≦ 0.4220. Film coated carbide tool. 請求項1乃至5いずれかに記載の硬質皮膜被覆工具において、該基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の層を設けたことを特徴とする硬質皮膜被覆工具。   6. The hard film coated tool according to claim 1, wherein at least one selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the substrate. A hard film coated tool characterized by comprising a layer of 請求項1乃至6いずれかに記載の硬質皮膜被覆工具において、該硬質皮膜を被覆後に、硬質皮膜表面の凸部を機械的処理により、平滑化したことを特徴とする硬質皮膜被覆工具。   7. The hard film-coated tool according to claim 1, wherein the hard film surface is smoothed by mechanical treatment after the hard film is coated.
JP2004362143A 2003-12-18 2004-12-15 Hard coating tool Expired - Fee Related JP4958134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362143A JP4958134B2 (en) 2003-12-18 2004-12-15 Hard coating tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003420370 2003-12-18
JP2003420370 2003-12-18
JP2004362143A JP4958134B2 (en) 2003-12-18 2004-12-15 Hard coating tool

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005338320A Division JP2006118051A (en) 2003-12-18 2005-11-24 Method for producing hard film

Publications (2)

Publication Number Publication Date
JP2005199420A JP2005199420A (en) 2005-07-28
JP4958134B2 true JP4958134B2 (en) 2012-06-20

Family

ID=34829253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362143A Expired - Fee Related JP4958134B2 (en) 2003-12-18 2004-12-15 Hard coating tool

Country Status (1)

Country Link
JP (1) JP4958134B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951756B2 (en) * 2006-06-23 2012-06-13 国立大学法人島根大学 Oxidation-resistant material and method for producing oxidation-resistant material
JP4774080B2 (en) 2007-08-02 2011-09-14 株式会社神戸製鋼所 Hard coating material and cold plastic working mold
US8236411B2 (en) 2008-03-26 2012-08-07 Kyocera Corporation Cutting tool
WO2010050374A1 (en) 2008-10-28 2010-05-06 京セラ株式会社 Surface covered tool
JP5056808B2 (en) * 2009-06-15 2012-10-24 日立ツール株式会社 Hard coating tool
US8623525B2 (en) * 2010-03-29 2014-01-07 Kyocera Corporation Cutting tool
KR101635487B1 (en) 2010-03-29 2016-07-01 쿄세라 코포레이션 Cutting tool
CN102917822B (en) 2010-05-27 2015-09-23 京瓷株式会社 Cutting element
CN102592934B (en) * 2011-01-11 2015-01-14 中国科学院微电子研究所 Ion source device for ultra-shallow junction injection
CN103741100B (en) * 2014-01-16 2016-01-13 常州普威特涂层有限公司 A kind of containing high silicon PVD hard coat technique
WO2019065706A1 (en) * 2017-09-27 2019-04-04 京セラ株式会社 Coated tool and cutting tool provided with same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333081B2 (en) * 1995-12-18 2002-10-07 東芝タンガロイ株式会社 Crystal orientation high strength coated member
JPH11335813A (en) * 1998-05-21 1999-12-07 Sumitomo Electric Ind Ltd Hard coating film and laminated hard coating film
JP2002273607A (en) * 2001-03-16 2002-09-25 Hitachi Tool Engineering Ltd Multilayer coat tool
JP3586218B2 (en) * 2001-05-11 2004-11-10 日立ツール株式会社 Coated cutting tool
JP3622846B2 (en) * 2001-09-21 2005-02-23 住友電気工業株式会社 Sticky milling tool
US7087295B2 (en) * 2002-01-18 2006-08-08 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
JP2003291006A (en) * 2002-04-02 2003-10-14 Hitachi Tool Engineering Ltd Hard-coating coated tool

Also Published As

Publication number Publication date
JP2005199420A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR101170943B1 (en) Hard coating and its forming method, and hard-coated tool
JP3031907B2 (en) Multilayer coating member
JP6386457B2 (en) TiAlN coated tool
KR101170396B1 (en) Hard coating and its production method
KR102345375B1 (en) clad cutting tool
JP5303816B2 (en) Hard coating tool
KR20060051931A (en) A hard film having an excellent wear resistance and oxidation resistance and a target for forming the same, and a hard film having an excellent high-temperature lubricating ability and wear resistance and a target for forming the same
KR102167200B1 (en) Cloth cutting tool
JP4958134B2 (en) Hard coating tool
JP4304170B2 (en) Hard coating
JP4850189B2 (en) Coated tool
JP2006118051A (en) Method for producing hard film
JP2007046103A (en) Hard film
JP2007119810A (en) Coated member
KR102244795B1 (en) Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same
JP4453902B2 (en) Hard coating and hard coating tool
JP4958135B2 (en) Hard coating tool
US11491549B2 (en) Multi-layer coated cutting material, method for manufacturing the same, and cutting tool insert for mechanical machining including the same
JP4615259B2 (en) Manufacturing method of hard coating
JP5858363B2 (en) Substrate for cutting tool and surface-coated cutting tool including the same
JP5056808B2 (en) Hard coating tool
JP4908767B2 (en) Surface covering member and cutting tool
JP2007056324A (en) Hard film
KR102480241B1 (en) cloth cutting tool
JP5305236B2 (en) Hard coating tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4958134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees