JP3948015B2 - Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions - Google Patents
Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions Download PDFInfo
- Publication number
- JP3948015B2 JP3948015B2 JP2002160866A JP2002160866A JP3948015B2 JP 3948015 B2 JP3948015 B2 JP 3948015B2 JP 2002160866 A JP2002160866 A JP 2002160866A JP 2002160866 A JP2002160866 A JP 2002160866A JP 3948015 B2 JP3948015 B2 JP 3948015B2
- Authority
- JP
- Japan
- Prior art keywords
- content point
- carbide
- hard coating
- coating layer
- highest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度と高靭性を有し、さらに高温硬さも具備し、したがって特に各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、組成式:(Ti1-X ZrX )N(ただし、原子比で、Xは0.40〜0.65を示す)を満足するTiとZrの複合窒化物[以下、(Ti,Zr)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Zr合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、上記(Ti,Zr)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、切削加工を高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の強度および靭性不足が原因でチッピング(微小割れ)が発生し易くなり、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Ti,Zr)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な強度および靭性、さらに高温硬さを有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にZr含有量の高いTi−Zr合金、他方側に相対的にZr含有量の低いTi−Zr合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブルの外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Zr)N層を形成すると、この結果の(Ti,Zr)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にZr含有量の高いTi−Zr合金のカソード電極(蒸発源)に最も接近した時点で層中にZr最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にZr含有量の低いTi−Zr合金のカソード電極に最も接近した時点で層中にZr最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Zr最高含有点とZr最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造をもつようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Zr)N層において、対向配置の一方側のカソード電極(蒸発源)であるTi−Zr合金におけるZr含有量を上記の従来Ti−Zr合金のZr含有量に相当するものとし、かつ同他方側のカソード電極(蒸発源)であるTi−Zr合金におけるZr含有量を上記の従来Ti−Zr合金のZr含有量に比して相対的に低いものとする共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Zr最高含有点が、組成式:(Ti1-X ZrX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Zr最低含有点が、組成式:(Ti1-Y ZrY )N(ただし、原子比で、Yは0.05〜0.35を示す)、
をそれぞれ満足し、かつ隣り合う上記Zr最高含有点とZr最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Zr最高含有点部分では、上記の従来(Ti,Zr)N層と同等のZr含有量となることから、前記従来(Ti,Zr)N層と同等のすぐれた高温硬さを示し、一方上記Zr最低含有点部分では、前記Zr最高含有点部分に比してZr含有量が低く、Ti含有量の高いものとなるので、一段と高い強度と靭性が確保され、かつこれらZr最高含有点とZr最低含有点の間隔をきわめて小さくしたことから、層全体の特性として高強度と高靭性を保持した状態ですぐれた高温硬さを具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Zr)N層からなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を、特に高い機械的衝撃を伴うので高強度と高靭性が要求される、高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Ti,Zr)N層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着してなる被覆超硬工具において、
上記硬質被覆層が、厚さ方向にそって、Zr最高含有点とZr最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zr最高含有点が、組成式:(Ti1-X ZrX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Zr最低含有点が、組成式:(Ti1-Y ZrY )N(ただし、原子比で、Yは0.05〜0.35を示す)、
を満足し、かつ隣り合う上記Zr最高含有点とZr最低含有点の間隔が、0.01〜0.1μmである、
重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Zr最高含有点の組成
Zr最高含有点の(Ti,Zr)NにおけるZr成分は、高強度および高靭性を有するTiNの高温硬さを向上させる目的で含有するものであり、したがってZr成分の含有割合が高くなればなるほど高温硬さは高く、強度および靭性は低下したものになるが、Zrの割合を示すX値がTiとの合量に占める割合(原子比)で0.65を越えて高くなると、高強度および高靭性を有するZr最低含有点が隣接して存在しても層自体の強度および靭性の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同X値が同0.40未満では所望のすぐれた高温硬さを確保することができなくなることから、Zr最高含有点でのZrの割合を示すX値を0.40〜0.65と定めた。
【0010】
(b)Zr最低含有点の組成
上記の通りZr最高含有点は高い高温硬さをもつものであるが、反面強度および靭性の劣るものであるため、このZr最高含有点の強度および靭性不足を補う目的で、Ti含有割合が高く、これによって高強度および高靭性を有するようになるZr最低含有点を厚さ方向に交互に介在させるものであり、したがってZrの割合を示すY値がTiとの合量に占める割合(原子比)で0.35を越えると、所望のすぐれた強度および靭性を確保することができず、一方同Y値が0.05未満になると、相対的にTiの割合が多くなり過ぎて、Zr最低含有点に所定の高温硬さを具備せしめることができなくなることから、Zr最低含有点でのZrの割合を示すY値を0.05〜0.35と定めた。
【0011】
(c)Zr最高含有点とZr最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高強度および高靭性、さらに高温硬さを確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちZr最高含有点であれば強度および靭性不足、Zr最低含有点であれば高温硬さ不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0012】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0013】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0014】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0015】
ついで、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったZr最低含有点形成用Ti−Zr合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったZr最高含有点形成用Ti−Zr合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を550℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、それぞれのカソード電極(前記Zr最低含有点形成用Ti−Zr合金およびZr最高含有点形成用Ti−Zr合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、厚さ方向に沿って表3,4に示される目標組成のZr最低含有点とZr最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0016】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Zr合金を装着し、さらにボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極のTi−Zr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:200m/min.、
切り込み:4.8mm、
送り:0.15mm/rev.、
切削時間:8分、
の条件での合金鋼の乾式連続高切り込み切削加工試験、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:210m/min.、
切り込み:1.1mm、
送り:0.61mm/rev.、
切削時間:8分、
の条件での炭素鋼の乾式断続高送り切削加工試験、さらに、
被削材:JIS・FC200の丸棒、
切削速度:250m/min.、
切り込み:5.3mm、
送り:0.14mm/rev.、
切削時間:8分、
の条件での鋳鉄の乾式連続高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表3〜6に示した。
【0018】
【表1】
【0019】
【表2】
【0020】
【表3】
【0021】
【表4】
【0022】
【表5】
【0023】
【表6】
【0024】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角が30度の4枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0025】
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のZr最高含有点とZr最低含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0026】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0027】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:55m/min.、
溝深さ(切り込み):4mm、
テーブル送り:120mm/分、
の条件での工具鋼の乾式高送り溝切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:100m/min.、
溝深さ(切り込み):3.8mm、
テーブル送り:320mm/分、
の条件でのステンレス鋼の湿式高切り込み溝切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:135m/min.、
溝深さ(切り込み):15mm、
テーブル送り:350mm/分、
の条件での合金鋼の乾式高切り込みおよび高送り溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8、9にそれぞれ示した。
【0028】
【表7】
【0029】
【表8】
【0030】
【表9】
【0031】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角が30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0032】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、厚さ方向に沿って表10に示される目標組成のZr最高含有点とZr最低含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0033】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0034】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:45m/min.、
送り:0.22mm/rev、
穴深さ:10mm
の条件での工具鋼の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD400の板材、
切削速度:65m/min.、
送り:0.4mm/rev、
穴深さ:15mm
の条件でのダクタイル鋳鉄の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC250の板材、
切削速度:105m/min.、
送り:0.72mm/rev、
穴深さ:30mm
の条件での鋳鉄の湿式高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0035】
【表10】
【0036】
【表11】
【0037】
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8を構成する硬質被覆層におけるZr最高含有点とZr最低含有点の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の硬質被覆層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬工具の硬質被覆層におけるZr最高含有点とZr最低含有点間の間隔、およびこれの全体層厚、並びに従来被覆超硬工具の硬質被覆層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ値を示した。
【0038】
【発明の効果】
表3〜11に示される結果から、硬質被覆層が厚さ方向に、すぐれた高温硬さを有するZr最高含有点と、高強度と高靭性を有するZr最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Zr最高含有点から前記Zr最低含有点、前記Zr最低含有点から前記Zr最高含有点へZr含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層が特に厚さ方向に繰り返し存在する前記Zr最低含有点の存在によってすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が厚さ方向に沿って実質的に組成変化のない(Ti,Zr)N層からなる従来被覆超硬工具においては、前記硬質被覆層がすぐれた高温硬さを有するものの、強度および靭性に劣るものであるために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has high strength and high toughness, and also has high-temperature hardness. Therefore, cutting of various types of steel and cast iron, particularly high cutting with high mechanical impact, high feed, etc. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent chipping resistance when subjected to heavy cutting conditions.
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and cutting is performed in the same way as the solid type end mill Throwaway end mill tools are known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). ), A composite nitride of Ti and Zr satisfying the composition formula: (Ti 1-X Zr X ) N (wherein X is 0.40 to 0.65 in atomic ratio) [hereinafter, ( Coated carbide tools formed by physical vapor deposition of a hard coating layer composed of a layer represented by Ti, Zr) N] with an average layer thickness of 1 to 15 μm have been proposed for continuous cutting and intermittent cutting of various steels and cast irons. It is used.
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) in which a Ti—Zr alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa, while the cemented carbide substrate is applied to the surface of the cemented carbide substrate with a bias voltage of, for example, −100 V applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Zr) N layer.
[0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting is performed under heavy cutting conditions such as high cutting and high feed. In the above conventional coated carbide tools, there is no problem when used under normal cutting conditions, but the cutting is performed with high mechanical impact, high cutting depth, high feed, etc. Under the heavy cutting conditions, chipping (microcracking) is likely to occur due to the lack of strength and toughness of the hard coating layer, and the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer particularly under heavy cutting conditions. As a result of conducting research with a focus on the hard coating layer,
(A) The (Ti, Zr) N layer constituting the conventional coated carbide tool formed using the arc ion plating apparatus shown in FIG. 2 has a substantially uniform composition throughout the layer thickness. Arc ion plating apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. 1 (b) in a schematic front view. That is, a carbide base mounting rotary table is provided in the center of the apparatus, and the Ti-Zr alloy having a relatively high Zr content is disposed on one side and Ti having a relatively low Zr content is disposed on the other side with the rotary table interposed therebetween. Using an arc ion plating apparatus in which a Zr alloy is used as a cathode electrode (evaporation source) and facing each other, a plurality of carbide substrates are mounted in a ring shape along the outer periphery of the rotary table of the apparatus, and in this state the apparatus While rotating the rotary table under a nitrogen atmosphere, and rotating the carbide substrate itself for the purpose of uniforming the thickness of the hard coating layer to be deposited, the cathode electrode (evaporation source) and the anode on both sides are rotated. When an arc discharge is generated between the electrodes and a (Ti, Zr) N layer is formed on the surface of the carbide substrate, the resulting (Ti, Zr) N layer is ring-shaped on the rotary table. When the disposed carbide substrate is closest to the cathode electrode (evaporation source) of the Ti-Zr alloy having a relatively high Zr content on one side, the highest Zr content point is formed in the layer. When the carbide substrate is closest to the cathode electrode of the Ti—Zr alloy having a relatively low Zr content on the other side, the lowest Zr content point is formed in the layer, and the rotation of the rotary table causes No layer The Zr highest content point and the Zr lowest content point alternately appear at predetermined intervals along the direction, and the Zr content from the Zr highest content point to the Zr lowest content point and from the Zr lowest content point to the Zr highest content point To have a component concentration distribution structure whose amount changes continuously.
[0007]
(B) In the (Ti, Zr) N layer of the repeated continuous change component concentration distribution structure of (a) above, the Zr content in the Ti—Zr alloy which is the cathode electrode (evaporation source) on one side of the opposing arrangement is The Zr content in the Ti-Zr alloy, which is equivalent to the Zr content of the conventional Ti-Zr alloy and is the cathode electrode (evaporation source) on the other side, is compared with the Zr content of the conventional Ti-Zr alloy. In addition to being relatively low, the rotational speed of the rotary table on which the carbide substrate is mounted is controlled,
The Zr highest content point is a composition formula: (Ti 1-X Zr X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
The Zr minimum content point is the composition formula: (Ti 1-Y Zr Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And the distance in the thickness direction between the adjacent Zr highest content point and the Zr lowest content point adjacent to each other is 0.01 to 0.1 μm,
The Zr highest content point portion has a Zr content equivalent to that of the conventional (Ti, Zr) N layer, and thus exhibits an excellent high-temperature hardness equivalent to that of the conventional (Ti, Zr) N layer. In the Zr minimum content point portion, since the Zr content is low and the Ti content is high compared to the Zr maximum content point portion, higher strength and toughness are ensured, and these Zr maximum content points and Since the interval between the lowest Zr content points is extremely small, the entire layer has excellent high-temperature hardness while maintaining high strength and high toughness. Coated carbide tools composed of Ti, Zr) N layers are required to have high strength and high toughness due to the high mechanical impact of cutting of various steels and cast irons. When performed under heavy cutting conditions Also, it becomes to exhibit chipping resistance of the hard coating layer has excellent.
The research results shown in (a) and (b) above were obtained.
[0008]
The present invention has been made based on the above research results. A hard coating layer made of a (Ti, Zr) N layer is physically vapor-deposited on the surface of a cemented carbide substrate with an overall average layer thickness of 1 to 15 μm. In the coated carbide tool
In the hard coating layer, the Zr highest content point and the Zr lowest content point are alternately present at predetermined intervals along the thickness direction, and from the Zr highest content point, the Zr lowest content point, the Zr A component concentration distribution structure in which the Zr content continuously changes from the lowest content point to the Zr highest content point,
Furthermore, the Zr highest content point is the composition formula: (Ti 1-X Zr X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
The Zr minimum content point is the composition formula: (Ti 1-Y Zr Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And the interval between the adjacent Zr highest content point and the Zr lowest content point adjacent to each other is 0.01 to 0.1 μm.
It is characterized by a coated cemented carbide tool that exhibits excellent chipping resistance under heavy cutting conditions.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of Zr highest content point The Zr component in (Ti, Zr) N of the highest Zr content point is contained for the purpose of improving the high temperature hardness of TiN having high strength and high toughness. The higher the component content, the higher the high temperature hardness and the lower the strength and toughness. However, the X value indicating the proportion of Zr is 0.65 in terms of the total amount with Ti (atomic ratio). If the Zr is higher than the upper limit, even if there are adjacent Zr minimum content points having high strength and high toughness, a decrease in the strength and toughness of the layer itself is inevitable, and as a result, chipping and the like are likely to occur. If the X value is less than 0.40, the desired excellent high-temperature hardness cannot be secured. Therefore, the X value indicating the ratio of Zr at the highest Zr content point is set to 0.40 to 0.65. .
[0010]
(B) Composition of the lowest Zr content point As described above, the highest Zr content point has high high-temperature hardness, but on the other hand, the strength and toughness are inferior. For the purpose of compensation, the Zr minimum content point, which has a high Ti content and thereby has high strength and high toughness, is alternately interposed in the thickness direction. Therefore, the Y value indicating the Zr content is Ti and If the ratio (atomic ratio) in the total amount exceeds 0.35, the desired excellent strength and toughness cannot be ensured. On the other hand, if the Y value is less than 0.05, the Ti content is relatively high. Since the ratio becomes too large and the Zr minimum content point cannot be provided with a predetermined high-temperature hardness, the Y value indicating the ratio of Zr at the Zr minimum content point is set to 0.05 to 0.35. It was.
[0011]
(C) Interval between the highest Zr content point and the lowest Zr content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. High toughness and high-temperature hardness cannot be ensured, and if the interval exceeds 0.1 μm, the disadvantages of the respective points, that is, if the Zr maximum content point is insufficient strength and toughness, Zr minimum content point If there is, a lack of high-temperature hardness appears locally in the layer, which makes it easy for chipping to occur on the cutting edge and promotes the progress of wear. It was set to 1 μm.
[0012]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 1 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having ISO / CNMG120408 chip shape Formed.
[0014]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0015]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, on the rotary table in the arc ion plating apparatus shown in FIG. Therefore, as one cathode electrode (evaporation source), Zr lowest content point forming Ti-Zr alloy having various component compositions, and as the other cathode electrode (evaporation source), various component compositions are used. The Ti-Zr alloy for forming the highest Zr content point is placed oppositely across the rotary table, and the metal Ti for bombard cleaning is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 550 ° C. with a heater, a DC bias voltage of −1000 V was applied to the carbide substrate rotating while rotating on the rotary table, and the gold electrode of the cathode electrode was applied. An arc discharge is generated by passing a current of 100 A between Ti and the anode electrode, thereby cleaning the surface of the carbide substrate with Ti bombardment, and then introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. In addition, a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, and each cathode electrode (Ti-Zr alloy for forming Zr lowest content point and Ti for forming Zr highest content point) -Zr alloy) and an anode electrode to cause a current of 150 A to flow to generate an arc discharge, so that the Zr minimum of the target composition shown in Tables 3 and 4 along the thickness direction is formed on the surface of the carbide substrate. The containing point and the Zr highest containing point are alternately repeatedly present at the target intervals shown in Tables 3 and 4, and from the Zr highest containing point, the Zr lowest containing point, the Zr lowest By vapor-depositing a hard coating layer having a component concentration distribution structure in which the Zr content continuously changes from the content point to the highest Zr content point and also having the target total layer thickness shown in Tables 3 and 4 above, Throw-away tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 made of the present invention surface coated cemented carbide as invention coated carbide tools were produced, respectively.
[0016]
Further, for the purpose of comparison, these carbide substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus shown in FIG. In addition, Ti-Zr alloys with various component compositions are mounted as cathode electrodes (evaporation sources), and metal bombard cleaning Ti is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and a current of 100 A was passed between the metal Ti and the anode electrode of the cathode electrode to cause arc discharge. Thus, the surface of the carbide substrate is cleaned by Ti bombardment, and then nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. A DC bias voltage of 00 V was applied, and a current of 100 A was passed between the Ti—Zr alloy of the cathode electrode and the anode electrode to generate an arc discharge, whereby each of the carbide substrates A1 to A10 and B1 to B6. A hard coating layer composed of a (Ti, Zr) N layer having the target composition and the target layer thickness shown in Tables 5 and 6 and having substantially no composition change along the thickness direction is deposited on the surface of Thus, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools were produced, respectively.
[0017]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 4.8 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 8 minutes
Dry continuous high-cut cutting test of alloy steel under the conditions of
Work material: JIS / S40C lengthwise equal length 4 fluted round bars,
Cutting speed: 210 m / min. ,
Cutting depth: 1.1 mm,
Feed: 0.61 mm / rev. ,
Cutting time: 8 minutes
Carbon steel dry intermittent high feed cutting test under the conditions of
Work material: JIS / FC200 round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 5.3 mm,
Feed: 0.14 mm / rev. ,
Cutting time: 8 minutes
The dry continuous high-cut cutting test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 3-6.
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
[Table 3]
[0021]
[Table 4]
[0022]
[Table 5]
[0023]
[Table 6]
[0024]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Prepare a powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each was blended in the blending composition shown in Table 7, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, then pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The green compact is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then fired under furnace cooling conditions. Finally, the diameters are 8mm, 13mm, and 26 3 types of sintered carbide rod forming bodies for forming a carbide substrate of m, and further, the diameter of the cutting edge portion by the combination shown in Table 7 by grinding from the above three types of sintered rods. X Carbide substrates (end mills) C-1 to C-8 having a four-blade square shape with lengths of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees. Were manufactured respectively.
[0025]
Then, these carbide substrates (end mills) C-1 to C-8 were ultrasonically washed in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Zr maximum content point and the Zr minimum content point of the target composition shown in Table 8 along the layer thickness direction are alternately repeated at the target interval shown in Table 8, and The target total layer having a component concentration distribution structure in which the Zr content continuously changes from the Zr highest content point to the Zr lowest content point, from the Zr lowest content point to the Zr highest content point, and also shown in Table 8 By vapor-depositing a hard coating layer having a thickness, end mills made of the surface coated cemented carbide of the present invention (hereinafter referred to as the present coated carbide end mill) 1 to 8 as the coated carbide tool of the present invention were produced.
[0026]
For the purpose of comparison, the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. 2 is also used. (Ti, Zr) N having the target composition and target layer thickness shown in Table 9 and substantially no composition change along the thickness direction under the same conditions as in Example 1 above. By vapor-depositing a hard coating layer consisting of layers, conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated carbide tools were produced, respectively.
[0027]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 4 mm
Table feed: 120 mm / min,
About the dry high feed grooving cutting test of the tool steel under the conditions of the present invention, the coated carbide end mills 4-6 of the present invention and the conventional coated carbide end mills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 100 m / min. ,
Groove depth (cut): 3.8 mm,
Table feed: 320 mm / min,
With respect to the stainless steel wet high-grooving groove cutting test, the coated carbide end mills 7 and 8 according to the present invention and the conventional coated carbide end mills 7 and 8
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 135 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 350 mm / min,
Alloy steel under the conditions of dry high cutting and high feed grooving test, respectively, 0.1 mm, the flank wear width of the outer peripheral edge of the cutting edge is the standard for the service life in any grooving test The cutting groove length up to was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0028]
[Table 7]
[0029]
[Table 8]
[0030]
[Table 9]
[0031]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were manufactured.
[0032]
Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. The Zr maximum content point and the Zr minimum content point of the target composition shown in Table 10 along the thickness direction under the same conditions as in Example 1 above are also shown in Table 10 in the same manner. And a component concentration distribution structure in which the Zr content continuously changes from the highest Zr content point to the lowest Zr content point and from the lowest Zr content point to the highest Zr content point. By depositing a hard coating layer having a target overall layer thickness shown in FIG. 10, drills made of the surface coated cemented carbide of the present invention (hereinafter referred to as the present coated carbide drill) 1-8 as the coated carbide tool of the present invention. Were manufactured respectively.
[0033]
For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into a normal arc ion plating apparatus, had the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and substantially changed in composition along the thickness direction. By vapor-depositing a hard coating layer comprising no (Ti, Zr) N layer, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools are respectively provided. Manufactured.
[0034]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 45 m / min. ,
Feed: 0.22mm / rev,
Hole depth: 10mm
For the wet high feed drilling test of tool steel under the conditions of the present invention, the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FCD400 plate material,
Cutting speed: 65 m / min. ,
Feed: 0.4mm / rev,
Hole depth: 15mm
For the wet high feed drilling test of ductile cast iron under the conditions of the present invention, the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FC250 plate material,
Cutting speed: 105 m / min. ,
Feed: 0.72mm / rev,
Hole depth: 30mm
Each of the wet high-feed drilling tests of cast iron under the conditions of The number of drilling operations was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0035]
[Table 10]
[0036]
[Table 11]
[0037]
In the hard coating layer which comprises this invention coated carbide tips 1-16, this invention coated carbide end mills 1-8, and this invention coated carbide drills 1-8 as this invention coated carbide tool obtained as a result. Composition of Zr maximum content point and Zr minimum content point, and conventionally coated carbide tips 1 to 16 as conventional coated carbide tools, conventionally coated carbide end mills 1 to 8, and hard coating of conventionally coated carbide drills 1 to 8 The composition of the layers was measured using an Auger spectroscopic analyzer, and each showed substantially the same composition as the target composition.
Further, the distance between the Zr highest content point and the Zr lowest content point in the hard coating layer of these coated carbide tools of the present invention, and the overall layer thickness thereof, and the thickness of the hard coating layer of the conventional coated carbide tool, When the cross section was measured using a scanning electron microscope, all showed substantially the same value as the target value.
[0038]
【The invention's effect】
From the results shown in Tables 3 to 11, the Zr maximum content point where the hard coating layer has excellent high-temperature hardness and the Zr minimum content point having high strength and high toughness alternately in the thickness direction at predetermined intervals. And the present invention has a component concentration distribution structure in which the Zr content continuously changes from the highest Zr content point to the lowest Zr content point and from the lowest Zr content point to the highest Zr content point. For hard tools, the hard coating layer is repeated especially in the thickness direction even when cutting various steels and cast irons under heavy cutting conditions such as high cutting and high feed with high mechanical impact. Conventionally, the hard coating layer is composed of a (Ti, Zr) N layer having substantially no composition change along the thickness direction while exhibiting excellent chipping resistance due to the presence of the lowest Zr content point. Coated carbide tool smell Although having a high-temperature hardness of the hard coating layer is excellent, because it is inferior in strength and toughness, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated carbide tool of the present invention can be used not only for cutting under normal conditions, but also for cutting various steels and cast irons. Even under heavy cutting conditions, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It can respond satisfactorily.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated carbide tool.
Claims (1)
さらに、上記Zr最高含有点が、組成式:(Ti1-X ZrX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Zr最低含有点が、組成式:(Ti1-Y ZrY )N(ただし、原子比で、Yは0.05〜0.35を示す)、
を満足し、かつ隣り合う上記Zr最高含有点とZr最低含有点の間隔が、0.01〜0.1μmであること、
を特徴とする重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。Surface-coated carbide formed by physical vapor deposition of a hard coating layer composed of a composite nitride layer of Ti and Zr on the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride-based cermet substrate with an overall average layer thickness of 1 to 15 μm. In the alloy cutting tool, the hard coating layer has a Zr highest content point and a Zr lowest content point alternately and repeatedly at predetermined intervals along the thickness direction, and from the Zr highest content point to the Zr The lowest concentration point, having a component concentration distribution structure in which the Zr content continuously changes from the lowest Zr content point to the highest Zr content point,
Furthermore, the Zr highest content point is the composition formula: (Ti 1-X Zr X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
The Zr minimum content point is the composition formula: (Ti 1-Y Zr Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And the interval between the adjacent Zr highest content point and the Zr lowest content point adjacent to each other is 0.01 to 0.1 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under hard cutting conditions characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002160866A JP3948015B2 (en) | 2002-06-03 | 2002-06-03 | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002160866A JP3948015B2 (en) | 2002-06-03 | 2002-06-03 | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004001149A JP2004001149A (en) | 2004-01-08 |
JP3948015B2 true JP3948015B2 (en) | 2007-07-25 |
Family
ID=30430098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002160866A Expired - Fee Related JP3948015B2 (en) | 2002-06-03 | 2002-06-03 | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3948015B2 (en) |
-
2002
- 2002-06-03 JP JP2002160866A patent/JP3948015B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004001149A (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3969230B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP3669334B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3928480B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4389152B2 (en) | Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions. | |
JP4375527B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. | |
JP4007102B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3985227B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3982301B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3969260B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP4244379B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP4366987B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. | |
JP4678582B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP3928461B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP2006181653A (en) | Surface coated thermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting | |
JP3962910B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting | |
JP3948015B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP3991272B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3928452B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP3928487B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4320706B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. | |
JP3962911B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP4320707B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. | |
JP4211500B2 (en) | Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting | |
JP3944900B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3928459B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3948015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |