JP3397058B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance - Google Patents

Surface-coated cemented carbide cutting tool with excellent wear resistance

Info

Publication number
JP3397058B2
JP3397058B2 JP29832996A JP29832996A JP3397058B2 JP 3397058 B2 JP3397058 B2 JP 3397058B2 JP 29832996 A JP29832996 A JP 29832996A JP 29832996 A JP29832996 A JP 29832996A JP 3397058 B2 JP3397058 B2 JP 3397058B2
Authority
JP
Japan
Prior art keywords
cemented carbide
wear resistance
coated cemented
cutting
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29832996A
Other languages
Japanese (ja)
Other versions
JPH10140327A (en
Inventor
俊克 須藤
徹也 田中
恵一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP29832996A priority Critical patent/JP3397058B2/en
Publication of JPH10140327A publication Critical patent/JPH10140327A/en
Application granted granted Critical
Publication of JP3397058B2 publication Critical patent/JP3397058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、すぐれた耐摩耗
性を有し、したがって例えば鋼の連続切削や断続切削で
長期に亘ってすぐれた切削性能を発揮する表面被覆超硬
合金製切削工具(以下、被覆超硬合金工具と云う)に関
するものである。 【0002】 【従来の技術】従来、一般に、例えば図1に概略説明図
で示される物理蒸着装置の1種であるアークイオンプレ
ーティング装置を用い、ヒーターで装置内を例えば70
0℃の温度に加熱した状態で、アノード電極と所定組成
を有するCr−Ti合金がセットされたカソード電極
(蒸発源)との間にアーク放電を発生させ、同時に装置
内に反応ガスとして窒素ガス、または窒素ガスとメタン
ガスを導入し、一方炭化タングステン(以下、WCで示
す)基超硬合金または炭窒化チタン(以下、TiCNで
示す)基サーメットからなる基体(以下、これらを総称
して超硬合金基体と云う)には、例えばー120Vのバ
イアス電圧を印加した条件で、前記超硬合金基体の表面
に、例えば特開平7−243047号公報に記載される
ように、Cr−Ti複合窒化物[以下、(Cr,Ti)
Nで示す]およびCr−Ti複合炭窒化物[以下、(C
r,Ti)CNで示す]のうちのいずれか、あるいは両
方で構成された単層または複層の硬質被覆層を0.5〜
20μmの平均層厚で蒸着することにより被覆超硬合金
工具を製造することが知られている。 【0003】 【発明が解決しようとする課題】一方、近年の切削加工
のFA化および高速化はめざましく、かつ切削加工の省
力化および省エネ化に対する要求も強く、これに伴い、
切削工具には使用寿命の延命化が強く望まれているが、
上記の従来被覆超硬合金工具の場合、これを構成する硬
質被覆層はすぐれた耐チッピング性(切刃に微小欠けが
発生しにくい性質)を示すものの、耐摩耗性が十分でな
いために、比較的短時間で使用寿命に至るのが現状であ
る。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬合金工具の
硬質被覆層を構成する(Cr,Ti)Nおよび(Cr,
Ti)CNに着目し、これの耐摩耗性向上を図るべく研
究を行った結果、これにMg、Ca、およびSrうちの
いずれかを含有させて、 組成式:(Cra Tib c )N、 および組成式:(Cra Tib c )Cd 1ーd 、 (ただし、原子比で、a:0.5〜0.7、b:0.1
〜0.49、c:0.01〜0.2、a+b+c=1、
d:0.01〜0.5を示し、MはMg、Ca、および
Srのうちのいずれかを示す)、で表されるCr−Ti
系複合窒化物[以下、(Cr,Ti,M)Nで示す]お
よびCr−Ti系複合炭窒化物[以下、(Cr,Ti,
M)CNで示す]のうちのいずれか、あるいは両方で硬
質被覆層を構成すると、この結果の被覆超硬合金工具
は、前記(Cr,Ti,M)Nおよび(Cr,Ti,
M)CNがすぐれた耐チッピング性を保持した状態で、
すぐれた耐摩耗性をもつようになることから、例えば鋼
の連続切削や断続切削で長期に亘ってすぐれた切削性能
を発揮するようになるという研究結果が得られたのであ
る。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬合金基体の表面に、0.5〜
20μmの平均層厚で蒸着される単層または複層の硬質
被覆層を、 組成式:(Cra Tib c )N、 および組成式:(Cra Tib c )Cd 1ーd 、 (ただし、原子比で、a:0.5〜0.7、b:0.1
〜0.49、c:0.01〜0.2、a+b+c=1、
d:0.01〜0.5を示し、MはMg、Ca、および
Srのうちのいずれかを示す)、で表される(Cr,T
i,M)Nおよび(Cr,Ti,M)CNのうちのいず
れか、あるいは両方で構成してなる、耐摩耗性のすぐれ
た被覆超硬合金工具に特徴を有するものである。なお、
この発明の被覆超硬合金工具において、これの使用前お
よび使用後の識別を容易にするために、黄金色を有する
窒化チタン(TiN)層を0.1〜1μmの平均層厚で
上記硬質被覆層の表面に蒸着するとよい。 【0006】つぎに、この発明の被覆超硬合金工具の硬
質被覆層を構成する(Cr,Ti,M)Nおよび(C
r,Ti,M)CNの組成比(原子比)を上記の通りに
限定した理由を説明する。すなわち、上記(Cr,T
i,M)Nおよび(Cr,Ti,M)CNにおいて、構
成成分であるCrとTiは共存した状態で切刃の耐チッ
ピング性向上に寄与する作用をもつが、CrおよびTi
のいずれかでもCr:0.5未満およびTi:0.1未
満になると所望のすぐれた耐チッピング性を確保するこ
とができず、一方同じくCrおよびTiのいずれかで
も、その割合がCr:0.7およびTi:0.49を越
えると耐摩耗性が急激に低下するようになることから、
その割合をCr:0.5〜0.7、望ましくは0.5〜
0.65、Ti:0.1〜0.49、望ましくは0.2
5〜0.49と定めた。また、同じく構成成分であるM
(Mg、Ca、およびSrのいずれか)は、耐摩耗性を
向上させ、もって長期に亘っての切削加工を可能ならし
める作用をもつが、その割合が0.01未満では所望の
耐摩耗性向上効果が得られず、一方その割合が0.2を
越えると層自体の硬さが急激に上昇し、CrおよびTi
によってもたらされるすぐれた耐チッピング性を確保す
ることができなくなることから、その割合を0.01〜
0.2、望ましくは0.01〜0.1と定めた。さら
に、(Cr,Ti,M)CNにおけるC成分には、硬さ
を高め、もって耐摩耗性を向上させる作用があるので、
(Cr,Ti,M)CNは上記(Cr,Ti,M)Nに
比して相対的に耐摩耗性にすぐれるが、この場合C成分
の割合が0.01未満では所定の硬さ向上効果が得られ
ず、一方その割合が0.5を越えると靭性が急激に低下
し、切刃にチッピングが発生し易くなることから、C成
分の割合を0.01〜0.5、望ましくは0.1〜0.
45と定めた。なお、上記硬質被覆層の平均層厚を0.
5〜20μmとしたのは、その層厚が0.5μm未満で
は所望の耐摩耗性を確保することができず、一方その層
厚が20μmを越えると切刃にチッピングが発生し易く
なるという理由からであり、望ましくは2〜10μmの
平均層厚がよい。また上記硬質被覆層の表面にTiN層
を蒸着する場合、その平均層厚を0.1〜1μmとする
のは、その層厚が0.1μm未満では黄金色の明確な付
与ができず、一方所望の黄金色は1μmまでの層厚で十
分であるという理由によるものである。 【0007】 【発明の実施の形態】ついで、この発明の被覆超硬合金
工具を実施例により具体的に説明する。原料粉末とし
て、いずれも1〜3μmの平均粒径を有するWC粉末、
TiC粉末、TaC粉末、NbC粉末、およびCo粉末
を用意し、これら原料粉末を、重量%でWC:72%、
TiC:8%、TaC:9%、NbC:2%、Co:9
%の配合組成に配合し、ボールミルで72時間湿式混合
し、乾燥した後、1.5ton/cm2 の圧力で圧粉体
にプレス成形し、この圧粉体を真空中、温度:1400
℃に1時間保持の条件で焼結し、焼結後、切刃部分に
R:0.05のホーニング加工を施してISO規格・S
NGN120408のチップ形状をもったWC基超硬合
金製の超硬合金基体Aを形成した。また、原料粉末とし
て、いずれも0.5〜2μmの平均粒径を有するTiC
N(重量比でTiC/TiN=50/50)粉末、Mo
2 C粉末、TaC粉末、WC粉末、Co粉末、およびN
i粉末を用意し、これら原料粉末を、重量%でTiC
N:50%、Mo2 C:8%、WC:15%、TaC:
8%、Co:12%、Ni:7%の配合組成に配合し、
ボールミルで24時間湿式混合し、乾燥した後、1to
n/cm2 の圧力で圧粉体にプレス成形し、この圧粉体
を10torrの窒素雰囲気中、温度:1540℃に1
時間保持の条件で焼結し、焼結後、切刃部分にR:0.
03のホーニング加工を施してISO規格・SEEN1
203AFTN1のチップ形状をもったTiCN基サー
メット製の超硬合金基体Bを形成した。 【0008】ついで、これら超硬合金基体A、Bを、ア
セトン中で超音波洗浄し、乾燥した状態で、それぞれ図
1に示されるアークイオンプレーティング装置に装入
し、またカソード電極(蒸発源)として種々の成分組成
をもったCr−Ti−M合金およびCr−Ti合金を装
着し、まず真空排気して装置内を1×10ー5torrの
真空とし、かつヒーターで装置内を500℃に加熱して
から、Arガスを装置内に導入し、1×10ー3torr
のAr雰囲気として、基体にー800Vのバイアス電圧
を印加して、前記基体の表面をボンバード洗浄した後、
装置内に反応ガスとして窒素ガス、または窒素ガスとメ
タンガスを導入し、5×10ー3torrの雰囲気とする
と共に、超硬合金基体に印加するバイアス電圧をー20
0vとして、前記カソード電極とアノード電極との間に
アーク放電を発生させ、もって前記超硬合金基体A、B
のそれぞれの表面に、表1、2に示される組成および平
均層厚をもった硬質被覆層を形成することにより本発明
被覆超硬合金工具1〜12および従来被覆超硬合金工具
1〜4をそれぞれ製造した。 【0009】この結果得られた各種の被覆超硬合金工具
のうち、本発明被覆超硬合金工具1〜6および従来被覆
超硬合金工具1、2については、 被削材:JIS・SCM440の丸棒、 切削速度:300m/min、 送り:0.3mm/rev、 切り込み:2mm、 の条件で合金鋼の乾式高速連続切削試験を行ない、また
本発明被覆超硬合金工具7〜12および従来被覆超硬合
金工具3、4については、 被削材:JIS・SCM440、 切削速度:300m/min、 送り:0.25mm/rev、 切り込み:1.5mm、 の条件で合金鋼の乾式高速連続切削試験を行ない、いず
れの切削試験でも切刃の逃げ面摩耗幅が0.3mm達す
るまでの切削時間を測定した。これらの測定結果を表3
に示した。 【0010】 【表1】【0011】 【表2】 【0012】 【表3】【0013】 【発明の効果】表1〜3に示される結果から、本発明被
覆超硬合金工具1〜12は、いずれも苛酷な条件での切
削となる鋼の高速連続切削で従来被覆超硬合金工具1〜
4に比して、一段とすぐれた耐摩耗性を示すことが明ら
かである。上述のように、この発明の被覆超硬合金工具
は、これの硬質被覆層を構成する上記(Cr,Ti,
M)Nおよび(Cr,Ti,M)CNがすぐれた耐チッ
ピング性を保持した状態で、一段とすぐれた耐摩耗性を
有するので、例えば鋼の通常の条件での連続切削や断続
切削は勿論のこと、より一段と苛酷な条件での切削加工
となる高速切削でも切刃にチッピングの発生なく、著し
く長期に亘ってすぐれた切削性能を発揮するのである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent wear resistance and therefore exhibits excellent cutting performance over a long period of time, for example, in continuous cutting and interrupted cutting of steel. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool). 2. Description of the Related Art Conventionally, generally, for example, an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. 1 is used.
At a temperature of 0 ° C., an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Cr—Ti alloy having a predetermined composition is set, and at the same time, nitrogen gas is used as a reaction gas in the apparatus. Or a nitrogen gas and a methane gas are introduced, while a tungsten carbide (hereinafter abbreviated as WC) -based cemented carbide or a titanium carbonitride (hereinafter abbreviated as TiCN) -based cermet (hereinafter collectively referred to as a For example, as described in JP-A-7-243047, a Cr-Ti composite nitride is formed on the surface of the cemented carbide substrate under the condition that a bias voltage of -120 V is applied. [Hereinafter, (Cr, Ti)
N] and a Cr-Ti composite carbonitride [hereinafter referred to as (C
r, Ti) CN] or a single or multiple hard coating layer composed of
It is known to produce coated cemented carbide tools by vapor deposition with an average layer thickness of 20 μm. [0003] On the other hand, in recent years, FA and speeding of cutting work are remarkable, and there is a strong demand for labor saving and energy saving of cutting work.
It is strongly desired to extend the service life of cutting tools.
In the case of the above-mentioned conventional coated cemented carbide tools, the hard coating layer that constitutes it has excellent chipping resistance (the property that the cutting edge is not easily chipped), but the wear resistance is not enough. At present, the service life is reached in a very short time. [0004] Therefore, the present inventors have proposed:
From the above viewpoints, (Cr, Ti) N and (Cr, Ti) constituting the hard coating layer of the conventional coated cemented carbide tool described above.
Ti) focused on CN, result of research to achieve this improve wear resistance, in which the by-containing Mg, Ca, and any of Sr, the composition formula: (Cr a Ti b M c ) N, and the composition formula: (Cr a Ti b M c ) C d N 1 over d, (provided that an atomic ratio, a: 0.5~0.7, b: 0.1
~ 0.49, c: 0.01 ~ 0.2, a + b + c = 1,
d: 0.01 to 0.5, and M represents any of Mg, Ca, and Sr).
-Based composite nitride [hereinafter, referred to as (Cr, Ti, M) N] and Cr-Ti-based composite carbonitride [hereinafter, referred to as (Cr, Ti, M)
M) CN], or both of them constitute a hard coating layer, the resulting coated cemented carbide tool has the (Cr, Ti, M) N and (Cr, Ti,
M) With CN maintaining excellent chipping resistance,
Research results have shown that, since it has excellent wear resistance, for example, continuous cutting and intermittent cutting of steel exhibit excellent cutting performance over a long period of time. The present invention has been made on the basis of the above research results, and has a surface of a cemented carbide substrate having a thickness of 0.5 to 0.5 mm.
The hard coating layer of a single layer or multiple layers to be deposited with an average layer thickness of 20 [mu] m, the composition formula: (Cr a Ti b M c ) N, and the composition formula: (Cr a Ti b M c ) C d N 1 over d , (However, in atomic ratio, a: 0.5 to 0.7, b: 0.1
~ 0.49, c: 0.01 ~ 0.2, a + b + c = 1,
d: 0.01 to 0.5, M represents any one of Mg, Ca, and Sr) (Cr, T
The present invention is characterized by a coated hard cemented carbide tool having excellent wear resistance, comprising one or both of (i, M) N and (Cr, Ti, M) CN. In addition,
In the coated cemented carbide tool of the present invention, in order to facilitate discrimination before and after use, the hard coated titanium nitride (TiN) layer having an average thickness of 0.1 to 1 μm is used. It may be deposited on the surface of the layer. Next, (Cr, Ti, M) N and (C) constituting the hard coating layer of the coated cemented carbide tool of the present invention.
The reason why the composition ratio (atomic ratio) of (r, Ti, M) CN is limited as described above will be described. That is, the above (Cr, T
In (i, M) N and (Cr, Ti, M) CN, Cr and Ti as constituents have an effect of contributing to the improvement of chipping resistance of the cutting edge in a coexisting state.
In any of the cases, if Cr: less than 0.5 and Ti: less than 0.1, the desired excellent chipping resistance cannot be ensured. On the other hand, in the case of either Cr or Ti, the ratio is Cr: 0. When the content exceeds 0.7 and Ti: 0.49, the wear resistance rapidly decreases.
The ratio is Cr: 0.5 to 0.7, preferably 0.5 to 0.7.
0.65, Ti: 0.1 to 0.49, desirably 0.2
5 to 0.49. In addition, the same constituent component M
(Any of Mg, Ca, and Sr) has the effect of improving wear resistance and thus enabling long-term cutting, but if the ratio is less than 0.01, desired wear resistance is obtained. No improvement effect can be obtained. On the other hand, if the ratio exceeds 0.2, the hardness of the layer itself sharply increases, and Cr and Ti
Since the excellent chipping resistance brought by the above cannot be secured, the ratio is set to 0.01 to
0.2, desirably 0.01 to 0.1. Further, the C component in (Cr, Ti, M) CN has an effect of increasing the hardness and thereby improving the wear resistance.
(Cr, Ti, M) CN has relatively higher wear resistance than the above (Cr, Ti, M) N, but in this case, if the ratio of the C component is less than 0.01, the predetermined hardness is improved. When the effect is not obtained, on the other hand, when the ratio exceeds 0.5, the toughness is rapidly reduced and chipping is likely to occur on the cutting edge. Therefore, the ratio of the C component is 0.01 to 0.5, desirably. 0.1-0.
45. In addition, the average layer thickness of the hard coating layer is set to 0.
The reason why the thickness is set to 5 to 20 μm is that if the layer thickness is less than 0.5 μm, the desired wear resistance cannot be secured, while if the layer thickness exceeds 20 μm, chipping tends to occur on the cutting edge. The average layer thickness is preferably 2 to 10 μm. When a TiN layer is deposited on the surface of the hard coating layer, the average layer thickness is set to 0.1 to 1 μm. If the layer thickness is less than 0.1 μm, a clear golden color cannot be provided. The desired golden color is due to the fact that a layer thickness of up to 1 μm is sufficient. Next, a coated cemented carbide tool according to the present invention will be described in detail with reference to examples. WC powder having an average particle diameter of 1 to 3 μm,
A TiC powder, a TaC powder, a NbC powder, and a Co powder were prepared, and these raw material powders were WC: 72% by weight,
TiC: 8%, TaC: 9%, NbC: 2%, Co: 9
%, Wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 1.5 ton / cm 2 , and the green compact is heated in a vacuum at a temperature of 1400.
Sintering under the condition of holding at 1 ° C. for 1 hour.
A cemented carbide substrate A made of a WC-based cemented carbide having a chip shape of NGN120408 was formed. In addition, TiC having an average particle size of 0.5 to 2 μm is used as a raw material powder.
N (TiC / TiN = 50/50 by weight) powder, Mo
2 C powder, TaC powder, WC powder, Co powder, and N
i powder was prepared, and these raw material powders were
N: 50%, Mo 2 C: 8%, WC: 15%, TaC:
8%, Co: 12%, Ni: 7%
After wet mixing with a ball mill for 24 hours and drying, 1 to
The green compact is press-molded at a pressure of n / cm 2 , and the green compact is heated to 1540 ° C. in a nitrogen atmosphere of 10 torr.
After sintering under the condition of holding time, and after sintering, R: 0.
03 Honing process and ISO standard SEEN1
A cemented carbide substrate B made of TiCN-based cermet having a chip shape of 203AFTN1 was formed. Next, these cemented carbide substrates A and B are ultrasonically cleaned in acetone, dried, and charged into an arc ion plating apparatus shown in FIG. 1 respectively. ) as equipped with a Cr-Ti-M alloy and Cr-Ti alloy having various component compositions, evacuation to the device as a 1 × 10 over 5 torr of vacuum first, and 500 ° C. in the apparatus with a heater And then Ar gas was introduced into the apparatus, and 1 × 10 -3 torr
After applying a bias voltage of -800 V to the substrate and bombarding the surface of the substrate,
Nitrogen gas or nitrogen gas and methane gas are introduced into the apparatus as a reaction gas, the atmosphere is set to 5 × 10 −3 torr, and the bias voltage applied to the cemented carbide substrate is set to −20.
0 V, an arc discharge is generated between the cathode electrode and the anode electrode.
By forming a hard coating layer having the composition and the average layer thickness shown in Tables 1 and 2 on the respective surfaces of the above, the coated cemented carbide tools 1 to 12 of the present invention and the conventionally coated cemented carbide tools 1 to 4 Each was manufactured. [0009] Of the various coated cemented carbide tools obtained as a result, the coated cemented carbide tools 1 to 6 of the present invention and the conventional coated cemented carbide tools 1 and 2 are as follows: Work material: JIS SCM440 circle Bar, cutting speed: 300 m / min, feed: 0.3 mm / rev, depth of cut: 2 mm, dry high-speed continuous cutting test of alloy steel was performed, and coated cemented carbide tools 7 to 12 according to the present invention and conventional coated super For hard alloy tools 3 and 4, a dry high-speed continuous cutting test of alloy steel was performed under the following conditions: work material: JIS SCM440, cutting speed: 300 m / min, feed: 0.25 mm / rev, cutting depth: 1.5 mm. In each cutting test, the cutting time until the flank wear width of the cutting edge reached 0.3 mm was measured. Table 3 shows the measurement results.
It was shown to. [Table 1] [Table 2] [Table 3] From the results shown in Tables 1 to 3, all of the coated cemented carbide tools 1 to 12 of the present invention can be cut under severe conditions by high-speed continuous cutting of steel. Alloy tool 1
It is evident that the abrasion resistance is much higher than that of No. 4. As described above, the coated cemented carbide tool according to the present invention has the above-mentioned (Cr, Ti,
Since M) N and (Cr, Ti, M) CN have excellent wear resistance while maintaining excellent chipping resistance, for example, continuous cutting and interrupted cutting of steel under ordinary conditions are, of course, possible. That is, even in high-speed cutting, which is a cutting process under more severe conditions, the cutting edge does not generate chipping and exhibits excellent cutting performance for a remarkably long period.

【図面の簡単な説明】 【図1】アークイオンプレーティング装置の概略説明図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

フロントページの続き (72)発明者 桜井 恵一 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社 筑波製作所 内 (56)参考文献 特開 平7−173608(JP,A) 特開 平8−199340(JP,A) 特公 平5−82471(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/00 - 16/56 B23B 27/14 B23P 15/28 Continued on the front page (72) Inventor Keiichi Sakurai 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. Mitsubishi Materials Corporation Tsukuba Works (56) References JP-A-7-173608 (JP, A) JP-A-8- 199340 (JP, A) JP 5-82471 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/00-16/56 B23B 27/14 B23P 15/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン基サーメット基体の表面に、0.5〜20
μmの平均層厚で蒸着される単層または複層の硬質被覆
層を、 組成式:(Cra Tib c )N、 および組成式:(Cra Tib c )Cd 1ーd 、 (ただし、原子比で、a:0.5〜0.7、b:0.1
〜0.49、c:0.01〜0.2、a+b+c=1、
d:0.01〜0.5を示し、MはMg、Ca、および
Srのうちのいずれかを示す)、で表されるCr−Ti
系複合窒化物およびCr−Ti系複合炭窒化物のうちの
いずれか、あるいは両方で構成したことを特徴とする耐
摩耗性のすぐれた表面被覆超硬合金製切削工具。
(57) [Claim 1] A surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate has a thickness of 0.5 to 20%.
The single layer or multilayer hard coating layer to be deposited with an average layer thickness of [mu] m, the composition formula: (Cr a Ti b M c ) N, and the composition formula: (Cr a Ti b M c ) C d N 1 over d , (However, in atomic ratio, a: 0.5 to 0.7, b: 0.1
~ 0.49, c: 0.01 ~ 0.2, a + b + c = 1,
d: 0.01 to 0.5, and M represents any of Mg, Ca, and Sr).
A cutting tool made of a surface-coated cemented carbide having excellent wear resistance, characterized in that the cutting tool is made of one or both of a composite nitride and a Cr-Ti composite carbonitride.
JP29832996A 1996-11-11 1996-11-11 Surface-coated cemented carbide cutting tool with excellent wear resistance Expired - Fee Related JP3397058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29832996A JP3397058B2 (en) 1996-11-11 1996-11-11 Surface-coated cemented carbide cutting tool with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29832996A JP3397058B2 (en) 1996-11-11 1996-11-11 Surface-coated cemented carbide cutting tool with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH10140327A JPH10140327A (en) 1998-05-26
JP3397058B2 true JP3397058B2 (en) 2003-04-14

Family

ID=17858260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29832996A Expired - Fee Related JP3397058B2 (en) 1996-11-11 1996-11-11 Surface-coated cemented carbide cutting tool with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3397058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148101A (en) * 2015-02-05 2016-08-18 株式会社神戸製鋼所 Hard film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701386B2 (en) * 2005-03-25 2011-06-15 国立大学法人長岡技術科学大学 High hardness material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148101A (en) * 2015-02-05 2016-08-18 株式会社神戸製鋼所 Hard film
EP3254787A4 (en) * 2015-02-05 2018-09-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating film

Also Published As

Publication number Publication date
JPH10140327A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JP3451877B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP3397058B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2684688B2 (en) Surface-coated tungsten carbide based cemented carbide for cutting tools
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP3454148B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP3536593B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP3451857B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2001162411A (en) Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance
JP3397060B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP3397054B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3397063B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP2003200306A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition
JPH111764A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JPH10140328A (en) Cutting tool made of surface coated cemented carbide excellent in wear resistance
JPH0938806A (en) Cutting tool made of surface coating carbonitriding titanium group cermet having excellent close adhesiveness of hard coating layer
JP3620481B2 (en) Surface-coated cemented carbide end mill or drill with excellent wear-resistant coating layer for excellent chipping resistance
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP2611360B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent impact resistance with hard coating layer
JPH11100657A (en) Cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH10176260A (en) Cutting tool made of surface coated cemented carbide excellent in chipping resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees