WO2017073792A1 - Surface-coated cutting tool, and production method therefor - Google Patents

Surface-coated cutting tool, and production method therefor Download PDF

Info

Publication number
WO2017073792A1
WO2017073792A1 PCT/JP2016/082357 JP2016082357W WO2017073792A1 WO 2017073792 A1 WO2017073792 A1 WO 2017073792A1 JP 2016082357 W JP2016082357 W JP 2016082357W WO 2017073792 A1 WO2017073792 A1 WO 2017073792A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
avg
average
nitride
Prior art date
Application number
PCT/JP2016/082357
Other languages
French (fr)
Japanese (ja)
Inventor
翔 龍岡
佐藤 賢一
光亮 柳澤
西田 真
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016211413A external-priority patent/JP6931452B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201680062771.0A priority Critical patent/CN108349017B/en
Priority to EP16860020.3A priority patent/EP3369506B1/en
Priority to US15/771,337 priority patent/US10618115B2/en
Publication of WO2017073792A1 publication Critical patent/WO2017073792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention has high heat generation such as carbon steel, alloy steel, cast iron and the like, and has high chipping resistance with a hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use.
  • a coated tool includes Japanese Patent Application No. 2015-214521 filed in Japan on October 30, 2015, Japanese Patent Application No. 2015-214525 filed in Japan on October 30, 2015, and Japanese Patent Application No. 2015-214525 on October 28, 2016. Priority is claimed based on Japanese Patent Application No. 2016-211143 filed in Japan, the contents of which are incorporated herein by reference.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • the above-mentioned coated tools coated with the conventional Cr-Al or Ti-Al composite nitride layer have relatively high wear resistance, but abnormalities such as chipping when used under high-speed interrupted cutting conditions.
  • Various proposals for improvement of the hard coating layer have been made because of easy wear.
  • Patent Document 1 discloses a hard coating composed of a lower layer, an intermediate layer, and an upper layer on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting such as stainless steel and Ti alloy.
  • the lower layer has a predetermined average layer thickness, and includes a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al
  • the content ratio (atomic ratio) of 0.65 ⁇ X ⁇ 0.95) is composed of a TiAl compound having a cubic structure consisting of one or more layers, and the intermediate layer has a predetermined average layer thickness.
  • Patent Document 2 discloses that a lower layer, an intermediate layer, and an upper layer are formed on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting of a heat-resistant alloy such as precipitation hardened stainless steel and Inconel.
  • a lower layer is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The atomic ratio is 0.65 ⁇ X ⁇ 0.95) and is composed of a Ti compound having a cubic crystal structure consisting of one layer or two or more layers, and the intermediate layer is a predetermined single layer average layer Thick Cr 1-Y Al Y N layer, Cr 1-Y Al Y C layer, Cr 1-Y Al Y CN layer (Y represents the Al content and represents the atomic ratio, 0.60 ⁇ Y ⁇ 0. 90) having a cubic crystal structure consisting of one or more layers.
  • the upper layer is made of an Al 2 O 3 layer having micropores having a predetermined pore diameter and pore density, thereby reducing mechanical and thermal shocks, thereby improving chipping resistance and wear resistance. It has been proposed.
  • Patent Document 4 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr.
  • a compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
  • Patent Document 5 discloses that the value of the Al content ratio x is 0. by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 . It is described that a (Ti 1-x Al x ) N layer having a thickness of 65 to 0.95 can be formed by vapor deposition. In this document, an Al 2 O layer is further formed on the (Ti 1-x Al x ) N layer. The formation of a (Ti 1-x Al x ) N layer with the aim of covering three layers and thereby increasing the thermal insulation effect, with the value of x increased from 0.65 to 0.95, There is no disclosure up to what point it has on cutting performance.
  • Patent Document 6 a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition.
  • Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
  • Japanese Unexamined Patent Publication No. 2014-208394 Japanese Unexamined Patent Publication No. 2014-198362
  • the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
  • the coated tools described in Patent Documents 1 and 2 improve the adhesion strength between the lower layer and the upper layer by interposing and forming a CrAl compound and a Cr compound as an intermediate layer of the hard coating layer. Although the chipping property is improved, the strength and hardness of the CrAl compound and the Cr compound itself are not sufficient, so that when used for high-speed intermittent cutting, the chipping resistance and wear resistance are sufficient. I can't say that.
  • the Cr content ratio of the hard coating layer made of (Al 1-X Cr X ) N is adjusted, and the crystal orientation and constituent atomic shared lattice point distribution are adjusted.
  • the strength of the hard coating layer can be improved, and as a result, the chipping resistance and chipping resistance can be improved, but the strength of the (Al 1-X Cr X ) N layer Since the hardness is not sufficient, excellent chipping resistance and wear resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed intermittent cutting of alloy steel.
  • the coated tool described in Patent Document 4 is intended to improve wear resistance and oxidation resistance, but it is resistant to chipping under cutting conditions such as high-speed interrupted cutting.
  • the present inventors have at least a composite nitride or composite carbonitride of Cr and Al (hereinafter referred to as “(Cr, Al) (C, N)” or “(Cr 1 ⁇ x Al x ) (Which may be represented by (C y N 1-y ))), and a coated nitride or composite carbonitride of at least Ti and Al (hereinafter referred to as “(Ti, Chipping resistance and wear resistance of a coated tool formed with a hard coating layer containing “Al) (C, N)” or “(Ti 1- ⁇ Al ⁇ ) (may be represented by C ⁇ N 1- ⁇ )”
  • the hard coating layer having an average layer thickness of (Cr 1 ⁇ x Al x ) (C y N 1 ⁇ y ) layer or (Ti 1 ⁇ Al ⁇ ) (C ⁇ N 1 ⁇ ) layer is a tool. When it is formed in a columnar shape in the vertical direction on the substrate, it has high wear resistance.
  • the present inventors constituting the hard layer (Cr 1-x Al x) (C y N 1-y) layer, and, (Ti 1- ⁇ Al ⁇ ) (C ⁇ N 1- ⁇ )
  • the (Cr 1-x Al x ) (C y N 1-y ) layer and the (Ti 1- ⁇ Al ⁇ ) (C ⁇ N 1- ⁇ ) layer have Si, Zr, B (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer containing a kind of element selected from V, Cr and the like (hereinafter referred to as “Me”) is NaCl type.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al and is represented by a composition formula: (Cr 1-x Al x ) (C y N 1-y ) ,
  • the crystal in which the average orientation difference in the crystal grain is 2 degrees or more
  • wear resistance is improved by increasing the ratio of the ⁇ 100 ⁇ orientation on the surface side of the film as compared to the surface side of the tool base of the crystal grains.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr).
  • Me is a kind of element selected from Si, Zr, B, V, and Cr.
  • the crystal orientation of the crystal grains is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference within each crystal grain is determined, the average orientation difference within the crystal grain
  • the crystal grains exhibiting 2 degrees or more are present in an area ratio of 20% or more of the composite nitride or composite carbonitride layer
  • the crystal grains having a cubic structure can be distorted.
  • wear resistance is improved while maintaining toughness by increasing the ratio of the ⁇ 100 ⁇ orientation on the film surface side compared to the tool substrate surface side of the crystal grains.
  • a cutting tool having such a hard coating layer has improved chipping resistance and fracture resistance and exhibits excellent wear resistance over a long period of time.
  • the (Cr 1 ⁇ x Al x ) (C y N 1 ⁇ y ) layer and the (Ti 1 ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1 ⁇ ) layer configured as described above are
  • the film can be formed by the following chemical vapor deposition method in which the reaction gas composition is periodically changed on the tool substrate surface.
  • the chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , CrCl 3 , AlCl 3 , Al (CH 3 )
  • a gas group B composed of 3 , N 2 and H 2 is supplied into the reactor from the separate gas supply pipes, and the supply of the gas group A and the gas group B into the reactor is, for example, at a constant cycle. In such a time interval, the gas is supplied so that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B has a phase difference shorter than the gas supply time.
  • the reaction gas composition on the surface is changed temporally with gas group A (first reaction gas), mixed gas of gas group A and gas group B (second reaction gas), and gas group B (third reaction gas). Can do.
  • gas group A first reaction gas
  • mixed gas of gas group A and gas group B second reaction gas
  • gas group B third reaction gas
  • the gas supply port is rotated
  • the tool base is rotated
  • the tool base is reciprocated
  • the reaction gas composition on the surface of the tool base is changed to the gas group A as the main.
  • the mixed gas (first reaction gas), the mixed gas of gas group A and gas group B (second reaction gas), and the mixed gas mainly composed of gas group B (third reaction gas) are changed over time. But it can be realized.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 4.5 to 5.5% as the gas group A, and H 2 : 65 to 75. %, AlCl 3 : 0.6 to 0.9% as gas group B, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 ⁇ 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 750 to 900 ° C, supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to By performing the thermal CVD method for a predetermined time with a phase difference of 0.10 to 0.20 seconds for the supply of the gas group A and the gas group B for 0.25 seconds, (Cr 1-x Al x ) (C y N 1-y ) layer is formed.
  • the gas group A and the gas group B are supplied so as to have a difference in the time required to reach the tool base surface, and NH 3 as the nitrogen source gas in the gas group A is 4.5 to 5.5%.
  • the metal chloride raw material or carbon raw material AlCl 3 in the gas group B 0.6 to 0.9%, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0
  • the chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( A gas group B consisting of CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), N 2 , and H 2 is supplied into the reactor through a separate gas supply pipe.
  • the supply into the reactor is, for example, such that the gas flows at a constant cycle time interval for a time shorter than the cycle, and the gas supply for the gas group A and the gas group B is more than the gas supply time.
  • the reaction gas composition on the surface of the tool base is changed to gas group A (first reaction gas), gas mixture of gas group A and gas group B (second reaction gas), gas group B so that a phase difference of a short time occurs. (Third reaction gas) and time can be changed.
  • gas group A first reaction gas
  • gas mixture of gas group A and gas group B second reaction gas
  • gas group B second reaction gas
  • time can be changed.
  • the gas mixture (first reaction gas), the gas mixture of gas group A and gas group B (second reaction gas), and the gas mixture mainly consisting of gas group B (third reaction gas) can be changed over time. It is possible to realize.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 4.0 to 6.0% as the gas group A, H 2 : 65 to 75.
  • reaction atmosphere pressure 4.5 to 5.0 kPa
  • reaction atmosphere temperature 700 to 900 ° C
  • Supply period 1 to 5 seconds gas supply time per cycle 0.15 to 0.25 seconds, phase difference 0.10 to 0.20 seconds of supply of gas group A and gas group B, predetermined time, thermal CVD by performing law, to deposit a predetermined target layer thickness of (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer
  • the gas group A and the gas group B are supplied so that there is a difference in the time for reaching the tool base surface, and NH 3 as the nitrogen source gas in the gas group A is 4.0 to 6.0%.
  • the metal chloride raw material or carbon raw material AlCl 3 in the gas group B 0.6 to 0.9%
  • TiCl 4 0.2 to 0.3%
  • MeCl n (Me chloride) 0 .1 to 0.2%
  • Al (CH 3 ) 3 Set to 0 to 0.5%, so that local compositional unevenness, dislocations and point defects in the crystal grains are introduced locally in the crystal grains.
  • the degree of ⁇ 100 ⁇ orientation of the crystal grains on the tool base surface side and the coating surface side can be changed.
  • the hard coating layer is composed of a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 2 to 20 ⁇ m, or Ti, Al, and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer,
  • the composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure, (C) The crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure
  • the crystal grains are in an area ratio relative to the total area of the composite nitride or composite carbonitride layer. 20% or more (D) Further, the inclination angle formed by the normal line of the ⁇ 100 ⁇ plane which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grain is equal to the composite nitride or the composite carbonitride layer in the layer thickness direction. The measured tool base side area and the surface side area are measured separately, and the measured tilt angle within the range of 0 to 45 degrees with respect to the normal direction among the measured tilt angles is 0.25 degrees.
  • the surface-coated cutting tool N deg is characterized in that it is a M deg + 10 ⁇ M deg + 30%.
  • the composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is Composition formula: (Cr 1-x Al x ) (C y N 1-y )
  • the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x
  • the composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr).
  • the average content ratio ⁇ avg (where ⁇ avg , ⁇ avg , and ⁇ avg are atomic ratios) of the total amount of C and N in C and C are 0.60 ⁇ ⁇ avg and 0.005 ⁇ ⁇ avg , respectively.
  • the composite nitride or composite carbonitride layer contains at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl type face centered cubic structure. Thru
  • the composite nitride or the composite carbonitride layer is an individual crystal having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer when observed from the longitudinal section direction of the layer.
  • the surface-coated cutting according to any one of (1) to (4) above which has a columnar structure having an average particle width W of 0.1 to 2 ⁇ m and an average aspect ratio A of 2 to 10 tool.
  • the upper layer including at least an aluminum oxide layer is formed on the composite nitride or the composite carbonitride layer with a total average layer thickness of 1 to 25 ⁇ m.
  • the surface-coated cutting tool according to any one of (6).
  • the composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component, according to any one of (1) to (7), The manufacturing method of the surface coating cutting tool of description. " It has the characteristics.
  • the “inside crystal grain average orientation difference” means a GOS (Grain Orientation Spread) value described later.
  • the surface-coated cutting tool of the present invention which is an embodiment of the present invention
  • the surface-coated cutting tool of the present invention provided with a hard coating layer on the surface of the tool base.
  • the hard coating layer contains at least an average layer thickness 2 composite nitride of ⁇ 20 [mu] m of Cr and Al or composite carbonitride layer, the composition formula: (Cr 1-x Al x ) (C y N 1-y )
  • the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C satisfy 0.70 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively, and a cubic structure is formed in the crystal grains constituting the composite nitride or composite carbonitride layer.
  • the crystal orientation of the crystal grains, and the electron beam backscatter diffraction apparatus When the average orientation difference within each crystal grain is determined by analyzing from the longitudinal cross-sectional direction using the crystal, the crystal grain showing the average orientation difference within the crystal grain of 2 degrees or more is the composite nitride or the entire composite carbonitride layer
  • the composite nitride or the composite carbonitride layer has an inclination angle formed by the normal of the ⁇ 100 ⁇ plane, which is a crystal plane with respect to the normal direction of the tool base surface of the crystal grain.
  • the measured tilt angle is in the range of 0 to 45 degrees with respect to the normal direction among the measured tilt angles.
  • the angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, a) In the region on the tool base side, the sum of the frequencies existing in the range of 0 to 12 degrees is inclined.
  • the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is the inclination angle.
  • N deg is M deg +10 to M deg + 30%
  • the composite nitride or the composite carbonitride layer is observed from the cross section side of the film
  • the hard coating layer has an average layer thickness of 1 to 20 ⁇ m, preferably 2 to 20 ⁇ m of a composite nitride of Ti, Al, and Me or When it includes at least a composite carbonitride layer and is expressed by a composition formula: (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ), in particular, Al of the composite nitride or the composite carbonitride layer.
  • the average content ratio ⁇ avg in the total amount of Ti, Al, and Me of Ti and the average content ratio ⁇ avg in the total amount of Ti, Al, and Me of Me and the average content ratio ⁇ avg in the total amount of C and N of C (Where ⁇ avg , ⁇ av
  • the crystal grains constituting the composite nitride or composite carbonitride layer have a cubic structure, and the crystal orientation of the crystal grains is determined by using the electron backscatter diffraction apparatus in the longitudinal section direction.
  • the crystal grains having an average orientation difference in the crystal grains of 2 degrees or more are in an area ratio with respect to the entire composite nitride or composite carbonitride layer.
  • the tilt angle formed by the normal line of the ⁇ 100 ⁇ plane, which is a crystal plane with respect to the normal direction of the tool base surface of the crystal grains, is 20% or more in the thickness direction of the composite nitride or composite carbonitride layer.
  • the measurement is performed by dividing into a tool base side region and a surface side region which are equally divided, and a measured inclination angle within a range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles is 0.25 degrees.
  • N deg when the ratio of the Te and the N deg, N deg is M deg + 10 ⁇ M deg + 30%, the on composite nitride or composite carbonitride layer, when viewed from the film section side, composite nitride or complex carbonitride Crystal grains having a cubic structure by having a columnar structure with an average grain width W of 0.1 to 2 ⁇ m and an average aspect ratio A of 2 to 10 for individual grains having a cubic structure in the nitride layer Because of distortion in the crystal Hardness and toughness are improved in. As a result, the effect of improving the chipping resistance without impairing the wear resistance is exhibited. Compared with the conventional hard coating layer, it exhibits excellent cutting performance over a long period of use, and the length of the coated tool is improved. Life expectancy is achieved.
  • the present invention has a NaCl-type face-centered cubic structure (cubic crystal) of a composite nitride or composite carbonitride layer of Cr and Al, or a composite nitride or composite carbonitride layer of Ti, Al and Me.
  • the schematic explanatory drawing of the measuring method of the crystal grain average orientation difference of a crystal grain is shown.
  • the average in-grain misorientation (GOS) of individual grains having a NaCl type cubic structure 2 shows an example of a histogram for an area ratio of (value).
  • the vertical dotted line in the histogram indicates a boundary line having an average misorientation within the grain of 2 °, and the bar on the right side of the vertical dotted line in the figure has an average misorientation within the grain of 2 ° or more. The thing is shown. The same applies to FIGS. 4 to 6 below.
  • Comparative example In-grain average orientation difference (GOS) of individual grains having a NaCl-type cubic structure in the cross section of the composite nitride layer or composite carbonitride layer of Cr and Al constituting the hard coating layer of the coated tool 2 shows an example of a histogram for an area ratio of (value).
  • Intra-grain average orientation difference of individual crystal grains having a cubic structure of NaCl type in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al and Me constituting the hard coating layer of the coated tool of the present invention It shows an example of a histogram for the area ratio of (GOS value).
  • In-grain average orientation difference of individual grains having a cubic structure of NaCl type in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the comparative coated tool It shows an example of a histogram for the area ratio of (GOS value). It is an example of the inclination angle number distribution graph of the ⁇ 100 ⁇ plane created in the area
  • the count frequency is shown as a relative value normalized with the maximum count frequency as 100.
  • the definition of the total frequency is the same in FIGS. 8 to 10.
  • the count frequency is shown as a relative value normalized with the maximum count frequency as 100.
  • the hard coating layer possessed by the surface-coated cutting tool of the present invention is a chemical vapor-deposited compositional formula: (Cr 1-x Al x ) (C y N 1-y ) represented by a composite nitride or composite of Cr and Al Carbon nitride layer or chemical vapor deposited composition formula: (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) Ti, Al and Me composite nitride or composite carbon At least a nitride layer is included.
  • composite nitride or composite carbonitride layers of Cr and Al, and composite nitride or composite carbonitride layers of Ti, Al, and Me have high high temperature hardness and excellent wear resistance.
  • the average layer thickness is 2 to 20 ⁇ m, the effect is remarkably exhibited. The reason is that the average layer thickness is less than 2 ⁇ m in the composite nitride or composite carbonitride layer of Cr and Al, and less than 1 ⁇ m in the composite nitride or composite carbonitride layer of Ti, Al, and Me, Since the layer thickness is thin, sufficient wear resistance over a long period of use cannot be ensured.
  • the average layer thickness is set to 2 to 20 ⁇ m.
  • composition of composite nitride or composite carbonitride layer constituting hard coating layer (1) About the composite nitride or composite carbonitride layer of Cr and Al of the present invention When expressed by the composition formula: (Cr 1-x Al x ) (C y N 1-y ), the Cr and Al of Al
  • the average content ratio x avg in the total amount and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are atomic ratios) are respectively 0.70 ⁇ x avg ⁇ It is preferable to control to satisfy 0.95 and 0 ⁇ y avg ⁇ 0.005.
  • the average content ratio x avg of Al is less than 0.70, the composite nitride or composite carbonitride layer of Cr and Al is inferior in high temperature hardness and inferior in oxidation resistance. When subjected to high-speed intermittent cutting such as, wear resistance is not sufficient.
  • the average content ratio x avg of Al exceeds 0.95, the content ratio of Cr is relatively decreased, so that embrittlement is caused and chipping resistance is deteriorated. Therefore, the average Al content ratio x avg was determined to be 0.70 ⁇ x avg ⁇ 0.95.
  • the content ratio (atomic ratio) y avg of the C component contained in the composite nitride or the composite carbonitride layer is a minute amount in the range of 0 ⁇ y avg ⁇ 0.005
  • the composite nitride or the composite carbonitride The adhesion between the material layer and the tool substrate or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. Chipping property is improved.
  • the average content ratio y avg of the component C deviates from the range of 0 ⁇ y avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer decreases, so that the chipping resistance and chipping resistance are reversed.
  • the average content ratio y avg of the C component was set to 0 ⁇ y avg ⁇ 0.005.
  • ⁇ ⁇ avg 0.005 ⁇ ⁇ avg ⁇ 0.10, 0 ⁇ ⁇ avg ⁇ 0.005, 0.605 ⁇ ⁇ avg + ⁇ avg ⁇ 0.95 are preferably controlled.
  • the reason is that when the average Al content ratio ⁇ avg is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al and Me is inferior in hardness, so it is suitable for high-speed intermittent cutting of alloy steel and the like. If provided, the wear resistance is not sufficient.
  • the average content ratio ⁇ avg of Me when the average content ratio ⁇ avg of Me is less than 0.005, the composite nitride of Ti, Al, and Me or the composite carbonitride layer is inferior in hardness, and thus subjected to high-speed intermittent cutting of alloy steel and the like. In some cases, the wear resistance is not sufficient. On the other hand, if it exceeds 0.10, the segregation of Me to the grain boundaries, etc., the toughness of the composite nitride or composite carbonitride layer of Ti, Al, and Me will decrease, and it will be subjected to high-speed intermittent cutting of alloy steel, etc. The chipping resistance is not sufficient. Therefore, the average content ratio ⁇ avg of Me was defined as 0.005 ⁇ ⁇ avg ⁇ 0.10.
  • the sum ⁇ avg + ⁇ avg of the average content ratio ⁇ avg of Al and the average content ratio ⁇ avg of Me was determined as 0.605 ⁇ ⁇ avg + ⁇ avg ⁇ 0.95.
  • a specific component of Me a kind of element selected from Si, Zr, B, V, and Cr is used.
  • the Si component or the B component is used so that ⁇ avg is 0.005 or more as Me, the hardness of the composite nitride or composite carbonitride layer is improved, so that the wear resistance is improved.
  • the Zr component has the effect of strengthening the grain boundaries, and the V component improves toughness, so that the chipping resistance is further improved, and the Cr component improves oxidation resistance.
  • the tool life is expected to be even longer.
  • the average content ratio ⁇ avg exceeds 0.10, the average content ratio of the Al component and the Ti component is relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio of ⁇ avg exceeds 0.10.
  • the composite nitride or composite carbonitride layer when the average content ratio (atomic ratio) ⁇ avg of C contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ⁇ ⁇ avg ⁇ 0.005, the composite nitride or composite carbonitride The adhesion between the material layer and the tool base or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the fracture resistance and resistance of the composite nitride or composite carbonitride layer are reduced. Chipping property is improved.
  • the average content ratio ⁇ avg of C deviates from the range of 0 ⁇ ⁇ avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer decreases, so the chipping resistance and chipping resistance decrease on the contrary. Therefore, it is not preferable. Therefore, the average content ratio ⁇ avg of C was determined as 0 ⁇ ⁇ avg ⁇ 0.005.
  • Intra-grain average orientation difference of individual crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
  • an electron beam backscatter diffractometer is used to determine the average orientation difference in cubic Cr and Al composite nitride or composite carbonitride crystal grains, and cubic Ti, Al and Me.
  • the average orientation difference within the crystal grains of the composite nitride or composite carbonitride crystal grains is determined. Specifically, the surface polished surface is analyzed at intervals of 0.1 ⁇ m from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer, and as shown in FIG.
  • a grain boundary B A region surrounded by the grain boundary B is defined as one crystal grain.
  • a single pixel P having an orientation difference of 5 degrees or more with all adjacent pixels P is not a crystal grain, and a case where two or more pixels are connected is handled as a crystal grain.
  • the orientation difference between a certain pixel P in a crystal grain having a cubic crystal structure and all other pixels in the same crystal grain is calculated, and this is obtained as the orientation difference in the crystal grain, and is averaged.
  • Things are defined as GOS (Grain Orientation Spread) values. A schematic diagram is shown in FIG.
  • the “average orientation difference in crystal grains” means the GOS value.
  • the GOS value is expressed by a mathematical expression, the number of pixels in the same crystal grain is n, the numbers given to the different pixels P in the same crystal grain are i and j (where 1 ⁇ i, j ⁇ n),
  • the crystal orientation difference obtained from the crystal orientation at the pixel i and the crystal orientation at the pixel j can be expressed by the following equation, with ⁇ ij (i ⁇ j) .
  • the average orientation difference and GOS value within a crystal grain are values obtained by calculating the orientation difference between a pixel in a crystal grain and all other pixels in the same crystal grain, and averaging the values.
  • a large numerical value is obtained when there are many continuous orientation changes in the crystal grains.
  • In-grain average orientation difference (GOS value) from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer of Cr and Al, or the composite nitride or composite carbonitride layer of Ti, Al and Me
  • GOS value In-grain average orientation difference
  • the composite nitride or composite carbonitride Calculate the total number of pixels belonging to the crystal grains having a cubic structure constituting the layer, divide the average misorientation within the grain at intervals of 1 degree, and include the average misorientation within the grain within the range of the value
  • the total number of pixels P is divided and divided by the total number of pixels to obtain a histogram showing the area ratio of the average orientation difference in crystal grains. 3 to 6 show examples of histograms created in this way.
  • FIG. 3 is an example of a histogram of average orientation difference in crystal grains obtained for a crystal grain having a cubic structure of Cr and Al composite nitride or composite carbonitride layer of the cutting tool according to the present invention.
  • the area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is 20 It turns out that it is more than%.
  • FIG. 4 is an example of a histogram of the average orientation difference in the crystal grains obtained for the crystal grains having the cubic structure of the composite nitride or composite carbonitride layer of Cr and Al of the comparative tool.
  • GOS mean grain orientation difference
  • FIG. 5 is an example of a histogram of the average orientation difference in crystal grains obtained for crystal grains having a cubic structure of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the cutting tool according to the present invention.
  • the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is a crystal grain having a mean grain orientation difference (GOS) value of 2 degrees or more. It can be seen that the area ratio in the area is 20% or more.
  • FIG. 6 is an example of a histogram of average orientation difference in crystal grains obtained for a crystal grain having a cubic structure of a composite nitride or composite carbonitride layer of Ti, Al, and Me of a comparative tool.
  • the area ratio of the crystal grains having the average grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me Is less than 20%.
  • the cutting tool according to the present invention has a cubic structure that constitutes a composite nitride or composite carbonitride layer of Cr and Al, and a composite nitride or composite carbonitride layer of Ti, Al, and Me.
  • the crystal grains have a large variation in crystal orientation within the crystal grains as compared with the conventional ones. Therefore, the higher strain within the crystal grains contributes to the improvement of hardness and toughness. Then, the (Cr 1-x Al x ) (C y N 1-y ) layer or the (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) having the average orientation difference in crystal grains. )
  • Coated tools with a hard coating layer containing at least a layer on the tool substrate surface are excellent in high-speed intermittent cutting of alloy steel and the like that cause high heat generation and impact load on the cutting edge. It exhibits chipping resistance and wear resistance.
  • the crystal grains constituting the composite nitride or composite carbonitride layer of Al, Ti and Me of the surface-coated cutting tool of the present invention are compared with the crystal grains constituting the conventional TiAlN layer, Since the crystal orientation varies greatly within the crystal grains, that is, there is distortion, this contributes to the improvement of hardness and toughness.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 30 to 60%.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 35 to 55%.
  • the area ratio of the crystal grains in which the average orientation difference in the crystal grains is 2 degrees or more with respect to the area of the composite nitride or composite carbonitride layer is 40 to 50%.
  • Crystal orientation in the region on the tool base side and the region on the surface side when the composite nitride or composite carbonitride layer is divided into two equal parts in the layer thickness direction The crystal grains constituting the composite nitride or the composite carbonitride layer have a surface side facing the normal direction of the tool base surface, that is, the ⁇ 100 ⁇ plane, rather than the tool base surface (tool base) side.
  • a surface side facing the normal direction of the tool base surface that is, the ⁇ 100 ⁇ plane
  • the increase rate of the ⁇ 100 ⁇ plane orientation degree on the surface side relative to the tool base side is less than 10%, the increase rate of the ⁇ 100 ⁇ plane orientation degree is small and wear resistance is maintained while maintaining the toughness expected in the present invention.
  • the effect of improving the performance is not sufficiently achieved.
  • it exceeds 30% the epitaxial growth of crystals is hindered due to a rapid change in orientation, and the toughness is lowered.
  • the increase rate of the ⁇ 100 ⁇ plane orientation degree on the surface side is larger than 30%, and the ⁇ 100 ⁇ plane orientation degree on the tool base side exceeds 40%. It was found that the increase rate of the degree of ⁇ 100 ⁇ plane orientation on the surface side was less than 10%.
  • the tool base side obtained by dividing the inclination angle formed by the normal of the ⁇ 100 ⁇ plane, which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grains, into two equal parts in the layer thickness direction of the composite nitride or composite carbonitride layer
  • the measured inclination angle is in the range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles, and is divided into pitches of 0.25 degrees.
  • the frequencies existing in each section are tabulated, a) In the region on the tool base side, the total number of frequencies existing in the range of 0 to 12 degrees represents the ratio to the total frequency in the inclination angle frequency distribution.
  • N deg is defined to be M deg + 10 ⁇ M deg + 30%.
  • Crystal structure of hard coating layer When the hard coating layer has a cubic structure single phase, particularly excellent wear resistance is exhibited. Further, even when the hard coating layer is not a cubic structure single phase, the hard coating layer is analyzed at an interval of 0.1 ⁇ m from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the width is 10 ⁇ m.
  • the measurement from the longitudinal cross-sectional direction within the measurement range of the film thickness is carried out in five fields of view, and the total number of pixels belonging to the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer is obtained,
  • the area ratio of the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer was determined by the ratio to the total number of pixels measured in the hard coating layer in five fields of view, the cubic crystal
  • the area ratio of the crystal grains having a structure is less than 70%, a tendency to decrease the wear resistance is observed.
  • the area ratio is 70% or more, excellent chipping resistance and wear resistance are observed.
  • the phase of Ti, Al and Me composite nitride or composite carbonitride having a tetragonal structure is desirably 70 area% or more.
  • Average grain width W and average aspect ratio A of individual grains having a cubic structure in the composite nitride or composite carbonitride layer The average grain width W of the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer of Cr and Al, or in the composite nitride or composite carbonitride layer of Ti, Al, and Me is 0
  • the average particle width W is set to 0.1 to 2 ⁇ m because, if it is less than 0.1 ⁇ m, the proportion of the atoms belonging to the CrAlCN crystal grain boundary or TiAlMeCN crystal grain boundary in the atoms exposed on the coating layer surface is relatively As a result, the reactivity with the work material increases, and as a result, the wear resistance cannot be sufficiently exhibited, and if it exceeds 2 ⁇ m, the CrAlCN grain boundary in the entire coating layer, or When the proportion of atoms belonging to the TiAlMeCN crystal grain boundary is relatively small, the toughness is lowered and the chipping resistance cannot be sufficiently exhibited. Therefore, the average particle width W is preferably 0.1 to 2 ⁇ m.
  • the average aspect ratio A is less than 2, since the columnar structure is not sufficient, the equiaxed crystal having a small aspect ratio is dropped, and as a result, sufficient wear resistance cannot be exhibited. On the other hand, if the average aspect ratio A exceeds 10, the strength of the crystal grains themselves cannot be maintained, and the chipping resistance is lowered. Therefore, the average aspect ratio A is preferably 2-10.
  • the average aspect ratio A means the surface of the tool base when the longitudinal section of the hard coating layer is observed in a range of 100 ⁇ m in width and including the entire hard coating layer using a scanning electron microscope.
  • the composite nitride or composite carbonitride layer of Cr and Al or the composite nitride or composite carbonitride layer of Ti, Al, and Me possessed by the surface-coated cutting tool of the present invention alone is sufficient effect. It consists of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and a total of 0.1 to 20 ⁇ m When a lower layer having an average layer thickness is provided and / or when an upper layer including at least an aluminum oxide layer is provided with a total average layer thickness of 1 to 25 ⁇ m, this is in combination with the effects of these layers. Thus, superior characteristics can be created.
  • the total average layer of the lower layer If the thickness is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 ⁇ m, the effect of the upper layer is not sufficiently achieved. .
  • FIG. 1 A cross section of a composite nitride or composite carbonitride layer of Cr and Al or a composite nitride or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the surface-coated cutting tool of the present invention
  • FIG. 1 A diagrammatic representation is shown in FIG.
  • coated tool of the present invention will be specifically described with reference to examples.
  • a coated tool using a WC-based cemented carbide or TiCN-based cermet as a tool base will be described, but the same applies when a cubic boron nitride-based ultra-high pressure sintered body is used as the tool base.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • the coated tools 1 to 15 of the present invention were produced by forming a hard coating layer made of
  • the lower layer shown in Table 6 and / or the upper layer shown in Table 7 were formed under the formation conditions shown in Table 3.
  • the surfaces of the tool bases A to D are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Tables 3, 4 and 5 and the target layer thickness ( ⁇ m) shown in Table 8.
  • a hard coating layer including at least a composite nitride or composite carbonitride layer of Cr and Al was formed by vapor deposition.
  • a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Cr 1-x Al x ) (C y N 1-y ) layer.
  • Coated tools 1-13 were produced. Similar to the coated tools 6 to 13 of the present invention, the comparative coated tools 6 to 13 are formed with the lower layer shown in Table 6 and / or the upper layer shown in Table 8 under the forming conditions shown in Table 3. did.
  • the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
  • the arc ion plating conditions used for the vapor deposition in the reference example are as follows.
  • the tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus.
  • an Al—Cr alloy having a predetermined composition is arranged as a cathode electrode (evaporation source), (B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 ⁇ 2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is set to ⁇ 1000 V. A DC bias voltage is applied and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Cr alloy to generate an arc discharge, thereby generating Al and Cr ions in the apparatus, thereby providing a tool base.
  • the cross sections in the direction perpendicular to the tool base of the constituent layers of the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 are measured using a scanning electron microscope (5000 magnifications).
  • 5000 magnifications 5000 magnifications.
  • the average Al content x avg of the composite nitride or composite carbonitride layer was measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. Irradiation was performed from the sample surface side, and an average Al content ratio x avg was obtained from an average of 10 points of the analysis results of the obtained characteristic X-rays.
  • the average C content y avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average content ratio Y avg of C indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Cr and Al.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio.
  • the inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied.
  • the value was determined as yavg .
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, and adjacent pixels are analyzed. If there is a misorientation of 5 degrees or more between them, this is the grain boundary, and the region surrounded by the grain boundary is one crystal grain.
  • One pixel in the crystal grain and all other pixels in the same crystal grain The difference in orientation within the grain is calculated between 0 degree and less than 1 degree, 1 degree and less than 2 degree, 2 degree and less than 3 degree, 3 degree and less than 4 degree, and so on. The range of 10 degrees was divided and mapped every 1 degree.
  • FIG. 3 shows an example of a histogram of the average orientation difference in crystal grains (that is, the GOS value) measured for the coated tool 5 of the present invention
  • FIG. 4 shows the average orientation difference in crystal grains measured for the comparative coated tool 2. An example of the histogram is shown.
  • a column of a field emission scanning electron microscope with a cross section of the hard coating layer made of a composite carbonitride layer of Cr and Al having a cubic structure as a polished surface An electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees is divided into a region on the surface (interface) side of the tool base and the region on the surface side, which is divided into two in the layer thickness direction.
  • an irradiation current of 1 nA within the measurement range of the tool base side area and the surface side area in the direction perpendicular to the tool base, the width of 10 ⁇ m in the horizontal direction with respect to the tool base is 0.1 ⁇ m / step for five fields of view.
  • FIG. 7 shows an example of the inclination angle number distribution measured for the region on the tool base side of the hard coating layer composed of the composite carbonitride layer of Cr and Al of the coated tool of the present invention
  • region of the surface side of the hard coating layer which consists of a composite carbonitride layer of Cr and Al of a coating tool is shown. Furthermore, analysis was performed at intervals of 0.1 ⁇ m from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 ⁇ m, and the vertical measurement within the measurement range of the film thickness was performed in five fields of view.
  • the total number of pixels belonging to crystal grains having a cubic structure constituting the nitride or composite carbonitride layer is obtained, and the composite nitridation is performed according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view.
  • the area ratio of crystal grains having a cubic structure constituting the product or composite carbonitride layer was determined.
  • the coated tools 1 to 15 according to the present invention, the comparative coated tools 1 to 13 and the reference coated tool are used in the state where each of the various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig.
  • the following dry dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 9.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: Block material of JIS / S55C width 100mm, length 400mm, Rotational speed: 866 min ⁇ 1 Cutting speed: 340 m / min, Cutting depth: 1.5 mm, Single blade feed amount: 0.10 mm / tooth, Cutting time: 8 minutes.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 ⁇ m are prepared.
  • Compounded in the formulation shown in Table 10 added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa.
  • vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm.
  • Tool bases ⁇ to ⁇ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • At least (Cr 1 the -x Al x) (that C y N 1-y) layer is deposited formed at the target layer thickness of the hard coating layer containing was prepared present invention coated tool 16-30 shown in Table 13.
  • the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.
  • Comparative coating tools 16 to 28 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
  • the comparative coated tools 19 to 28 are formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the forming conditions shown in Table 3. did.
  • the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base ⁇ and the tool base ⁇ by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
  • the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.
  • the cross-sections of the constituent layers of the inventive coated tools 16 to 30, the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 were measured using a scanning electron microscope (magnification 5000 times), and 5 in the observation field of view.
  • a scanning electron microscope magnification 5000 times
  • 5 in the observation field of view When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target layer thickness shown in Table 13 and Table 14.
  • the crystal orientation of the individual crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in crystal grains and the orientation difference in crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained. The results are shown in Table 13 and Table 14.
  • a column of a field emission scanning electron microscope with a cross section of the hard coating layer made of a composite carbonitride layer of Cr and Al having a cubic structure as a polished surface An electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees is divided into a region on the surface (interface) side of the tool base and the region on the surface side, which is divided into two in the layer thickness direction.
  • Cutting condition 2 Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves, Cutting speed: 410 m / min, Cutting depth: 1.0 mm, Feed: 0.22mm / rev, Cutting time: 5 minutes (Normal cutting speed is 200 m / min). Table 15 shows the results of the cutting test.
  • the coated tool of the present invention is a crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Al and Cr constituting the hard coating layer.
  • the tilt angle formed by the normal of the ⁇ 100 ⁇ plane in the tool base side region and the surface side region of the crystal grain has a predetermined tilt angle number distribution.
  • the distortion of the crystal grains improves the hardness and improves the toughness while maintaining high wear resistance.
  • even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
  • the crystal grains having the cubic structure constituting the composite nitride of Al and Cr or the composite carbonitride layer constituting the hard coating layer there is no predetermined intra-grain average orientation difference.
  • the reference coated tools 14, 15, 29, and 30 are accompanied by high heat generation, and when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, shorting occurs due to chipping, chipping, etc. It is clear that the life is reached in time.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 16. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 17, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base H made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases E to H, and the formation conditions shown in Tables 19 and 20, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( CH 3 ) 3 , AlCl 3 , MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), gas group B consisting of N 2 , H 2 , and supply of each gas
  • the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set to NH 3 : 4.0 to 6.0%, H 2 : 65 to 75%, gas group As B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, SiCl 4 , ZrCl 4 , BCl
  • the coated tools 31 to 45 of the present invention For comparison purposes, at least on the surfaces of the tool bases E to H, at the conditions shown in Tables 19 and 20 and the target layer thickness ( ⁇ m) shown in Table 23, at least as in the coated tools 31 to 45 of the present invention.
  • comparative coated tools 31 to 45 were produced. Similar to the coated tools 36 to 43 of the present invention, the comparative coated tools 36 to 43 are formed with the lower layer shown in Table 21 and / or the upper layer shown in Table 23 under the forming conditions shown in Table 18. did.
  • the cross-sections of the constituent layers of the inventive coated tools 31 to 45 and comparative coated tools 31 to 45 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times), and within the observation field of view.
  • the average layer thickness was obtained by measuring and averaging the five layer thicknesses, all showed an average layer thickness substantially the same as the target layer thickness shown in Table 21 to Table 23.
  • the average Al content ratio and the average Me content ratio of the composite nitride or composite carbonitride layer were measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. A line was irradiated from the sample surface side, and an average Al content rate ⁇ avg of Al and an average content rate ⁇ avg of Me were obtained from an average of 10 points of the analysis result of the obtained characteristic X-rays.
  • the average C content ⁇ avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average C content ratio ⁇ avg represents an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti, Al, and Me.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio.
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, If there is an orientation difference of 5 degrees or more between the pixels to be used as a grain boundary, and the region surrounded by the grain boundary is a single crystal grain, one pixel in the crystal grain and all the other in the same crystal grain
  • the crystal grain orientation difference is calculated between the pixels, and the crystal grain orientation difference is 0 degree or more and less than 1 degree, 1 degree or more and less than 2 degree, 2 degree or more and less than 3 degree, 3 degree or more and less than 4 degree, and so on.
  • FIG. 5 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool of the present invention
  • FIG. 6 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coated tool.
  • a field emission scanning electron microscope with a cross section of the hard coating layer composed of a composite carbonitride layer of Ti, Al, and Me having a cubic structure is used as a polished surface. Acceleration voltage of 10 kV at an incident angle of 70 degrees is set in a lens barrel and analyzed separately for the tool base surface (tool base) side region and the surface side region obtained by dividing the polishing surface into two equal parts in the layer thickness direction.
  • the width of the tool substrate in the horizontal direction is 10 ⁇ m and 0.1 ⁇ m for five fields of view.
  • Is irradiated with individual crystal grains having a cubic crystal lattice existing in the measurement range at an interval of / step, and the normal of the tool base surface (the tool base surface on the cross-section polished surface) is obtained using an electron beam backscatter diffraction image apparatus.
  • the inclination angle formed by the normal line of the ⁇ 100 ⁇ plane, which is the crystal plane of the crystal grain, is measured.
  • the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to 0. .Division for each pitch of 25 degrees, and by counting the frequencies existing in each division, the angle range where the highest peak exists in the slope angle division in the surface side region and within the range of 0-12 degrees The ratios M deg and N deg of the existing frequencies were obtained. The results are shown in Table 22 and Table 23.
  • FIG. 9 shows an example of an inclination angle number distribution measured for a region on the tool base side of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the coated tool of the present invention.
  • FIG. 10 shows an example of an inclination angle number distribution measured for a region on the surface side of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the coated tool of the present invention. Furthermore, analysis was performed at intervals of 0.1 ⁇ m from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 ⁇ m, and the vertical measurement within the measurement range of the film thickness was performed in five fields of view.
  • the total number of pixels belonging to crystal grains having a cubic structure constituting the nitride or composite carbonitride layer is obtained, and the composite nitridation is performed according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view.
  • the area ratio of crystal grains having a cubic structure constituting the product or composite carbonitride layer was determined. The results are shown in Table 22 and Table 23.
  • the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 using a scanning electron microscope (magnification 5000 times or 20000 times) from the cross-sectional direction perpendicular to the tool substrate, the tool substrate surface and the horizontal direction to configure the Ti composite nitride of Al and Me or composite carbonitride layer present within the range of length 10 ⁇ m (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer of Each crystal grain is observed from the cross section side of the film perpendicular to the surface of the tool substrate, and the particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured.
  • a scanning electron microscope magnification 5000 times or 20000 times
  • the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 in the state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig will be described below.
  • the dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 24.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: Block material of JIS / S55C width 100mm, length 400mm, Rotational speed: 892 min ⁇ 1 Cutting speed: 350 m / min, Cutting depth: 1.5 mm, Single blade feed: 0.1 mm / tooth, Cutting time: 8 minutes.
  • vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm.
  • Tool bases ⁇ to ⁇ made of a WC-base cemented carbide having an insert shape of CNMG120212 were produced.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 26, wet-mixed for 24 hours with a ball mill, dried, and then pressed into green compacts at a pressure of 98 MPa.
  • the coated tools 46 to 60 of the present invention shown in Table 28 were manufactured by vapor-depositing a hard coating layer including a ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer with a target layer thickness.
  • the inventive coated tools 49 to 58 the lower layer shown in Table 27 and / or the upper layer shown in Table 28 were formed under the formation conditions shown in Table 18.
  • the coated tool of the present invention was used under the conditions shown in Tables 19 and 20 and the target layer thicknesses shown in Table 29 using a chemical vapor deposition apparatus on the surfaces of the tool bases ⁇ to ⁇ and the tool base ⁇ .
  • Comparative coating tools 46 to 60 shown in Table 29 were manufactured by vapor-depositing a hard coating layer in the same manner as described above.
  • the comparative coated tools 49 to 58 are formed with the lower layer shown in Table 27 and / or the upper layer shown in Table 29 under the forming conditions shown in Table 18. did.
  • each constituent layer of the coated tool 46 to 60 of the present invention and the comparative coated tool 46 to 60 is measured using a scanning electron microscope (magnification 5000 times), and the layer thickness at five points in the observation field is measured.
  • the average layer thickness was obtained on average, all showed the same average layer thickness as the target layer thicknesses shown in Tables 27 to 29.
  • the average Al content ratio ⁇ avg the average Me content ratio ⁇ avg , average C content ratio ⁇ avg , inclination angle number distribution M deg on the tool base side, inclination angle number distribution N deg on the surface side, range of angles where the highest peak exists in the inclination angle section in the region on the surface side, crystal grains
  • the average grain width W, the average aspect ratio A, and the area ratio of the cubic crystal phase in the crystal grains were determined. The results are shown in Table 28 and Table 29.
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer.
  • Intragranular orientation difference is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. Mapped. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in the crystal grains and the orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 28 and Table 29.
  • coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 are shown below in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig.
  • a dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
  • Cutting condition 1 Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars, Cutting speed: 440 m / min, Incision: 1.5mm, Feed: 0.2mm / rev, Cutting time: 5 minutes (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves, Cutting speed: 420 m / min, Cutting depth: 1.0 mm, Feed: 0.2mm / rev, Cutting time: 5 minutes (Normal cutting speed is 250 m / min), Table 30 shows the results of the cutting test.
  • the coated tool of the present invention has a crystal structure having a cubic structure constituting a composite nitride or composite carbonitride layer of Al, Ti, and Me constituting the hard coating layer.
  • the hardness is improved due to the distortion of the crystal grains, and high wear resistance is achieved.
  • toughness is improved.
  • the comparative coated tools 31 to 45 and 46 to 60 which are not used are accompanied by high heat generation, and when used for high-speed intermittent cutting in which intermittent and impact high loads act on the cutting edge, chipping, chipping, etc. occur. It is clear that the lifetime is reached in a short time.
  • the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Abstract

In this surface-coated cutting tool, a hard coating layer (2) includes at least a layer (3) of a composite nitride or composite carbonitride represented by the compositional formula (Cr1-xAlx)(CyN1-y), or a layer (3) of a composite nitride or composite carbonitride represented by the compositional formula (Ti1-α-βAlαMeβ)(CγN1-γ). Crystal grains which form the layer (3) of the composite nitride or composite carbonitride include crystal grains which have an NaCl-type face-centered cubic structure. The crystal grains having the NaCl-type face-centered cubic structure have a prescribed average crystal grain orientation spread and inclination angle frequency distribution.

Description

表面被覆切削工具およびその製造方法Surface-coated cutting tool and manufacturing method thereof
 本発明は、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
 本願は、2015年10月30日に日本に出願された特願2015-214521号、2015年10月30日に日本に出願された特願2015-214525号、および2016年10月28日に日本に出願された特願2016-211413号に基づき優先権を主張し、その内容をここに援用する。
The present invention has high heat generation such as carbon steel, alloy steel, cast iron and the like, and has high chipping resistance with a hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use.
This application includes Japanese Patent Application No. 2015-214521 filed in Japan on October 30, 2015, Japanese Patent Application No. 2015-214525 filed in Japan on October 30, 2015, and Japanese Patent Application No. 2015-214525 on October 28, 2016. Priority is claimed based on Japanese Patent Application No. 2016-211143 filed in Japan, the contents of which are incorporated herein by reference.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Cr-Al系やTi-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
 ただ、前記従来のCr-Al系やTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body A coated tool in which a Cr—Al-based or Ti—Al-based composite nitride layer is coated as a hard coating layer on the surface of a tool base (hereinafter collectively referred to as a tool base) by physical vapor deposition. These are known and are known to exhibit excellent wear resistance.
However, the above-mentioned coated tools coated with the conventional Cr-Al or Ti-Al composite nitride layer have relatively high wear resistance, but abnormalities such as chipping when used under high-speed interrupted cutting conditions. Various proposals for improvement of the hard coating layer have been made because of easy wear.
 例えば、特許文献1には、ステンレス鋼やTi合金等の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるために、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の平均層厚を有し、かつ、Ti1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合(原子比)で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶構造を有するTiAl化合物で構成し、中間層は、所定の平均層厚を有し、かつ、Cr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合(原子比)で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶構造を有するCrAl化合物で構成し、上部層を、所定の平均層厚を有するAlで構成することによって、下部層と上部層の密着強度を向上させ、これによって、耐チッピング性および耐摩耗性を向上させることが提案されている。 For example, Patent Document 1 discloses a hard coating composed of a lower layer, an intermediate layer, and an upper layer on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting such as stainless steel and Ti alloy. The lower layer has a predetermined average layer thickness, and includes a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The content ratio (atomic ratio) of 0.65 ≦ X ≦ 0.95) is composed of a TiAl compound having a cubic structure consisting of one or more layers, and the intermediate layer has a predetermined average layer thickness. And a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, a Cr 1-Y Al Y CN layer (Y is the Al content (atomic ratio), and 0.60 ≦ Y ≦ 0.90) CrAl having a cubic structure consisting of one or more layers Composed of objects, improving the upper layer, by configuring in Al 2 O 3 having a predetermined average thickness, to improve the adhesion strength of the lower layer and the upper layer, thereby, the chipping resistance and abrasion resistance It has been proposed to let
 また、特許文献2には、析出硬化系ステンレス鋼やインコネル等の耐熱合金の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるため、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の一層平均層厚のTi1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合を示し原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成し、中間層は、所定の一層平均層厚のCr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合を示し原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成し、また、上部層は所定の孔径と空孔密度の微小空孔と平均層厚を有するAlで構成することにより、下部層と上部層の密着強度を向上させるとともに、上部層を所定の孔径と空孔密度の微小空孔を有するAl層とすることにより、機械的、熱的衝撃の緩和を図り、もって、耐チッピング性および耐摩耗性を向上させることが提案されている。 Patent Document 2 discloses that a lower layer, an intermediate layer, and an upper layer are formed on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting of a heat-resistant alloy such as precipitation hardened stainless steel and Inconel. And a lower layer is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The atomic ratio is 0.65 ≦ X ≦ 0.95) and is composed of a Ti compound having a cubic crystal structure consisting of one layer or two or more layers, and the intermediate layer is a predetermined single layer average layer Thick Cr 1-Y Al Y N layer, Cr 1-Y Al Y C layer, Cr 1-Y Al Y CN layer (Y represents the Al content and represents the atomic ratio, 0.60 ≦ Y ≦ 0. 90) having a cubic crystal structure consisting of one or more layers. constituted by r compound, by the upper layer composed of Al 2 O 3 with an average layer thickness with a predetermined pore size and pore density micro pores of, improves the adhesion strength of the lower layer and the upper layer The upper layer is made of an Al 2 O 3 layer having micropores having a predetermined pore diameter and pore density, thereby reducing mechanical and thermal shocks, thereby improving chipping resistance and wear resistance. It has been proposed.
 さらに、特許文献3には、切刃に対して高負荷が作用する鋼や鋳鉄の重切削加工における硬質被覆層の耐欠損性を高めるために、工具基体表面に、(Al1-XCr)N(ただし、Xは原子比で、X=0.3~0.6)層からなる硬質被覆層を設け、工具基体の表面研磨面の法線に対して、{100}面の法線がなす傾斜角を測定して作成した傾斜角度数分布グラフにおいて、30~40度の傾斜角区分に最高ピークが存在し、その度数合計が、全体の60%以上であり、また、表面研磨面の法線に対して、{112}面の法線がなす傾斜角を測定して作成した構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、その分布割合が全体の50%以上である結晶配向性と構成原子共有格子点分布形態を形成することにより、(Al1-XCr)N層の高温強度を向上させ、もって、重切削加工における硬質被覆層の耐欠損性を向上させることが提案されている。 Further, in Patent Document 3, in order to improve the fracture resistance of the hard coating layer in heavy cutting of steel or cast iron in which a high load acts on the cutting edge, (Al 1-X Cr X ) N (where X is an atomic ratio, X = 0.3 to 0.6) is provided with a hard coating layer, and the normal of the {100} plane with respect to the normal of the surface polished surface of the tool substrate In the inclination angle frequency distribution graph created by measuring the inclination angle formed by, the highest peak exists in the inclination angle section of 30 to 40 degrees, the total frequency is 60% or more of the whole, and the surface polished surface In the constituent atomic shared lattice distribution graph created by measuring the inclination angle formed by the normal of the {112} plane with respect to the normal of Σ3, the highest peak exists at Σ3, and the distribution ratio is 50% or more of the whole By forming the crystal orientation and constituent atomic shared lattice distribution form (Al 1-X Cr X) to improve the high temperature strength of the N layer, has been, it has been proposed to improve the fracture resistance of the hard coating layer in the heavy cutting.
 また、特許文献4には、工具基体と、その基体上に形成された硬質被覆層とを備える表面被覆切削工具であって、硬質被覆層は、AlまたはCrのいずれか一方または両方の元素と、周期律表4a,5a,6a族元素およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことにより、硬質被覆層の耐摩耗性と耐酸化性とを飛躍的に向上することが開示されている。 Patent Document 4 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr. A compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
 また、例えば、特許文献5には、TiCl、AlCl、NHの混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65~0.95である(Ti1-xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであって、xの値を0.65~0.95まで高めた(Ti1-xAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。 Further, for example, Patent Document 5 discloses that the value of the Al content ratio x is 0. by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 . It is described that a (Ti 1-x Al x ) N layer having a thickness of 65 to 0.95 can be formed by vapor deposition. In this document, an Al 2 O layer is further formed on the (Ti 1-x Al x ) N layer. The formation of a (Ti 1-x Al x ) N layer with the aim of covering three layers and thereby increasing the thermal insulation effect, with the value of x increased from 0.65 to 0.95, There is no disclosure up to what point it has on cutting performance.
 また、特許文献6には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶結晶構造あるいは六方晶結晶構造を含む立方晶結晶構造の(Ti1-xAl)N層(但し、xは0.65~0.9)を外層として被覆するとともに、該外層に100~1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, in Patent Document 6, a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition. Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
日本国特開2014-208394号公報(A)Japanese Unexamined Patent Publication No. 2014-208394 (A) 日本国特開2014-198362号公報(A)Japanese Unexamined Patent Publication No. 2014-198362 (A) 日本国特開2009-56539号公報(A)Japanese Unexamined Patent Publication No. 2009-56539 (A) 日本国特開2006-82207号公報(A)Japanese Unexamined Patent Publication No. 2006-82207 (A) 日本国特表2011-516722号公報(A)Japan Special Table 2011-516722 Publication (A) 日本国特表2011-513594号公報(A)Japanese National Table 2011-513594 (A)
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
 しかし、前記特許文献1、2に記載されている被覆工具は、硬質被覆層の中間層として、CrAl化合物、Cr化合物を介在形成することにより、下部層と上部層の密着強度を向上させ、耐チッピング性の改善を図っているものの、CrAl化合物、Cr化合物自体の強度・硬さが十分でないため、高速断続切削加工に供した場合には、耐チッピング性、耐摩耗性が十分であるとはいえない。
 また、前記特許文献3に記載されている被覆工具においては、(Al1-XCr)Nからなる硬質被覆層のCr含有割合を調整し、また、結晶配向性と構成原子共有格子点分布形態を制御することにより、硬質被覆層の強度を向上させることができ、その結果、耐チッピング性、耐欠損性を高めることはできるものの、やはり(Al1-XCr)N層の強度・硬さが十分でないため、長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮することはできず、合金鋼の高速断続切削においては工具寿命が短命であるという問題があった。
 また、前記特許文献4に記載されている被覆工具は、耐摩耗性、耐酸化特性を向上させることを意図しているが、高速断続切削等の衝撃が伴うような切削条件下では、耐チッピング性が十分でないという課題があった。
 また、前記特許文献5に記載されている化学蒸着法で蒸着形成した(Ti1-xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、靭性に劣るという課題があった。
 さらに、前記特許文献6に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
 そこで、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、すぐれた耐摩耗性を相兼ね備える被覆工具が求められている。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, the coated tools described in Patent Documents 1 and 2 improve the adhesion strength between the lower layer and the upper layer by interposing and forming a CrAl compound and a Cr compound as an intermediate layer of the hard coating layer. Although the chipping property is improved, the strength and hardness of the CrAl compound and the Cr compound itself are not sufficient, so that when used for high-speed intermittent cutting, the chipping resistance and wear resistance are sufficient. I can't say that.
In the coated tool described in Patent Document 3, the Cr content ratio of the hard coating layer made of (Al 1-X Cr X ) N is adjusted, and the crystal orientation and constituent atomic shared lattice point distribution are adjusted. By controlling the form, the strength of the hard coating layer can be improved, and as a result, the chipping resistance and chipping resistance can be improved, but the strength of the (Al 1-X Cr X ) N layer Since the hardness is not sufficient, excellent chipping resistance and wear resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed intermittent cutting of alloy steel.
Further, the coated tool described in Patent Document 4 is intended to improve wear resistance and oxidation resistance, but it is resistant to chipping under cutting conditions such as high-speed interrupted cutting. There was a problem that the sex was not enough.
In addition, for the (Ti 1-x Al x ) N layer formed by chemical vapor deposition described in Patent Document 5, the Al content ratio x can be increased and a cubic structure can be formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the toughness is inferior.
Furthermore, although the coated tool described in Patent Document 6 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Therefore, with high heat generation such as carbon steel, alloy steel, cast iron, etc., high-speed intermittent cutting with impact load on the cutting blade, chipping resistance with excellent hard coating layer, excellent wear resistance There is a need for a coated tool having both
 そこで、本発明者らは、前述の観点から、少なくともCrとAlの複合窒化物または複合炭窒化物(以下、「(Cr,Al)(C,N)」あるいは「(Cr1-xAl)(C1-y)」で示すことがある)を含む硬質被覆層を蒸着形成した被覆工具、および、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1-αAlα)(Cγ1-γ)」で示すことがある)を含む硬質被覆層を形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Cr and Al (hereinafter referred to as “(Cr, Al) (C, N)” or “(Cr 1−x Al x ) (Which may be represented by (C y N 1-y ))), and a coated nitride or composite carbonitride of at least Ti and Al (hereinafter referred to as “(Ti, Chipping resistance and wear resistance of a coated tool formed with a hard coating layer containing “Al) (C, N)” or “(Ti 1-α Al α ) (may be represented by C γ N 1-γ )” As a result of intensive studies to improve the sexiness, the following findings were obtained.
 即ち、従来の少なくとも1層の(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の異方性が高くなるほど(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
 そこで、本発明者らは、硬質被覆層を構成する(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層について鋭意研究したところ、(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層にSi、Zr、B、V、Crの中から選ばれる一種の元素(以下、「Me」で示す。)を含有させた(Ti1-α―βAlαMeβ)(Cγ1-γ)層がNaCl型の面心立方構造 (以下、単に、「立方晶構造」という場合もある)を有する結晶粒を含有し該立方晶構造を有する結晶粒の結晶粒内平均方位差を2度以上とするという全く新規な着想により、立方晶構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, it includes at least one conventional (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer and has a predetermined The hard coating layer having an average layer thickness of (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer is a tool. When it is formed in a columnar shape in the vertical direction on the substrate, it has high wear resistance. On the other hand, as the anisotropy of the (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer increases, (Cr 1 -X Al x ) (C y N 1-y ) layer or (Ti 1-α Al α ) (C γ N 1-γ ) layer has decreased toughness, resulting in chipping resistance and chipping resistance. As a result, the wear resistance could not be exhibited over a long period of use, and the tool life was not satisfactory.
Accordingly, the present inventors, constituting the hard layer (Cr 1-x Al x) (C y N 1-y) layer, and, (Ti 1-α Al α ) (C γ N 1-γ) As a result of intensive research on the layers, it was found that the (Cr 1-x Al x ) (C y N 1-y ) layer and the (Ti 1-α Al α ) (C γ N 1-γ ) layer have Si, Zr, B (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer containing a kind of element selected from V, Cr and the like (hereinafter referred to as “Me”) is NaCl type. Including crystal grains having a face-centered cubic structure (hereinafter, sometimes simply referred to as “cubic structure”), and the average orientation difference in the crystal grains of the crystal grains having the cubic structure is set to 2 degrees or more. Through a new concept, we succeeded in producing strain in the crystal grains having a cubic structure and increasing both hardness and toughness. As a result, the inventors have found a novel finding that the chipping resistance and chipping resistance of the hard coating layer can be improved.
 さらに、柱状の結晶粒において、工具基体表面側に比べ皮膜表面側の方が、{100}配向の割合を高くすることにより、靱性を維持しつつ、耐摩耗性を更に向上させるという新規な知見を見出した。 Furthermore, in the columnar crystal grains, a novel finding that the film surface side further improves the wear resistance while maintaining the toughness by increasing the ratio of the {100} orientation on the tool base surface side compared to the tool base surface side. I found.
 具体的には、
(1)硬質被覆層が、CrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせることができる。さらに、結晶粒の工具基体表面側に比べ皮膜表面側の方の{100}配向の割合を高くすることにより、耐摩耗性が向上する。その結果、このような硬質被覆層を形成した切削工具は、耐摩耗性、耐チッピング性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
 また、
(2)硬質被覆層が、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavgg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせることができる。さらに、結晶粒の工具基体表面側に比べ皮膜表面側の方の{100}配向の割合を高くすることにより、靭性を維持しつつ、耐摩耗性が向上する。その結果、このような硬質被覆層を形成した切削工具は、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
In particular,
(1) Particularly when the hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al and is represented by a composition formula: (Cr 1-x Al x ) (C y N 1-y ) , The average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are atomic ratios), respectively, The crystal grains satisfying 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005 and having a cubic structure exist in the crystal grains constituting the composite nitride or composite carbonitride layer. When the crystal orientation of a grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference in each crystal grain is obtained, the crystal in which the average orientation difference in the crystal grain is 2 degrees or more By the presence of 20% or more of grains in the area ratio of the composite nitride or composite carbonitride layer, It can cause distortion in the crystal grains having a cubic crystal structure. Furthermore, wear resistance is improved by increasing the ratio of the {100} orientation on the surface side of the film as compared to the surface side of the tool base of the crystal grains. As a result, it has been found that a cutting tool having such a hard coating layer has improved wear resistance and chipping resistance and exhibits excellent wear resistance over a long period of time.
Also,
(2) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr). When expressed by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), in particular, the average content ratios α avg and Me in the total amount of Ti of Ti, Al, and Me average content accounted for the total amount of Ti, Al and Me beta avg and C of C and average proportion occupied in the total amount of N gamma avg (where, α avg, β avgg, γ avg any atomic ratio) 0.60 ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95, respectively, A cubic structure is formed in the grains constituting the composite carbonitride layer. When the crystal orientation of the crystal grains is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference within each crystal grain is determined, the average orientation difference within the crystal grain When the crystal grains exhibiting 2 degrees or more are present in an area ratio of 20% or more of the composite nitride or composite carbonitride layer, the crystal grains having a cubic structure can be distorted. Furthermore, wear resistance is improved while maintaining toughness by increasing the ratio of the {100} orientation on the film surface side compared to the tool substrate surface side of the crystal grains. As a result, it has been found that a cutting tool having such a hard coating layer has improved chipping resistance and fracture resistance and exhibits excellent wear resistance over a long period of time.
 そして、前述のような構成の(Cr1-xAl)(C1-y)層、および、(Ti1-α―βAlαMeβ)(Cγ1-γ)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。 The (Cr 1−x Al x ) (C y N 1−y ) layer and the (Ti 1−α−β Al α Me β ) (C γ N 1−γ ) layer configured as described above are For example, the film can be formed by the following chemical vapor deposition method in which the reaction gas composition is periodically changed on the tool substrate surface.
(1)(Cr1-xAl)(C1-y)層について
 用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、CrCl、AlCl、Al(CH、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、ガス群A(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群B(第三反応ガス)と時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、ガス群Aを主とする混合ガス(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群Bを主とする混合ガス(第三反応ガス)、と時間的に変化させることでも実現する事が可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:4.5~5.5%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:750~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Cr1-xAl)(C1-y)層を成膜する。
(1) Regarding the (Cr 1-x Al x ) (C y N 1-y ) Layer The chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , CrCl 3 , AlCl 3 , Al (CH 3 ) A gas group B composed of 3 , N 2 and H 2 is supplied into the reactor from the separate gas supply pipes, and the supply of the gas group A and the gas group B into the reactor is, for example, at a constant cycle. In such a time interval, the gas is supplied so that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B has a phase difference shorter than the gas supply time. The reaction gas composition on the surface is changed temporally with gas group A (first reaction gas), mixed gas of gas group A and gas group B (second reaction gas), and gas group B (third reaction gas). Can do. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as a gas supply method, for example, the gas supply port is rotated, the tool base is rotated, the tool base is reciprocated, the reaction gas composition on the surface of the tool base is changed to the gas group A as the main. The mixed gas (first reaction gas), the mixed gas of gas group A and gas group B (second reaction gas), and the mixed gas mainly composed of gas group B (third reaction gas) are changed over time. But it can be realized.
The reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 4.5 to 5.5% as the gas group A, and H 2 : 65 to 75. %, AlCl 3 : 0.6 to 0.9% as gas group B, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 ∼15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 750 to 900 ° C, supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to By performing the thermal CVD method for a predetermined time with a phase difference of 0.10 to 0.20 seconds for the supply of the gas group A and the gas group B for 0.25 seconds, (Cr 1-x Al x ) (C y N 1-y ) layer is formed.
 そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH:4.5~5.5%と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{100}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 Then, as described above, the gas group A and the gas group B are supplied so as to have a difference in the time required to reach the tool base surface, and NH 3 as the nitrogen source gas in the gas group A is 4.5 to 5.5%. The metal chloride raw material or carbon raw material AlCl 3 in the gas group B: 0.6 to 0.9%, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0 By setting the ratio to 5%, local unevenness of the composition in the crystal grains, local distortion of the crystal lattice due to the introduction of dislocations and point defects, and the surface side of the tool base and the film surface of the crystal grains are formed. The degree of {100} orientation at can be changed. As a result, it has been found that toughness is dramatically improved while maintaining wear resistance. As a result, especially when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and chipping resistance are improved, and the intermittent and impact loads are applied to the cutting edge, It has been found that excellent cutting performance can be exhibited over use.
(2)(Ti1-α―βAlαMeβ)(Cγ1-γ)層について
 用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(Meの塩化物)、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、ガス群A(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群B(第三反応ガス)と時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、ガス群Aを主とする混合ガス(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群Bを主とする混合ガス(第三反応ガス)と時間的に変化させることでも実現することが可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:4.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1-α―βAlαMeβ)(Cγ1-γ)層を成膜する。
(2) (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) Layer The chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( A gas group B consisting of CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), N 2 , and H 2 is supplied into the reactor through a separate gas supply pipe. The supply into the reactor is, for example, such that the gas flows at a constant cycle time interval for a time shorter than the cycle, and the gas supply for the gas group A and the gas group B is more than the gas supply time. The reaction gas composition on the surface of the tool base is changed to gas group A (first reaction gas), gas mixture of gas group A and gas group B (second reaction gas), gas group B so that a phase difference of a short time occurs. (Third reaction gas) and time can be changed. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as a gas supply method, for example, the gas supply port is rotated, the tool base is rotated, the tool base is reciprocated, the reaction gas composition on the surface of the tool base is changed to the gas group A as the main. The gas mixture (first reaction gas), the gas mixture of gas group A and gas group B (second reaction gas), and the gas mixture mainly consisting of gas group B (third reaction gas) can be changed over time. It is possible to realize.
The reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 4.0 to 6.0% as the gas group A, H 2 : 65 to 75. %, As gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (Me chloride): 0.1 to 0.2%, Al ( CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C, Supply period 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference 0.10 to 0.20 seconds of supply of gas group A and gas group B, predetermined time, thermal CVD by performing law, to deposit a predetermined target layer thickness of (Ti 1-α-β Al α Me β) (C γ N 1-γ) layer The
 そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH:4.0~6.0%と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{100}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 Then, as described above, the gas group A and the gas group B are supplied so that there is a difference in the time for reaching the tool base surface, and NH 3 as the nitrogen source gas in the gas group A is 4.0 to 6.0%. The metal chloride raw material or carbon raw material AlCl 3 in the gas group B: 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (Me chloride): 0 .1 to 0.2%, Al (CH 3 ) 3 : Set to 0 to 0.5%, so that local compositional unevenness, dislocations and point defects in the crystal grains are introduced locally in the crystal grains. And the degree of {100} orientation of the crystal grains on the tool base surface side and the coating surface side can be changed. As a result, it has been found that toughness is dramatically improved while maintaining wear resistance. As a result, especially when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and chipping resistance are improved, and the intermittent and impact loads are applied to the cutting edge, It has been found that excellent cutting performance can be exhibited over use.
 本発明は、前記知見に基づいてなされたものであって、以下に示す態様を有する。
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
 (a)前記硬質被覆層は、平均層厚2~20μmのCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
 (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
 (c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で20%以上存在し、
 (d)さらに、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、
 工具基体側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、
 表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であることを特徴とする表面被覆切削工具。
(2)前記複合窒化物または複合炭窒化物層は、CrとAlの複合窒化物もしくは複合炭窒化物層であって、その組成を、
組成式:(Cr1-xAl)(C1-y
で表した場合、複合窒化物または複合炭窒化物層のAlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足することを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記複合窒化物または複合炭窒化物層は、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層であって、その組成を、
組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ
で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足することを特徴とする前記(1)に記載の表面被覆切削工具。
(4)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする前記(1)乃至前記(3)のいずれかに記載の表面被覆切削工具。
(5)前記複合窒化物または複合炭窒化物層は、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする前記(1)乃至前記(4)のいずれかに記載の表面被覆切削工具。
(6)前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする前記(1)乃至前記(5)のいずれかに記載の表面被覆切削工具。
(7)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする前記(1)乃至前記(6)のいずれかに記載の表面被覆切削工具。
(8)前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする前記(1)乃至(7)のいずれかに記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
 なお、“結晶粒内平均方位差”とは、後述するGOS(Grain Orientation Spread)値のことを意味する。
This invention is made | formed based on the said knowledge, Comprising: It has the aspect shown below.
“(1) Surface coating in which a hard coating layer is formed on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and cubic boron nitride-based ultrahigh-pressure sintered body In cutting tools,
(A) The hard coating layer is composed of a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 2 to 20 μm, or Ti, Al, and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) The crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or composite carbonitride layer is determined from the longitudinal sectional direction using an electron beam backscattering diffractometer. Analyzing and obtaining the average orientation difference within each crystal grain When the average orientation difference within the crystal grain is 2 degrees or more, the crystal grains are in an area ratio relative to the total area of the composite nitride or composite carbonitride layer. 20% or more
(D) Further, the inclination angle formed by the normal line of the {100} plane which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grain is equal to the composite nitride or the composite carbonitride layer in the layer thickness direction. The measured tool base side area and the surface side area are measured separately, and the measured tilt angle within the range of 0 to 45 degrees with respect to the normal direction among the measured tilt angles is 0.25 degrees. If you divide by pitch and count the frequency that exists in each division,
In the region on the tool base side, when the total of the frequencies existing in the range of 0 to 12 degrees is M deg with respect to the total frequencies in the tilt angle frequency distribution, M deg is 10 to 40%,
In the region on the surface side, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is relative to the entire frequency in the inclination angle frequency distribution. When the ratio of the Te and the N deg, the surface-coated cutting tool N deg is characterized in that it is a M deg + 10 ~ M deg + 30%.
(2) The composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is
Composition formula: (Cr 1-x Al x ) (C y N 1-y )
In the composite nitride or composite carbonitride layer, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x The surface coating according to (1), wherein avg and y avg are atomic ratios of 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively. Cutting tools.
(3) The composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr). A carbonitride layer, the composition of which is
Composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ )
In the composite nitride or composite carbonitride layer, the average content ratio α avg in the total amount of Ti, Al, and Me of Al, the average content ratio β avg in the total amount of Me Ti, Al, and Me And the average content ratio γ avg (where α avg , β avg , and γ avg are atomic ratios) of the total amount of C and N in C and C are 0.60 ≦ α avg and 0.005 ≦ β avg , respectively. ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95 is satisfied, The surface-coated cutting tool according to (1) above.
(4) The composite nitride or composite carbonitride layer contains at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl type face centered cubic structure. Thru | or the surface-coated cutting tool in any one of said (3).
(5) The composite nitride or the composite carbonitride layer is an individual crystal having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer when observed from the longitudinal section direction of the layer. The surface-coated cutting according to any one of (1) to (4) above, which has a columnar structure having an average particle width W of 0.1 to 2 μm and an average aspect ratio A of 2 to 10 tool.
(6) Between the tool base and the composite nitride or composite carbonitride layer, one of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer or The surface-coated cutting according to any one of (1) to (5) above, wherein there is a lower layer composed of two or more Ti compound layers and having a total average layer thickness of 0.1 to 20 μm. tool.
(7) The upper layer including at least an aluminum oxide layer is formed on the composite nitride or the composite carbonitride layer with a total average layer thickness of 1 to 25 μm. The surface-coated cutting tool according to any one of (6).
(8) The composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component, according to any one of (1) to (7), The manufacturing method of the surface coating cutting tool of description. "
It has the characteristics.
The “inside crystal grain average orientation difference” means a GOS (Grain Orientation Spread) value described later.
 本発明の態様である表面被覆切削工具(以下、「本発明の表面被覆切削工具」または「本発明の切削工具」と称する)では、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚2~20μmのCrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で20%以上存在し、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、a)工具基体側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、b)表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であり、前記複合窒化物または複合炭窒化物層について、皮膜断面側から観察した場合に、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さおよび靭性が向上する。その結果、耐摩耗性を損なうことなく耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
 また、前記工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚1~20μm、好ましくは、2~20μmのTiとAlとMeの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で20%以上存在し、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、a)工具基体側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、b)表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であり、前記複合窒化物または複合炭窒化物層について、皮膜断面側から観察した場合に、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さおよび靭性が向上する。その結果、耐摩耗性を損なうことなく耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
In the surface-coated cutting tool which is an embodiment of the present invention (hereinafter referred to as “the surface-coated cutting tool of the present invention” or “the cutting tool of the present invention”), the surface-coated cutting provided with a hard coating layer on the surface of the tool base. in the tool, the hard coating layer contains at least an average layer thickness 2 composite nitride of ~ 20 [mu] m of Cr and Al or composite carbonitride layer, the composition formula: (Cr 1-x Al x ) (C y N 1-y ) In particular, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are both Atomic ratio) satisfy 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively, and a cubic structure is formed in the crystal grains constituting the composite nitride or composite carbonitride layer. The crystal orientation of the crystal grains, and the electron beam backscatter diffraction apparatus When the average orientation difference within each crystal grain is determined by analyzing from the longitudinal cross-sectional direction using the crystal, the crystal grain showing the average orientation difference within the crystal grain of 2 degrees or more is the composite nitride or the entire composite carbonitride layer The composite nitride or the composite carbonitride layer has an inclination angle formed by the normal of the {100} plane, which is a crystal plane with respect to the normal direction of the tool base surface of the crystal grain. Is measured by dividing it into a tool base side region and a surface side region that are divided into two equal parts in the layer thickness direction, and the measured tilt angle is in the range of 0 to 45 degrees with respect to the normal direction among the measured tilt angles. When the angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, a) In the region on the tool base side, the sum of the frequencies existing in the range of 0 to 12 degrees is inclined. When the ratio of the relative total power in the angular speed distribution and M deg, M deg 10 to B) In the region on the surface side, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is the inclination angle. Assuming that the ratio of the number distribution to the entire frequency is N deg , N deg is M deg +10 to M deg + 30%, and when the composite nitride or the composite carbonitride layer is observed from the cross section side of the film By having a columnar structure with an average grain width W of 0.1 to 2 μm and an average aspect ratio A of 2 to 10 for each crystal grain having a cubic structure in the composite nitride or composite carbonitride layer, Since distortion occurs in the crystal grains having a cubic crystal structure, the hardness and toughness of the crystal grains are improved. As a result, the effect of improving the chipping resistance without impairing the wear resistance is exhibited. Compared with the conventional hard coating layer, it exhibits excellent cutting performance over a long period of use, and the length of the coated tool is improved. Life expectancy is achieved.
In the surface-coated cutting tool in which a hard coating layer is provided on the surface of the tool base, the hard coating layer has an average layer thickness of 1 to 20 μm, preferably 2 to 20 μm of a composite nitride of Ti, Al, and Me or When it includes at least a composite carbonitride layer and is expressed by a composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), in particular, Al of the composite nitride or the composite carbonitride layer The average content ratio α avg in the total amount of Ti, Al, and Me of Ti and the average content ratio β avg in the total amount of Ti, Al, and Me of Me and the average content ratio γ avg in the total amount of C and N of C (Where α avg , β avg , and γ avg are all atomic ratios) are 0.60 ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005,. 605 ≦ α avg + β avg ≦ 0.9 5 is satisfied, and the crystal grains constituting the composite nitride or composite carbonitride layer have a cubic structure, and the crystal orientation of the crystal grains is determined by using the electron backscatter diffraction apparatus in the longitudinal section direction. In the case where the average orientation difference in each crystal grain is calculated, the crystal grains having an average orientation difference in the crystal grains of 2 degrees or more are in an area ratio with respect to the entire composite nitride or composite carbonitride layer. The tilt angle formed by the normal line of the {100} plane, which is a crystal plane with respect to the normal direction of the tool base surface of the crystal grains, is 20% or more in the thickness direction of the composite nitride or composite carbonitride layer. The measurement is performed by dividing into a tool base side region and a surface side region which are equally divided, and a measured inclination angle within a range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles is 0.25 degrees. When the frequency in each section is tabulated and the frequency existing in each section is tabulated, a) Tool base The side regions, the total power present in the range of 0 to 12 degrees, when the ratio of the relative total power at the inclination angle frequency distribution and M deg, M deg is 10 ~ 40%, b) In the region on the surface side, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is relative to the entire frequency in the inclination angle frequency distribution. when the ratio of the Te and the N deg, N deg is M deg + 10 ~ M deg + 30%, the on composite nitride or composite carbonitride layer, when viewed from the film section side, composite nitride or complex carbonitride Crystal grains having a cubic structure by having a columnar structure with an average grain width W of 0.1 to 2 μm and an average aspect ratio A of 2 to 10 for individual grains having a cubic structure in the nitride layer Because of distortion in the crystal Hardness and toughness are improved in. As a result, the effect of improving the chipping resistance without impairing the wear resistance is exhibited. Compared with the conventional hard coating layer, it exhibits excellent cutting performance over a long period of use, and the length of the coated tool is improved. Life expectancy is achieved.
本発明被覆工具のCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層のNaCl型の面心立方構造(立方晶)を有する結晶粒の結晶粒内平均方位差の測定方法の概略説明図を示す。The present invention has a NaCl-type face-centered cubic structure (cubic crystal) of a composite nitride or composite carbonitride layer of Cr and Al, or a composite nitride or composite carbonitride layer of Ti, Al and Me. The schematic explanatory drawing of the measuring method of the crystal grain average orientation difference of a crystal grain is shown. 本発明の表面被覆切削工具が有する硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層の断面を模式的に表した膜構成模式図である。A cross section of a composite nitride or composite carbonitride layer of Cr and Al or a composite nitride or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the surface-coated cutting tool of the present invention FIG. 本発明被覆工具の硬質被覆層を構成するCrとAlの複合窒化物層または複合炭窒化物層の断面において、NaCl型の立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。なお、ヒストグラム中の垂直方向の点線は結晶粒内平均方位差が2°の境界線を示し、図中においてこの垂直方向の点線よりも右側のバーは、結晶粒内平均方位差が2°以上のものを示す。以下、図4から図6においても同様である。In a cross-section of the composite nitride layer or composite carbonitride layer of Cr and Al constituting the hard coating layer of the coated tool of the present invention, the average in-grain misorientation (GOS) of individual grains having a NaCl type cubic structure 2 shows an example of a histogram for an area ratio of (value). The vertical dotted line in the histogram indicates a boundary line having an average misorientation within the grain of 2 °, and the bar on the right side of the vertical dotted line in the figure has an average misorientation within the grain of 2 ° or more. The thing is shown. The same applies to FIGS. 4 to 6 below. 比較例被覆工具の硬質被覆層を構成するCrとAlの複合窒化物層または複合炭窒化物層の断面において、NaCl型の立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。Comparative example In-grain average orientation difference (GOS) of individual grains having a NaCl-type cubic structure in the cross section of the composite nitride layer or composite carbonitride layer of Cr and Al constituting the hard coating layer of the coated tool 2 shows an example of a histogram for an area ratio of (value). 本発明被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、NaCl型の立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。Intra-grain average orientation difference of individual crystal grains having a cubic structure of NaCl type in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al and Me constituting the hard coating layer of the coated tool of the present invention It shows an example of a histogram for the area ratio of (GOS value). 比較例被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、NaCl型の立方晶構造を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。In-grain average orientation difference of individual grains having a cubic structure of NaCl type in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the comparative coated tool It shows an example of a histogram for the area ratio of (GOS value). 本発明被覆工具の硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層の工具基体側の領域において、作成した{100}面の傾斜角度数分布グラフの一例である。集計度数は最大集計度数を100として規格化した相対値で示している。以下、集計度数の定義については、図8から図10においても同様である。It is an example of the inclination angle number distribution graph of the {100} plane created in the area | region of the tool base | substrate side of the composite nitride of Cr and Al or the composite carbonitride layer which comprises the hard coating layer of this invention coated tool. The count frequency is shown as a relative value normalized with the maximum count frequency as 100. Hereinafter, the definition of the total frequency is the same in FIGS. 8 to 10. 本発明被覆工具の硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層の表面側の領域において、作成した{001}面の傾斜角度数分布グラフの一例である。集計度数は最大集計度数を100として規格化した相対値で示している。It is an example of the inclination angle number distribution graph of the {001} plane created in the area | region of the surface side of the composite nitride or composite carbonitride layer of Cr and Al which comprises the hard coating layer of this invention coated tool. The count frequency is shown as a relative value normalized with the maximum count frequency as 100. 本発明被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物層の工具基体側の領域において、作成した{100}面の傾斜角度数分布グラフの一例である。It is an example of the inclination angle number distribution graph of the {100} plane created in the area | region of the tool base | substrate side of the composite nitride of Ti, Al, and Me or the composite carbonitride layer which comprises the hard coating layer of this invention coated tool. . 本発明被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物層の表面側の領域において、作成した{100}面の傾斜角度数分布グラフの一例である。It is an example of the inclination angle number distribution graph of the {100} plane created in the area | region of the surface side of the composite nitride of Ti, Al, and Me or the composite carbonitride layer which comprises the hard coating layer of this invention coated tool.
 本発明を実施するための形態について、以下に説明する。 DETAILED DESCRIPTION A mode for carrying out the present invention will be described below.
 硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
 本発明の表面被覆切削工具が有する硬質被覆層は、化学蒸着された組成式:(Cr1-xAl)(C1-y)で表されるCrとAlの複合窒化物もしくは複合炭窒化物層、または、化学蒸着された組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表されるTiとAlとMeの複合窒化物もしくは複合炭窒化物層を少なくとも含む。
 これらCrとAlの複合窒化物もしくは複合炭窒化物層、および、TiとAlとMeの複合窒化物もしくは複合炭窒化物層は、高温硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が2~20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が、CrとAlの複合窒化物もしくは複合炭窒化物層においては、2μm未満、TiとAlとMeの複合窒化物もしくは複合炭窒化物層においては、1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、CrとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を2~20μmと定めた。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
The hard coating layer possessed by the surface-coated cutting tool of the present invention is a chemical vapor-deposited compositional formula: (Cr 1-x Al x ) (C y N 1-y ) represented by a composite nitride or composite of Cr and Al Carbon nitride layer or chemical vapor deposited composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) Ti, Al and Me composite nitride or composite carbon At least a nitride layer is included.
These composite nitride or composite carbonitride layers of Cr and Al, and composite nitride or composite carbonitride layers of Ti, Al, and Me have high high temperature hardness and excellent wear resistance. When the average layer thickness is 2 to 20 μm, the effect is remarkably exhibited. The reason is that the average layer thickness is less than 2 μm in the composite nitride or composite carbonitride layer of Cr and Al, and less than 1 μm in the composite nitride or composite carbonitride layer of Ti, Al, and Me, Since the layer thickness is thin, sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, the composite nitride or composite carbonitride layer of Cr and Al Crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the average layer thickness is set to 2 to 20 μm.
硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
(1)本発明のCrとAlの複合窒化物または複合炭窒化物層について
 組成式:(Cr1-xAl)(C1-y)で表した場合、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足するように制御することが好ましい。
 その理由は、Alの平均含有割合xavgが0.70未満であると、CrとAlの複合窒化物または複合炭窒化物層は高温硬さに劣り、耐酸化性にも劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、相対的にCrの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合xavgは、0.70≦xavg≦0.95と定めた。
 また、複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yavgが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、C成分の平均含有割合yavgは、0≦yavg≦0.005と定めた。
(2)本発明のTiとAlとMeの複合窒化物または複合炭窒化物層について
 組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足するように制御することが好ましい。
 その理由は、Alの平均含有割合αavgが0.60未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。
 また、Meの平均含有割合βavgが0.005未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、0.10を超えると粒界へのMeの偏析等により、TiとAlとMeの複合窒化物または複合炭窒化物層の靭性が低下し、合金鋼等の高速断続切削に供した場合には、耐チッピング性が十分でない。したがって、Meの平均含有割合βavgは、0.005≦βavg≦0.10と定めた。
 一方、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgが0.605未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgは、0.605≦αavg+βavg≦0.95と定めた。
 ここで、Meの具体的な成分としては、Si、Zr、B、V、Crの中から選ばれる一種の元素を使用する。
 Meとして、βavgが0.005以上になるようにSi成分あるいはB成分を使用した場合には、複合窒化物または複合炭窒化物層の硬さが向上するため耐摩耗性の向上が図られ、Zr成分は結晶粒界を強化する作用を有し、また、V成分は靭性を向上することから、耐チッピング性のより一層の向上が図られ、Cr成分は耐酸化性を向上させることから、工具寿命のよりいっそう長寿命化が期待される。しかし、いずれの成分も、平均含有割合βavgが0.10を超えると、相対的にAl成分、Ti成分の平均含有割合が減少することから、耐摩耗性あるいは耐チッピング性が低下傾向を示すようになるため、βavgが0.10を超えるような平均含有割合となることは避けなければならない。
 また、複合窒化物または複合炭窒化物層に含まれるCの平均含有割合(原子比)γavgは、0≦γavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合γavgが0≦γavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合γavgは、0≦γavg≦0.005と定めた。
Composition of composite nitride or composite carbonitride layer constituting hard coating layer:
(1) About the composite nitride or composite carbonitride layer of Cr and Al of the present invention When expressed by the composition formula: (Cr 1-x Al x ) (C y N 1-y ), the Cr and Al of Al The average content ratio x avg in the total amount and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are atomic ratios) are respectively 0.70 ≦ x avg ≦ It is preferable to control to satisfy 0.95 and 0 ≦ y avg ≦ 0.005.
The reason is that if the average content ratio x avg of Al is less than 0.70, the composite nitride or composite carbonitride layer of Cr and Al is inferior in high temperature hardness and inferior in oxidation resistance. When subjected to high-speed intermittent cutting such as, wear resistance is not sufficient. On the other hand, when the average content ratio x avg of Al exceeds 0.95, the content ratio of Cr is relatively decreased, so that embrittlement is caused and chipping resistance is deteriorated. Therefore, the average Al content ratio x avg was determined to be 0.70 ≦ x avg ≦ 0.95.
Further, when the content ratio (atomic ratio) y avg of the C component contained in the composite nitride or the composite carbonitride layer is a minute amount in the range of 0 ≦ y avg ≦ 0.005, the composite nitride or the composite carbonitride The adhesion between the material layer and the tool substrate or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. Chipping property is improved. On the other hand, if the average content ratio y avg of the component C deviates from the range of 0 ≦ y avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer decreases, so that the chipping resistance and chipping resistance are reversed. Since it falls, it is not preferable. Therefore, the average content ratio y avg of the C component was set to 0 ≦ y avg ≦ 0.005.
(2) About the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention When represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) (Where Me is a kind of element selected from Si, Zr, B, V, and Cr), the average content ratio α avg in the total amount of Ti, Al, and Me in Al, and Ti, Al, and Me in Me The average content ratio β avg in the total amount of C and the average content ratio γ avg in the total amount of C and N in C (where α avg , β avg , and γ avg are all atomic ratios) are 0.60, respectively. ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95 are preferably controlled.
The reason is that when the average Al content ratio α avg is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al and Me is inferior in hardness, so it is suitable for high-speed intermittent cutting of alloy steel and the like. If provided, the wear resistance is not sufficient.
Further, when the average content ratio β avg of Me is less than 0.005, the composite nitride of Ti, Al, and Me or the composite carbonitride layer is inferior in hardness, and thus subjected to high-speed intermittent cutting of alloy steel and the like. In some cases, the wear resistance is not sufficient. On the other hand, if it exceeds 0.10, the segregation of Me to the grain boundaries, etc., the toughness of the composite nitride or composite carbonitride layer of Ti, Al, and Me will decrease, and it will be subjected to high-speed intermittent cutting of alloy steel, etc. The chipping resistance is not sufficient. Therefore, the average content ratio β avg of Me was defined as 0.005 ≦ β avg ≦ 0.10.
On the other hand, if the sum α avg + β avg of the average content ratio α avg of Al and the average content ratio β avg of Me is less than 0.605, the hardness of the composite nitride or composite carbonitride layer of Ti, Al, and Me Therefore, when it is subjected to high-speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient, and if it exceeds 0.95, the Ti content is relatively reduced, leading to embrittlement. , Chipping resistance is reduced. Therefore, the sum α avg + β avg of the average content ratio α avg of Al and the average content ratio β avg of Me was determined as 0.605 ≦ α avg + β avg ≦ 0.95.
Here, as a specific component of Me, a kind of element selected from Si, Zr, B, V, and Cr is used.
When the Si component or the B component is used so that β avg is 0.005 or more as Me, the hardness of the composite nitride or composite carbonitride layer is improved, so that the wear resistance is improved. The Zr component has the effect of strengthening the grain boundaries, and the V component improves toughness, so that the chipping resistance is further improved, and the Cr component improves oxidation resistance. The tool life is expected to be even longer. However, in any component, when the average content ratio β avg exceeds 0.10, the average content ratio of the Al component and the Ti component is relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio of β avg exceeds 0.10.
Further, when the average content ratio (atomic ratio) γ avg of C contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ≦ γ avg ≦ 0.005, the composite nitride or composite carbonitride The adhesion between the material layer and the tool base or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the fracture resistance and resistance of the composite nitride or composite carbonitride layer are reduced. Chipping property is improved. On the other hand, if the average content ratio γ avg of C deviates from the range of 0 ≦ γ avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer decreases, so the chipping resistance and chipping resistance decrease on the contrary. Therefore, it is not preferable. Therefore, the average content ratio γ avg of C was determined as 0 ≦ γ avg ≦ 0.005.
 複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒個々の結晶粒内平均方位差(GOS値):
 本発明では、電子線後方散乱回折装置を用いて、立方晶のCrとAlの複合窒化物または複合炭窒化物結晶粒の結晶粒内平均方位差、および、立方晶のTiとAlとMeの複合窒化物または複合炭窒化物結晶粒の結晶粒内平均方位差を求める。
 具体的には、複合窒化物または複合炭窒化物層の表面に垂直な方向からその表面研磨面について、0.1μm間隔にて解析を行い、図1に示すように、隣接する測定点P(以下、「ピクセル」ともいう)間で5度以上の方位差がある場合、そこを粒界Bと定義する。そして、粒界Bで囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセルP全てと5度以上の方位差がある単独に存在するピクセルPは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
 そして、立方晶構造を有する結晶粒内のあるピクセルPと、同一結晶粒内の他のすべてのピクセル間での方位差を計算し、これを結晶粒内方位差として求め、それを平均化したものをGOS(Grain Orientation Spread)値として定義する。概略図を図1に示す。GOS値については、例えば文献「日本機械学会論文集(A編) 71巻712号(2005-12) 論文No.05-0367 1722~1728」に説明がなされている。
 なお、本発明における“結晶粒内平均方位差”とは、前記のGOS値を意味する。GOS値を数式で表す場合、同一結晶粒内のピクセル数をn、同一結晶粒内の異なるピクセルPのおのおのに付した番号をiおよびj(ここで 1≦i、j≦nとなる)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)として、下記式により表すことができる。
 なお、結晶粒内平均方位差、GOS値は、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間での方位差を求め、その値を平均化した数値であると言い換えることができるが、結晶粒内に連続的な方位変化が多いと大きな数値となる。
Intra-grain average orientation difference (GOS value) of individual crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
In the present invention, an electron beam backscatter diffractometer is used to determine the average orientation difference in cubic Cr and Al composite nitride or composite carbonitride crystal grains, and cubic Ti, Al and Me. The average orientation difference within the crystal grains of the composite nitride or composite carbonitride crystal grains is determined.
Specifically, the surface polished surface is analyzed at intervals of 0.1 μm from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer, and as shown in FIG. Hereinafter, when there is an azimuth difference of 5 degrees or more between them (also referred to as “pixel”), this is defined as a grain boundary B. A region surrounded by the grain boundary B is defined as one crystal grain. However, a single pixel P having an orientation difference of 5 degrees or more with all adjacent pixels P is not a crystal grain, and a case where two or more pixels are connected is handled as a crystal grain.
Then, the orientation difference between a certain pixel P in a crystal grain having a cubic crystal structure and all other pixels in the same crystal grain is calculated, and this is obtained as the orientation difference in the crystal grain, and is averaged. Things are defined as GOS (Grain Orientation Spread) values. A schematic diagram is shown in FIG. The GOS value is described in, for example, the document “The Journal of the Japan Society of Mechanical Engineers (A) 71: 712 (2005-12) Paper No. 05-0367 1722-1728”.
In the present invention, the “average orientation difference in crystal grains” means the GOS value. When the GOS value is expressed by a mathematical expression, the number of pixels in the same crystal grain is n, the numbers given to the different pixels P in the same crystal grain are i and j (where 1 ≦ i, j ≦ n), The crystal orientation difference obtained from the crystal orientation at the pixel i and the crystal orientation at the pixel j can be expressed by the following equation, with α ij (i ≠ j) .
Note that the average orientation difference and GOS value within a crystal grain are values obtained by calculating the orientation difference between a pixel in a crystal grain and all other pixels in the same crystal grain, and averaging the values. However, a large numerical value is obtained when there are many continuous orientation changes in the crystal grains.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 結晶粒内平均方位差(GOS値)は、CrとAlの複合窒化物または複合炭窒化物層、または、TiとAlとMeの複合窒化物または複合炭窒化物層の表面に垂直な方向からその表面研磨面について電子線後方散乱回折装置を用いて、25×25μmの測定範囲内での測定を0.1μm/stepの間隔で、5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、結晶粒内平均方位差を1度間隔で分割し、その値の範囲内に結晶粒内平均方位差が含まれる結晶粒のピクセルPを集計して上記全ピクセル数で割ることによって、結晶粒内平均方位差の面積割合を示すヒストグラムを作成する事によって求めることができる。
 図3~図6に、このようにして作成されたヒストグラムの一例を示す。
In-grain average orientation difference (GOS value) from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer of Cr and Al, or the composite nitride or composite carbonitride layer of Ti, Al and Me Using the electron beam backscattering diffractometer on the polished surface, measurement within a measurement range of 25 × 25 μm was performed at intervals of 0.1 μm / step in five fields of view, and the composite nitride or composite carbonitride Calculate the total number of pixels belonging to the crystal grains having a cubic structure constituting the layer, divide the average misorientation within the grain at intervals of 1 degree, and include the average misorientation within the grain within the range of the value The total number of pixels P is divided and divided by the total number of pixels to obtain a histogram showing the area ratio of the average orientation difference in crystal grains.
3 to 6 show examples of histograms created in this way.
 図3は、本発明に係る切削工具のCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図3に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は20%以上であることが分かる。
 これに対し、図4は、比較工具のCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図4においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は20%未満である。
 また、図5は、本発明に係る切削工具のTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図5に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は20%以上であることが分かる。
 これに対して、図6は、比較工具のTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図6においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は20%未満である。
 このように、本発明に係る切削工具のCrとAlの複合窒化物または複合炭窒化物層、および、TiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒は、従来のものと比較して、結晶粒内で結晶方位のばらつきが大きく、そのため、結晶粒内での歪が高くなることが硬さと靱性の向上に寄与している。
 そして、前記結晶粒内平均方位差を備える(Cr1-xAl)(C1-y)層、または、(Ti1-α―βAlαMeβ)(Cγ1-γ)層を少なくとも含む硬質被覆層を工具基体表面に被覆形成した被覆工具は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
 ただ、前記結晶粒内平均方位差が2度以上を示す結晶粒の、CrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層の全面積に占める面積割合が20%未満である場合には、結晶粒の内部歪による硬さと靱性の向上効果が十分でないことから、結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は20%以上とする。
 このように本発明の表面被覆切削工具が有するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する結晶粒は、従来のTiAlN層を構成している結晶粒と比較して、結晶粒内で結晶方位のばらつきが大きく、すなわち、歪みがあるため、このことが硬さや靭性の向上に寄与している。
 好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は30~60%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は35~55%である。さらにより複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は40~50%である。
FIG. 3 is an example of a histogram of average orientation difference in crystal grains obtained for a crystal grain having a cubic structure of Cr and Al composite nitride or composite carbonitride layer of the cutting tool according to the present invention. As shown in FIG. 3, the area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is 20 It turns out that it is more than%.
On the other hand, FIG. 4 is an example of a histogram of the average orientation difference in the crystal grains obtained for the crystal grains having the cubic structure of the composite nitride or composite carbonitride layer of Cr and Al of the comparative tool. In FIG. 4, the area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is less than 20%. is there.
FIG. 5 is an example of a histogram of the average orientation difference in crystal grains obtained for crystal grains having a cubic structure of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the cutting tool according to the present invention. However, as shown in FIG. 5, the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is a crystal grain having a mean grain orientation difference (GOS) value of 2 degrees or more. It can be seen that the area ratio in the area is 20% or more.
On the other hand, FIG. 6 is an example of a histogram of average orientation difference in crystal grains obtained for a crystal grain having a cubic structure of a composite nitride or composite carbonitride layer of Ti, Al, and Me of a comparative tool. However, in FIG. 6, the area ratio of the crystal grains having the average grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me Is less than 20%.
Thus, the cutting tool according to the present invention has a cubic structure that constitutes a composite nitride or composite carbonitride layer of Cr and Al, and a composite nitride or composite carbonitride layer of Ti, Al, and Me. The crystal grains have a large variation in crystal orientation within the crystal grains as compared with the conventional ones. Therefore, the higher strain within the crystal grains contributes to the improvement of hardness and toughness.
Then, the (Cr 1-x Al x ) (C y N 1-y ) layer or the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) having the average orientation difference in crystal grains. ) Coated tools with a hard coating layer containing at least a layer on the tool substrate surface are excellent in high-speed intermittent cutting of alloy steel and the like that cause high heat generation and impact load on the cutting edge. It exhibits chipping resistance and wear resistance.
However, Cr and Al composite nitride or composite carbonitride layer, or Ti, Al and Me composite nitride or composite carbonitride layer of the crystal grains in which the average orientation difference in crystal grains is 2 degrees or more When the area ratio in the total area is less than 20%, the effect of improving the hardness and toughness due to the internal strain of the crystal grains is not sufficient. The area ratio of the crystal grains having the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is 20% or more.
Thus, the crystal grains constituting the composite nitride or composite carbonitride layer of Al, Ti and Me of the surface-coated cutting tool of the present invention are compared with the crystal grains constituting the conventional TiAlN layer, Since the crystal orientation varies greatly within the crystal grains, that is, there is distortion, this contributes to the improvement of hardness and toughness.
The area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 30 to 60%. The area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 35 to 55%. Furthermore, the area ratio of the crystal grains in which the average orientation difference in the crystal grains is 2 degrees or more with respect to the area of the composite nitride or composite carbonitride layer is 40 to 50%.
複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域における結晶方位:
 複合窒化物または複合炭窒化物層を構成する結晶粒は、工具基体表面(工具基体)側よりも表面側の方が、工具基体表面の法線方向、すなわち{100}面に向いていることにより、靱性を維持しつつ、耐摩耗性が向上するという本発明に特有の効果が奏される。
 しかしながら、工具基体側よりも表面側の{100}面配向度の増加割合が10%未満であると{100}面配向度の増加割合が少なく、本発明において期待する靱性を維持しつつ耐摩耗性を向上するという効果が十分に奏されない。一方、30%を超えると配向の急激な変化により結晶のエピタキシャル成長を阻害し、かえって靭性が低下する。また工具基体側の{100}面配向度が10%未満では表面側の{100}面配向度の増加割合が30%より大きくなり工具基体側の{100}面配向度が40%を超えると表面側の{100}面配向度の増加割合が10%未満となる事が分かった。したがって、結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、a)工具基体側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、b)表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であると定めた。
Crystal orientation in the region on the tool base side and the region on the surface side when the composite nitride or composite carbonitride layer is divided into two equal parts in the layer thickness direction:
The crystal grains constituting the composite nitride or the composite carbonitride layer have a surface side facing the normal direction of the tool base surface, that is, the {100} plane, rather than the tool base surface (tool base) side. Thus, an effect peculiar to the present invention that wear resistance is improved while maintaining toughness is exhibited.
However, if the increase rate of the {100} plane orientation degree on the surface side relative to the tool base side is less than 10%, the increase rate of the {100} plane orientation degree is small and wear resistance is maintained while maintaining the toughness expected in the present invention. The effect of improving the performance is not sufficiently achieved. On the other hand, if it exceeds 30%, the epitaxial growth of crystals is hindered due to a rapid change in orientation, and the toughness is lowered. When the {100} plane orientation degree on the tool base side is less than 10%, the increase rate of the {100} plane orientation degree on the surface side is larger than 30%, and the {100} plane orientation degree on the tool base side exceeds 40%. It was found that the increase rate of the degree of {100} plane orientation on the surface side was less than 10%. Accordingly, the tool base side obtained by dividing the inclination angle formed by the normal of the {100} plane, which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grains, into two equal parts in the layer thickness direction of the composite nitride or composite carbonitride layer The measured inclination angle is in the range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles, and is divided into pitches of 0.25 degrees. When the frequencies existing in each section are tabulated, a) In the region on the tool base side, the total number of frequencies existing in the range of 0 to 12 degrees represents the ratio to the total frequency in the inclination angle frequency distribution. Assuming M deg , M deg is 10 to 40%, and b) In the region on the surface side, the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and within the range of 0 to 12 degrees. The total number of frequencies present is When a slip and N deg, N deg is defined to be M deg + 10 ~ M deg + 30%.
 硬質被覆層の結晶構造:
 硬質被覆層が立方晶構造単相である場合、特に優れた耐摩耗性を示す。また、硬質被覆層が立方晶構造単相でない場合であっても、該硬質被覆層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒の面積割合を求めたとき、立方晶構造を有する結晶粒の面積割合が70%未満の場合には、耐摩耗性の低下傾向がみられ、一方、この面積割合が70%以上である場合には、すぐれた耐チッピング性、耐摩耗性が発揮されることから、立方晶構造のTiとAlとMeの複合窒化物または複合炭窒化物の相は、70面積%以上とすることが望ましい。
Crystal structure of hard coating layer:
When the hard coating layer has a cubic structure single phase, particularly excellent wear resistance is exhibited. Further, even when the hard coating layer is not a cubic structure single phase, the hard coating layer is analyzed at an interval of 0.1 μm from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the width is 10 μm. The measurement from the longitudinal cross-sectional direction within the measurement range of the film thickness is carried out in five fields of view, and the total number of pixels belonging to the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer is obtained, When the area ratio of the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer was determined by the ratio to the total number of pixels measured in the hard coating layer in five fields of view, the cubic crystal When the area ratio of the crystal grains having a structure is less than 70%, a tendency to decrease the wear resistance is observed. On the other hand, when the area ratio is 70% or more, excellent chipping resistance and wear resistance are observed. From the fact that The phase of Ti, Al and Me composite nitride or composite carbonitride having a tetragonal structure is desirably 70 area% or more.
複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅W、平均アスペクト比A:
 CrとAlの複合窒化物もしくは複合炭窒化物層内、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層内の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10となる柱状組織となるように構成することにより、靭性および耐摩耗性が向上するという前述した効果をより一層、発揮させることができる。
 すなわち、平均粒子幅Wを0.1~2μmとしたのは、0.1μm未満では、被覆層表面に露出した原子におけるCrAlCN結晶粒界、または、TiAlMeCN結晶粒界に属する原子の占める割合が相対的に大きくなることにより、被削材との反応性が増し、その結果、耐摩耗性を十分に発揮することができず、また、2μmを超えると被覆層全体におけるCrAlCN結晶粒界、または、TiAlMeCN結晶粒界に属する原子の占める割合が相対的に小さくなることにより、靭性が低下し、耐チッピング性を十分に発揮することができなくなる。したがって、平均粒子幅Wを0.1~2μmとすることが好ましい。
 また、平均アスペクト比Aが2未満の場合、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性を発揮することができない。一方、平均アスペクト比Aが10を超えると結晶粒そのものの強度を保つ事が出来ず、かえって、耐チッピング性が低下するため好ましくない。したがって、平均アスペクト比Aを2~10とすることが好ましい。
 なお、本発明では、平均アスペクト比Aとは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。
Average grain width W and average aspect ratio A of individual grains having a cubic structure in the composite nitride or composite carbonitride layer:
The average grain width W of the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer of Cr and Al, or in the composite nitride or composite carbonitride layer of Ti, Al, and Me is 0 By configuring the columnar structure so that the average aspect ratio A is 2 to 10 and the average aspect ratio A is 2 to 10, the above-described effect of improving toughness and wear resistance can be further exhibited.
That is, the average particle width W is set to 0.1 to 2 μm because, if it is less than 0.1 μm, the proportion of the atoms belonging to the CrAlCN crystal grain boundary or TiAlMeCN crystal grain boundary in the atoms exposed on the coating layer surface is relatively As a result, the reactivity with the work material increases, and as a result, the wear resistance cannot be sufficiently exhibited, and if it exceeds 2 μm, the CrAlCN grain boundary in the entire coating layer, or When the proportion of atoms belonging to the TiAlMeCN crystal grain boundary is relatively small, the toughness is lowered and the chipping resistance cannot be sufficiently exhibited. Therefore, the average particle width W is preferably 0.1 to 2 μm.
In addition, when the average aspect ratio A is less than 2, since the columnar structure is not sufficient, the equiaxed crystal having a small aspect ratio is dropped, and as a result, sufficient wear resistance cannot be exhibited. On the other hand, if the average aspect ratio A exceeds 10, the strength of the crystal grains themselves cannot be maintained, and the chipping resistance is lowered. Therefore, the average aspect ratio A is preferably 2-10.
In the present invention, the average aspect ratio A means the surface of the tool base when the longitudinal section of the hard coating layer is observed in a range of 100 μm in width and including the entire hard coating layer using a scanning electron microscope. The particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured, and the aspect ratio a (= l / w) of each crystal grain is measured. While calculating, the average value of the aspect ratio a calculated | required about each crystal grain was calculated as the average aspect ratio A, and the average value of the particle width w calculated | required about each crystal grain was calculated as the average particle width W.
下部層および上部層:
 また、本発明の表面被覆切削工具が有するCrとAlの複合窒化物もしくは複合炭窒化物層内、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層を1~25μmの合計平均層厚で設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
Moreover, the composite nitride or composite carbonitride layer of Cr and Al or the composite nitride or composite carbonitride layer of Ti, Al, and Me possessed by the surface-coated cutting tool of the present invention alone is sufficient effect. It consists of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and a total of 0.1 to 20 μm When a lower layer having an average layer thickness is provided and / or when an upper layer including at least an aluminum oxide layer is provided with a total average layer thickness of 1 to 25 μm, this is in combination with the effects of these layers. Thus, superior characteristics can be created. When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. .
 本発明の表面被覆切削工具が有する硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層の断面を模式的に表した図を図2に示す。 A cross section of a composite nitride or composite carbonitride layer of Cr and Al or a composite nitride or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the surface-coated cutting tool of the present invention A diagrammatic representation is shown in FIG.
 つぎに、本発明の被覆工具を実施例により具体的に説明する。
 なお、実施例としては、WC基超硬合金あるいはTiCN基サーメットを工具基体とする被覆工具について述べるが、工具基体として立方晶窒化ホウ素基超高圧焼結体を用いた場合も同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As an example, a coated tool using a WC-based cemented carbide or TiCN-based cermet as a tool base will be described, but the same applies when a cubic boron nitride-based ultra-high pressure sintered body is used as the tool base.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered under the condition of holding for 1 hour at a predetermined temperature in the range of ~ 1470 ° C, and after sintering, manufacture tool bodies A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、表3および表4、表5に示される形成条件A~J、すなわち、NHとHからなるガス群Aと、CrCl、AlCl、Al(CH、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:4.5~5.5%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:750~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表7に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表7に示される面積割合存在し、表7に示される目標層厚を有する(Cr1-xAl)(C1-y)層からなる硬質被覆層を形成することにより本発明被覆工具1~15を製造した。
 なお、本発明被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表7に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D, and the formation conditions A to J shown in Table 3, Table 4, and Table 5, that is, the gas group A composed of NH 3 and H 2, and , CrCl 3 , AlCl 3 , Al (CH 3 ) 3 , N 2 , H 2 , and a method of supplying each gas, the reaction gas composition (capacity relative to the total of the gas group A and the gas group B combined) %) As gas group A, NH 3 : 4.5 to 5.5%, H 2 : 65 to 75%, as gas group B, AlCl 3 : 0.6 to 0.9%, CrCl 3 : 0.2 ~ 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction Atmospheric temperature: 750 to 900 ° C, supply cycle 1 to 5 seconds, gas supply time per cycle 0 The thermal CVD method is performed for a predetermined time with a phase difference of 0.10 to 0.20 seconds for the supply of gas group A and gas group B for 15 to 0.25 seconds. (Cr 1-x Al x ) (C y N 1-y ) layer having a crystal structure having a cubic structure showing two degrees or more, having an area ratio shown in Table 7, and having a target layer thickness shown in Table 7 The coated tools 1 to 15 of the present invention were produced by forming a hard coating layer made of
For the coated tools 6 to 13 of the present invention, the lower layer shown in Table 6 and / or the upper layer shown in Table 7 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、工具基体A~Dの表面に、表3および表4、表5に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1~15と同様に、少なくともCrとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Cr1-xAl)(C1-y)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1~13を製造した。
 なお、本発明被覆工具6~13と同様に、比較被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表8に示される上部層を形成した。
For comparison purposes, the surfaces of the tool bases A to D are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Tables 3, 4 and 5 and the target layer thickness (μm) shown in Table 8. A hard coating layer including at least a composite nitride or composite carbonitride layer of Cr and Al was formed by vapor deposition. At this time, a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Cr 1-x Al x ) (C y N 1-y ) layer. Coated tools 1-13 were produced.
Similar to the coated tools 6 to 13 of the present invention, the comparative coated tools 6 to 13 are formed with the lower layer shown in Table 6 and / or the upper layer shown in Table 8 under the forming conditions shown in Table 3. did.
 参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
 なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
 (a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、また、カソード電極(蒸発源)として、所定組成のAl-Cr合金を配置し、
 (b)まず、装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、かつAl-Cr合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびCrイオンを発生させ、もって工具基体表面をボンバード洗浄し、
 (c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に-50Vの直流バイアス電圧を印加し、かつ、前記Al-Cr合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Cr,Al)N層を蒸着形成し、参考被覆工具14、15を製造した。
For reference, the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus. The reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
The arc ion plating conditions used for the vapor deposition in the reference example are as follows.
(A) The tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. In addition, an Al—Cr alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is set to −1000 V. A DC bias voltage is applied and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Cr alloy to generate an arc discharge, thereby generating Al and Cr ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Cr alloy and the anode electrode to generate an arc discharge, and the target composition and target layer shown in Table 8 are formed on the surface of the tool base. A thick (Cr, Al) N layer was formed by vapor deposition to produce reference coated tools 14 and 15.
 また、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the cross sections in the direction perpendicular to the tool base of the constituent layers of the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 are measured using a scanning electron microscope (5000 magnifications). When the average layer thickness was determined by measuring and averaging the five layer thicknesses within the observation field of view, both showed substantially the same average layer thickness as the target layer thicknesses shown in Table 7 and Table 8. .
 また、複合窒化物または複合炭窒化物層のAlの平均含有割合xavgについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xavgを求めた。Cの平均含有割合yavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合yavgはCrとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をyavgとして求めた。 The average Al content x avg of the composite nitride or composite carbonitride layer was measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. Irradiation was performed from the sample surface side, and an average Al content ratio x avg was obtained from an average of 10 points of the analysis results of the obtained characteristic X-rays. The average C content y avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average content ratio Y avg of C indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Cr and Al. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as yavg .
 さらに、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
 その結果を表7および表8に示す。
 図3に、本発明被覆工具5について測定した結晶粒内平均方位差(すなわちGOS値)のヒストグラムの一例を示し、また、図4には、比較被覆工具2について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
Further, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, and adjacent pixels are analyzed. If there is a misorientation of 5 degrees or more between them, this is the grain boundary, and the region surrounded by the grain boundary is one crystal grain. One pixel in the crystal grain and all other pixels in the same crystal grain The difference in orientation within the grain is calculated between 0 degree and less than 1 degree, 1 degree and less than 2 degree, 2 degree and less than 3 degree, 3 degree and less than 4 degree, and so on. The range of 10 degrees was divided and mapped every 1 degree. From the mapping diagram, the area ratio of the crystal grains having an average orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained.
The results are shown in Table 7 and Table 8.
FIG. 3 shows an example of a histogram of the average orientation difference in crystal grains (that is, the GOS value) measured for the coated tool 5 of the present invention, and FIG. 4 shows the average orientation difference in crystal grains measured for the comparative coated tool 2. An example of the histogram is shown.
 また、硬質被覆層の傾斜角度数分布については、立方晶構造のCrとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面を層厚方向に二等分した工具基体表面(界面)側の領域と表面側の領域に分けて解析し、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体と垂直方向に関しては前記工具基体側の領域と表面側の領域の測定範囲内、工具基体と水平方向には幅10μm、5視野分について、0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~12度の範囲内に存在する度数の割合を求めた。その結果を表7および表8に示す。
 図7に、本発明被覆工具のCrとAlの複合炭窒化物層からなる硬質被覆層の工具基体側の領域について測定した傾斜角度数分布の一例を示し、また、図8には、本発明被覆工具のCrとAlの複合炭窒化物層からなる硬質被覆層の表面側の領域について測定した傾斜角度数分布の一例を示す。
 さらに電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒の面積割合を求めた。
In addition, regarding the inclination angle number distribution of the hard coating layer, a column of a field emission scanning electron microscope with a cross section of the hard coating layer made of a composite carbonitride layer of Cr and Al having a cubic structure as a polished surface An electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees is divided into a region on the surface (interface) side of the tool base and the region on the surface side, which is divided into two in the layer thickness direction. With an irradiation current of 1 nA, within the measurement range of the tool base side area and the surface side area in the direction perpendicular to the tool base, the width of 10 μm in the horizontal direction with respect to the tool base is 0.1 μm / step for five fields of view. Are irradiated with individual crystal grains having a cubic crystal lattice existing within the measurement range, and using the electron backscatter diffraction image apparatus, the normal of the tool base surface (perpendicular to the tool base surface on the cross-section polished surface) The crystal grains) The inclination angle formed by the normal of the {100} plane that is the crystal plane is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees is set to 0.25 degrees out of the measurement inclination angles. The ratio of the frequencies existing in the range of 0 to 12 degrees was obtained by summing up the frequencies existing in each section. The results are shown in Table 7 and Table 8.
FIG. 7 shows an example of the inclination angle number distribution measured for the region on the tool base side of the hard coating layer composed of the composite carbonitride layer of Cr and Al of the coated tool of the present invention, and FIG. An example of inclination angle number distribution measured about the area | region of the surface side of the hard coating layer which consists of a composite carbonitride layer of Cr and Al of a coating tool is shown.
Furthermore, analysis was performed at intervals of 0.1 μm from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 μm, and the vertical measurement within the measurement range of the film thickness was performed in five fields of view. The total number of pixels belonging to crystal grains having a cubic structure constituting the nitride or composite carbonitride layer is obtained, and the composite nitridation is performed according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view. The area ratio of crystal grains having a cubic structure constituting the product or composite carbonitride layer was determined.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14,15について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。 Next, the coated tools 1 to 15 according to the present invention, the comparative coated tools 1 to 13 and the reference coated tool are used in the state where each of the various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. For 14 and 15, the following dry dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 9.
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
 回転速度:866 min-1
 切削速度:340 m/min、
 切り込み:1.5 mm、
 一刃送り量:0.10 mm/刃、
 切削時間:8分。
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: Block material of JIS / S55C width 100mm, length 400mm,
Rotational speed: 866 min −1
Cutting speed: 340 m / min,
Cutting depth: 1.5 mm,
Single blade feed amount: 0.10 mm / tooth,
Cutting time: 8 minutes.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases α to γ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.
 つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3および表4、表5に示される条件で、少なくとも(Cr1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表13に示される本発明被覆工具16~30を製造した。
 なお、本発明被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表13に示される上部層を形成した。
Next, at least (Cr 1 the -x Al x) (that C y N 1-y) layer is deposited formed at the target layer thickness of the hard coating layer containing was prepared present invention coated tool 16-30 shown in Table 13.
For the coated tools 19 to 28 of the present invention, the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表4、表5に示される条件かつ表14に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16~28を製造した。
 なお、本発明被覆工具19~28と同様に、比較被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表14に示される上部層を形成した。
Further, for comparison purposes, a normal chemical vapor deposition apparatus was used on the surfaces of the tool bases α to γ and the tool base δ, and the target layer thicknesses shown in Table 3 and Tables 4 and 5 and the target layer thicknesses shown in Table 14 were used. Comparative coating tools 16 to 28 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
As with the coated tools 19 to 28 of the present invention, the comparative coated tools 19 to 28 are formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the forming conditions shown in Table 3. did.
 参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
 なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. The reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.
 また、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標層厚と実質的に同じ平均層厚を示した。 Further, the cross-sections of the constituent layers of the inventive coated tools 16 to 30, the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 were measured using a scanning electron microscope (magnification 5000 times), and 5 in the observation field of view. When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target layer thickness shown in Table 13 and Table 14.
 さらに、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表13および表14に示す。 Furthermore, the crystal orientation of the individual crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in crystal grains and the orientation difference in crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained. The results are shown in Table 13 and Table 14.
 また、硬質被覆層の傾斜角度数分布については、立方晶構造のCrとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面を層厚方向に二等分した工具基体表面(界面)側の領域と表面側の領域に分けて解析し、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、前記工具基体側の領域と表面側の領域の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体と水平方向に幅10μm、5視野分について、0.1μm/stepの間隔で、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~12度の範囲内に存在する度数の割合を求めた。その結果を表13および表14に示す。 In addition, regarding the inclination angle number distribution of the hard coating layer, a column of a field emission scanning electron microscope with a cross section of the hard coating layer made of a composite carbonitride layer of Cr and Al having a cubic structure as a polished surface An electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees is divided into a region on the surface (interface) side of the tool base and the region on the surface side, which is divided into two in the layer thickness direction. Is irradiated to each of the crystal grains having a cubic crystal lattice existing within the measurement range of the region on the tool base side and the region on the surface side with an irradiation current of 1 nA, and using an electron beam backscatter diffraction image apparatus, The crystal of the crystal grains with respect to the normal of the tool base surface (direction perpendicular to the tool base surface on the cross-section polished surface) at a spacing of 0.1 μm / step with a width of 10 μm and five fields of view in the horizontal direction. The slope formed by the normal of the {100} plane The angle is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees is divided into the 0.25 degree pitches among the measurement inclination angles, and exists in each division. By counting the frequencies, the ratio of the frequencies existing in the range of 0 to 12 degrees was obtained. The results are shown in Table 13 and Table 14.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、ダクタイル鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:430m/min、
 切り込み:1.5mm、
 送り:0.22mm/rev、
 切削時間:5分、
(通常の切削速度は、220m/min)。
 切削条件2:
 被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:410m/min、
 切り込み:1.0mm、
 送り:0.22mm/rev、
 切削時間:5分、
(通常の切削速度は、200m/min)。
 表15に、前記切削試験の結果を示す。
Next, in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the coated tools 16 to 30 of the present invention, the comparative coated tools 16 to 28, the reference coated tool 29, For 30, a dry high-speed intermittent cutting test of carbon steel and a wet high-speed intermittent cutting test of ductile cast iron shown below were carried out, and the flank wear width of the cutting edge was measured.
Cutting condition 1:
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 430 m / min,
Incision: 1.5mm,
Feed: 0.22mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min).
Cutting condition 2:
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 410 m / min,
Cutting depth: 1.0 mm,
Feed: 0.22mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 200 m / min).
Table 15 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表9、表15に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとCrの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在するとともに、結晶粒の工具基体側の領域と表面側の領域で{100}面の法線がなす傾斜角が所定の傾斜角度数分布を有することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 9 and 15, the coated tool of the present invention is a crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Al and Cr constituting the hard coating layer. In addition to the presence of a predetermined in-grain average orientation difference, the tilt angle formed by the normal of the {100} plane in the tool base side region and the surface side region of the crystal grain has a predetermined tilt angle number distribution. The distortion of the crystal grains improves the hardness and improves the toughness while maintaining high wear resistance. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
 これに対して、硬質被覆層を構成するAlとCrの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していないか、結晶粒の工具基体側の領域と表面側の領域で{100}面の法線がなす傾斜角が所定の傾斜角度数分布を有していない比較被覆工具1~13、16~28および参考被覆工具14、15、29、30については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, in the crystal grains having the cubic structure constituting the composite nitride of Al and Cr or the composite carbonitride layer constituting the hard coating layer, there is no predetermined intra-grain average orientation difference. The comparative coated tools 1 to 13, 16 to 28 in which the inclination angle formed by the normal of the {100} plane in the region on the tool base side and the region on the surface side of the crystal grains does not have a predetermined inclination angle number distribution, and The reference coated tools 14, 15, 29, and 30 are accompanied by high heat generation, and when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, shorting occurs due to chipping, chipping, etc. It is clear that the life is reached in time.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表16に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体E~Gをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 16. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. WC-based cemented carbide tool bases E to G with ISO standard SEEN1203AFSN insert shape after vacuum sintering under the condition of holding for 1 hour at a predetermined temperature within the range of ~ 1470 ° C. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表17に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Hを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 17, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base H made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体E~Hの表面に、化学蒸着装置を用い、表19、表20に示される形成条件、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか)、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:4.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか):0.1~0.2%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表22に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表22に示される面積割合存在し、表22に示される目標層厚を有する(Ti1-α―βAlαMeβ)(Cγ1-γ)層からなる硬質被覆層を形成することにより本発明被覆工具31~45を製造した。
 なお、本発明被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表22に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases E to H, and the formation conditions shown in Tables 19 and 20, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( CH 3 ) 3 , AlCl 3 , MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), gas group B consisting of N 2 , H 2 , and supply of each gas As a method, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set to NH 3 : 4.0 to 6.0%, H 2 : 65 to 75%, gas group As B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , Cr Any of Cl 2 ): 0.1 to 0.2%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature : 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference between gas group A and gas group B supply 0.10 to 0.20 seconds Then, the thermal CVD method is performed for a predetermined time, and the crystal grains having a cubic structure in which the average misorientation within the crystal grains shown in Table 22 is 2 degrees or more are present in the area ratio shown in Table 22, The coated tools 31 to 45 of the present invention were manufactured by forming a hard coating layer composed of a (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer having a target layer thickness.
For the inventive coated tools 36 to 43, the lower layer shown in Table 21 and / or the upper layer shown in Table 22 were formed under the formation conditions shown in Table 18.
 また、比較の目的で、工具基体E~Hの表面に、表19、表20に示される条件かつ表23に示される目標層厚(μm)で本発明被覆工具31~45と同様に、少なくともTiとAlとMeの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Ti1-α―βAlαMeβ)(Cγ1-γ)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具31~45を製造した。
 なお、本発明被覆工具36~43と同様に、比較被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表23に示される上部層を形成した。
For comparison purposes, at least on the surfaces of the tool bases E to H, at the conditions shown in Tables 19 and 20 and the target layer thickness (μm) shown in Table 23, at least as in the coated tools 31 to 45 of the present invention. A hard coating layer including a composite nitride or composite carbonitride layer of Ti, Al, and Me was deposited. At this time, the hard coating layer is formed so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer. Thus, comparative coated tools 31 to 45 were produced.
Similar to the coated tools 36 to 43 of the present invention, the comparative coated tools 36 to 43 are formed with the lower layer shown in Table 21 and / or the upper layer shown in Table 23 under the forming conditions shown in Table 18. did.
 また、本発明被覆工具31~45、比較被覆工具31~45の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表21~表23に示される目標層厚と実質的に同じ平均層厚を示した。 Further, the cross-sections of the constituent layers of the inventive coated tools 31 to 45 and comparative coated tools 31 to 45 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times), and within the observation field of view. When the average layer thickness was obtained by measuring and averaging the five layer thicknesses, all showed an average layer thickness substantially the same as the target layer thickness shown in Table 21 to Table 23.
 また、複合窒化物または複合炭窒化物層の平均Al含有割合、平均Me含有割合については、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合αavgおよびMeの平均含有割合βavgを求めた。平均C含有割合γavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合γavgはTiとAlとMeの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をγavgとして求めた。その結果を表22および表23に示す。 The average Al content ratio and the average Me content ratio of the composite nitride or composite carbonitride layer were measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. A line was irradiated from the sample surface side, and an average Al content rate α avg of Al and an average content rate β avg of Me were obtained from an average of 10 points of the analysis result of the obtained characteristic X-rays. The average C content γ avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio γ avg represents an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti, Al, and Me. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as γ avg . The results are shown in Table 22 and Table 23.
 さらに、電子線後方散乱回折装置を用いてTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表22および表23に示す。
 図5に、本発明被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示し、また、図6には、比較被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
Furthermore, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, If there is an orientation difference of 5 degrees or more between the pixels to be used as a grain boundary, and the region surrounded by the grain boundary is a single crystal grain, one pixel in the crystal grain and all the other in the same crystal grain The crystal grain orientation difference is calculated between the pixels, and the crystal grain orientation difference is 0 degree or more and less than 1 degree, 1 degree or more and less than 2 degree, 2 degree or more and less than 3 degree, 3 degree or more and less than 4 degree, and so on. The range of 0 to 10 degrees was divided every 1 degree and mapped. From the mapping diagram, the area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 22 and Table 23.
FIG. 5 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool of the present invention, and FIG. 6 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coated tool.
 また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlとMeの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面を層厚方向に二等分した工具基体表面(工具基体)側の領域と表面側の領域に分けて解析し、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体と垂直方向に関しては前記界面側の領域と表面側の領域の測定範囲内、工具基体と水平方向には幅10μm、5視野分について、0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、表面側の領域において傾斜角区分に最高ピークが存在する角度の範囲および0~12度の範囲内に存在する度数の割合MdegとNdegを求めた。その結果を表22および表23に示す。
 図9に、本発明被覆工具のTiとAlとMeの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体側の領域について測定した傾斜角度数分布の一例を示し、また、図10には、本発明被覆工具のTiとAlとMeの複合窒化物または複合炭窒化物層からなる硬質被覆層の表面側の領域について測定した傾斜角度数分布の一例を示す。
 さらに電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒の面積割合を求めた。その結果を表22および表23に示す。
In addition, regarding the distribution of the inclination angle number of the hard coating layer, a field emission scanning electron microscope with a cross section of the hard coating layer composed of a composite carbonitride layer of Ti, Al, and Me having a cubic structure is used as a polished surface. Acceleration voltage of 10 kV at an incident angle of 70 degrees is set in a lens barrel and analyzed separately for the tool base surface (tool base) side region and the surface side region obtained by dividing the polishing surface into two equal parts in the layer thickness direction. With an irradiation current of 1 nA, with respect to the tool substrate in the direction perpendicular to the tool substrate, within the measurement range of the region on the interface side and the region on the surface side, the width of the tool substrate in the horizontal direction is 10 μm and 0.1 μm for five fields of view. Is irradiated with individual crystal grains having a cubic crystal lattice existing in the measurement range at an interval of / step, and the normal of the tool base surface (the tool base surface on the cross-section polished surface) is obtained using an electron beam backscatter diffraction image apparatus. Direction). The inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, is measured. Based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to 0. .Division for each pitch of 25 degrees, and by counting the frequencies existing in each division, the angle range where the highest peak exists in the slope angle division in the surface side region and within the range of 0-12 degrees The ratios M deg and N deg of the existing frequencies were obtained. The results are shown in Table 22 and Table 23.
FIG. 9 shows an example of an inclination angle number distribution measured for a region on the tool base side of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the coated tool of the present invention. 10 shows an example of an inclination angle number distribution measured for a region on the surface side of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the coated tool of the present invention.
Furthermore, analysis was performed at intervals of 0.1 μm from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 μm, and the vertical measurement within the measurement range of the film thickness was performed in five fields of view. The total number of pixels belonging to crystal grains having a cubic structure constituting the nitride or composite carbonitride layer is obtained, and the composite nitridation is performed according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view. The area ratio of crystal grains having a cubic structure constituting the product or composite carbonitride layer was determined. The results are shown in Table 22 and Table 23.
 さらに、本発明被覆工具31~45および比較被覆工具31~45について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍または20000倍)を用いて、工具基体表面と水平方向に長さ10μmの範囲に存在するTiとAlとMeの複合窒化物または複合炭窒化物層を構成する(Ti1-α―βAlαMeβ)(Cγ1-γ)層中の個々の結晶粒について、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。その結果を表22および表23に示す。 Further, for the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45, using a scanning electron microscope (magnification 5000 times or 20000 times) from the cross-sectional direction perpendicular to the tool substrate, the tool substrate surface and the horizontal direction to configure the Ti composite nitride of Al and Me or composite carbonitride layer present within the range of length 10μm (Ti 1-α-β Al α Me β) (C γ N 1-γ) layer of Each crystal grain is observed from the cross section side of the film perpendicular to the surface of the tool substrate, and the particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured. The ratio a (= l / w) is calculated, the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain The average particle width It was calculated as. The results are shown in Table 22 and Table 23.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具31~45、比較被覆工具31~45について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表24に示す。 Next, the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 in the state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig will be described below. The dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 24.
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
 回転速度:892 min-1
 切削速度:350 m/min、
 切り込み:1.5 mm、
 一刃送り量:0.1 mm/刃、
 切削時間:8分。
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: Block material of JIS / S55C width 100mm, length 400mm,
Rotational speed: 892 min −1
Cutting speed: 350 m / min,
Cutting depth: 1.5 mm,
Single blade feed: 0.1 mm / tooth,
Cutting time: 8 minutes.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表25に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体ε~ηをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 ~ 3 [mu] m, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, prepared TiN powder and Co powder, these raw material powders, Blended in the composition shown in Table 25, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases ε to η made of a WC-base cemented carbide having an insert shape of CNMG120212 were produced.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表26に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体θを形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 26, wet-mixed for 24 hours with a ball mill, dried, and then pressed into green compacts at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate θ was formed.
 つぎに、これらの工具基体ε~ηおよび工具基体θの表面に、化学蒸着装置を用い、実施例3と同様の方法により表19及び表20に示される条件で、少なくとも(Ti1-α―βAlαMeβ)(Cγ1-γ)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表28に示される本発明被覆工具46~60を製造した。
 なお、本発明被覆工具49~58については、表18に示される形成条件で、表27に示される下部層および/または表28に示される上部層を形成した。
Next, on the surfaces of these tool bases ε to η and tool base θ, at least (Ti 1-α- The coated tools 46 to 60 of the present invention shown in Table 28 were manufactured by vapor-depositing a hard coating layer including a β Al α Me β ) (C γ N 1-γ ) layer with a target layer thickness.
For the inventive coated tools 49 to 58, the lower layer shown in Table 27 and / or the upper layer shown in Table 28 were formed under the formation conditions shown in Table 18.
 また、比較の目的で、同じく工具基体ε~ηおよび工具基体θの表面に、化学蒸着装置を用い、表19および表20に示される条件かつ表29に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表29に示される比較被覆工具46~60を製造した。
 なお、本発明被覆工具49~58と同様に、比較被覆工具49~58については、表18に示される形成条件で、表27に示される下部層および/または表29に示される上部層を形成した。
Also, for comparison purposes, the coated tool of the present invention was used under the conditions shown in Tables 19 and 20 and the target layer thicknesses shown in Table 29 using a chemical vapor deposition apparatus on the surfaces of the tool bases ε to η and the tool base θ. Comparative coating tools 46 to 60 shown in Table 29 were manufactured by vapor-depositing a hard coating layer in the same manner as described above.
Similar to the coated tools 49 to 58 of the present invention, the comparative coated tools 49 to 58 are formed with the lower layer shown in Table 27 and / or the upper layer shown in Table 29 under the forming conditions shown in Table 18. did.
 また、本発明被覆工具46~60、比較被覆工具46~60の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表27~表29に示される目標層厚と実質的に同じ平均層厚を示した。
 また、前記本発明被覆工具46~60、比較被覆工具46~60の硬質被覆層について、実施例3に示される方法と同様の方法を用いて、平均Al含有割合αavg、平均Me含有割合βavg、平均C含有割合γavg、工具基体側の傾斜角度数分布Mdeg、表面側の傾斜角度数分布Ndeg、表面側の領域において傾斜角区分に最高ピークが存在する角度の範囲、結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。その結果を表28および表29に示す。
Further, the cross-section of each constituent layer of the coated tool 46 to 60 of the present invention and the comparative coated tool 46 to 60 is measured using a scanning electron microscope (magnification 5000 times), and the layer thickness at five points in the observation field is measured. When the average layer thickness was obtained on average, all showed the same average layer thickness as the target layer thicknesses shown in Tables 27 to 29.
For the hard coating layers of the inventive coated tools 46 to 60 and comparative coated tools 46 to 60, the average Al content ratio α avg , the average Me content ratio β avg , average C content ratio γ avg , inclination angle number distribution M deg on the tool base side, inclination angle number distribution N deg on the surface side, range of angles where the highest peak exists in the inclination angle section in the region on the surface side, crystal grains The average grain width W, the average aspect ratio A, and the area ratio of the cubic crystal phase in the crystal grains were determined. The results are shown in Table 28 and Table 29.
 さらに、電子線後方散乱回折装置を用いてTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表28および表29に示す。 Furthermore, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer. Intragranular orientation difference is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. Mapped. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in the crystal grains and the orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 28 and Table 29.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具46~60、比較被覆工具46~60について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:440m/min、
 切り込み:1.5mm、
 送り:0.2mm/rev、
 切削時間:5分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:420m/min、
 切り込み:1.0mm、
 送り:0.2mm/rev、
 切削時間:5分、
(通常の切削速度は、250m/min)、
 表30に、前記切削試験の結果を示す。
Next, the coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 are shown below in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 440 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 420 m / min,
Cutting depth: 1.0 mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 250 m / min),
Table 30 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表24、表30に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在し、工具基体側より表面側の{100}配向の割合を高くすることで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 24 and 30, the coated tool of the present invention has a crystal structure having a cubic structure constituting a composite nitride or composite carbonitride layer of Al, Ti, and Me constituting the hard coating layer. , There is a predetermined in-grain average orientation difference, and by increasing the ratio of {100} orientation on the surface side from the tool substrate side, the hardness is improved due to the distortion of the crystal grains, and high wear resistance is achieved. While maintaining, toughness is improved. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
 これに対して、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していない比較被覆工具31~45、46~60については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, there is a predetermined intra-grain average orientation difference in the crystal grains having a cubic structure constituting the composite nitride of Al, Ti, and Me or the composite carbonitride layer constituting the hard coating layer. The comparative coated tools 31 to 45 and 46 to 60 which are not used are accompanied by high heat generation, and when used for high-speed intermittent cutting in which intermittent and impact high loads act on the cutting edge, chipping, chipping, etc. occur. It is clear that the lifetime is reached in a short time.
 前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
 1  工具基体
 2  硬質被覆層
 3  複合窒化物または複合炭窒化物層
 P  測定点(ピクセル)
 B  粒界
1 Tool substrate 2 Hard coating layer 3 Composite nitride or composite carbonitride layer P Measurement point (pixel)
B Grain boundary

Claims (8)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
     (a)前記硬質被覆層は、平均層厚2~20μmのCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
     (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
     (c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で20%以上存在し、
     (d)さらに、前記結晶粒の工具基体表面の法線方向に対する結晶面である{100}面の法線がなす傾斜角を前記複合窒化物または複合炭窒化物層を層厚方向に二等分した工具基体側の領域と表面側の領域に分けて測定し、測定された前記傾斜角のうち法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した場合、
     工具基体側の領域において、0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をMdegとすると、Mdegが10~40%であり、
     表面側の領域において、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体に対しての割合をNdegとすると、NdegがMdeg+10~Mdeg+30%であることを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and cubic boron nitride-based ultrahigh pressure sintered body,
    (A) The hard coating layer is composed of a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 2 to 20 μm, or Ti, Al, and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer,
    (B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
    (C) The crystal orientation of the crystal grains having the NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or composite carbonitride layer is determined from the longitudinal sectional direction using an electron beam backscattering diffractometer. Analyzing and obtaining the average orientation difference within each crystal grain When the average orientation difference within the crystal grain is 2 degrees or more, the crystal grains are in an area ratio relative to the total area of the composite nitride or composite carbonitride layer. 20% or more
    (D) Further, the inclination angle formed by the normal line of the {100} plane which is the crystal plane with respect to the normal direction of the surface of the tool base of the crystal grain is equal to the composite nitride or the composite carbonitride layer in the layer thickness direction. The measured tool base side area and the surface side area are measured separately, and the measured tilt angle within the range of 0 to 45 degrees with respect to the normal direction among the measured tilt angles is 0.25 degrees. If you divide by pitch and count the frequency that exists in each division,
    In the region on the tool base side, when the total of the frequencies existing in the range of 0 to 12 degrees is M deg with respect to the total frequencies in the tilt angle frequency distribution, M deg is 10 to 40%,
    In the region on the surface side, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is relative to the entire frequency in the inclination angle frequency distribution. When the ratio of the Te and the N deg, the surface-coated cutting tool N deg is characterized in that it is a M deg + 10 ~ M deg + 30%.
  2.  前記複合窒化物または複合炭窒化物層は、CrとAlの複合窒化物もしくは複合炭窒化物層であって、その組成を、
    組成式:(Cr1-xAl)(C1-y
    で表した場合、複合窒化物または複合炭窒化物層のAlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足することを特徴とする請求項1に記載の表面被覆切削工具。
    The composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is
    Composition formula: (Cr 1-x Al x ) (C y N 1-y )
    In the composite nitride or composite carbonitride layer, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x 2. The surface-coated cutting according to claim 1, wherein avg and y avg are both atomic ratios) satisfying 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively. tool.
  3.  前記複合窒化物または複合炭窒化物層は、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層であって、その組成を、
    組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ
    で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足することを特徴とする請求項1に記載の表面被覆切削工具。
    The composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) or a composite carbonitride. Layer, the composition of which
    Composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ )
    In the composite nitride or composite carbonitride layer, the average content ratio α avg in the total amount of Ti, Al, and Me of Al, the average content ratio β avg in the total amount of Me Ti, Al, and Me And the average content ratio γ avg (where α avg , β avg , and γ avg are atomic ratios) of the total amount of C and N in C and C are 0.60 ≦ α avg and 0.005 ≦ β avg , respectively. The surface-coated cutting tool according to claim 1, wherein ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95 is satisfied.
  4.  前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の表面被覆切削工具。 4. The composite nitride or composite carbonitride layer includes at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl type face centered cubic structure. The surface-coated cutting tool according to any one of the above.
  5.  前記複合窒化物または複合炭窒化物層は、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1~2μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer is an average of individual grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer when observed from the longitudinal cross-sectional direction of the layer. The surface-coated cutting tool according to any one of claims 1 to 4, wherein the surface-coated cutting tool has a columnar structure having a particle width W of 0.1 to 2 µm and an average aspect ratio A of 2 to 10.
  6.  前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至請求項5のいずれか一項に記載の表面被覆切削工具。 Between the tool substrate and the composite nitride or composite carbonitride layer, one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer The surface-coated cutting tool according to any one of claims 1 to 5, wherein a lower layer is formed of the Ti compound layer and has a total average layer thickness of 0.1 to 20 µm.
  7.  前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする請求項1乃至請求項6のいずれか一項に記載の表面被覆切削工具。 7. The upper layer including at least an aluminum oxide layer is formed on the composite nitride or composite carbonitride layer at a total average layer thickness of 1 to 25 μm. The surface-coated cutting tool according to claim 1.
  8.  前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1乃至請求項7のいずれか一項に記載の表面被覆切削工具の製造方法。 8. The composite nitride or composite carbonitride layer is formed by chemical vapor deposition containing at least trimethylaluminum as a reactive gas component, according to any one of claims 1 to 7. A method of manufacturing a surface-coated cutting tool.
PCT/JP2016/082357 2015-10-30 2016-10-31 Surface-coated cutting tool, and production method therefor WO2017073792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680062771.0A CN108349017B (en) 2015-10-30 2016-10-31 Surface-coated cutting tool and its manufacturing method
EP16860020.3A EP3369506B1 (en) 2015-10-30 2016-10-31 Surface-coated cutting tool
US15/771,337 US10618115B2 (en) 2015-10-30 2016-10-31 Surface-coated cutting tool and manufacturing method of the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-214525 2015-10-30
JP2015214525 2015-10-30
JP2015-214521 2015-10-30
JP2015214521 2015-10-30
JP2016-211413 2016-10-28
JP2016211413A JP6931452B2 (en) 2015-10-30 2016-10-28 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer

Publications (1)

Publication Number Publication Date
WO2017073792A1 true WO2017073792A1 (en) 2017-05-04

Family

ID=58631634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082357 WO2017073792A1 (en) 2015-10-30 2016-10-31 Surface-coated cutting tool, and production method therefor

Country Status (1)

Country Link
WO (1) WO2017073792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090395A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090395A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6931453B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6548071B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
WO2014163081A1 (en) Surface-coated cutting tool
WO2014034730A1 (en) Surface-coated cutting tool
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6709526B2 (en) Surface coated cutting tool
JP7119264B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance.
JP6931454B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6931452B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
US10710168B2 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
WO2017073787A1 (en) Surface-coated cutting tool, and production method therefor
WO2017073792A1 (en) Surface-coated cutting tool, and production method therefor
WO2017073789A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance, and production method therefor
WO2017073790A1 (en) Surface-coated cutting tool, and production method therefor
WO2016084938A1 (en) Surface-coated cutting tool
WO2016068122A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15771337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016860020

Country of ref document: EP