WO2017073787A1 - Surface-coated cutting tool, and production method therefor - Google Patents

Surface-coated cutting tool, and production method therefor Download PDF

Info

Publication number
WO2017073787A1
WO2017073787A1 PCT/JP2016/082338 JP2016082338W WO2017073787A1 WO 2017073787 A1 WO2017073787 A1 WO 2017073787A1 JP 2016082338 W JP2016082338 W JP 2016082338W WO 2017073787 A1 WO2017073787 A1 WO 2017073787A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
avg
nitride
average
Prior art date
Application number
PCT/JP2016/082338
Other languages
French (fr)
Japanese (ja)
Inventor
翔 龍岡
佐藤 賢一
光亮 柳澤
西田 真
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016211416A external-priority patent/JP6778413B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2017073787A1 publication Critical patent/WO2017073787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention has high heat generation such as carbon steel, alloy steel, cast iron and the like, and has high chipping resistance with a hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use and a method for producing the surface-coated cutting tool.
  • a coated tool a surface-coated cutting tool
  • the present application is based on Japanese Patent Application Nos. 2015-214522 and 2015-214528 filed in Japan on October 30, 2015, and Japanese Patent Application No. 2016-212416 filed in Japan on October 28, 2016. Claim the right and use it here.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • the above-mentioned coated tools coated with the conventional Cr-Al or Ti-Al composite nitride layer have relatively high wear resistance, but abnormalities such as chipping when used under high-speed interrupted cutting conditions.
  • Various proposals for improvement of the hard coating layer have been made because of easy wear.
  • Patent Document 1 discloses a hard coating composed of a lower layer, an intermediate layer, and an upper layer on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting such as stainless steel and Ti alloy.
  • the lower layer has a predetermined average layer thickness, and includes a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al
  • the content ratio (atomic ratio) of 0.65 ⁇ X ⁇ 0.95) is composed of a TiAl compound having a cubic structure consisting of one or more layers, and the intermediate layer has a predetermined average layer thickness.
  • Patent Document 2 discloses that a lower layer, an intermediate layer, and an upper layer are formed on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting of a heat-resistant alloy such as precipitation hardened stainless steel and Inconel.
  • a lower layer is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The atomic ratio is 0.65 ⁇ X ⁇ 0.95) and is composed of a Ti compound having a cubic crystal structure consisting of one layer or two or more layers, and the intermediate layer is a predetermined single layer average layer Thick Cr 1-Y Al Y N layer, Cr 1-Y Al Y C layer, Cr 1-Y Al Y CN layer (Y represents the Al content and represents the atomic ratio, 0.60 ⁇ Y ⁇ 0. 90) having a cubic crystal structure consisting of one or more layers.
  • the upper layer is made of an Al 2 O 3 layer having micropores having a predetermined pore diameter and pore density, thereby reducing mechanical and thermal shocks, thereby improving chipping resistance and wear resistance. It has been proposed.
  • Patent Document 4 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr.
  • a compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
  • Patent Document 5 discloses that the value of the Al content ratio x is 0. by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 . It is described that a (Ti 1-x Al x ) N layer having a thickness of 65 to 0.95 can be formed by vapor deposition. In this document, an Al 2 O layer is further formed on the (Ti 1-x Al x ) N layer. The formation of a (Ti 1-x Al x ) N layer with the aim of covering three layers and thereby increasing the thermal insulation effect, with the value of x increased from 0.65 to 0.95, There is no disclosure up to what point it has on cutting performance.
  • Patent Document 6 a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition.
  • Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
  • Japanese Unexamined Patent Publication No. 2014-208394 Japanese Unexamined Patent Publication No. 2014-198362
  • the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
  • the coated tools described in Patent Documents 1 and 2 improve the adhesion strength between the lower layer and the upper layer by interposing and forming a CrAl compound and a Cr compound as an intermediate layer of the hard coating layer. Although the chipping property is improved, the strength and hardness of the CrAl compound and the Cr compound itself are not sufficient, so that when used for high-speed intermittent cutting, the chipping resistance and wear resistance are sufficient. I can't say that.
  • the Cr content ratio of the hard coating layer made of (Al 1-X Cr X ) N is adjusted, and the crystal orientation and constituent atomic shared lattice point distribution are adjusted.
  • the strength of the hard coating layer can be improved, and as a result, the chipping resistance and chipping resistance can be improved, but the strength of the (Al 1-X Cr X ) N layer Since the hardness is not sufficient, excellent chipping resistance and wear resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed intermittent cutting of alloy steel.
  • the coated tool described in Patent Document 4 is intended to improve wear resistance and oxidation resistance, but it is resistant to chipping under cutting conditions such as high-speed interrupted cutting.
  • the present inventors have at least a composite nitride or composite carbonitride of Cr and Al (hereinafter referred to as “(Cr, Al) (C, N)” or “(Cr 1-x Al x ) (which may be represented by (C y N 1-y ))), and a coated nitride or composite carbonitride of at least Ti and Al (hereinafter, Chipping resistance of a coated tool provided with a hard coating layer containing “(Ti, Al) (C, N)” or “(Ti 1 ⁇ Al ⁇ ) (may be represented by C ⁇ N 1 ⁇ )”
  • the following findings were obtained.
  • the hard coating layer having an average layer thickness of (Cr 1 ⁇ x Al x ) (C y N 1 ⁇ y ) layer or (Ti 1 ⁇ Al ⁇ ) (C ⁇ N 1 ⁇ ) layer is a tool. When it is formed in a columnar shape in the vertical direction on the substrate, it has high wear resistance.
  • the present inventors constituting the hard layer (Cr 1-x Al x) (C y N 1-y) layer, and, (Ti 1- ⁇ Al ⁇ ) (C ⁇ N 1- ⁇ )
  • the (Cr 1-x Al x ) (C y N 1-y ) layer and the (Ti 1- ⁇ Al ⁇ ) (C ⁇ N 1- ⁇ ) layer have Si, Zr, B (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer containing a kind of element selected from V, Cr and the like (hereinafter referred to as “Me”) is NaCl type.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al, and the layer has a composition formula: (Cr 1 ⁇ x Al x ) (C y N 1 ⁇ y ), in particular, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are either Also satisfy 0.70 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively, and have a cubic structure in the crystal grains constituting the composite nitride or composite carbonitride layer.
  • the average orientation within the crystal grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference within the crystal grain is obtained, the average orientation within the crystal grain
  • the crystal grains showing the difference of 2 degrees or more are 40 in terms of the area ratio of the composite nitride or composite carbonitride layer.
  • the hard coating layer is a composite nitride or composite carbonitride layer of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr).
  • the (Cr 1 ⁇ x Al x ) (C y N 1 ⁇ y ) layer and the (Ti 1 ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1 ⁇ ) layer configured as described above are
  • the film can be formed by the following chemical vapor deposition method in which the reaction gas composition is periodically changed on the tool substrate surface.
  • the chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , CrCl 3 , AlCl 3 , Al (CH 3 )
  • a gas group B composed of 3 , N 2 and H 2 is supplied into the reactor from the separate gas supply pipes, and the supply of the gas group A and the gas group B into the reactor is, for example, at a constant cycle. In such a time interval, the gas is supplied so that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B has a phase difference shorter than the gas supply time.
  • the reaction gas composition on the surface can be changed temporally with (a) gas group A, (b) mixed gas of gas group A and gas group B, and (c) gas group B.
  • gas group A gas group A
  • gas group B gas group B
  • gas group B gas group B
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 2.0 to 3.0% and H 2 : 65 to 75 as the gas group A. %, AlCl 3 : 0.6 to 0.9% as gas group B, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 ⁇ 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 750 to 900 ° C, supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to By performing the thermal CVD method for a predetermined time with a phase difference of 0.10 to 0.20 seconds for the supply of the gas group A and the gas group B for 0.25 seconds, (Cr 1-x Al x ) (C y N 1-y ) layer is formed.
  • the hard coating layer can exhibit excellent cutting performance over a long period of use.
  • the chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( A gas group B consisting of CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), N 2 , and H 2 is supplied into the reactor through a separate gas supply pipe.
  • the supply into the reactor is, for example, such that the gas flows at a constant cycle time interval for a time shorter than the cycle, and the gas supply for the gas group A and the gas group B is more than the gas supply time.
  • the reaction gas composition on the surface of the tool base is changed to gas group A (first reaction gas), gas mixture of gas group A and gas group B (second reaction gas), gas group B so that a phase difference of a short time occurs. (Third reaction gas) and time can be changed.
  • gas group A first reaction gas
  • gas mixture of gas group A and gas group B second reaction gas
  • gas group B second reaction gas
  • time can be changed.
  • the gas mixture (first reaction gas), the gas mixture of gas group A and gas group B (second reaction gas), and the gas mixture mainly consisting of gas group B (third reaction gas) can be changed over time. It can be realized.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 2.0 to 3.0% and H 2 : 65 to 75 as the gas group A.
  • reaction atmosphere pressure 4.5 to 5.0 kPa
  • reaction atmosphere temperature 700 to 900 ° C
  • Supply period 1 to 5 seconds gas supply time per cycle 0.15 to 0.25 seconds, phase difference 0.10 to 0.20 seconds of supply of gas group A and gas group B, predetermined time, thermal CVD by performing law, to deposit a predetermined target layer thickness of (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer
  • the present invention has been made based on the above findings, “(1) Surface coating in which a hard coating layer is formed on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and cubic boron nitride-based ultrahigh-pressure sintered body
  • the hard coating layer is a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 ⁇ m, or Ti, Al and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer
  • the composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure
  • C The crystal orientation of the crystal grains of the composite nitride or the composite carbonitride having a NaCl-type face-centered
  • the crystal grains exhibiting an average orientation difference within the crystal grain of 2 degrees or more are complex nitride or composite carbon.
  • the composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is Composition formula: (Cr 1-x Al x ) (C y N 1-y )
  • the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C satisfying 0.70 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively. tool.
  • the composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr).
  • the average content ratio ⁇ avg , the average content ratio ⁇ avg in the total amount of Me Ti, Al and Me, and the average content ratio ⁇ avg in the total amount of C and N in C (where ⁇ avg , ⁇ avg , ⁇ avg Are atomic ratios) of 0.60 ⁇ ⁇ avg , 0.005 ⁇ ⁇ avg ⁇ 0.10, 0 ⁇ ⁇ avg ⁇ 0.005, 0.605 ⁇ ⁇ avg + ⁇ avg ⁇ 0.95, respectively.
  • the composite nitride or composite carbonitride layer is composed of a single phase of composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
  • the surface coating cutting tool in any one.
  • the composite nitride or composite carbonitride layer includes at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure.
  • the surface-coated cutting tool according to any one of (3).
  • the composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of (1) to (7) Method for manufacturing a surface-coated cutting tool. " It has the characteristics.
  • the “inside crystal grain average orientation difference” means a GOS (Grain Orientation Spread) value described later.
  • the surface-coated cutting tool of the present invention which is an embodiment of the present invention
  • the surface-coated cutting tool of the present invention provided with a hard coating layer on the surface of the tool base.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 ⁇ m, and has a composition formula: (Cr 1-x Al x ) (C y N 1-y )
  • the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C satisfy 0.70 ⁇ x avg ⁇ 0.95 and 0 ⁇ y avg ⁇ 0.005, respectively, and the crystal grains constituting the composite nitride or composite carbonitride layer are NaCl-type faces.
  • the crystal grains exhibiting an average orientation difference within the crystal grain of 2 degrees or more are complex nitride or composite
  • the presence of 40% or more by area ratio with respect to the entire carbonitride layer causes distortion in the crystal grains having a cubic structure, thereby improving the hardness and toughness of the crystal grains.
  • chipping resistance is improved.
  • the effect of improving the wear resistance without damaging is exhibited, and the cutting performance superior to the conventional hard coating layer is exhibited over a long period of use, and the life of the coated tool is extended.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me having an average layer thickness of 1 to 20 ⁇ m.
  • the Ti of the composite nitride or the composite carbonitride layer is composed of Ti, Al, and Me.
  • the average content ratio ⁇ avg in the total amount and the average content ratio ⁇ avg in the total amount of Ti, Al and Me in Me and the average content ratio ⁇ avg in the total amount of C and N in C (where ⁇ avg , ⁇ avg and ⁇ avg are atomic ratios) of 0.60 ⁇ ⁇ avg , 0.005 ⁇ ⁇ avg ⁇ 0.10, 0 ⁇ ⁇ avg ⁇ 0.005, 0.605 ⁇ ⁇ avg + ⁇ avg ⁇ , respectively. 0.95 is satisfied.
  • the crystal grains constituting the composite carbonitride layer have a cubic structure, and the crystal orientation of the crystal grains is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer.
  • the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more are present in an area ratio of 40% or more with respect to the entire composite nitride or composite carbonitride layer. Since distortion occurs in the crystal grains having a cubic crystal structure, the hardness and toughness of the crystal grains are improved. As a result, the effect of improving the chipping resistance without impairing the wear resistance is exhibited.
  • the conventional hard coating layer it exhibits excellent cutting performance over a long period of use, and the length of the coated tool is improved. Life expectancy is achieved.
  • the present invention coated tool has a Cr-Al composite nitride or composite carbonitride layer, or a Ti-Al and Me composite nitride or composite carbonitride layer of NaCl type face-centered cubic structure (cubic).
  • the schematic explanatory drawing of the measuring method of the crystal grain average orientation difference of a crystal grain is shown.
  • the cross section of the composite nitride or composite carbonitride of Cr and Al, or the composite nitride or composite carbonitride layer of Ti, Al, and Me which comprises the hard coating layer which the surface coating cutting tool of this invention has is typically FIG.
  • Each of the cross-sections of the composite nitride layer or composite carbonitride layer of Ti, Al and Me constituting the hard coating layer of the comparative coated tool which is a comparative coated tool has an NaCl type face-centered cubic structure (cubic crystal). 2 shows an example of a histogram of the area ratio of average orientation difference (GOS value) in crystal grains of the crystal grains.
  • the hard coating layer of the present invention comprises a chemical vapor deposited composition formula: (Cr 1-x Al x ) (C y N 1-y ) Cr and Al composite nitride or composite carbonitride layer, or At least one of a composite nitride or composite carbonitride layer of Ti, Al, and Me represented by the composition formula: (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) Including.
  • This composite nitride or composite carbonitride layer has high temperature hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 ⁇ m.
  • the average layer thickness is set to 1 to 20 ⁇ m.
  • composition of composite nitride or composite carbonitride layer constituting hard coating layer (1)
  • the composite nitride or composite carbonitride layer of Cr and Al of the present invention is expressed by a composition formula: (Cr 1-x Al x ) (C y N 1-y ), the Cr and Al of Al
  • the average content ratio x avg in the total amount and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are atomic ratios) are respectively 0.70 ⁇ x avg ⁇ It is preferable to control to satisfy 0.95 and 0 ⁇ y avg ⁇ 0.005.
  • the average content ratio x avg of Al is less than 0.70, the high-temperature hardness of the composite nitride or composite carbonitride layer of Cr and Al is not sufficient, and the oxidation resistance is also inferior, When subjected to high-speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient.
  • the average content ratio x avg of Al exceeds 0.95, the average content ratio of Cr relatively decreases, leading to embrittlement and chipping resistance. Therefore, the average Al content ratio x avg was determined to be 0.70 ⁇ x avg ⁇ 0.95.
  • the composite nitride or composite carbonitride layer is a minute amount in the range of 0 ⁇ y avg ⁇ 0.005
  • the composite nitride or composite carbon The adhesion between the nitride layer and the tool substrate or the lower layer is improved, and the impact during cutting is reduced by improving the lubricity. As a result, the fracture resistance of the composite nitride or the composite carbonitride layer and Chipping resistance is improved.
  • the average content ratio y of the component C deviates from the range of 0 ⁇ y avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reduced. Therefore, it is not preferable. Therefore, the average content ratio y avg of the C component was set to 0 ⁇ y avg ⁇ 0.005.
  • the wear resistance is not sufficient.
  • the composite nitride of Ti and Al and Me or the composite carbonitride layer 2 is inferior in hardness, so that it can be used for high-speed intermittent cutting of alloy steel and the like. In such a case, the wear resistance is not sufficient.
  • the average content ratio ⁇ avg of Me was defined as 0.005 ⁇ ⁇ avg ⁇ 0.10.
  • the sum ⁇ avg + ⁇ avg of the average content ratio ⁇ avg of Al and the average content ratio ⁇ avg of Me was determined as 0.605 ⁇ ⁇ avg + ⁇ avg ⁇ 0.95.
  • a specific component of Me a kind of element selected from Si, Zr, B, V, and Cr is used.
  • the Si component or the B component is used so that ⁇ avg is 0.005 or more as Me, the hardness of the composite nitride or composite carbonitride layer is improved, so that the wear resistance is improved.
  • the Zr component has the effect of strengthening the grain boundaries, and the V component improves toughness, so that the chipping resistance is further improved, and the Cr component improves oxidation resistance.
  • the tool life is expected to be even longer.
  • the average content ratio ⁇ avg exceeds 0.10, the average content ratio of the Al component and the Ti component is relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio of ⁇ avg exceeds 0.10.
  • the composite nitride or composite carbonitride layer when the average content ratio (atomic ratio) ⁇ avg of C contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ⁇ ⁇ avg ⁇ 0.005, the composite nitride or composite carbonitride The adhesion between the material layer and the tool base or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the fracture resistance and resistance of the composite nitride or composite carbonitride layer are reduced. Chipping property is improved.
  • the average content ratio ⁇ avg of C deviates from the range of 0 ⁇ ⁇ avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer decreases, so the chipping resistance and chipping resistance decrease on the contrary. Therefore, it is not preferable. Therefore, the average content ratio ⁇ avg of C was determined as 0 ⁇ ⁇ avg ⁇ 0.005.
  • Intra-grain average orientation difference of individual crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
  • an electron beam backscatter diffractometer is used to determine the average orientation difference in cubic Cr and Al composite nitride or composite carbonitride crystal grains, and cubic Ti, Al and Me.
  • the average orientation difference within the crystal grains of the composite nitride or composite carbonitride crystal grains is determined. Specifically, the surface polished surface was analyzed at intervals of 0.1 ⁇ m from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer, and as shown in FIG.
  • adjacent measurement points P hereinafter, “ If there is a misorientation of 5 degrees or more between them (also referred to as “pixel”), this is defined as a grain boundary B.
  • a region surrounded by the grain boundary B is defined as one crystal grain.
  • a single pixel P having an orientation difference of 5 degrees or more with all adjacent pixels P is not a crystal grain, and a case where two or more pixels are connected is handled as a crystal grain.
  • the orientation difference between a certain pixel P in a crystal grain having a cubic crystal structure and all other pixels in the same crystal grain is calculated, and this is obtained as the orientation difference in the crystal grain, and is averaged.
  • Things are defined as GOS (Grain Orientation Spread) values. A schematic diagram is shown in FIG.
  • in-grain average orientation difference means the GOS value.
  • the GOS value is expressed by a mathematical expression, the number of pixels in the same crystal grain is n, the numbers assigned to different pixels P in the same crystal grain are i and j (where 1 ⁇ i, j ⁇ n), pixel
  • the crystal orientation difference obtained from the crystal orientation at i and the crystal orientation at pixel j is ⁇ ij (i ⁇ j) ,
  • the average orientation difference and GOS value within a crystal grain are numerical values obtained by calculating the orientation difference between a certain pixel P in the crystal grain and all other pixels in the same crystal grain and averaging the values. In other words, a large numerical value is obtained when there are many continuous orientation changes in the crystal grains.
  • In-grain average orientation difference is within a measurement range of 25 ⁇ 25 ⁇ m using an electron beam backscattering diffractometer on the surface polished surface from a direction perpendicular to the surface of the composite nitride or composite carbonitride layer.
  • the number of pixels belonging to a crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer is determined at intervals of 0.1 ⁇ m / step, and the total number of pixels belonging to the crystal grain is determined.
  • FIG. 3 shows the crystal grains having the cubic structure of the Cr and Al composite nitride or composite carbonitride layer of the present invention.
  • FIG. 3 is an example of a histogram of the average misorientation within a crystal grain. As shown in FIG. 3, the crystal grain having an average misorientation (GOS) value of 2 degrees or more is mixed with Cr and Al. It can be seen that the area proportion of the total area of the product or composite carbonitride layer is 40% or more.
  • GOS average misorientation
  • FIG. 4 is an example of a histogram of average orientation difference within a crystal grain obtained for a crystal grain having a cubic structure of a conventional Cr and Al composite nitride or composite carbonitride layer.
  • the area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is less than 40%.
  • GOS mean grain orientation difference
  • the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al of the present invention have a large variation in crystal orientation in the crystal grains as compared with the conventional one. Therefore, an increase in strain in the crystal grains contributes to improvement in hardness and toughness and improvement in wear resistance.
  • a coated tool in which a hard coating layer including at least a (Cr 1-x Al x ) (C y N 1-y ) layer having an in - grain average orientation difference is formed on the surface of a tool base is accompanied by high heat generation. At the same time, it exhibits excellent chipping resistance and wear resistance by high-speed intermittent cutting of alloy steel or the like in which an impact load is applied to the cutting edge.
  • the crystal grains having a cubic structure in which the average misorientation within the grains is 2 degrees or more are composed of a composite nitride or composite carbonitride layer of Cr and Al
  • the area ratio of the total area is 40% or more.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 45 to 70%.
  • the area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 50 to 65%.
  • FIG. 5 has a cubic structure of the Ti, Al and Me composite nitride or composite carbonitride layer of the present invention.
  • FIG. 5 is an example of a histogram of the average orientation difference within a crystal grain obtained for a crystal grain. As shown in FIG. 5, a crystal grain having an average orientation difference within a crystal grain (GOS) value of 2 degrees or more is Ti. It can be seen that the area ratio in the total area of the composite nitride or composite carbonitride layer of Al and Me is 40% or more.
  • the area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is less than 40%. is there.
  • GOS mean grain orientation difference
  • the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention have a variation in crystal orientation within the crystal grains as compared with the conventional one. Therefore, an increase in strain within the crystal grains contributes to improvement in hardness and toughness.
  • a coated tool in which a hard coating layer including at least a (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer having an average orientation difference in crystal grains is coated on a tool base surface, It exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of alloy steel and the like that cause high heat generation and an impact load on the cutting edge.
  • the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is less than 40% Since the effect of improving the hardness and toughness due to the internal strain of the crystal grains is not sufficient, the crystal grains having a cubic structure in which the average orientation difference in the grains is 2 degrees or more are Ti, Al and Me composite nitride or composite The area ratio in the total area of the carbonitride layer is 40% or more.
  • the crystal grains constituting the composite nitride or composite carbonitride layer of Al, Ti and Me of the surface-coated cutting tool of the present invention are compared with the crystal grains constituting the conventional TiAlN layer, Since the crystal orientation varies greatly within the crystal grains, that is, there is distortion, this contributes to the improvement of hardness and toughness.
  • the area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 45 to 70%.
  • the area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 50 to 65%.
  • Crystal structure of hard coating layer (1) Cr and Al composite nitride or composite carbonitride layer of the present invention
  • Cr and Al composite nitride or composite carbonitride layer is a composite nitride of Cr and Al having a NaCl-type face-centered cubic structure.
  • a single phase of a product or a composite carbonitride particularly excellent chipping resistance and wear resistance are exhibited.
  • the electron beam is used for the composite nitride or composite carbonitride layer of Cr and Al.
  • analysis is performed at intervals of 0.1 ⁇ m from the longitudinal cross-sectional direction, the width is 10 ⁇ m, the vertical measurement is performed from the vertical cross-sectional direction within the measurement range of the film thickness, and the composite nitride or The total number of pixels belonging to the crystal grains having a cubic structure constituting the composite carbonitride layer is obtained, and the composite nitride or composite is determined according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view.
  • the hard coating layer is analyzed at an interval of 0.1 ⁇ m from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the width is 10 ⁇ m.
  • the measurement from the longitudinal cross-sectional direction within the measurement range of the film thickness is carried out in five fields of view, and the total number of pixels belonging to the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer is obtained,
  • the area ratio of the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer was determined by the ratio to the total number of pixels measured in the hard coating layer in five fields of view, the cubic crystal
  • the area ratio of the crystal grains having a structure is less than 70%, a tendency to decrease the wear resistance is observed.
  • the area ratio is 70% or more, excellent chipping resistance and wear resistance are observed.
  • the phase of Ti, Al and Me composite nitride or composite carbonitride having a tetragonal structure is desirably 70 area% or more.
  • Lower layer and upper layer The composite nitride or composite carbonitride layer of Cr and Al of the present invention and the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention alone have a sufficient effect.
  • a lower part having a total average layer thickness of 0.1 to 20 ⁇ m, comprising one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer.
  • the layers are provided and / or when the upper layer including at least the aluminum oxide layer is provided with a total average layer thickness of 1 to 25 ⁇ m, combined with the effects of these layers, the characteristics are further improved. Can be created.
  • the total average layer of the lower layer If the thickness is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. Moreover, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 ⁇ m, the effect of the upper layer is not sufficiently achieved. .
  • FIG. 1 A cross section of a composite nitride or composite carbonitride layer of Cr and Al or a composite nitride or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the surface-coated cutting tool of the present invention
  • FIG. 1 A diagrammatic representation is shown in FIG.
  • coated tool of the present invention will be specifically described with reference to examples.
  • a coated tool using a WC-based cemented carbide or TiCN-based cermet as a tool base will be described, but the same applies when a cubic boron nitride-based ultra-high pressure sintered body is used as the tool base.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D, Formation conditions A to J shown in Tables 4 and 5, that is, a gas group A composed of NH 3 and H 2 , a gas group B composed of CrCl 3 , AlCl 3 , N 2 , and H 2 , and supply of each gas
  • the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as NH 3 : 2.0 to 3.0%, H 2 : 65 to 75% as the gas group A, and the gas group.
  • the surfaces of the tool bases A to D were subjected to the conditions shown in Tables 4 and 5 and the target layer thickness ( ⁇ m) shown in Table 8, at least as in the present coated tools 1 to 15.
  • a hard coating layer including a composite nitride or composite carbonitride layer of Cr and Al was deposited.
  • a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Cr 1-x Al x ) (C y N 1-y ) layer.
  • Coated tools 1-13 were produced. Similar to the coated tools 6 to 13 of the present invention, the comparative coated tools 6 to 13 are formed with the lower layer shown in Table 6 and / or the upper layer shown in Table 8 under the forming conditions shown in Table 3. did.
  • the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
  • the arc ion plating conditions used for the vapor deposition in the reference example are as follows.
  • the tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus.
  • an Al—Cr alloy having a predetermined composition is arranged as a cathode electrode (evaporation source), (B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 ⁇ 2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is set to ⁇ 1000 V. A DC bias voltage is applied and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Cr alloy to generate an arc discharge, thereby generating Al and Cr ions in the apparatus, thereby providing a tool base.
  • the cross sections in the direction perpendicular to the tool base of the constituent layers of the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 are measured using a scanning electron microscope (5000 magnifications).
  • 5000 magnifications 5000 magnifications.
  • an electron beam sample is used in a sample whose surface is polished using an electron-beam-microanalyzer (EPMA). Irradiation was performed from the surface side, and an average Al content ratio x avg of Al was determined from an average of 10 points of the analysis results of the obtained characteristic X-rays.
  • the average C content ratio y was determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average C content ratio y avg indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Cr and Al.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio.
  • the inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied.
  • the value was determined as yavg .
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffractometer, and adjacent pixels are analyzed. If there is a misorientation of 5 degrees or more between them, this is the grain boundary, and the region surrounded by the grain boundary is one crystal grain.
  • One pixel in the crystal grain and all other pixels in the same crystal grain The difference in orientation within the grain is calculated between 0 degree and less than 1 degree, 1 degree and less than 2 degree, 2 degree and less than 3 degree, 3 degree and less than 4 degree, and so on. The range of 10 degrees was divided and mapped every 1 degree.
  • FIG. 3 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool 2 of the present invention
  • FIG. 4 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coating tool 12. Show. Furthermore, the composite nitride or composite carbonitride layer of Cr and Al was analyzed at intervals of 0.1 ⁇ m from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 ⁇ m, and the length was within the measurement range of the film thickness.
  • the measurement from the longitudinal cross-sectional direction is performed in five fields of view, and the total number of pixels belonging to the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer is obtained.
  • the crystal grains of the NaCl type face-centered cubic structure constituting the composite nitride or composite carbonitride layer are formed in the longitudinal section of the composite nitride or composite carbonitride layer of Cr and Al.
  • the area ratio (area%) was calculated. Tables 7 and 8 show these results.
  • the coated tools 1 to 15 according to the present invention, the comparative coated tools 1 to 13 and the reference coated tool are used in the state where each of the various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig.
  • the following dry dry high-speed face milling which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: Block material of JIS / S55C width 100mm, length 400mm, Rotational speed: 815 min ⁇ 1 Cutting speed: 320 m / min, Cutting depth: 1.0 mm, Single blade feed: 0.1 mm / tooth, Cutting time: 8 minutes The results are shown in Table 9.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 ⁇ m are prepared.
  • Compounded in the formulation shown in Table 10 added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa.
  • vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm.
  • Tool bases ⁇ to ⁇ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases ⁇ to ⁇ and tool base ⁇ , and at least (Cr 1-x Al) under the conditions shown in Tables 4 and 5 by the same method as in Example 1.
  • the coated tools 16 to 30 according to the present invention shown in Table 12 were manufactured by vapor-depositing a hard coating layer containing x ) (C y N 1-y ) layer at a target layer thickness.
  • the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.
  • the coated tool of the present invention was similarly used on the surfaces of the tool bases ⁇ to ⁇ and the tool base ⁇ , using chemical vapor deposition equipment, with the conditions shown in Tables 4 and 5 and the target layer thicknesses shown in Table 14.
  • Comparative coating tools 16 to 28 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as described above.
  • the comparative coated tools 19 to 28 are formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the forming conditions shown in Table 3. did.
  • the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base ⁇ and the tool base ⁇ by arc ion plating using a conventional physical vapor deposition apparatus.
  • the reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
  • the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.
  • the cross-sections of the constituent layers of the inventive coated tools 16 to 30, the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 were measured using a scanning electron microscope (magnification 5000 times), and 5 in the observation field of view.
  • the average layer thickness was obtained by measuring the layer thickness at the points, the average layer thickness was substantially the same as the target layer thickness shown in Tables 12 to 14.
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffractometer.
  • the difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in crystal grains and the orientation difference in crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained.
  • the coated tools 16 to 30 of the present invention the comparative coated tools 16 to 28, the reference coated tool 29, For 30, a dry high-speed intermittent cutting test of carbon steel and a wet high-speed intermittent cutting test of ductile cast iron shown below were carried out, and the flank wear width of the cutting edge was measured.
  • Cutting condition 1 Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves, Cutting speed: 345 m / min, Cutting depth: 2.0 mm Feed: 0.1 mm / rev, Cutting time: 5 minutes (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove, Cutting speed: 325 m / min, Incision: 1.5mm, Feed: 0.1 mm / rev, Cutting time: 5 minutes (Normal cutting speed is 180 m / min), Table 15 shows the results of the cutting test.
  • the coated tool according to the present invention has a predetermined intragranular average within the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al.
  • the presence of misorientation improves hardness due to crystal grain distortion and improves toughness while maintaining high wear resistance.
  • even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
  • the crystal grains having a cubic structure constituting the composite nitride of Cr and Al or the composite carbonitride layer constituting the hard coating layer there is no predetermined intra-grain average orientation difference.
  • the comparative coated tools 1 to 13, 16 to 28 and the reference coated tools 14, 15, 29 and 30 are used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads acting on the cutting edge. It is clear that the life is shortened in a short time due to occurrence of chipping, chipping or the like.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 16. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 17, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base H made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases E to H, and the formation conditions shown in Tables 19 and 20, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), a gas group B consisting of N 2 , H 2 , and a method for supplying each gas
  • the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is NH 3 : 2.0 to 3.0%, H 2 : 65 to 75%, the gas group B AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, SiCl 4 , ZrCl 4 ,
  • the coated tools 31 to 45 of the present invention For comparison purposes, at least on the surfaces of the tool bases E to H, at the conditions shown in Tables 19 and 20 and the target layer thickness ( ⁇ m) shown in Table 23, at least as in the coated tools 31 to 45 of the present invention.
  • a hard coating layer including a composite nitride or composite carbonitride layer of Ti and Al was deposited. At this time, the hard coating layer is formed so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1- ⁇ - ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer.
  • comparative coated tools 31 to 45 were produced. Similar to the coated tools 36 to 43 of the present invention, the comparative coated tools 36 to 43 are formed with the lower layer shown in Table 21 and / or the upper layer shown in Table 23 under the forming conditions shown in Table 18. did.
  • the cross-sections of the constituent layers of the inventive coated tools 31 to 45 and comparative coated tools 31 to 45 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times), and within the observation field of view.
  • the average layer thickness was obtained by measuring and averaging the five layer thicknesses, all showed an average layer thickness substantially the same as the target layer thickness shown in Table 21 to Table 23.
  • the average Al content ratio and the average Me content ratio of the composite nitride or composite carbonitride layer were determined using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. A line was irradiated from the sample surface side, and an average Al content ratio ⁇ avg of Al and an average content ratio ⁇ avg of Me were obtained from an average of 10 points of the analysis result of the obtained characteristic X-ray.
  • the average C content ⁇ avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average C content ratio ⁇ avg represents an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti, Al, and Me.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio.
  • the inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied.
  • the value was determined as ⁇ avg .
  • each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, If there is an orientation difference of 5 degrees or more between the pixels to be used as a grain boundary, and the region surrounded by the grain boundary is a single crystal grain, one pixel in the crystal grain and all the other in the same crystal grain
  • the crystal grain orientation difference is calculated between the pixels, and the crystal grain orientation difference is 0 degree or more and less than 1 degree, 1 degree or more and less than 2 degree, 2 degree or more and less than 3 degree, 3 degree or more and less than 4 degree, and so on.
  • FIG. 5 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool of the present invention
  • FIG. 6 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coated tool.
  • the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 in the state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig will be described below.
  • the dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 24.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: Block material of JIS / S55C width 100mm, length 400mm, Rotational speed: 815 min ⁇ 1 Cutting speed: 320 m / min, Cutting depth: 1.5 mm, Single blade feed: 0.1 mm / tooth, Cutting time: 8 minutes
  • At least (Ti 1- ⁇ ) is obtained under the conditions shown in Tables 19 and 20 by the same method as in Example 3 using a chemical vapor deposition apparatus.
  • the coated tools 46 to 60 of the present invention shown in Table 26 were manufactured by vapor-depositing a hard coating layer including a ⁇ Al ⁇ Me ⁇ ) (C ⁇ N 1- ⁇ ) layer with a target layer thickness.
  • the inventive coated tools 49 to 58 the lower layer shown in Table 25 and / or the upper layer shown in Table 26 were formed under the formation conditions shown in Table 18.
  • the coated tool of the present invention was used under the conditions shown in Tables 19 and 20 and the target layer thicknesses shown in Table 27 using chemical vapor deposition devices on the surfaces of the tool bases ⁇ to ⁇ and the tool base ⁇ .
  • Comparative coating tools 46 to 60 shown in Table 27 were manufactured by vapor-depositing a hard coating layer in the same manner as described above.
  • the comparative coated tools 49 to 58 are formed with the lower layer shown in Table 25 and / or the upper layer shown in Table 27 under the forming conditions shown in Table 18. did.
  • each constituent layer of the coated tool 46 to 60 of the present invention and the comparative coated tool 46 to 60 is measured using a scanning electron microscope (magnification 5000 times), and the layer thickness at five points in the observation field is measured.
  • the average layer thickness was obtained on average, all showed the average layer thickness substantially the same as the target layer thickness shown in Tables 25 to 27.
  • the average Al content ratio ⁇ avg the average Me content ratio ⁇ The avg , the average C content ratio ⁇ avg , and the area ratio of the cubic crystal phase in the crystal grains were determined.
  • each crystal grain having a cubic structure constituting a composite nitride or composite carbonitride layer of Ti and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in the crystal grains and the orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 26 and Table 27.
  • coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 are shown below in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig.
  • a dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
  • Cutting condition 1 Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves, Cutting speed: 355 m / min, Cutting depth: 2.0 mm Feed: 0.12 mm / rev, Cutting time: 5 minutes (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove, Cutting speed: 335 m / min, Incision: 1.5mm, Feed: 0.12 mm / rev, Cutting time: 5 minutes (Normal cutting speed is 180 m / min), Table 28 shows the results of the cutting test.
  • the coated tool of the present invention has a crystal structure having a cubic structure constituting a composite nitride or composite carbonitride layer of Al, Ti and Me constituting the hard coating layer.
  • the presence of a predetermined difference in the average orientation within the crystal grains improves the toughness while maintaining high wear resistance due to the distortion of the crystal grains.
  • even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
  • the comparative coated tools 31 to 45 and 46 to 60 which are not used are accompanied by high heat generation, and when used for high-speed intermittent cutting in which intermittent and impact high loads act on the cutting edge, chipping, chipping, etc. occur. It is clear that the lifetime is reached in a short time.
  • the coated tool of the present invention can be used not only for high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., but also as a coated tool for various work materials, and for long-term use. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Abstract

In this coated tool, a hard coating layer (2) includes at least a layer (3) of a composite nitride or composite carbonitride represented by the compositional formula (Cr1-xAlx)(CyN1-y), or a layer (3) of a composite nitride or composite carbonitride represented by the compositional formula (Ti1-α-βAlαMeβ)(CγN1-γ). Crystal grains which form the layer (3) of the composite nitride or composite carbonitride include crystal grains which have an NaCl-type face-centered cubic structure. Crystal grains having an average crystal grain orientation spread (GOS) of at least 2˚ among the crystal grains having the NaCl-type face-centered cubic structure account for at least 40% by area ratio of the total area of the layer (3) of the composite nitride or composite carbonitride.

Description

表面被覆切削工具およびその製造方法Surface-coated cutting tool and manufacturing method thereof
 本発明は、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)及び表面被覆切削工具の製造方法に関するものである。
 本願は、2015年10月30日に日本に出願された特願2015-214522号及び特願2015-214528号並びに2016年10月28日に日本に出願された特願2016-211416号に基づき優先権を主張し、その内容をここに援用する。
The present invention has high heat generation such as carbon steel, alloy steel, cast iron and the like, and has high chipping resistance with a hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use and a method for producing the surface-coated cutting tool.
The present application is based on Japanese Patent Application Nos. 2015-214522 and 2015-214528 filed in Japan on October 30, 2015, and Japanese Patent Application No. 2016-212416 filed in Japan on October 28, 2016. Claim the right and use it here.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Cr-Al系やTi-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
 ただ、前記従来のCr-Al系やTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body A coated tool in which a Cr—Al-based or Ti—Al-based composite nitride layer is coated as a hard coating layer on the surface of a tool base (hereinafter collectively referred to as a tool base) by physical vapor deposition. These are known and are known to exhibit excellent wear resistance.
However, the above-mentioned coated tools coated with the conventional Cr-Al or Ti-Al composite nitride layer have relatively high wear resistance, but abnormalities such as chipping when used under high-speed interrupted cutting conditions. Various proposals for improvement of the hard coating layer have been made because of easy wear.
 例えば、特許文献1には、ステンレス鋼やTi合金等の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるために、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の平均層厚を有し、かつ、Ti1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合(原子比)で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶構造を有するTiAl化合物で構成し、中間層は、所定の平均層厚を有し、かつ、Cr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合(原子比)で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶構造を有するCrAl化合物で構成し、上部層を、所定の平均層厚を有するAlで構成することによって、下部層と上部層の密着強度を向上させ、これによって、耐チッピング性および耐摩耗性を向上させることが提案されている。 For example, Patent Document 1 discloses a hard coating composed of a lower layer, an intermediate layer, and an upper layer on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting such as stainless steel and Ti alloy. The lower layer has a predetermined average layer thickness, and includes a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The content ratio (atomic ratio) of 0.65 ≦ X ≦ 0.95) is composed of a TiAl compound having a cubic structure consisting of one or more layers, and the intermediate layer has a predetermined average layer thickness. And a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, a Cr 1-Y Al Y CN layer (Y is the Al content (atomic ratio), and 0.60 ≦ Y ≦ 0.90) CrAl having a cubic structure consisting of one or more layers Composed of objects, improving the upper layer, by configuring in Al 2 O 3 having a predetermined average thickness, to improve the adhesion strength of the lower layer and the upper layer, thereby, the chipping resistance and abrasion resistance It has been proposed to let
 また、特許文献2には、析出硬化系ステンレス鋼やインコネル等の耐熱合金の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるため、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の一層平均層厚のTi1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合を示し原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成し、中間層は、所定の一層平均層厚のCr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合を示し原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成し、また、上部層は所定の孔径と空孔密度の微小空孔と平均層厚を有するAlで構成することにより、下部層と上部層の密着強度を向上させるとともに、上部層を所定の孔径と空孔密度の微小空孔を有するAl層とすることにより、機械的、熱的衝撃の緩和を図り、もって、耐チッピング性および耐摩耗性を向上させることが提案されている。 Patent Document 2 discloses that a lower layer, an intermediate layer, and an upper layer are formed on the surface of a tool base in order to improve chipping resistance and wear resistance in high-speed intermittent cutting of a heat-resistant alloy such as precipitation hardened stainless steel and Inconel. And a lower layer is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The atomic ratio is 0.65 ≦ X ≦ 0.95) and is composed of a Ti compound having a cubic crystal structure consisting of one layer or two or more layers, and the intermediate layer is a predetermined single layer average layer Thick Cr 1-Y Al Y N layer, Cr 1-Y Al Y C layer, Cr 1-Y Al Y CN layer (Y represents the Al content and represents the atomic ratio, 0.60 ≦ Y ≦ 0. 90) having a cubic crystal structure consisting of one or more layers. constituted by r compound, by the upper layer composed of Al 2 O 3 with an average layer thickness with a predetermined pore size and pore density micro pores of, improves the adhesion strength of the lower layer and the upper layer The upper layer is made of an Al 2 O 3 layer having micropores having a predetermined pore diameter and pore density, thereby reducing mechanical and thermal shocks, thereby improving chipping resistance and wear resistance. It has been proposed.
 さらに、特許文献3には、切刃に対して高負荷が作用する鋼や鋳鉄の重切削加工における硬質被覆層の耐欠損性を高めるために、工具基体表面に、(Al1-XCr)N(ただし、Xは原子比で、X=0.3~0.6)層からなる硬質被覆層を設け、工具基体の表面研磨面の法線に対して、{100}面の法線がなす傾斜角を測定して作成した傾斜角度数分布グラフにおいて、30~40度の傾斜角区分に最高ピークが存在し、その度数合計が、全体の60%以上であり、また、表面研磨面の法線に対して、{112}面の法線がなす傾斜角を測定して作成した構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、その分布割合が全体の50%以上である結晶配向性と構成原子共有格子点分布形態を形成することにより、(Al1-XCr)N層の高温強度を向上させ、もって、重切削加工における硬質被覆層の耐欠損性を向上させることが提案されている。 Further, in Patent Document 3, in order to improve the fracture resistance of the hard coating layer in heavy cutting of steel or cast iron in which a high load acts on the cutting edge, (Al 1-X Cr X ) N (where X is an atomic ratio, X = 0.3 to 0.6) is provided with a hard coating layer, and the normal of the {100} plane with respect to the normal of the surface polished surface of the tool substrate In the inclination angle frequency distribution graph created by measuring the inclination angle formed by, the highest peak exists in the inclination angle section of 30 to 40 degrees, the total frequency is 60% or more of the whole, and the surface polished surface In the constituent atomic shared lattice distribution graph created by measuring the inclination angle formed by the normal of the {112} plane with respect to the normal of Σ3, the highest peak exists at Σ3, and the distribution ratio is 50% or more of the whole By forming the crystal orientation and constituent atomic shared lattice distribution form (Al 1-X Cr X) to improve the high temperature strength of the N layer, has been, it has been proposed to improve the fracture resistance of the hard coating layer in the heavy cutting.
 また、特許文献4には、工具基体と、その基体上に形成された硬質被覆層とを備える表面被覆切削工具であって、硬質被覆層は、AlまたはCrのいずれか一方または両方の元素と、周期律表4a,5a,6a族元素およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことにより、硬質被覆層の耐摩耗性と耐酸化性とを飛躍的に向上することが開示されている。 Patent Document 4 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr. A compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
 また、例えば、特許文献5には、TiCl、AlCl、NHの混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65~0.95である(Ti1-xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであって、xの値を0.65~0.95まで高めた(Ti1-xAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。 Further, for example, Patent Document 5 discloses that the value of the Al content ratio x is 0. by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 . It is described that a (Ti 1-x Al x ) N layer having a thickness of 65 to 0.95 can be formed by vapor deposition. In this document, an Al 2 O layer is further formed on the (Ti 1-x Al x ) N layer. The formation of a (Ti 1-x Al x ) N layer with the aim of covering three layers and thereby increasing the thermal insulation effect, with the value of x increased from 0.65 to 0.95, There is no disclosure up to what point it has on cutting performance.
 また、特許文献6には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶結晶構造あるいは六方晶結晶構造を含む立方晶結晶構造の(Ti1-xAl)N層(但し、xは0.65~0.9)を外層として被覆するとともに、該外層に100~1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, in Patent Document 6, a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition. Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
日本国特開2014-208394号公報(A)Japanese Unexamined Patent Publication No. 2014-208394 (A) 日本国特開2014-198362号公報(A)Japanese Unexamined Patent Publication No. 2014-198362 (A) 日本国特開2009-56539号公報(A)Japanese Unexamined Patent Publication No. 2009-56539 (A) 日本国特開2006-82207号公報(A)Japanese Unexamined Patent Publication No. 2006-82207 (A) 日本国特表2011-516722号公報(A)Japan Special Table 2011-516722 Publication (A) 日本国特表2011-513594号公報(A)Japanese National Table 2011-513594 (A)
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
 しかし、前記特許文献1、2に記載されている被覆工具は、硬質被覆層の中間層として、CrAl化合物、Cr化合物を介在形成することにより、下部層と上部層の密着強度を向上させ、耐チッピング性の改善を図っているものの、CrAl化合物、Cr化合物自体の強度・硬さが十分でないため、高速断続切削加工に供した場合には、耐チッピング性、耐摩耗性が十分であるとはいえない。
 また、前記特許文献3に記載されている被覆工具においては、(Al1-XCr)Nからなる硬質被覆層のCr含有割合を調整し、また、結晶配向性と構成原子共有格子点分布形態を制御することにより、硬質被覆層の強度を向上させることができ、その結果、耐チッピング性、耐欠損性を高めることはできるものの、やはり(Al1-XCr)N層の強度・硬さが十分でないため、長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮することはできず、合金鋼の高速断続切削においては工具寿命が短命であるという問題があった。
 また、前記特許文献4に記載されている被覆工具は、耐摩耗性、耐酸化特性を向上させることを意図しているが、高速断続切削等の衝撃が伴うような切削条件下では、耐チッピング性が十分でないという課題があった。
 また、前記特許文献5に記載されている化学蒸着法で蒸着形成した(Ti1-xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、靭性に劣るという課題があった。
 さらに、前記特許文献6に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
 そこで、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、すぐれた耐摩耗性を相兼ね備える被覆工具が求められている。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, the coated tools described in Patent Documents 1 and 2 improve the adhesion strength between the lower layer and the upper layer by interposing and forming a CrAl compound and a Cr compound as an intermediate layer of the hard coating layer. Although the chipping property is improved, the strength and hardness of the CrAl compound and the Cr compound itself are not sufficient, so that when used for high-speed intermittent cutting, the chipping resistance and wear resistance are sufficient. I can't say that.
In the coated tool described in Patent Document 3, the Cr content ratio of the hard coating layer made of (Al 1-X Cr X ) N is adjusted, and the crystal orientation and constituent atomic shared lattice point distribution are adjusted. By controlling the form, the strength of the hard coating layer can be improved, and as a result, the chipping resistance and chipping resistance can be improved, but the strength of the (Al 1-X Cr X ) N layer Since the hardness is not sufficient, excellent chipping resistance and wear resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed intermittent cutting of alloy steel.
Further, the coated tool described in Patent Document 4 is intended to improve wear resistance and oxidation resistance, but it is resistant to chipping under cutting conditions such as high-speed interrupted cutting. There was a problem that the sex was not enough.
In addition, for the (Ti 1-x Al x ) N layer formed by chemical vapor deposition described in Patent Document 5, the Al content ratio x can be increased and a cubic structure can be formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the toughness is inferior.
Furthermore, although the coated tool described in Patent Document 6 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Therefore, with high heat generation such as carbon steel, alloy steel, cast iron, etc., high-speed intermittent cutting with impact load on the cutting blade, chipping resistance with excellent hard coating layer, excellent wear resistance There is a need for a coated tool having both
 そこで、本発明者らは、上記の観点から、工具基体表面に、少なくともCrとAlの複合窒化物または複合炭窒化物(以下、「(Cr,Al)(C,N)」あるいは「(Cr1-xAl)(C1-y)」で示すことがある)を含む硬質被覆層を設けた被覆工具、および、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1-αAlα)(Cγ1-γ)」で示すことがある)を含む硬質被覆層を設けた被覆工具の耐チッピング性の向上と耐摩耗性の向上をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Cr and Al (hereinafter referred to as “(Cr, Al) (C, N)” or “(Cr 1-x Al x ) (which may be represented by (C y N 1-y ))), and a coated nitride or composite carbonitride of at least Ti and Al (hereinafter, Chipping resistance of a coated tool provided with a hard coating layer containing “(Ti, Al) (C, N)” or “(Ti 1−α Al α ) (may be represented by C γ N 1−γ )” As a result of intensive studies to improve the wear resistance and wear resistance, the following findings were obtained.
 即ち、従来の少なくとも1層の(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の異方性が高くなるほど(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
 そこで、本発明者らは、硬質被覆層を構成する(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層について鋭意研究したところ、(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層にSi、Zr、B、V、Crの中から選ばれる一種の元素(以下、「Me」で示す。)を含有させた(Ti1-α―βAlαMeβ)(Cγ1-γ)層がNaCl型の面心立方構造(以下、単に、「立方晶構造」という場合もある)を有する結晶粒を含有し該立方晶構造を有する結晶粒の結晶粒内平均方位差を2度以上とするという全く新規な着想により、立方晶構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、(Cr1-xAl)(C1-y)層においては、硬質被覆層の耐チッピング性とともに耐摩耗性を向上させることができるという新規な知見を見出し、また、(Ti1-α―βAlαMeβ)(Cγ1-γ)層においては、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, it includes at least one conventional (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer and has a predetermined The hard coating layer having an average layer thickness of (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer is a tool. When it is formed in a columnar shape in the vertical direction on the substrate, it has high wear resistance. On the other hand, as the anisotropy of the (Cr 1−x Al x ) (C y N 1−y ) layer or (Ti 1−α Al α ) (C γ N 1−γ ) layer increases, (Cr 1 -X Al x ) (C y N 1-y ) layer or (Ti 1-α Al α ) (C γ N 1-γ ) layer has decreased toughness, resulting in chipping resistance and chipping resistance. As a result, the wear resistance could not be exhibited over a long period of use, and the tool life was not satisfactory.
Accordingly, the present inventors, constituting the hard layer (Cr 1-x Al x) (C y N 1-y) layer, and, (Ti 1-α Al α ) (C γ N 1-γ) As a result of intensive research on the layers, it was found that the (Cr 1-x Al x ) (C y N 1-y ) layer and the (Ti 1-α Al α ) (C γ N 1-γ ) layer have Si, Zr, B (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer containing a kind of element selected from V, Cr and the like (hereinafter referred to as “Me”) is NaCl type. Including crystal grains having a face-centered cubic structure (hereinafter, sometimes simply referred to as “cubic structure”), and the average orientation difference within the crystal grains of the crystal grains having the cubic structure is at least 2 degrees. Through a new concept, we succeeded in producing strain in the crystal grains having a cubic structure and increasing both hardness and toughness. Fruit, in (Cr 1-x Al x) (C y N 1-y) layer, found a novel finding that can with chipping resistance of the hard coating layer to improve the wear resistance, also, (Ti In the 1-α-β Al α Me β ) (C γ N 1-γ ) layer, a novel finding has been found that the chipping resistance and fracture resistance of the hard coating layer can be improved.
 具体的には、
 (1)硬質被覆層が、少なくともCrとAlの複合窒化物または複合炭窒化物層を含むものとして構成され、該層は、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で40%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、(Cr1-xAl)(C1-y)層の硬さと靭性が高まり、その結果、耐チッピング性とともに耐摩耗性が向上することを見出し、
 また、(2)硬質被覆層が、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で40%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、(Ti1-α―βAlαMeβ)(Cγ1-γ)層の硬さと靭性が高まり、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
In particular,
(1) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al, and the layer has a composition formula: (Cr 1−x Al x ) (C y N 1 − y ), in particular, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are either Also satisfy 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively, and have a cubic structure in the crystal grains constituting the composite nitride or composite carbonitride layer. When the crystal orientation of the crystal grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference within the crystal grain is obtained, the average orientation within the crystal grain The crystal grains showing the difference of 2 degrees or more are 40 in terms of the area ratio of the composite nitride or composite carbonitride layer. The presence or causes a distortion in the crystal grains having a cubic structure, as compared with the conventional hard coating layer, (Cr 1-x Al x ) Hardness of (C y N 1-y) layer and toughness As a result, it has been found that wear resistance is improved together with chipping resistance,
(2) The hard coating layer is a composite nitride or composite carbonitride layer of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr). In particular, when represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), the average content ratio α avg in the total amount of Ti, Al and Me in Al And the average content ratio β avg in the total amount of Ti, Al, and Me in Me and the average content ratio γ avg in the total amount of C and N in C (where α avg , β avg , and γ avg are all atomic ratios) ) Satisfy 0.60 ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95, respectively. Cubic structure in the crystal grains constituting the oxide or composite carbonitride layer When the crystal orientation of the crystal grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the average orientation difference within the crystal grain is obtained, the average orientation within the crystal grain Crystal grains having a difference of 2 degrees or more are present in the composite nitride or composite carbonitride layer in an area ratio of 40% or more, causing distortion in the crystal grains having a cubic structure, and in the conventional hard coating layer. In comparison, the hardness and toughness of the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer are increased, and as a result, chipping resistance and fracture resistance are improved. It has been found that it exhibits excellent wear resistance.
 そして、前述のような構成の(Cr1-xAl)(C1-y)層、および、(Ti1-α―βAlαMeβ)(Cγ1-γ)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。 The (Cr 1−x Al x ) (C y N 1−y ) layer and the (Ti 1−α−β Al α Me β ) (C γ N 1−γ ) layer configured as described above are For example, the film can be formed by the following chemical vapor deposition method in which the reaction gas composition is periodically changed on the tool substrate surface.
(1)(Cr1-xAl)(C1-y)層について
 用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、CrCl、AlCl、Al(CH、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(イ)ガス群A、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bと時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(イ)ガス群Aを主とする混合ガス、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bを主とする混合ガス、と時間的に変化させることでも実現する事が可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:750~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Cr1-xAl)(C1-y)層を成膜する。
(1) Regarding the (Cr 1-x Al x ) (C y N 1-y ) Layer The chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , CrCl 3 , AlCl 3 , Al (CH 3 ) A gas group B composed of 3 , N 2 and H 2 is supplied into the reactor from the separate gas supply pipes, and the supply of the gas group A and the gas group B into the reactor is, for example, at a constant cycle. In such a time interval, the gas is supplied so that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B has a phase difference shorter than the gas supply time. The reaction gas composition on the surface can be changed temporally with (a) gas group A, (b) mixed gas of gas group A and gas group B, and (c) gas group B. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as the gas supply method, for example, the gas supply port is rotated, the tool base is rotated, or the tool base is reciprocated to change the reaction gas composition on the tool base surface. (B) a mixed gas of the gas group A and the gas group B, and (c) a mixed gas mainly of the gas group B.
The reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 2.0 to 3.0% and H 2 : 65 to 75 as the gas group A. %, AlCl 3 : 0.6 to 0.9% as gas group B, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 ∼15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 750 to 900 ° C, supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to By performing the thermal CVD method for a predetermined time with a phase difference of 0.10 to 0.20 seconds for the supply of the gas group A and the gas group B for 0.25 seconds, (Cr 1-x Al x ) (C y N 1-y ) layer is formed.
 そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、その結果、硬さが向上し、その結果、特に、耐摩耗性が改善され、切刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に供した場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 Then, as described above, by supplying the gas group A and the gas group B so that there is a difference in the time for the gas group B to reach the surface of the tool base, local compositional unevenness in the crystal grains, dislocations and point defects are introduced. Local distortion of the crystal lattice is formed, resulting in improved hardness, resulting in improved wear resistance, especially high-speed interrupting of alloy steel etc. with intermittent and impact loads on the cutting edge It has been found that even when subjected to cutting, the hard coating layer can exhibit excellent cutting performance over a long period of use.
(2)(Ti1-α―βAlαMeβ)(Cγ1-γ)層について
 用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(Meの塩化物)、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、ガス群A(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群B(第三反応ガス)と時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、ガス群Aを主とする混合ガス(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群Bを主とする混合ガス(第三反応ガス)と時間的に変化させることでも実現する事が可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1-α―βAlαMeβ)(Cγ1-γ)層を成膜する。
(2) (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) Layer The chemical vapor deposition reactor used includes a gas group A composed of NH 3 and H 2 , TiCl 4 , Al ( A gas group B consisting of CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), N 2 , and H 2 is supplied into the reactor through a separate gas supply pipe. The supply into the reactor is, for example, such that the gas flows at a constant cycle time interval for a time shorter than the cycle, and the gas supply for the gas group A and the gas group B is more than the gas supply time. The reaction gas composition on the surface of the tool base is changed to gas group A (first reaction gas), gas mixture of gas group A and gas group B (second reaction gas), gas group B so that a phase difference of a short time occurs. (Third reaction gas) and time can be changed. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as a gas supply method, for example, the gas supply port is rotated, the tool base is rotated, the tool base is reciprocated, the reaction gas composition on the surface of the tool base is changed to the gas group A as the main. The gas mixture (first reaction gas), the gas mixture of gas group A and gas group B (second reaction gas), and the gas mixture mainly consisting of gas group B (third reaction gas) can be changed over time. It can be realized.
The reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 2.0 to 3.0% and H 2 : 65 to 75 as the gas group A. %, As gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (Me chloride): 0.1 to 0.2%, Al ( CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C, Supply period 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference 0.10 to 0.20 seconds of supply of gas group A and gas group B, predetermined time, thermal CVD by performing law, to deposit a predetermined target layer thickness of (Ti 1-α-β Al α Me β) (C γ N 1-γ) layer The
 そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、その結果、靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 Then, as described above, by supplying the gas group A and the gas group B so that there is a difference in the time for the gas group B to reach the surface of the tool base, local compositional unevenness in the crystal grains, dislocations and point defects are introduced. It has been found that local distortion of the crystal lattice is formed, and as a result, the toughness is dramatically improved. As a result, especially when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and chipping resistance are improved, and the intermittent and impact loads are applied to the cutting edge, It has been found that excellent cutting performance can be exhibited over use.
 本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1~20μmのCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で40%以上存在することを特徴とする表面被覆切削工具。
(2)前記複合窒化物または複合炭窒化物層は、CrとAlの複合窒化物または複合炭窒化物層であって、その組成を、
組成式:(Cr1-xAl)(C1-y
で表した場合、複合窒化物または複合炭窒化物層のAlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足することを特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物または複合炭窒化物層は、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層であって、その組成を、
 組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足することを特徴とする(1)に記載の表面被覆切削工具。
(4)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(6)前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8)前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
 なお、“結晶粒内平均方位差”とは、後述するGOS(Grain Orientation Spread)値のことを意味する。
The present invention has been made based on the above findings,
“(1) Surface coating in which a hard coating layer is formed on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and cubic boron nitride-based ultrahigh-pressure sintered body In cutting tools,
(A) The hard coating layer is a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 μm, or Ti, Al and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) The crystal orientation of the crystal grains of the composite nitride or the composite carbonitride having a NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or the composite carbonitride layer is determined by electron beam backscattering. When analyzing from the longitudinal section direction using a diffractometer and obtaining the average orientation difference within each crystal grain, the crystal grains exhibiting an average orientation difference within the crystal grain of 2 degrees or more are complex nitride or composite carbon. A surface-coated cutting tool characterized by being present in an area ratio of 40% or more with respect to the total area of the nitride layer.
(2) The composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is
Composition formula: (Cr 1-x Al x ) (C y N 1-y )
In the composite nitride or composite carbonitride layer, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are both atomic ratios) satisfying 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively. tool.
(3) The composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr). A carbonitride layer, the composition of which is
When represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), it occupies the total amount of Ti, Al and Me in the composite nitride or composite carbonitride layer. The average content ratio α avg , the average content ratio β avg in the total amount of Me Ti, Al and Me, and the average content ratio γ avg in the total amount of C and N in C (where α avg , β avg , γ avg Are atomic ratios) of 0.60 ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95, respectively. The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool is satisfied.
(4) The composite nitride or composite carbonitride layer is composed of a single phase of composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. (1) to (3) The surface coating cutting tool in any one.
(5) The composite nitride or composite carbonitride layer includes at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure. The surface-coated cutting tool according to any one of (3).
(6) Between the tool base and the composite nitride or composite carbonitride layer, one of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer or The surface-coated cutting tool according to any one of (1) to (5), wherein a lower layer is formed of two or more Ti compound layers and has a total average layer thickness of 0.1 to 20 μm.
(7) An upper layer including at least an aluminum oxide layer is formed on the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. (1) to (6) The surface-coated cutting tool according to any one of 1).
(8) The composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of (1) to (7) Method for manufacturing a surface-coated cutting tool. "
It has the characteristics.
The “inside crystal grain average orientation difference” means a GOS (Grain Orientation Spread) value described later.
 本発明の態様である表面被覆切削工具(以下、「本発明の表面被覆切削工具」または「本発明の切削工具」と称する)では、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚1~20μmのCrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で40%以上存在することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さと靭性が向上し、その結果、耐チッピング性を損なうことなく耐摩耗性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
 また、前記工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚1~20μmのTiとAlとMeの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で40%以上存在することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さおよび靭性が向上する。その結果、耐摩耗性を損なうことなく耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
In the surface-coated cutting tool which is an embodiment of the present invention (hereinafter referred to as “the surface-coated cutting tool of the present invention” or “the cutting tool of the present invention”), the surface-coated cutting provided with a hard coating layer on the surface of the tool base. In the tool, the hard coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 μm, and has a composition formula: (Cr 1-x Al x ) (C y N 1-y ) In particular, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are both (Atomic ratio) satisfy 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively, and the crystal grains constituting the composite nitride or composite carbonitride layer are NaCl-type faces. There are those having a centered cubic structure, and the crystal orientation of the crystal grains When analyzing from the longitudinal cross-section direction using a side-scattering diffractometer and determining the average orientation difference within each crystal grain, the crystal grains exhibiting an average orientation difference within the crystal grain of 2 degrees or more are complex nitride or composite The presence of 40% or more by area ratio with respect to the entire carbonitride layer causes distortion in the crystal grains having a cubic structure, thereby improving the hardness and toughness of the crystal grains. As a result, chipping resistance is improved. The effect of improving the wear resistance without damaging is exhibited, and the cutting performance superior to the conventional hard coating layer is exhibited over a long period of use, and the life of the coated tool is extended.
In the surface-coated cutting tool in which a hard coating layer is provided on the surface of the tool base, the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me having an average layer thickness of 1 to 20 μm. In particular, when represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), in particular, the Ti of the composite nitride or the composite carbonitride layer is composed of Ti, Al, and Me. The average content ratio α avg in the total amount and the average content ratio β avg in the total amount of Ti, Al and Me in Me and the average content ratio γ avg in the total amount of C and N in C (where α avg , β avg and γ avg are atomic ratios) of 0.60 ≦ α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦, respectively. 0.95 is satisfied. The crystal grains constituting the composite carbonitride layer have a cubic structure, and the crystal orientation of the crystal grains is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer. When the average orientation difference within the crystal grains is determined, the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more are present in an area ratio of 40% or more with respect to the entire composite nitride or composite carbonitride layer. Since distortion occurs in the crystal grains having a cubic crystal structure, the hardness and toughness of the crystal grains are improved. As a result, the effect of improving the chipping resistance without impairing the wear resistance is exhibited. Compared with the conventional hard coating layer, it exhibits excellent cutting performance over a long period of use, and the length of the coated tool is improved. Life expectancy is achieved.
本発明被覆工具のCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層のNaCl型の面心立方構造(立方晶)を有する結晶粒の結晶粒内平均方位差の測定方法の概略説明図を示す。The present invention coated tool has a Cr-Al composite nitride or composite carbonitride layer, or a Ti-Al and Me composite nitride or composite carbonitride layer of NaCl type face-centered cubic structure (cubic). The schematic explanatory drawing of the measuring method of the crystal grain average orientation difference of a crystal grain is shown. 本発明の表面被覆切削工具が有する硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物、または、TiとAlとMeの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。The cross section of the composite nitride or composite carbonitride of Cr and Al, or the composite nitride or composite carbonitride layer of Ti, Al, and Me which comprises the hard coating layer which the surface coating cutting tool of this invention has is typically FIG. 本発明被覆工具の硬質被覆層を構成するCrとAlの複合窒化物層または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS)の面積割合を示すヒストグラムの一例を示す。 なお、ヒストグラム中の垂直方向の点線は結晶粒内平均方位差が2°の境界線を示し、図中においてこの垂直方向の点線よりも右側のバーは、結晶粒内平均方位差が2°以上のものを示す。以下、4図から6図においても同様である。In the cross section of the composite nitride layer or composite carbonitride layer of Cr and Al constituting the hard coating layer of the coated tool of the present invention, within the crystal grains of individual crystal grains having a NaCl-type face-centered cubic structure (cubic crystal) An example of the histogram which shows the area ratio of a mean orientation difference (GOS) is shown. The vertical dotted line in the histogram indicates a boundary line having an average misorientation within the grain of 2 °, and the bar on the right side of the vertical dotted line in the figure has an average misorientation within the grain of 2 ° or more. The thing is shown. The same applies to FIGS. 4 to 6 below. 比較例被覆工具の硬質被覆層を構成するCrとAlの複合窒化物層または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS)の面積割合についてのヒストグラムの一例を示す。In the cross section of the composite nitride layer or composite carbonitride layer of Cr and Al constituting the hard coating layer of the comparative coated tool, within the crystal grains of individual crystal grains having a NaCl type face centered cubic structure (cubic crystal) An example of the histogram about the area ratio of a mean orientation difference (GOS) is shown. 本発明の一実施態様に該当する本発明被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合を示すヒストグラムの一例を示すものである。In the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the coated tool of the present invention corresponding to an embodiment of the present invention, a NaCl type face-centered cubic structure (cubic crystal) ) Shows an example of a histogram showing the area ratio of the average orientation difference (GOS value) in crystal grains of individual crystal grains having. 比較例被覆工具である比較被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合についてのヒストグラムの一例を示すものである。Each of the cross-sections of the composite nitride layer or composite carbonitride layer of Ti, Al and Me constituting the hard coating layer of the comparative coated tool which is a comparative coated tool has an NaCl type face-centered cubic structure (cubic crystal). 2 shows an example of a histogram of the area ratio of average orientation difference (GOS value) in crystal grains of the crystal grains.
本発明を実施するための形態について、以下に説明する。 The form for implementing this invention is demonstrated below.
 硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層は、化学蒸着された組成式:(Cr1-xAl)(C1-y)で表されるCrとAlの複合窒化物もしくは複合炭窒化物層、または、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表されるTiとAlとMeの複合窒化物もしくは複合炭窒化物層のいずれかの層を少なくとも含む。この複合窒化物または複合炭窒化物層は、高温硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1~20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、その複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1~20μmと定めた。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
The hard coating layer of the present invention comprises a chemical vapor deposited composition formula: (Cr 1-x Al x ) (C y N 1-y ) Cr and Al composite nitride or composite carbonitride layer, or At least one of a composite nitride or composite carbonitride layer of Ti, Al, and Me represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) Including. This composite nitride or composite carbonitride layer has high temperature hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of time cannot be secured, while if the average layer thickness exceeds 20 μm, the composite The crystal grains of the nitride or composite carbonitride layer are easily coarsened, and chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 20 μm.
 硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
 (1)本発明のCrとAlの複合窒化物または複合炭窒化物層について
組成式:(Cr1-xAl)(C1-y)で表した場合、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足するように制御することが好ましい。 
 その理由は、Alの平均含有割合xavgが0.70未満であると、CrとAlの複合窒化物または複合炭窒化物層の高温硬さは十分ではなく、耐酸化性にも劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、相対的にCrの平均含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合xavgは、0.70≦xavg≦0.95と定めた。
 また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合(原子比)yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、C成分の平均含有割合yavgは、0≦yavg≦0.005と定めた。
 (2)本発明のTiとAlとMeの複合窒化物または複合炭窒化物層について
組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足するように制御することが好ましい。
 その理由は、Alの平均含有割合αavgが0.60未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。
 また、Meの平均含有割合βavgが0.005未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層2の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、0.10を超えると粒界へのMeの偏析等により、TiとAlとMeの複合窒化物または複合炭窒化物層の靭性が低下し、合金鋼等の高速断続切削に供した場合には、耐チッピング性が十分でない。したがって、Meの平均含有割合βavgは、0.005≦βavg≦0.10と定めた。
 一方、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgが0.605未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgは、0.605≦αavg+βavg≦0.95と定めた。
 ここで、Meの具体的な成分としては、Si、Zr、B、V、Crの中から選ばれる一種の元素を使用する。
 Meとして、βavgが0.005以上になるようにSi成分あるいはB成分を使用した場合には、複合窒化物または複合炭窒化物層の硬さが向上するため耐摩耗性の向上が図られ、Zr成分は結晶粒界を強化する作用を有し、また、V成分は靭性を向上することから、耐チッピング性のより一層の向上が図られ、Cr成分は耐酸化性を向上させることから、工具寿命のよりいっそう長寿命化が期待される。しかし、いずれの成分も、平均含有割合βavgが0.10を超えると、相対的にAl成分、Ti成分の平均含有割合が減少することから、耐摩耗性あるいは耐チッピング性が低下傾向を示すようになるため、βavgが0.10を超えるような平均含有割合となることは避けなければならない。
 また、複合窒化物または複合炭窒化物層に含まれるCの平均含有割合(原子比)γavgは、0≦γavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合γavgが0≦γavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合γavgは、0≦γavg≦0.005と定めた。
Composition of composite nitride or composite carbonitride layer constituting hard coating layer:
(1) When the composite nitride or composite carbonitride layer of Cr and Al of the present invention is expressed by a composition formula: (Cr 1-x Al x ) (C y N 1-y ), the Cr and Al of Al The average content ratio x avg in the total amount and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are atomic ratios) are respectively 0.70 ≦ x avg ≦ It is preferable to control to satisfy 0.95 and 0 ≦ y avg ≦ 0.005.
The reason is that when the average content ratio x avg of Al is less than 0.70, the high-temperature hardness of the composite nitride or composite carbonitride layer of Cr and Al is not sufficient, and the oxidation resistance is also inferior, When subjected to high-speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient. On the other hand, if the average content ratio x avg of Al exceeds 0.95, the average content ratio of Cr relatively decreases, leading to embrittlement and chipping resistance. Therefore, the average Al content ratio x avg was determined to be 0.70 ≦ x avg ≦ 0.95.
Further, when the average content ratio (atomic ratio) y avg of the C component contained in the composite nitride or composite carbonitride layer is a minute amount in the range of 0 ≦ y avg ≦ 0.005, the composite nitride or composite carbon The adhesion between the nitride layer and the tool substrate or the lower layer is improved, and the impact during cutting is reduced by improving the lubricity. As a result, the fracture resistance of the composite nitride or the composite carbonitride layer and Chipping resistance is improved. On the other hand, if the average content ratio y of the component C deviates from the range of 0 ≦ y avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reduced. Therefore, it is not preferable. Therefore, the average content ratio y avg of the C component was set to 0 ≦ y avg ≦ 0.005.
(2) When the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention is represented by a composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) ( However, Me is a kind of element selected from Si, Zr, B, V, and Cr), the average content ratio α avg in the total amount of Ti, Al, and Me of Al, and of Ti, Al, and Me of Me The average content ratio β avg in the total amount and the average content ratio γ avg in the total amount of C and N in C ( where α avg , β avg , and γ avg are atomic ratios) are 0.60 ≦ It is preferable to control so that α avg , 0.005 ≦ β avg ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95.
The reason is that when the average Al content ratio α avg is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al and Me is inferior in hardness, so it is suitable for high-speed intermittent cutting of alloy steel and the like. If provided, the wear resistance is not sufficient.
Further, when the average content ratio β avg of Me is less than 0.005, the composite nitride of Ti and Al and Me or the composite carbonitride layer 2 is inferior in hardness, so that it can be used for high-speed intermittent cutting of alloy steel and the like. In such a case, the wear resistance is not sufficient. On the other hand, if it exceeds 0.10, the segregation of Me to the grain boundaries, etc., the toughness of the composite nitride or composite carbonitride layer of Ti, Al, and Me will decrease, and it will be subjected to high-speed intermittent cutting of alloy steel etc. The chipping resistance is not sufficient. Therefore, the average content ratio β avg of Me was defined as 0.005 ≦ β avg ≦ 0.10.
On the other hand, if the sum α avg + β avg of the average content ratio α avg of Al and the average content ratio β avg of Me is less than 0.605, the hardness of the composite nitride or composite carbonitride layer of Ti, Al, and Me Therefore, when it is subjected to high-speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient, and if it exceeds 0.95, the Ti content is relatively reduced, leading to embrittlement. , Chipping resistance is reduced. Therefore, the sum α avg + β avg of the average content ratio α avg of Al and the average content ratio β avg of Me was determined as 0.605 ≦ α avg + β avg ≦ 0.95.
Here, as a specific component of Me, a kind of element selected from Si, Zr, B, V, and Cr is used.
When the Si component or the B component is used so that β avg is 0.005 or more as Me, the hardness of the composite nitride or composite carbonitride layer is improved, so that the wear resistance is improved. The Zr component has the effect of strengthening the grain boundaries, and the V component improves toughness, so that the chipping resistance is further improved, and the Cr component improves oxidation resistance. The tool life is expected to be even longer. However, in any component, when the average content ratio β avg exceeds 0.10, the average content ratio of the Al component and the Ti component is relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio of β avg exceeds 0.10.
Further, when the average content ratio (atomic ratio) γ avg of C contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ≦ γ avg ≦ 0.005, the composite nitride or composite carbonitride The adhesion between the material layer and the tool base or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the fracture resistance and resistance of the composite nitride or composite carbonitride layer are reduced. Chipping property is improved. On the other hand, if the average content ratio γ avg of C deviates from the range of 0 ≦ γ avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer decreases, so the chipping resistance and chipping resistance decrease on the contrary. Therefore, it is not preferable. Therefore, the average content ratio γ avg of C was determined as 0 ≦ γ avg ≦ 0.005.
 複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒個々の結晶粒内平均方位差(GOS値):
 本発明では、電子線後方散乱回折装置を用いて、立方晶のCrとAlの複合窒化物または複合炭窒化物結晶粒の結晶粒内平均方位差、および、立方晶のTiとAlとMeの複合窒化物または複合炭窒化物結晶粒の結晶粒内平均方位差を求める。
 具体的には、複合窒化物または複合炭窒化物層の表面に垂直な方向からその表面研磨面について0.1μm間隔で解析し、図1に示すように、隣接する測定点P(以下、「ピクセル」ともいう)間で5度以上の方位差がある場合、そこを粒界Bと定義する。そして、粒界Bで囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセルP全てと5度以上の方位差がある単独に存在するピクセルPは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
 そして、立方晶構造を有する結晶粒内のあるピクセルPと、同一結晶粒内の他のすべてのピクセル間での方位差を計算し、これを結晶粒内方位差として求め、それを平均化したものをGOS(Grain Orientation Spread)値として定義する。概略図を図1に示す。GOS値については、例えば文献「日本機械学会論文集(A編) 71巻712号(2005-12) 論文No.05-0367 1722~1728」に説明がなされている。
 本発明における“結晶粒内平均方位差”とは、前記のGOS値を意味する。GOS値を数式で表す場合、同一結晶粒内のピクセル数をn、同一結晶粒内の異なるピクセルPにおのおの付けた番号をiおよびj(ここで 1≦i、j≦nとなる)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)とすると、
Intra-grain average orientation difference (GOS value) of individual crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
In the present invention, an electron beam backscatter diffractometer is used to determine the average orientation difference in cubic Cr and Al composite nitride or composite carbonitride crystal grains, and cubic Ti, Al and Me. The average orientation difference within the crystal grains of the composite nitride or composite carbonitride crystal grains is determined.
Specifically, the surface polished surface was analyzed at intervals of 0.1 μm from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer, and as shown in FIG. 1, adjacent measurement points P (hereinafter, “ If there is a misorientation of 5 degrees or more between them (also referred to as “pixel”), this is defined as a grain boundary B. A region surrounded by the grain boundary B is defined as one crystal grain. However, a single pixel P having an orientation difference of 5 degrees or more with all adjacent pixels P is not a crystal grain, and a case where two or more pixels are connected is handled as a crystal grain.
Then, the orientation difference between a certain pixel P in a crystal grain having a cubic crystal structure and all other pixels in the same crystal grain is calculated, and this is obtained as the orientation difference in the crystal grain, and is averaged. Things are defined as GOS (Grain Orientation Spread) values. A schematic diagram is shown in FIG. The GOS value is described in, for example, the document “The Journal of the Japan Society of Mechanical Engineers (A) 71: 712 (2005-12) Paper No. 05-0367 1722-1728”.
In the present invention, “in-grain average orientation difference” means the GOS value. When the GOS value is expressed by a mathematical expression, the number of pixels in the same crystal grain is n, the numbers assigned to different pixels P in the same crystal grain are i and j (where 1 ≦ i, j ≦ n), pixel When the crystal orientation difference obtained from the crystal orientation at i and the crystal orientation at pixel j is α ij (i ≠ j) ,
Figure JPOXMLDOC01-appb-M000001
で表すことができる。
 なお、結晶粒内平均方位差、GOS値は、結晶粒内のあるピクセルPと、同一結晶粒内の他のすべてのピクセル間での方位差を求め、その値を平均化した数値であると言い換えることができるが、結晶粒内に連続的な方位変化が多いと大きな数値となる。
Figure JPOXMLDOC01-appb-M000001
Can be expressed as
The average orientation difference and GOS value within a crystal grain are numerical values obtained by calculating the orientation difference between a certain pixel P in the crystal grain and all other pixels in the same crystal grain and averaging the values. In other words, a large numerical value is obtained when there are many continuous orientation changes in the crystal grains.
 結晶粒内平均方位差(GOS値)は、複合窒化物または複合炭窒化物層の表面に垂直な方向からその表面研磨面について電子線後方散乱回折装置を用いて、25×25μmの測定範囲内での測定を0.1μm/stepの間隔で、5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、結晶粒内平均方位差を1度間隔で分割し、その値の範囲内に結晶粒内平均方位差が含まれる結晶粒のピクセルPを集計して上記全ピクセル数で割ることによって、結晶粒内平均方位差の面積割合を示すヒストグラムを作成する事によって求めることができる。
 図3~図6に、このようにして作成されたヒストグラムの一例を示す。
In-grain average orientation difference (GOS value) is within a measurement range of 25 × 25 μm using an electron beam backscattering diffractometer on the surface polished surface from a direction perpendicular to the surface of the composite nitride or composite carbonitride layer. The number of pixels belonging to a crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer is determined at intervals of 0.1 μm / step, and the total number of pixels belonging to the crystal grain is determined. By dividing the average misorientation at 1 degree intervals, and summing up the pixel P of the crystal grains whose average misorientation within the grain is included in the range of the value and dividing by the total number of pixels, It can be obtained by creating a histogram showing the area ratio.
3 to 6 show examples of histograms created in this way.
(1)本発明のCrとAlの複合窒化物または複合炭窒化物層について
 図3は、本発明のCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図3に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上であることが分かる。
 図4は、従来のCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図4においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%未満である。
 このように、本発明のCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒は、従来のものと比較して、結晶粒内で結晶方位のばらつきが大きく、そのため、結晶粒内での歪が高くなることが硬さと靭性の向上、耐摩耗性の向上に寄与している。
 そして、前記結晶粒内平均方位差を備える(Cr1-xAl)(C1-y)層を少なくとも含む硬質被覆層を工具基体表面に被覆形成した被覆工具は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
 ただ、前記結晶粒内平均方位差が2度以上を示す結晶粒の、CrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合が40%未満である場合には、結晶粒の内部歪による硬さと靭性の向上効果が十分でないことから、結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上とする。
 好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は45~70%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は50~65%である。
(1) Regarding the Cr and Al Composite Nitride or Composite Carbonitride Layer of the Present Invention FIG. 3 shows the crystal grains having the cubic structure of the Cr and Al composite nitride or composite carbonitride layer of the present invention. FIG. 3 is an example of a histogram of the average misorientation within a crystal grain. As shown in FIG. 3, the crystal grain having an average misorientation (GOS) value of 2 degrees or more is mixed with Cr and Al. It can be seen that the area proportion of the total area of the product or composite carbonitride layer is 40% or more.
FIG. 4 is an example of a histogram of average orientation difference within a crystal grain obtained for a crystal grain having a cubic structure of a conventional Cr and Al composite nitride or composite carbonitride layer. In FIG. The area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is less than 40%.
As described above, the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al of the present invention have a large variation in crystal orientation in the crystal grains as compared with the conventional one. Therefore, an increase in strain in the crystal grains contributes to improvement in hardness and toughness and improvement in wear resistance.
A coated tool in which a hard coating layer including at least a (Cr 1-x Al x ) (C y N 1-y ) layer having an in - grain average orientation difference is formed on the surface of a tool base is accompanied by high heat generation. At the same time, it exhibits excellent chipping resistance and wear resistance by high-speed intermittent cutting of alloy steel or the like in which an impact load is applied to the cutting edge.
However, when the area ratio of the crystal grains showing the average orientation difference in the crystal grains of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is less than 40%, Since the effect of improving the hardness and toughness due to the internal strain of the grains is not sufficient, the crystal grains having a cubic structure in which the average misorientation within the grains is 2 degrees or more are composed of a composite nitride or composite carbonitride layer of Cr and Al The area ratio of the total area is 40% or more.
The area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 45 to 70%. The area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 50 to 65%.
(2)本発明のTiとAlとMeの複合窒化物または複合炭窒化物層について
 図5は、本発明のTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図5に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上であることが分かる。
 図6は、比較工具のTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図6においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%未満である。
 このように、本発明のTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒は、従来のものと比較して、結晶粒内で結晶方位のばらつきが大きく、そのため、結晶粒内での歪が高くなることが硬さと靱性の向上に寄与している。
 そして、前記結晶粒内平均方位差を備える(Ti1-α―βAlαMeβ)(Cγ1-γ)層を少なくとも含む硬質被覆層を工具基体表面に被覆形成した被覆工具は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
 ただ、前記結晶粒内平均方位差が2度以上を示す結晶粒の、TiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合が40%未満である場合には、結晶粒の内部歪による硬さと靱性の向上効果が十分でないことから、結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上とする。
 このように本発明の表面被覆切削工具が有するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する結晶粒は、従来のTiAlN層を構成している結晶粒と比較して、結晶粒内で結晶方位のばらつきが大きく、すなわち、歪みがあるため、このことが硬さや靭性の向上に寄与している。
 好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は45~70%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は50~65%である。
(2) About Ti, Al and Me Composite Nitride or Composite Carbonitride Layer of the Present Invention FIG. 5 has a cubic structure of the Ti, Al and Me composite nitride or composite carbonitride layer of the present invention. FIG. 5 is an example of a histogram of the average orientation difference within a crystal grain obtained for a crystal grain. As shown in FIG. 5, a crystal grain having an average orientation difference within a crystal grain (GOS) value of 2 degrees or more is Ti. It can be seen that the area ratio in the total area of the composite nitride or composite carbonitride layer of Al and Me is 40% or more.
FIG. 6 is an example of a histogram of average orientation difference in crystal grains obtained for crystal grains having a cubic structure of a composite nitride or composite carbonitride layer of Ti, Al, and Me of the comparative tool. , The area ratio of the crystal grains having a mean grain orientation difference (GOS) value of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is less than 40%. is there.
Thus, the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention have a variation in crystal orientation within the crystal grains as compared with the conventional one. Therefore, an increase in strain within the crystal grains contributes to improvement in hardness and toughness.
A coated tool in which a hard coating layer including at least a (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer having an average orientation difference in crystal grains is coated on a tool base surface, It exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of alloy steel and the like that cause high heat generation and an impact load on the cutting edge.
However, when the area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al, and Me is less than 40% Since the effect of improving the hardness and toughness due to the internal strain of the crystal grains is not sufficient, the crystal grains having a cubic structure in which the average orientation difference in the grains is 2 degrees or more are Ti, Al and Me composite nitride or composite The area ratio in the total area of the carbonitride layer is 40% or more.
Thus, the crystal grains constituting the composite nitride or composite carbonitride layer of Al, Ti and Me of the surface-coated cutting tool of the present invention are compared with the crystal grains constituting the conventional TiAlN layer, Since the crystal orientation varies greatly within the crystal grains, that is, there is distortion, this contributes to the improvement of hardness and toughness.
The area ratio of crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the preferred composite nitride or composite carbonitride layer is 45 to 70%. The area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more with respect to the area of the more preferable composite nitride or composite carbonitride layer is 50 to 65%.
 硬質被覆層の結晶構造:
(1)本発明のCrとAlの複合窒化物または複合炭窒化物層について
 CrとAlの複合窒化物または複合炭窒化物層が、NaCl型の面心立方構造を有するCrとAlの複合窒化物または複合炭窒化物の単相からなる場合、特に優れた耐チッピング性、耐摩耗性を示す。
 また、CrとAlの複合窒化物または複合炭窒化物層が、NaCl型の面心立方構造単相でない場合であっても、CrとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒の面積割合を求めたとき、NaCl型の面心立方構造の結晶粒の面積割合が70面積%未満の場合には、耐摩耗性の低下傾向がみられ、一方、この面積割合が70面積%以上である場合には、すぐれた耐チッピング性、耐摩耗性が発揮されることから、NaCl型の面心立方構造のCrとAlの複合窒化物または複合炭窒化物相の割合は、70面積%以上とすることが望ましい。
(2)本発明のTiとAlとMeの複合窒化物または複合炭窒化物層について
 硬質被覆層が立方晶構造単相である場合、特に優れた耐摩耗性を示す。
また、硬質被覆層が立方晶構造単相でない場合であっても、該硬質被覆層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒の面積割合を求めたとき、立方晶構造を有する結晶粒の面積割合が70%未満の場合には、耐摩耗性の低下傾向がみられ、一方、この面積割合が70%以上である場合には、すぐれた耐チッピング性、耐摩耗性が発揮されることから、立方晶構造のTiとAlとMeの複合窒化物または複合炭窒化物の相は、70面積%以上とすることが望ましい。
Crystal structure of hard coating layer:
(1) Cr and Al composite nitride or composite carbonitride layer of the present invention Cr and Al composite nitride or composite carbonitride layer is a composite nitride of Cr and Al having a NaCl-type face-centered cubic structure. In the case of a single phase of a product or a composite carbonitride, particularly excellent chipping resistance and wear resistance are exhibited.
In addition, even when the composite nitride or composite carbonitride layer of Cr and Al is not a NaCl type face-centered cubic structure single phase, the electron beam is used for the composite nitride or composite carbonitride layer of Cr and Al. Using a backscatter diffractometer, analysis is performed at intervals of 0.1 μm from the longitudinal cross-sectional direction, the width is 10 μm, the vertical measurement is performed from the vertical cross-sectional direction within the measurement range of the film thickness, and the composite nitride or The total number of pixels belonging to the crystal grains having a cubic structure constituting the composite carbonitride layer is obtained, and the composite nitride or composite is determined according to the ratio to the total number of measured pixels in the measurement with respect to the hard coating layer in the five fields of view. When the area ratio of the NaCl type face centered cubic crystal grains constituting the carbonitride layer was determined, and the area ratio of the NaCl type face centered cubic crystal grains was less than 70% by area, wear resistance was obtained. There is a tendency to decline When this area ratio is 70% by area or more, excellent chipping resistance and wear resistance are exhibited. Therefore, a Cr-Al composite nitride or composite carbonitride having an NaCl type face-centered cubic structure. The proportion of the physical phase is desirably 70 area% or more.
(2) Ti, Al, and Me composite nitride or composite carbonitride layer of the present invention When the hard coating layer has a cubic structure single phase, particularly excellent wear resistance is exhibited.
Further, even when the hard coating layer is not a cubic structure single phase, the hard coating layer is analyzed at an interval of 0.1 μm from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, and the width is 10 μm. The measurement from the longitudinal cross-sectional direction within the measurement range of the film thickness is carried out in five fields of view, and the total number of pixels belonging to the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer is obtained, When the area ratio of the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer was determined by the ratio to the total number of pixels measured in the hard coating layer in five fields of view, the cubic crystal When the area ratio of the crystal grains having a structure is less than 70%, a tendency to decrease the wear resistance is observed. On the other hand, when the area ratio is 70% or more, excellent chipping resistance and wear resistance are observed. From the fact that The phase of Ti, Al and Me composite nitride or composite carbonitride having a tetragonal structure is desirably 70 area% or more.
下部層および上部層:
 本発明のCrとAlの複合窒化物または複合炭窒化物層、および、本発明のTiとAlとMeの複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層を1~25μmの合計平均層厚で設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
The composite nitride or composite carbonitride layer of Cr and Al of the present invention and the composite nitride or composite carbonitride layer of Ti, Al, and Me of the present invention alone have a sufficient effect. A lower part having a total average layer thickness of 0.1 to 20 μm, comprising one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer. When the layers are provided and / or when the upper layer including at least the aluminum oxide layer is provided with a total average layer thickness of 1 to 25 μm, combined with the effects of these layers, the characteristics are further improved. Can be created. When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Moreover, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. .
 本発明の表面被覆切削工具が有する硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMeの複合窒化物もしくは複合炭窒化物層の断面を模式的に表した図を図2に示す。 A cross section of a composite nitride or composite carbonitride layer of Cr and Al or a composite nitride or composite carbonitride layer of Ti, Al, and Me constituting the hard coating layer of the surface-coated cutting tool of the present invention A diagrammatic representation is shown in FIG.
 つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、実施例としては、WC基超硬合金あるいはTiCN基サーメットを工具基体とする被覆工具について述べるが、工具基体として立方晶窒化ホウ素基超高圧焼結体を用いた場合も同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As an example, a coated tool using a WC-based cemented carbide or TiCN-based cermet as a tool base will be described, but the same applies when a cubic boron nitride-based ultra-high pressure sintered body is used as the tool base.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered under the condition of holding for 1 hour at a predetermined temperature in the range of ~ 1470 ° C, and after sintering, manufacture tool bodies A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、
表4、表5に示される形成条件A~J、すなわち、NHとHからなるガス群Aと、CrCl、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期3~4秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表7に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表7に示される面積割合存在し、表7に示される目標層厚を有する(Cr1-xAl)(C1-y)層を含む硬質被覆層を形成することにより本発明被覆工具1~15を製造した。
 なお、本発明被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表7に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
Formation conditions A to J shown in Tables 4 and 5, that is, a gas group A composed of NH 3 and H 2 , a gas group B composed of CrCl 3 , AlCl 3 , N 2 , and H 2 , and supply of each gas As a method, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as NH 3 : 2.0 to 3.0%, H 2 : 65 to 75% as the gas group A, and the gas group. As B, AlCl 3 : 0.6 to 0.9%, CrCl 3 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0 %, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 3 to 4 seconds, gas supply time per cycle 0.15 to 0.25 seconds The phase difference between the supply of the gas group A and the gas group B is 0.10 to 0.20 seconds, A CVD method is performed, and crystal grains having a cubic structure in which the average orientation difference in crystal grains shown in Table 7 is 2 degrees or more are present in the area ratio shown in Table 7, and have the target layer thickness shown in Table 7 The coated tools 1 to 15 of the present invention were manufactured by forming a hard coating layer including a (Cr 1-x Al x ) (C y N 1-y ) layer.
For the coated tools 6 to 13 of the present invention, the lower layer shown in Table 6 and / or the upper layer shown in Table 7 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、工具基体A~Dの表面に、表4及び表5に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1~15と同様に、少なくともCrとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Cr1-xAl)(C1-y)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1~13を製造した。
 なお、本発明被覆工具6~13と同様に、比較被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表8に示される上部層を形成した。
For comparison purposes, at least the surfaces of the tool bases A to D were subjected to the conditions shown in Tables 4 and 5 and the target layer thickness (μm) shown in Table 8, at least as in the present coated tools 1 to 15. A hard coating layer including a composite nitride or composite carbonitride layer of Cr and Al was deposited. At this time, a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Cr 1-x Al x ) (C y N 1-y ) layer. Coated tools 1-13 were produced.
Similar to the coated tools 6 to 13 of the present invention, the comparative coated tools 6 to 13 are formed with the lower layer shown in Table 6 and / or the upper layer shown in Table 8 under the forming conditions shown in Table 3. did.
 参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
 なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
 (a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、また、カソード電極(蒸発源)として、所定組成のAl-Cr合金を配置し、
 (b)まず、装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、かつAl-Cr合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびCrイオンを発生させ、もって工具基体表面をボンバード洗浄し、
 (c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に-50Vの直流バイアス電圧を印加し、かつ、前記Al-Cr合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Cr1-xAl)(C1-y)層を蒸着形成し、参考被覆工具14、15を製造した。
For reference, the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus. The reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
The arc ion plating conditions used for the vapor deposition in the reference example are as follows.
(A) The tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. In addition, an Al—Cr alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is set to −1000 V. A DC bias voltage is applied and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Cr alloy to generate an arc discharge, thereby generating Al and Cr ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Cr alloy and the anode electrode to generate an arc discharge, and the target composition and target layer shown in Table 8 are formed on the surface of the tool base. A thick (Cr 1-x Al x ) (C y N 1-y ) layer was formed by vapor deposition to produce reference coated tools 14 and 15.
 また、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6~表8に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the cross sections in the direction perpendicular to the tool base of the constituent layers of the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 are measured using a scanning electron microscope (5000 magnifications). When the average layer thickness was obtained by measuring and averaging the five layer thicknesses in the observation field, all showed the same average layer thickness as the target layer thicknesses shown in Tables 6 to 8. .
 また、複合窒化物または複合炭窒化物層の平均Al含有割合xavgについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合xavgを求めた。平均C含有割合yについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合yavgはCrとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をyavgとして求めた。 For the average Al content ratio x avg of the composite nitride or composite carbonitride layer, an electron beam sample is used in a sample whose surface is polished using an electron-beam-microanalyzer (EPMA). Irradiation was performed from the surface side, and an average Al content ratio x avg of Al was determined from an average of 10 points of the analysis results of the obtained characteristic X-rays. The average C content ratio y was determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio y avg indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Cr and Al. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as yavg .
 また、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
 図3に、本発明被覆工具2について測定した結晶粒内平均方位差のヒストグラムの一例を示し、また、図4には、比較被覆工具12について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
 さらに、CrとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒が、CrとAlの複合窒化物または複合炭窒化物層の縦断面に占める面積割合(面積%)を求めた。
 表7、表8に、これらの結果を示す。
In addition, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffractometer, and adjacent pixels are analyzed. If there is a misorientation of 5 degrees or more between them, this is the grain boundary, and the region surrounded by the grain boundary is one crystal grain. One pixel in the crystal grain and all other pixels in the same crystal grain The difference in orientation within the grain is calculated between 0 degree and less than 1 degree, 1 degree and less than 2 degree, 2 degree and less than 3 degree, 3 degree and less than 4 degree, and so on. The range of 10 degrees was divided and mapped every 1 degree. From the mapping diagram, the area ratio of the crystal grains having an average orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained.
FIG. 3 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool 2 of the present invention, and FIG. 4 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coating tool 12. Show.
Furthermore, the composite nitride or composite carbonitride layer of Cr and Al was analyzed at intervals of 0.1 μm from the longitudinal cross-section direction using an electron beam backscattering diffractometer, the width was 10 μm, and the length was within the measurement range of the film thickness. The measurement from the longitudinal cross-sectional direction is performed in five fields of view, and the total number of pixels belonging to the crystal grains having the cubic structure constituting the composite nitride or composite carbonitride layer is obtained. Depending on the ratio to the number of measurement pixels, the crystal grains of the NaCl type face-centered cubic structure constituting the composite nitride or composite carbonitride layer are formed in the longitudinal section of the composite nitride or composite carbonitride layer of Cr and Al. The area ratio (area%) was calculated.
Tables 7 and 8 show these results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~15、比較被覆工具1~13および参考被覆工具14,15について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
 回転速度:815 min-1
 切削速度:320 m/min、
 切り込み:1.0 mm、
 一刃送り量:0.1 mm/刃、
 切削時間:8分、
 その結果を表9に示す。
Next, the coated tools 1 to 15 according to the present invention, the comparative coated tools 1 to 13 and the reference coated tool are used in the state where each of the various coated tools is clamped to the tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. For 14 and 15, the following dry dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: Block material of JIS / S55C width 100mm, length 400mm,
Rotational speed: 815 min −1
Cutting speed: 320 m / min,
Cutting depth: 1.0 mm,
Single blade feed: 0.1 mm / tooth,
Cutting time: 8 minutes
The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases α to γ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.
 つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例1と同様の方法により表4及び表5に示される条件で、少なくとも(Cr1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表12に示される本発明被覆工具16~30を製造した。
 なお、本発明被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表13に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases α to γ and tool base δ, and at least (Cr 1-x Al) under the conditions shown in Tables 4 and 5 by the same method as in Example 1. The coated tools 16 to 30 according to the present invention shown in Table 12 were manufactured by vapor-depositing a hard coating layer containing x ) (C y N 1-y ) layer at a target layer thickness.
For the coated tools 19 to 28 of the present invention, the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、表4及び表5に示される条件かつ表14に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16~28を製造した。
 なお、本発明被覆工具19~28と同様に、比較被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表14に示される上部層を形成した。
Also, for comparison purposes, the coated tool of the present invention was similarly used on the surfaces of the tool bases α to γ and the tool base δ, using chemical vapor deposition equipment, with the conditions shown in Tables 4 and 5 and the target layer thicknesses shown in Table 14. Comparative coating tools 16 to 28 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as described above.
As with the coated tools 19 to 28 of the present invention, the comparative coated tools 19 to 28 are formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the forming conditions shown in Table 3. did.
 参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
 なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Cr 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. The reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.
 また、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12~表14に示される目標層厚と実質的に同じ平均層厚を示した。 Further, the cross-sections of the constituent layers of the inventive coated tools 16 to 30, the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 were measured using a scanning electron microscope (magnification 5000 times), and 5 in the observation field of view. When the average layer thickness was obtained by measuring the layer thickness at the points, the average layer thickness was substantially the same as the target layer thickness shown in Tables 12 to 14.
 また、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
 さらに、CrとAlの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒が、CrとAlの複合窒化物または複合炭窒化物層の縦断面に占める面積割合(面積%)を求めた
その結果を表13および表14に示す。
In addition, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffractometer. The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in crystal grains and the orientation difference in crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Cr and Al was obtained.
Further, the ratio of the area of the crystal grains of the NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al to the longitudinal section of the composite nitride or composite carbonitride layer of Cr and Al The results of obtaining (area%) are shown in Table 13 and Table 14.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16~30、比較被覆工具16~28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、ダクタイル鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:345m/min、
 切り込み:2.0mm、
 送り:0.1mm/rev、
 切削時間:5分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:325m/min、
 切り込み:1.5mm、
 送り:0.1mm/rev、
 切削時間:5分、
(通常の切削速度は、180m/min)、
 表15に、前記切削試験の結果を示す。
Next, in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the coated tools 16 to 30 of the present invention, the comparative coated tools 16 to 28, the reference coated tool 29, For 30, a dry high-speed intermittent cutting test of carbon steel and a wet high-speed intermittent cutting test of ductile cast iron shown below were carried out, and the flank wear width of the cutting edge was measured.
Cutting condition 1:
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 345 m / min,
Cutting depth: 2.0 mm
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 325 m / min,
Incision: 1.5mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 15 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表9、表15に示される結果から、本発明の被覆工具は、CrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 9 and 15, the coated tool according to the present invention has a predetermined intragranular average within the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer of Cr and Al. The presence of misorientation improves hardness due to crystal grain distortion and improves toughness while maintaining high wear resistance. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
 これに対して、硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していない比較被覆工具1~13、16~28および参考被覆工具14、15、29、30については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, in the crystal grains having a cubic structure constituting the composite nitride of Cr and Al or the composite carbonitride layer constituting the hard coating layer, there is no predetermined intra-grain average orientation difference. The comparative coated tools 1 to 13, 16 to 28 and the reference coated tools 14, 15, 29 and 30 are used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads acting on the cutting edge. It is clear that the life is shortened in a short time due to occurrence of chipping, chipping or the like.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表16に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体E~Gをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 16. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. WC-based cemented carbide tool bases E to G with ISO standard SEEN1203AFSN insert shape after vacuum sintering under the condition of holding for 1 hour at a predetermined temperature within the range of ~ 1470 ° C. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表17に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Hを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 17, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base H made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体E~H表面に、化学蒸着装置を用い、表19、表20に示される形成条件、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか)、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか):0.1~0.2%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表22に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表22に示される面積割合存在し、表22に示される目標層厚を有する(Ti1-α―βAlαMeβ)(Cγ1-γ)層からなる硬質被覆層を形成することにより本発明被覆工具31~45を製造した。
 なお、本発明被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表22に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases E to H, and the formation conditions shown in Tables 19 and 20, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), a gas group B consisting of N 2 , H 2 , and a method for supplying each gas As the gas group A, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is NH 3 : 2.0 to 3.0%, H 2 : 65 to 75%, the gas group B AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrC l 2 ): 0.1 to 0.2%, N 2 : 12.5 to 15.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature : 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference between gas group A and gas group B supply 0.10 to 0.20 seconds Then, the thermal CVD method is performed for a predetermined time, and the crystal grains having a cubic structure in which the average misorientation within the crystal grains shown in Table 22 is 2 degrees or more are present in the area ratio shown in Table 22 and shown in Table 22 The coated tools 31 to 45 of the present invention were manufactured by forming a hard coating layer composed of a (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer having a target layer thickness.
For the inventive coated tools 36 to 43, the lower layer shown in Table 21 and / or the upper layer shown in Table 22 were formed under the formation conditions shown in Table 18.
 また、比較の目的で、工具基体E~Hの表面に、表19、表20に示される条件かつ表23に示される目標層厚(μm)で本発明被覆工具31~45と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Ti1-α―βAlαMeβ)(Cγ1-γ)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具31~45を製造した。
 なお、本発明被覆工具36~43と同様に、比較被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表23に示される上部層を形成した。
For comparison purposes, at least on the surfaces of the tool bases E to H, at the conditions shown in Tables 19 and 20 and the target layer thickness (μm) shown in Table 23, at least as in the coated tools 31 to 45 of the present invention. A hard coating layer including a composite nitride or composite carbonitride layer of Ti and Al was deposited. At this time, the hard coating layer is formed so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer. Thus, comparative coated tools 31 to 45 were produced.
Similar to the coated tools 36 to 43 of the present invention, the comparative coated tools 36 to 43 are formed with the lower layer shown in Table 21 and / or the upper layer shown in Table 23 under the forming conditions shown in Table 18. did.
 また、本発明被覆工具31~45、比較被覆工具31~45の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表21~表23に示される目標層厚と実質的に同じ平均層厚を示した。 Further, the cross-sections of the constituent layers of the inventive coated tools 31 to 45 and comparative coated tools 31 to 45 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times), and within the observation field of view. When the average layer thickness was obtained by measuring and averaging the five layer thicknesses, all showed an average layer thickness substantially the same as the target layer thickness shown in Table 21 to Table 23.
 また、複合窒化物または複合炭窒化物層の平均Al含有割合、平均Me含有割合については、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合αavgおよびMeの平均含有割合βavgを求めた。平均C含有割合γavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合γavgはTiとAlとMeの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をγavgとして求めた。 The average Al content ratio and the average Me content ratio of the composite nitride or composite carbonitride layer were determined using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) in a sample whose surface was polished. A line was irradiated from the sample surface side, and an average Al content ratio α avg of Al and an average content ratio β avg of Me were obtained from an average of 10 points of the analysis result of the obtained characteristic X-ray. The average C content γ avg was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio γ avg represents an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti, Al, and Me. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as γ avg .
 さらに、電子線後方散乱回折装置を用いてTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表22および表23に示す。
 図5に、本発明被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示し、また、図6には、比較被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
Furthermore, the crystal orientation of each crystal grain having a cubic structure constituting the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-section direction using an electron beam backscatter diffraction apparatus, If there is an orientation difference of 5 degrees or more between the pixels to be used as a grain boundary, and the region surrounded by the grain boundary is a single crystal grain, one pixel in the crystal grain and all the other in the same crystal grain The crystal grain orientation difference is calculated between the pixels, and the crystal grain orientation difference is 0 degree or more and less than 1 degree, 1 degree or more and less than 2 degree, 2 degree or more and less than 3 degree, 3 degree or more and less than 4 degree, and so on. The range of 0 to 10 degrees was divided and mapped every 1 degree. From the mapping diagram, the area ratio of the crystal grains having an average orientation difference within the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 22 and Table 23.
FIG. 5 shows an example of a histogram of the average orientation difference in crystal grains measured for the coated tool of the present invention, and FIG. 6 shows an example of a histogram of the average orientation difference in crystal grains measured for the comparative coated tool.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具31~45、比較被覆工具31~45について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表24に示す。 Next, the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 in the state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig will be described below. The dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 24.
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
 回転速度:815 min-1
 切削速度:320 m/min、
 切り込み:1.5 mm、
 一刃送り量:0.1 mm/刃、
 切削時間:8分、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: Block material of JIS / S55C width 100mm, length 400mm,
Rotational speed: 815 min −1
Cutting speed: 320 m / min,
Cutting depth: 1.5 mm,
Single blade feed: 0.1 mm / tooth,
Cutting time: 8 minutes
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
実施例2と同一の原料粉末を用い、同一配合組成(表10および表11を参照。)にて混合し、同一製造方法(段落0052および0053を参照。)により、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γおよびTiCN基サーメット製の工具基体δをそれぞれ製造した。 Using the same raw material powder as in Example 2, mixing with the same composition (see Table 10 and Table 11), and using the same manufacturing method (see paragraphs 0052 and 0053), an ISO standard CNMG120212 insert shape was formed. Tool bases α to γ made of WC base cemented carbide and tool base δ made of TiCN base cermet were produced, respectively.
 つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例3と同様の方法により表19及び表20に示される条件で、少なくとも(Ti1-α―βAlαMeβ)(Cγ1-γ)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表26に示される本発明被覆工具46~60を製造した。
 なお、本発明被覆工具49~58については、表18に示される形成条件で、表25に示される下部層および/または表26に示される上部層を形成した。
Next, on the surfaces of these tool bases α to γ and tool base δ, at least (Ti 1-α−) is obtained under the conditions shown in Tables 19 and 20 by the same method as in Example 3 using a chemical vapor deposition apparatus. The coated tools 46 to 60 of the present invention shown in Table 26 were manufactured by vapor-depositing a hard coating layer including a β Al α Me β ) (C γ N 1-γ ) layer with a target layer thickness.
For the inventive coated tools 49 to 58, the lower layer shown in Table 25 and / or the upper layer shown in Table 26 were formed under the formation conditions shown in Table 18.
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、表19および表20に示される条件かつ表27に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表27に示される比較被覆工具46~60を製造した。
 なお、本発明被覆工具49~58と同様に、比較被覆工具49~58については、表18に示される形成条件で、表25に示される下部層および/または表27に示される上部層を形成した。
Also, for comparison purposes, the coated tool of the present invention was used under the conditions shown in Tables 19 and 20 and the target layer thicknesses shown in Table 27 using chemical vapor deposition devices on the surfaces of the tool bases α to γ and the tool base δ. Comparative coating tools 46 to 60 shown in Table 27 were manufactured by vapor-depositing a hard coating layer in the same manner as described above.
Similar to the coated tools 49 to 58 of the present invention, the comparative coated tools 49 to 58 are formed with the lower layer shown in Table 25 and / or the upper layer shown in Table 27 under the forming conditions shown in Table 18. did.
 また、本発明被覆工具46~60、比較被覆工具46~60の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表25~表27に示される目標層厚と実質的に同じ平均層厚を示した。
 また、前記本発明被覆工具46~60、比較被覆工具46~60の硬質被覆層について、実施例3に示される方法と同様の方法を用いて、平均Al含有割合αavg、平均Me含有割合βavg、平均C含有割合γavg、結晶粒における立方晶結晶相の占める面積割合を求めた。
Further, the cross-section of each constituent layer of the coated tool 46 to 60 of the present invention and the comparative coated tool 46 to 60 is measured using a scanning electron microscope (magnification 5000 times), and the layer thickness at five points in the observation field is measured. When the average layer thickness was obtained on average, all showed the average layer thickness substantially the same as the target layer thickness shown in Tables 25 to 27.
For the hard coating layers of the inventive coated tools 46 to 60 and comparative coated tools 46 to 60, the average Al content ratio α avg , the average Me content ratio β The avg , the average C content ratio γ avg , and the area ratio of the cubic crystal phase in the crystal grains were determined.
 さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表26および表27に示す。 Furthermore, the crystal orientation of each crystal grain having a cubic structure constituting a composite nitride or composite carbonitride layer of Ti and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction apparatus, The difference in direction is 0 degree or more, less than 1 degree, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree, and so on. did. From the mapping diagram, the area ratio of the crystal grains having the average orientation difference in the crystal grains and the orientation difference in the crystal grains of 2 degrees or more to the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was obtained. The results are shown in Table 26 and Table 27.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具46~60、比較被覆工具46~60について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:355m/min、
 切り込み:2.0mm、
 送り:0.12mm/rev、
 切削時間:5分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:335m/min、
 切り込み:1.5mm、
 送り:0.12mm/rev、
 切削時間:5分、
(通常の切削速度は、180m/min)、
 表28に、前記切削試験の結果を示す。
Next, the coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 are shown below in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 355 m / min,
Cutting depth: 2.0 mm
Feed: 0.12 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 335 m / min,
Incision: 1.5mm,
Feed: 0.12 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 28 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表24、表28に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 24 and 28, the coated tool of the present invention has a crystal structure having a cubic structure constituting a composite nitride or composite carbonitride layer of Al, Ti and Me constituting the hard coating layer. In this case, the presence of a predetermined difference in the average orientation within the crystal grains improves the toughness while maintaining high wear resistance due to the distortion of the crystal grains. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
 これに対して、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していない比較被覆工具31~45、46~60については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, there is a predetermined intra-grain average orientation difference in the crystal grains having a cubic structure constituting the composite nitride of Al, Ti, and Me or the composite carbonitride layer constituting the hard coating layer. The comparative coated tools 31 to 45 and 46 to 60 which are not used are accompanied by high heat generation, and when used for high-speed intermittent cutting in which intermittent and impact high loads act on the cutting edge, chipping, chipping, etc. occur. It is clear that the lifetime is reached in a short time.
 前述のように、本発明の被覆工具は、炭素鋼、合金鋼、鋳鉄等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., but also as a coated tool for various work materials, and for long-term use. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.
 1  工具基体
 2  硬質被覆層
 3  複合窒化物または複合炭窒化物層
 B  粒界
 P  測定点(ピクセル)
DESCRIPTION OF SYMBOLS 1 Tool base | substrate 2 Hard coating layer 3 Composite nitride or composite carbonitride layer B Grain boundary P Measuring point (pixel)

Claims (8)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
    (a)前記硬質被覆層は、平均層厚1~20μmのCrとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
    (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
    (c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で40%以上存在することを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, and cubic boron nitride-based ultrahigh pressure sintered body,
    (A) The hard coating layer is a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 μm, or Ti, Al and Me (where Me is Si, Zr, B, V , A compound nitride of at least one element selected from Cr) or a composite carbonitride layer,
    (B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
    (C) The crystal orientation of the crystal grains of the composite nitride or the composite carbonitride having a NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or the composite carbonitride layer is determined by electron beam backscattering. When analyzing from the longitudinal section direction using a diffractometer and obtaining the average orientation difference within each crystal grain, the crystal grains exhibiting an average orientation difference within the crystal grain of 2 degrees or more are complex nitride or composite carbon. A surface-coated cutting tool characterized by being present in an area ratio of 40% or more with respect to the total area of the nitride layer.
  2.  前記複合窒化物または複合炭窒化物層は、CrとAlの複合窒化物または複合炭窒化物層であって、その組成を、
    組成式:(Cr1-xAl)(C1-y
    で表した場合、複合窒化物または複合炭窒化物層のAlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足することを特徴とする請求項1に記載の表面被覆切削工具。
    The composite nitride or composite carbonitride layer is a composite nitride or composite carbonitride layer of Cr and Al, the composition of which is
    Composition formula: (Cr 1-x Al x ) (C y N 1-y )
    In the composite nitride or composite carbonitride layer, the average content ratio x avg in the total amount of Cr and Al in Al and the average content ratio y avg in the total amount of C and N in C (where x 2. The surface-coated cutting according to claim 1, wherein avg and y avg are both atomic ratios) satisfying 0.70 ≦ x avg ≦ 0.95 and 0 ≦ y avg ≦ 0.005, respectively. tool.
  3.  前記複合窒化物または複合炭窒化物層は、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層であって、その組成を、
     組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ
    で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足することを特徴とする請求項1に記載の表面被覆切削工具。
    The composite nitride or composite carbonitride layer is composed of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) or a composite carbonitride. Layer, the composition of which
    Composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ )
    In the composite nitride or composite carbonitride layer, the average content ratio α avg in the total amount of Ti, Al, and Me of Al, the average content ratio β avg in the total amount of Me Ti, Al, and Me And the average content ratio γ avg (where α avg , β avg , and γ avg are atomic ratios) of the total amount of C and N in C and C are 0.60 ≦ α avg and 0.005 ≦ β avg , respectively. The surface-coated cutting tool according to claim 1, wherein ≦ 0.10, 0 ≦ γ avg ≦ 0.005, 0.605 ≦ α avg + β avg ≦ 0.95 is satisfied.
  4.  前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer is composed of a single phase of composite nitride or composite carbonitride having a NaCl type face-centered cubic structure. The surface-coated cutting tool described.
  5.  前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer includes at least 70 area% or more of a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure. The surface-coated cutting tool according to claim 1.
  6.  前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至5のいずれかに一項に記載の表面被覆切削工具。 Between the tool substrate and the composite nitride or composite carbonitride layer, one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer The surface-coated cutting tool according to any one of claims 1 to 5, wherein a lower layer is formed of the Ti compound layer and has a total average layer thickness of 0.1 to 20 µm.
  7.  前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする請求項1乃至6のいずれか一項に記載の表面被覆切削工具。 7. The upper layer including at least an aluminum oxide layer is formed on the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. The surface-coated cutting tool according to Item.
  8.  前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1乃至7のいずれか一項に記載の表面被覆切削工具の製造方法。 The surface coating according to any one of claims 1 to 7, wherein the composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component. Cutting tool manufacturing method.
PCT/JP2016/082338 2015-10-30 2016-10-31 Surface-coated cutting tool, and production method therefor WO2017073787A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015214522 2015-10-30
JP2015214528 2015-10-30
JP2015-214522 2015-10-30
JP2015-214528 2015-10-30
JP2016-211416 2016-10-28
JP2016211416A JP6778413B2 (en) 2015-10-30 2016-10-28 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Publications (1)

Publication Number Publication Date
WO2017073787A1 true WO2017073787A1 (en) 2017-05-04

Family

ID=58631595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082338 WO2017073787A1 (en) 2015-10-30 2016-10-31 Surface-coated cutting tool, and production method therefor

Country Status (1)

Country Link
WO (1) WO2017073787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098130A1 (en) * 2017-11-16 2019-05-23 三菱日立ツール株式会社 Coated cutting tool, and manufacturing method and chemical vapor deposition device for same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181706A (en) * 2004-12-28 2006-07-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and manufacturing method thereof
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2013139065A (en) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015163391A1 (en) * 2014-04-23 2015-10-29 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181706A (en) * 2004-12-28 2006-07-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and manufacturing method thereof
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2013139065A (en) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015163391A1 (en) * 2014-04-23 2015-10-29 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEHIKO KIMURA ET AL.: "Misorientation Analysis of Plastic Deformation of Austenitic Stainless Steel by EBSD and X-Ray Diffraction Methods", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (SERIES A, vol. 71, no. 712, December 2005 (2005-12-01), pages 1722 - 1728, XP055232306 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098130A1 (en) * 2017-11-16 2019-05-23 三菱日立ツール株式会社 Coated cutting tool, and manufacturing method and chemical vapor deposition device for same
JPWO2019098130A1 (en) * 2017-11-16 2019-11-14 三菱日立ツール株式会社 Coated cutting tool and manufacturing method thereof
US11541461B2 (en) 2017-11-16 2023-01-03 Moldino Tool Engineering, Ltd. Coated cutting tool, and method and system for manufacturing the same by chemical vapor deposition

Similar Documents

Publication Publication Date Title
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN108472737B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance, and method for manufacturing same
WO2014034730A1 (en) Surface-coated cutting tool
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2014210313A (en) Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
KR20170072897A (en) Surface-coated cutting tool
JP7119264B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance.
JP6931454B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP2019010707A (en) Surface-coated cutting tool of which hard coating layer exhibits excellent abrasion resistance and chipping resistance
JP6931452B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
WO2017073787A1 (en) Surface-coated cutting tool, and production method therefor
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2015136752A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
WO2017073792A1 (en) Surface-coated cutting tool, and production method therefor
WO2016084938A1 (en) Surface-coated cutting tool
WO2017073789A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance, and production method therefor
WO2017073790A1 (en) Surface-coated cutting tool, and production method therefor
WO2016068122A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860015

Country of ref document: EP

Kind code of ref document: A1