WO2016068122A1 - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
WO2016068122A1
WO2016068122A1 PCT/JP2015/080225 JP2015080225W WO2016068122A1 WO 2016068122 A1 WO2016068122 A1 WO 2016068122A1 JP 2015080225 W JP2015080225 W JP 2015080225W WO 2016068122 A1 WO2016068122 A1 WO 2016068122A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
avg
average
nitride
Prior art date
Application number
PCT/JP2015/080225
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 賢一
翔 龍岡
健志 山口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015208164A external-priority patent/JP6709526B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US15/522,603 priority Critical patent/US20170321322A1/en
Priority to KR1020177011091A priority patent/KR20170072897A/en
Priority to CN201580058339.XA priority patent/CN107073593A/en
Priority to EP15855606.8A priority patent/EP3213840A4/en
Publication of WO2016068122A1 publication Critical patent/WO2016068122A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • a coated tool is known in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a substrate (hereinafter collectively referred to as “substrate”). It is known that it exhibits excellent wear resistance.
  • the conventional coated tool formed with the Ti—Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.
  • Patent Document 1 a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition.
  • Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
  • Patent Document 2 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr elements.
  • a compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
  • Patent Document 3 discloses that chemical vapor deposition is performed in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C., so that the value of the Al content ratio x is 0.65 to Although it is described that a (Ti 1-x Al x ) N layer having a thickness of 0.95 can be formed by vapor deposition, this reference further describes an Al 2 O 3 layer on the (Ti 1-x Al x ) N layer. In order to enhance the heat insulation effect, and by forming a (Ti 1-x Al x ) N layer in which the value of x is increased from 0.65 to 0.95, cutting performance is improved. There is no disclosure up to the point of how this will be affected.
  • the coated tool described in Patent Document 2 is intended to improve wear resistance and oxidation resistance characteristics, but chipping resistance under cutting conditions involving impact such as high-speed interrupted cutting. There was a problem that was not enough.
  • the Al content ratio x can be increased, and a cubic crystal structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the substrate is not sufficient and the toughness is inferior.
  • the technical problem to be solved by the present invention that is, the purpose of the present invention is to provide excellent toughness even when subjected to high-speed interrupted cutting such as alloy steel, carbon steel, cast iron, etc. It is an object of the present invention to provide a coated tool that exhibits excellent chipping resistance and wear resistance over use.
  • the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( CyN 1-y ) ”), a hard coating layer containing a hard coating layer formed by chemical vapor deposition. Results of extensive research to improve chipping resistance and wear resistance. The following findings were obtained.
  • the conventional hard coating layer including at least one (Ti 1-x Al x ) (C y N 1-y ) layer and having a predetermined average layer thickness is (Ti 1-x Al x ) (
  • the C y N 1-y ) layer When the C y N 1-y ) layer is formed in a columnar shape in the direction perpendicular to the tool base, it has high wear resistance.
  • the present inventors have conducted intensive studies on the (Ti 1-x Al x ) (C y N 1-y ) layer constituting the hard coating layer, and found that the hard coating layer had Si, Zr, B, V, Cr.
  • the cubic crystal grains are distorted by a completely new idea that they are composed of crystal grains having a structure and that periodic concentration changes (content ratios) of Ti, Al, and Me are formed in the cubic crystal phase.
  • the inventors have succeeded in improving the hardness and toughness, and as a result, have found a novel finding that the chipping resistance and fracture resistance of the hard coating layer can be improved.
  • the hard coating layer is a composite nitride of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 ⁇ m.
  • Me is a kind of element selected from Si, Zr, B, V, and Cr
  • the hard coating layer occupies the total amount of Ti of Al and Al and Me.
  • Average content ratio X avg and average content ratio Y avg in the total amount of Ti, Al, and Me in Me and average content ratio Z avg in the total amount of C and N in C (where X avg , Y avg , Z avg Are atomic ratios) of 0.60 ⁇ X avg , 0.005 ⁇ Y avg ⁇ 0.10, 0 ⁇ Z avg ⁇ 0.005, 0.605 ⁇ X avg + Y avg ⁇ 0.95, respectively.
  • said composite nitride or composite carbonitride includes grains having a NaCl-type face-centered cubic structure (or further including grains having a wurtzite-type hexagonal structure), and the NaCl-type face in the composite nitride or composite carbonitride layer.
  • the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer having the above-described configuration is, for example, the following chemical vapor deposition that periodically changes the reaction gas composition on the tool base surface.
  • the film can be formed by the method.
  • the chemical vapor deposition reactor used includes a gas group A composed of NH 3 , N 2 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), NH 3 , N 2.
  • H 2 gas groups B are supplied into the reactor from respective separate gas supply pipes, and the gas group A and the gas group B are supplied into the reactor, for example, at regular time intervals.
  • the gas is supplied such that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B causes a phase difference of a time shorter than the gas supply time so that the reaction gas composition on the tool base surface is set.
  • gas group A, II) mixed gas of gas group A and gas group B, and (III) gas group B can be changed with time.
  • it is not necessary to introduce a long exhaust process intended for strict gas replacement.
  • the reaction gas composition on the surface of the tool base is changed to (I) Gas group A
  • (II) a mixed gas composed of gas group A and gas group B This can also be realized by temporally changing to a mixed gas mainly composed of (II) a mixed gas composed of gas group A and gas group B, and (III) a mixed gas mainly composed of gas group B.
  • the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 3.5 to 4.0% as the gas group A, H 2 : 65 to 75.
  • the gas group A and the gas group B are supplied so as to have a difference in time to reach the tool base surface, and the nitrogen source gas in the gas group A is set to NH 3 : 3.5 to 4.0%.
  • AlCl 3 0.6 to 0.9%
  • TiCl 4 0.2 to 0.3%
  • MeCl n (Me chloride) 0.1 -0.2%
  • Al (CH 3 ) 3 Set to 0-0.5%
  • local distortion of the crystal lattice due to local compositional irregularities, dislocations and point defects in the crystal grains In addition, the degree of ⁇ 110 ⁇ orientation of the crystal grains on the tool base surface side and the film surface side can be changed.
  • the hard coating layer is a composite nitride of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 ⁇ m or
  • the composite carbonitride layer is included and expressed by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), the Ti of the composite nitride or the composite carbonitride layer
  • the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the crystal grains having the NaCl type face centered cubic structure are obtained.
  • the lattice constant a satisfies the relationship of 0.05a TiN + 0.95a AlN ⁇ a ⁇ 0.4a TiN + 0.6a AlN with respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN.
  • the surface-coated cutting tool according to any one of (1) to (3), characterized in that: (5) When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the composite nitride of Ti, Al, and Me having a NaCl-type face-centered cubic structure in the layer or (1) to (4) above, wherein the composite carbonitride has a columnar structure having an average grain width W of 0.1 to 2.0 ⁇ m and an average aspect ratio A of 2 to 10
  • the surface-coated cutting tool according to any one of the above.
  • the composite nitride or composite carbonitride layer has an area ratio of Ti, Al, and Me composite nitride or composite carbonitride having an NaCl type face-centered cubic structure of 70 area% or more.
  • the surface-coated cutting tool according to any one of (1) to (5), which is characterized in that (7) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbon of Ti, Al, and Me.
  • a Ti carbide layer Between the nitride layers, one or two or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer, and 0.1 to 20 ⁇ m
  • a lower layer including a Ti compound layer having a total average layer thickness is present.
  • an upper layer including at least an aluminum oxide layer is present on the composite nitride or composite carbonitride layer at a total average layer thickness of 1 to 25 ⁇ m.
  • the surface-coated cutting tool according to any one of the above.
  • the composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component.
  • the hard coating layer (hereinafter referred to as “hard coating layer of the present invention”) in the surface-coated cutting tool which is one embodiment of the present invention is essentially the above-described composite nitride or composite carbonitride layer.
  • the combined effect of the composite nitride or the composite carbonitride layer can be obtained by using it together with the conventionally known lower layer of (7) and the upper layer of (8). Needless to say, even better characteristics can be created.
  • Average layer thickness of the composite nitride or composite carbonitride layer 2 constituting the hard coating layer In FIG. 1, the cross-sectional schematic diagram of the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me which comprises the hard coating layer of this invention is shown.
  • the hard coating layer of the present invention has a chemical vapor-deposited composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), a composite nitride or composite of Ti, Al, and Me. At least the carbonitride layer 2 is included.
  • the composite nitride or composite carbonitride layer 2 has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 ⁇ m.
  • the average layer thickness is set to 1 to 20 ⁇ m. Although it is not particularly essential, a more preferable average layer thickness is 3 to 15 ⁇ m. Further preferably, the average layer thickness is 4 to 10 ⁇ m.
  • composition of composite nitride or composite carbonitride layer 2 constituting hard coating layer is represented by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ) (however, , Me is a kind of element selected from Si, Zr, B, V, and Cr), the average content ratio X avg in the total amount of Ti, Al, and Me of Al, and the combination of Ti, Al, and Me of Me
  • the average content ratio Y avg in the amount and the average content ratio Z avg in the total amount of C and C in C, where X avg , Y avg , and Z avg are all atomic ratios) are 0.60 ⁇ X avg , 0.005 ⁇ Y avg ⁇ 0.10, 0 ⁇ Z avg ⁇ 0.005, 0.605 ⁇ X
  • the wear resistance is not sufficient.
  • the average content ratio Y avg of Me is less than 0.005
  • the composite nitride of Ti, Al, and Me or the composite carbonitride layer 2 is inferior in hardness, so that it is used for high-speed intermittent cutting of alloy steel and the like. In such a case, the wear resistance is not sufficient.
  • the toughness of the composite nitride of Ti, Al, and Me or the composite carbonitride layer 2 decreases due to the segregation of Me to the grain boundary, etc., and is used for high-speed intermittent cutting of alloy steel and the like. In some cases, the chipping resistance is not sufficient. Therefore, the average content ratio Y avg of Me was determined as 0.005 ⁇ Y avg ⁇ 0.10.
  • the sum X avg + Y avg of the average content ratio X avg of Al and the average content ratio Y avg of Me is less than 0.605, the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me Since it is inferior in hardness, when it is subjected to high-speed interrupted cutting of alloy steel or the like, the wear resistance is not sufficient. Inviting, chipping resistance decreases. Therefore, the sum X avg + Y avg of the average content ratio X avg of Al and the average content ratio Y avg of Me was determined as 0.605 ⁇ X avg + Y avg ⁇ 0.95.
  • a kind of element selected from Si, Zr, B, V, and Cr is used as a specific component of Me.
  • Si component or B component is used so that Y avg is 0.005 or more as Me, so that the hardness of the composite nitride or composite carbonitride layer 2 is improved, so that the wear resistance is improved.
  • the Zr component has the effect of strengthening the grain boundary, and the V component improves toughness, so that the chipping resistance can be further improved, and the Cr component improves oxidation resistance. Therefore, a longer tool life is expected.
  • the average content ratio Y avg exceeds 0.10
  • the average content ratios of the Al component and the Ti component are relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio is such that Y avg exceeds 0.10.
  • the average content ratio (atomic ratio) Z avg of C contained in the composite nitride or composite carbonitride layer 2 is a minute amount in the range of 0 ⁇ Z avg ⁇ 0.005
  • the composite nitride or composite carbon The adhesion between the nitride layer 2 and the tool base 3 or the lower layer is improved and the lubricity is improved to reduce the impact during cutting.
  • the resistance of the composite nitride or the composite carbonitride layer 2 is improved. Defectability and chipping resistance are improved.
  • the average content ratio C avg of C deviates from the range of 0 ⁇ Z avg ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer 2 is lowered, so that the chipping resistance and chipping resistance are reversed. Since it falls, it is not preferable. Therefore, the average content ratio Z avg of C was determined as 0 ⁇ Z avg ⁇ 0.005.
  • more preferable X avg , Y avg and Z avg are 0.70 ⁇ X avg ⁇ 0.85, 0.01 ⁇ Y avg ⁇ 0.05, and 0 ⁇ Z avg ⁇ 0, respectively. 0.003, 0.7 ⁇ X avg + Y avg ⁇ 0.90.
  • the normal line of the ⁇ 110 ⁇ plane which is the crystal plane of the crystal grain with respect to the normal line 5 of the tool base surface (the direction perpendicular to the tool base surface 4 in the cross-section polished surface) 6 is measured (see Fig. 2A and Fig. 2B), and the tilt angle within the range of 0 to 45 degrees with respect to the normal direction is classified for each pitch of 0.25 degrees.
  • the frequencies existing in each section are tabulated, the highest peak is present in the tilt angle section within the range of 0 to 12 degrees, and the total of the frequencies existing in the range of 0 to 12 degrees is the slope.
  • FIG. 3A and FIG. 3B are graphs showing an example of the inclination angle number distribution obtained by measuring the crystal grains having a cubic structure, which is one embodiment of the present invention and a comparison, by the above method.
  • Crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer 2:
  • cubic crystal crystal grains having a NaCl-type face-centered cubic structure
  • the grain length in the direction perpendicular to the tool substrate surface 4 is l
  • the ratio l / w between w and l is the aspect ratio a of each crystal grain
  • the aspect ratio obtained for each crystal grain When the average value of a is the average aspect ratio A, and the average value of the particle width w obtained for each crystal grain is the average particle width W, the average particle width W is 0.1 to 2.0 ⁇ m and the average aspect ratio A is It is desirable to control so as to satisfy 2 to 10. When this condition is satisfied, the cubic crystal grains constituting the composite nitride or composite carbonitride layer 2 have a columnar structure and exhibit excellent wear resistance.
  • the average aspect ratio A is less than 2, it becomes difficult to form a periodic distribution (concentration change, content ratio change) of the composition, which is a feature of the present invention, in the crystal grains of the NaCl type face-centered cubic structure.
  • a columnar crystal exceeding 10 is not preferable because cracks are likely to grow along a plane along a periodic distribution of the composition in the cubic crystal phase, which is a feature of the present invention, and a plurality of grain boundaries.
  • the average particle width W is less than 0.1 ⁇ m, the wear resistance is lowered, and when it exceeds 2.0 ⁇ m, the toughness is lowered.
  • the average grain width W of the cubic crystal grains constituting the composite nitride or composite carbonitride layer 2 is preferably 0.1 to 2.0 ⁇ m.
  • the more preferable average aspect ratio and average particle width W are 4 to 7 and 0.7 to 1.5 ⁇ m, respectively.
  • FIG. 4 shows a composite nitride layer or composite carbonitride layer of Ti, Al, and Me contained in the hard coating layer of the present invention (hereinafter referred to as “composite nitride layer or composite carbonitride of Ti, Al, and Me of the present invention”).
  • composite nitride layer or composite carbonitride of Ti, Al, and Me of the present invention A crystal grain having a cubic crystal structure), and a periodic concentration change of Ti, Al, and Me is one of the equivalent crystal orientations represented by ⁇ 001> of the cubic crystal grain. It is shown as a schematic diagram that the change in the Al content ratio x is small in a plane that exists along the direction and is orthogonal to the direction.
  • FIG. 5 shows a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me exists in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me of the present invention.
  • EDS energy dispersive X-ray spectroscopy
  • the X max also, if the minimum value 12a of periodically value varying x in proportion x of Al, 12b, 12c, an average value of 12d ⁇ ⁇ ⁇ and the X min, the difference of X max and X min When ⁇ x is smaller than 0.03, the above-described crystal grain distortion is small and sufficient hardness cannot be expected. On the other hand, if the difference ⁇ x between X max and X min exceeds 0.25, the distortion of the crystal grains becomes too large, lattice defects become large, and the hardness decreases. Therefore, for the change in the concentration of Ti, Al, and Me existing in the crystal grains having a cubic crystal structure, the difference between X max and X min was set to 0.03 to 0.25.
  • a more preferable difference between X max and X min is 0.05 to 0.22. Even more preferably, it is 0.08 to 0.15.
  • a periodic concentration change of Ti, Al, and Me occurs in the crystal grains having a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists.
  • the Ti, Al, and Me concentrations do not substantially change in the plane orthogonal to the orientation in which the periodic concentration changes of Ti, Al, and Me exist, and the Ti Ti in the orthogonal plane is not changed.
  • the maximum value ⁇ Xo of the change amount of the content ratio x in the total amount of Al and Me is 0.01 or less.
  • the period of concentration change along one of the equivalent crystal orientations represented by ⁇ 001> of the cubic crystal grains is less than 3 nm, the toughness is lowered, and if it exceeds 100 nm, the hardness is improved. Is not fully demonstrated. Therefore, a more desirable period of the concentration change is 3 to 100 nm.
  • the more preferable period of concentration change is 15 to 80 nm. Even more preferably, it is 25 to 50 nm.
  • FIG. 6 shows a crystal grain having a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me exists in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me of the present invention.
  • FIG. 2 schematically shows that a region A13 and a region B14 exist in the crystal grains.
  • the region A13 and the region B14 exist in two directions in which the periodic concentration changes of Ti, Al, and Me are orthogonal to each other, there are two directions of strain in the crystal grains. Toughness is improved.
  • the boundary 15 between the region A and the region B is formed on one of the equivalent crystal planes represented by ⁇ 110 ⁇ , misfit between the boundary 15 between the region A and the region B does not occur.
  • Lattice constant a of cubic crystal grains in the composite nitride or composite carbonitride layer was subjected to an X-ray diffraction test using an X-ray diffractometer and Cu—K ⁇ rays as a radiation source, and the lattice constant a of cubic crystal grains was determined.
  • Area ratio of columnar structure made of individual crystal grains having a cubic structure in composite nitride or composite carbonitride layer 2 When the area ratio of the columnar structure composed of individual crystal grains having a cubic crystal structure is less than 70% by area, the hardness is undesirably lowered. Although it is not a particularly essential configuration, the area ratio of the columnar structure composed of individual crystal grains having a preferable cubic structure is 85 area% or more. More preferably, it is 95 area% or more.
  • the composite nitride or composite carbonitride layer 2 of the present invention has one or two of a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer as a lower layer. Even in the case of including a Ti compound layer having a total average layer thickness of 0.1 to 20 ⁇ m and / or including an aluminum oxide layer having an average layer thickness of 1 to 25 ⁇ m as an upper layer, The combined characteristics of these layers together with the effects of these layers can be further improved by using these known lower layers and upper layers together.
  • the lower layer includes a Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer
  • the total of the Ti compound layer When the average layer thickness exceeds 20 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, when an aluminum oxide layer is included as the upper layer, if the total average layer thickness of the aluminum oxide layer exceeds 25 ⁇ m, crystal grains are likely to be coarsened and chipping is likely to occur.
  • the lower layer is less than 0.1 ⁇ m, the effect of improving the adhesion with the lower layer of the composite nitride or composite carbonitride layer 2 of the present invention can not be expected, and if the upper layer is less than 1 ⁇ m, The effect of improving the wear resistance by forming the upper layer is not remarkable.
  • the present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body.
  • the hard coating layer includes at least a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me having an average layer thickness of 1 to 20 ⁇ m, and has a composition formula: (Ti 1-xy Al x Me y ) ( C z N 1-z ), the average content ratio X avg in the total amount of Ti, Al and Me in Al and the average content ratio Y avg in the total amount of Ti, Al and Me in Me and C
  • the average content ratio Z avg in the total amount of C and N (where X avg , Y avg , and Z avg are all atomic ratios) is 0.60 ⁇ X avg , 0.005 ⁇ Y avg ⁇ 0.
  • 10,0 ⁇ Z satisfy vg ⁇ 0.005,0.605 ⁇ X avg + Y avg ⁇ 0.95, complex nitride or composite carbonitride layer 2, composite nitride or composite carbonitride having a face-centered cubic structure of NaCl type
  • the crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains containing at least a product phase (cubic crystal phase) and having the cubic structure using an electron beam backscatter diffractometer When analyzed from the longitudinal section direction, the inclination angle formed by the normal line 6 of the ⁇ 110 ⁇ plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured.
  • the range of 0 to 12 degrees is obtained.
  • the highest peak exists in the tilt angle section of The frequency total of existing in a range of 12 degrees indicates the proportion of more than 35% of the total power at the inclination angle frequency distribution, crystal grains having a cubic crystal structure, the composition formula: (Ti 1-x- y Al x Me y ) (C z N 1-z )
  • There is a periodic concentration change of Ti, Al, and Me and the average value of the maximum value of the periodically changing x value of the Al content ratio x the X max, also the average value of the minimum value of the periodically value varying x in proportion x of Al when the X min, the difference ⁇ x from 0.03 to 0.25 X max and X min
  • FIG. 2 is a schematic diagram of a film configuration schematically showing a cross section of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me constituting the hard coating layer 1 of the present invention.
  • the horizontal stripe pattern indicates a periodic content ratio change of Al in crystal grains in the composite nitride or composite carbonitride layer made of Ti, Al, and Me. 6 is shown when the inclination angle formed by the normal of the ⁇ 110 ⁇ plane, which is the crystal plane of the crystal grain, with respect to the normal 5 of the tool base surface (the direction perpendicular to the tool base surface 4 on the cross-section polished surface) is 0 °. It is a schematic diagram.
  • FIG. 7 is shown when the inclination angle formed by the normal of the ⁇ 110 ⁇ plane, which is the crystal plane of the crystal grain, with respect to the normal 5 of the tool base surface (the direction perpendicular to the tool base surface 4 on the cross-section polished surface) is 45 degrees.
  • FIG. 3 is a graph showing an example of a tilt angle number distribution obtained for crystal grains having a cubic structure in a cross section of a composite nitride layer or composite carbonitride layer 2 of Ti and Al constituting the hard coating layer 1 of the present invention. .
  • An example of an inclination angle number distribution obtained for a crystal grain having a cubic structure in a cross section of a composite nitride layer or composite carbonitride layer 2 of Ti and Al constituting a hard coating layer according to an embodiment of a comparative example It is a graph to show.
  • the cross section of the composite nitride layer of Ti, Al, and Me or the composite carbonitride layer 2 constituting the hard coating layer 1 corresponding to one embodiment of the present invention there is a periodic concentration change of Ti, Al, and Me.
  • One of the equivalent crystal orientations represented by ⁇ 001> of the cubic crystal grains in which the periodic concentration change of Ti, Al, and Me is expressed for the crystal grains having a cubic crystal structure Is a schematic diagram schematically showing that the change in the Al content ratio x is small in a plane perpendicular to the orientation (displayed from above with a line perpendicular to the arrow). is there. Specifically, the change in the Al content ratio x in the orthogonal plane is 0.01 or less. A bright color portion indicates a region 9 having a relatively high Al content, and a dark color portion indicates a region 10 having a relatively low Al content.
  • the composite nitride layer of Ti, Al, and Me or the composite carbonitride layer 2 constituting the hard coating layer 1 corresponding to one embodiment of the present invention there is a periodic concentration change of Ti, Al, and Me.
  • the periodicity of Al with respect to the total of Ti, Al, and Me as a result of performing line analysis by energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope for the crystal grains having a cubic crystal structure
  • EDS energy dispersive X-ray spectroscopy
  • An example of the graph of density change x is shown. Specifically, it represents a periodic concentration change of Al in the crystal grains having a cubic structure in the composite nitride or composite carbonitride layer 2.
  • the present invention provides a hard tool substrate, that is, a hard surface on the surface of a tool substrate 3 made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body.
  • the hard coating layer 1 is formed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me having an average layer thickness of 1 to 20 ⁇ m formed by chemical vapor deposition.
  • composition formula (Ti 1-xy Al x Me y ) (C z N 1-z ), the average content ratios X avg and Me in the total amount of Ti, Al, and Me in Al
  • complex nitride or composite carbonitride layer 2 includes at least crystal grains having a cubic crystal structure, and the crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains having the cubic crystal structure is expressed by an electron beam.
  • the inclination angle formed by the normal line 6 of the ⁇ 110 ⁇ plane, which is the crystal plane of the crystal grain, with respect to the normal line direction of the tool base surface is measured.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D, (A) Formation conditions shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (where SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), NH 3 , N 2 , H 2 gas group B, and a method of supplying each gas, the reaction gas composition (gas group A and gas group B was combined) % As a gas group A, NH 3 : 3.5 to 4.0%, H 2 : 65 to 75%, as a gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VC
  • Ti, Al, and Me composite nitride or composite carbonitride are formed on the surfaces of the tool bases A to D under the conditions shown in Table 5 and the target layer thickness ( ⁇ m) shown in Table 8.
  • the hard coating layer 1 including the layer 2 was formed by vapor deposition. At this time, the hard coating layer 1 is formed so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer.
  • Comparative coated tools 1 to 15 were produced by forming. As with the coated tools 6 to 13 of the present invention, for the comparative coated tools 6 to 13, either the lower layer or the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3.
  • the Ti, Al, and Me composite nitride or composite carbonitride layer 2 constituting the hard coating layer 1 of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 are perpendicular to the tool substrate surface 4 With the cross section of the hard coating layer 1 as a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA.
  • each crystal grain having a cubic crystal lattice existing within the measurement range of the cross-section polished surface is irradiated, and using an electron backscatter diffraction image apparatus, the tool base surface 4 and a length of 100 ⁇ m in the horizontal direction are used.
  • the hard coating layer 1 within a measurement range of a distance equal to or less than the film thickness along a cross section in a direction perpendicular to the surface 4, the normal 5 of the substrate surface (the substrate surface 4 on the cross-section polished surface) at an interval of 0.01 ⁇ m / step.
  • the inclination angle formed by the normal line 6 of the ⁇ 110 ⁇ plane which is the crystal plane of the crystal grain is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles Is divided into pitches of 0.25 degrees, and by counting the frequencies present in each section, the presence of a frequency peak within the range of 0 to 12 degrees is confirmed, and 0 to 12 degrees The ratio of the frequency existing in the range of was determined.
  • the Ti, Al, and Me composite nitride or composite carbonitride layer 2 constituting the hard coating layer 1 of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 was scanned with an electron microscope (magnification 5000). Multiple times and 20000 times). With respect to the coated tools 1 to 15 of the present invention, a columnar structure (Ti 1-xy) containing a cubic crystal or a mixed phase of a cubic crystal and a hexagonal crystal as shown in the schematic diagram of the film structure shown in FIG. An Al x Me y ) (C z N 1-z ) layer was confirmed.
  • the periodic distribution of Ti, Al, and Me exists in the cubic crystal grains, and energy dispersive X-ray spectroscopy (using a transmission electron microscope) It was confirmed by surface analysis by EDS). Further, for the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15, cubic results existing in the composite nitride or composite carbonitride layer 2 using the results of surface analysis by EDS using a transmission electron microscope.
  • the value ⁇ x was confirmed to be 0.03 to 0.25.
  • the cross-sections of the constituent layers of the inventive coated tools 1 to 15 and comparative coated tools 1 to 15 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times).
  • the average layer thickness was obtained by measuring and averaging the five layer thicknesses, the average layer thickness was substantially the same as the target layer thickness shown in Tables 7 and 8.
  • the average Al content and the average Me content of the composite nitride or composite carbonitride layer 2 of the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15 were measured using an electron beam microanalyzer (EPMA, Electron-Probe). -In a sample whose surface was polished using Micro-Analyzer), an electron beam was irradiated from the sample surface side, and the average Al content ratio X avg and Me of Al was obtained from an average of 10 points of the analysis result of the characteristic X-ray obtained. The average content ratio Y avg was determined. The average C content ratio Z avg was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy).
  • SIMS Secondary-Ion-Mass-Spectroscopy
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average C content ratio Z avg indicates an average value in the depth direction of the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the composite nitride or the composite carbonitride layer 2 when the supply amount of Al (CH 3 ) 3 is set to 0 is the inevitable C content ratio.
  • the unavoidable C content is determined from the content (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer 2 obtained when Al (CH 3 ) 3 is intentionally supplied.
  • the subtracted value was determined as Z avg .
  • the tool substrate surface 4 and the tool substrate surface 4 are horizontally aligned using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate.
  • the particle width w in the direction parallel to the substrate surface 4 and the particle length l in the direction perpendicular to the substrate surface 4 are measured, and the aspect ratio of each crystal grain is observed.
  • a cross section in a direction perpendicular to the tool base surface 4 of the hard coating layer 1 composed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me was used as a polished surface.
  • it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface within the measurement range of the sectional polished surface with an irradiation current of 1 nA.
  • 0.01 ⁇ m / step is applied to the entire hard coating layer composed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me over a length of 100 ⁇ m in the horizontal direction with respect to the tool base surface 4.
  • Measure the electron backscatter diffraction image at intervals of identify the cubic crystal structure or hexagonal crystal structure by analyzing the crystal structure of each crystal grain, and composite nitriding of Ti, Al and Me Or composite carbonitriding
  • the physical layer 2 was confirmed to contain a cubic composite nitride or composite carbonitride phase, and the area ratio of the cubic crystal phase contained in the layer was determined.
  • the periodicity corresponding to five periods of Al with respect to the total of Ti, Al, and Me is similarly provided for each of the regions A13 and B14.
  • a periodic concentration change of Ti, Al, and Me in the region A13 exists along one of the equivalent crystal orientations represented by ⁇ 001> of the cubic crystal grains, and the orientation is defined as the orientation d. If the a, along with determining the period of the concentration variation along the direction d a, perform line analysis along a direction perpendicular to the direction d a in a section corresponding to the distance of the five cycles, Al in the section. The difference between the maximum value and the minimum value of the content ratio x of one of the equivalent crystal orientations represented by ⁇ 001> of cubic crystal grains having a periodic concentration change of Ti, Al, and Me The maximum value ⁇ Xod A of the amount of change in the orthogonal plane was obtained.
  • a periodic concentration change of Ti, Al, and Me in the region B14 exists along one of the equivalent crystal orientations represented by ⁇ 001> of the cubic crystal grains, and the orientation is defined as the orientation d.
  • the period of concentration change along the direction d B is obtained, and the line analysis along the direction orthogonal to the direction d B is performed in the section corresponding to the distance of the five periods, and the Al in that section is obtained.
  • the difference between the maximum value and the minimum value of the content ratio x of one of the equivalent crystal orientations represented by ⁇ 001> of cubic crystal grains having a periodic concentration change of Ti, Al, and Me The maximum value ⁇ Xod B of the amount of change within the orthogonal plane was obtained.
  • d A and d B are orthogonal to each other, and the boundary 15 between the region A and the region B is formed on one of the equivalent crystal planes represented by ⁇ 110 ⁇ . I was sure that. Such a period was confirmed with at least one crystal grain in the field of observation of a minute region of the composite nitride or composite carbonitride layer 2 using a transmission electron microscope. Regarding the crystal grains in which the region A13 and the region B14 exist in the crystal grains, at least one of the crystals in the field of observation of the minute region of the composite nitride or composite carbonitride layer 2 using a transmission electron microscope is used. It calculated
  • the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15 in the state where each of the various coated tools is clamped by a fixing jig at the tip of a tool steel cutter having a cutter diameter of 125 mm is described below.
  • the dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet
  • Cutting test Dry high-speed face milling, center cutting
  • Work material JIS / SCM440 block material with a width of 100 mm and a length of 400 mm
  • Rotational speed 980 min ⁇ 1
  • Cutting speed 385 m / min
  • Cutting depth 1.2 mm
  • Single blade feed amount 0.12 mm / tooth
  • Cutting time 8 minutes
  • Table 9 shows the cutting test results.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 ⁇ m are prepared.
  • Compounded in the formulation shown in Table 10 added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa.
  • vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm.
  • Tool bases ⁇ to ⁇ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • the coated tools 16 to 30 of the present invention were manufactured by forming the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer shown in Table 13.
  • the lower layer and the upper layer shown in Table 12 were formed under the formation conditions shown in Table 3.
  • a chemical vapor deposition apparatus is used on the surfaces of the tool bases ⁇ to ⁇ and the tool base ⁇ , and the conditions shown in Table 5 and the target layer thickness shown in Table 14 are the same as those of the coated tool of the present invention.
  • Comparative coating tools 16 to 30 shown in Table 14 were manufactured by vapor-depositing a hard coating layer. Similar to the coated tools 19 to 28 of the present invention, the comparative coated tools 19 to 28 were formed with the lower layer and the upper layer shown in Table 12 under the forming conditions shown in Table 3.
  • each component layer of the inventive coated tool 16 to 30 and the comparative coated tool 16 to 30 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness at five points in the observation field is measured.
  • the average layer thickness was obtained on average, both showed the same average layer thickness as the target layer thicknesses shown in Tables 13 and 14.
  • the average Al content ratio X avg and the average Me content ratio Y were obtained using the same method as that shown in Example 1.
  • the present coated tools 16 to 30 and the comparative coated tools 16 to 30 are shown below with all of the various coated tools screwed to the tip of the tool steel tool with a fixing jig.
  • a dry high-speed intermittent cutting test of alloy steel and a wet high-speed intermittent cutting test of cast iron were carried out, and both measured the flank wear width of the cutting edge.
  • Cutting condition 1 Work material: JIS ⁇ S45C lengthwise equal 4 round grooved round bars, Cutting speed: 380 m / min, Cutting depth: 1.5 mm, Feed: 0.15 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove, Cutting speed: 330 m / min, Cutting depth: 1.0 mm, Feed: 0.1 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 200 m / min), Table 15 shows the results of the cutting test.
  • cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 ⁇ m were prepared.
  • the mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm ⁇ thickness: 1.5 mm under a pressure of 120 MPa.
  • the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece.
  • Co 8% by mass
  • WC remaining composition
  • diameter 50 mm ⁇ thickness: 2 mm
  • a certain pressure 4 GPa
  • temperature a predetermined temperature within the range of 1200 to 1400 ° C., holding at a high pressure under a condition of holding time: 0.8 hour
  • wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm ⁇ inscribed circle diameter: 12.
  • the brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy having a predetermined dimension, the cutting edge portion is subjected to honing with a width of 0.13 mm and an angle of 25 °, and further subjected to finish polishing.
  • ISO regulations Tool substrate 2A having the insert shape of CNGA120412, 2B were prepared, respectively.
  • (Ti 1-xy Al x Me y ) (C) is used on the surfaces of these tool bases 2A and 2B under the conditions shown in Table 4 by the same method as in Example 1 using a chemical vapor deposition apparatus.
  • the coated tools 31 to 40 of the present invention shown in Table 18 were manufactured by vapor-depositing a hard coating layer including a z N 1-z ) layer with a target layer thickness.
  • the inventive coated tools 34 to 39 the lower layer and the upper layer shown in Table 17 were formed under the formation conditions shown in Table 3.
  • a chemical vapor deposition apparatus was used on the surfaces of the tool bases 2A and 2B, and (Ti 1-xy Al x Me y ) (C z N 1-z ) under the conditions shown in Table 5.
  • the comparative coating tools 31 to 40 shown in Table 19 were manufactured by vapor-depositing a hard coating layer including a layer) with a target layer thickness.
  • the inventive coated tools 34 to 39 for the comparative coated tools 34 to 39, the lower layer and the upper layer shown in Table 17 were formed under the formation conditions shown in Table 3.
  • the cross-sections of the constituent layers of the inventive coated tools 31 to 40 and comparative coated tools 31 to 40 were measured using a scanning electron microscope (5000 times magnification) to measure the layer thickness at five points in the observation field.
  • the average layer thickness was obtained by averaging, and both showed an average layer thickness substantially the same as the target layer thickness shown in Tables 18 and 19.
  • the average layer thickness, the average Al content ratio X avg , the average Me content ratio Y avg , average C content ratio Z avg , inclination angle number distribution, periodic concentration change difference ⁇ x ( X max ⁇ X min ) and period, lattice constant a, average grain width W of crystal grains, average aspect
  • the ratio A and the area ratio of the cubic crystal phase in the crystal grains were determined. Tables 18 and 19 show the results.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 1 to 3 ⁇ m were prepared as raw material powders. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa.
  • a hard coating layer is similarly applied to the surfaces of the tool bases A to C in the same manner as in the coated tool of the present invention using the chemical vapor deposition apparatus and the conditions shown in Table 21 and the target layer thickness shown in Table 24.
  • Comparative coating tools 41 to 55 shown in Table 24 were manufactured by vapor deposition.
  • the lower and upper layers shown in Table 22 were formed for the comparative coated tools 45 to 52 under the forming conditions shown in Table 3.
  • the cross-sections of the constituent layers of the inventive coated tools 41 to 55 and the comparative coated tools 41 to 55 are measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured.
  • the average layer thickness was obtained on average, both showed the same average layer thickness as the target layer thicknesses shown in Tables 23 and 24.
  • the average Al content ratio X avg and the average Me content ratio Y are obtained using the same method as that shown in Example 1.
  • the various coated tools are clamped on a tool steel cutter tip having a cutter diameter of 125 mm by a fixing jig.
  • a wet high-speed face milling which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
  • Tool base Tungsten carbide-based cemented carbide cutting test: wet high-speed face milling, center cut machining, Work material: Block material of JIS / S55C width 100mm, length 400mm, Rotational speed: 980 min ⁇ 1 Cutting speed: 385 m / min, Cutting depth: 1.2 mm, Single blade feed: 0.12 mm / tooth, Cutting oil: Yes Cutting time: 5 minutes Table 25 shows the cutting test results.
  • the coated tool of the present invention is a hard coating layer containing at least cubic crystal grains of a composite nitride or composite carbonitride of Ti, Al and Me.
  • the cubic crystal grains exhibit ⁇ 110 ⁇ plane orientation and have a columnar structure, and the presence of changes in the concentration of Ti, Al, and Me in the crystal grains causes hardness due to distortion of the crystal grains.
  • Improves toughness while maintaining high wear resistance.
  • even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
  • the hard coating layer containing at least cubic crystal grains of the composite nitride or composite carbonitride of Ti, Al and Me constituting the hard coating layer since it does not have the requirements specified in the present invention, When used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads acting on the cutting edge, it is apparent that the life is shortened in a short time due to occurrence of chipping, chipping and the like.
  • the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Abstract

A coated tool in which a hard coating layer comprises a composite nitride or composite carbonitride layer (2) represented by the compositional formula: (Ti1-x-yAlxMey)(CzN1-z) (wherein Me represents at least one element selected from Si, Zr, B, V and Cr), wherein the average Al content ratio Xavg, the average Me content ratio Yavg and the average C content ratio Zavg meet the requirements represented by the formulae 0.60 ≤ Xavg, 0.005 ≤ Yavg ≤ 0.10, 0 ≤ Zavg ≤ 0.005 and 0.605 ≤ Xavg + Yavg ≤ 0.95, crystal grains that constitute the composite nitride or composite carbonitride layer (2) contain crystal grains each having a cubic structure, and a specific periodic compositional change among Ti, Al and Me occurs in the crystal grains each having a cubic structure.

Description

表面被覆切削工具Surface coated cutting tool
 本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
 本願は、2014年10月28日に日本に出願された特願2014-219207号、および2015年10月22日に日本に出願された特願2015-208164号に基づき優先権を主張し、その内容をここに援用する。
The present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.
This application claims priority based on Japanese Patent Application No. 2014-219207 filed in Japan on October 28, 2014 and Japanese Patent Application No. 2015-208164 filed in Japan on October 22, 2015. The contents are incorporated herein.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
 ただ、前記従来のTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body A coated tool is known in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a substrate (hereinafter collectively referred to as “substrate”). It is known that it exhibits excellent wear resistance.
However, the conventional coated tool formed with the Ti—Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.
 例えば、特許文献1には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶結晶構造あるいは六方晶結晶構造を含む立方晶結晶構造の(Ti1-xAl)N層(但し、xは0.65~0.9)を外層として被覆するとともに、該外層に100~1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 For example, in Patent Document 1, a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic crystal structure (Ti 1-x) including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition. Al x ) N layer (where x is 0.65 to 0.9) is coated as an outer layer, and by applying compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed to do.
 また、特許文献2には、工具基体と、その基体上に形成された硬質被覆層とを備える表面被覆切削工具であって、硬質被覆層は、AlまたはCrのいずれか一方または両方の元素と、周期律表4a,5a,6a族元素およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことにより、硬質被覆層の耐摩耗性と耐酸化性とを飛躍的に向上することが開示されている。 Patent Document 2 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr elements. A compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.
 また、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65~0.95である(Ti1-xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであって、xの値を0.65~0.95まで高めた(Ti1-xAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。 Patent Document 3 discloses that chemical vapor deposition is performed in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C., so that the value of the Al content ratio x is 0.65 to Although it is described that a (Ti 1-x Al x ) N layer having a thickness of 0.95 can be formed by vapor deposition, this reference further describes an Al 2 O 3 layer on the (Ti 1-x Al x ) N layer. In order to enhance the heat insulation effect, and by forming a (Ti 1-x Al x ) N layer in which the value of x is increased from 0.65 to 0.95, cutting performance is improved. There is no disclosure up to the point of how this will be affected.
日本国特表2011-513594号公報(A)Japanese National Table 2011-513594 (A) 日本国特開2006-82207号公報(A)Japanese Unexamined Patent Publication No. 2006-82207 (A) 日本国特表2011-516722号公報(A)Japan Special Table 2011-516722 Publication (A)
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
 しかし、前記特許文献1に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
 また、特許文献2に記載されている被覆工具は、耐摩耗性、耐酸化特性を向上させることを意図しているが、高速断続切削等の衝撃が伴うような切削条件下では、耐チッピング性が十分でないという課題があった。
 一方、前記特許文献3に記載されている化学蒸着法で蒸着形成した(Ti1-xAl)N層については、Al含有割合xを高めることができ、また、立方晶結晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, although the coated tool described in Patent Document 1 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Further, the coated tool described in Patent Document 2 is intended to improve wear resistance and oxidation resistance characteristics, but chipping resistance under cutting conditions involving impact such as high-speed interrupted cutting. There was a problem that was not enough.
On the other hand, for the (Ti 1-x Al x ) N layer formed by chemical vapor deposition described in Patent Document 3, the Al content ratio x can be increased, and a cubic crystal structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the substrate is not sufficient and the toughness is inferior.
 そこで、本願発明が解決しようとする技術的課題、すなわち、本願発明の目的は、合金鋼、炭素鋼、鋳鉄等の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。 Therefore, the technical problem to be solved by the present invention, that is, the purpose of the present invention is to provide excellent toughness even when subjected to high-speed interrupted cutting such as alloy steel, carbon steel, cast iron, etc. It is an object of the present invention to provide a coated tool that exhibits excellent chipping resistance and wear resistance over use.
 そこで、本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1-xAl)(C1-y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( CyN 1-y ) ”), a hard coating layer containing a hard coating layer formed by chemical vapor deposition. Results of extensive research to improve chipping resistance and wear resistance. The following findings were obtained.
 即ち、従来の少なくとも1層の(Ti1-xAl)(C1-y)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Ti1-xAl)(C1-y)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Ti1-xAl)(C1-y)層の異方性が高くなるほど(Ti1-xAl)(C1-y)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
 そこで、本発明者らは、硬質被覆層を構成する(Ti1-xAl)(C1-y)層について鋭意研究したところ、硬質被覆層にSi、Zr、B、V、Crの中から選ばれる一種の元素(以下、「Me」で示す。)を含有させ(Ti1-x―yAlMe)(C1-z)層を主としてNaCl型の面心立方構造を有する結晶粒で構成し、かつ、立方晶結晶相内にTiとAlとMeの周期的な濃度変化(含有割合)を形成させるという全く新規な着想により、立方晶結晶粒に歪みを生じさせ、硬さと靭性を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, the conventional hard coating layer including at least one (Ti 1-x Al x ) (C y N 1-y ) layer and having a predetermined average layer thickness is (Ti 1-x Al x ) ( When the C y N 1-y ) layer is formed in a columnar shape in the direction perpendicular to the tool base, it has high wear resistance. On the other hand, it reduces the toughness of (Ti 1-x Al x) as anisotropy (C y N 1-y) layer is high (Ti 1-x Al x) (C y N 1-y) layer, As a result, chipping resistance and chipping resistance are reduced, and sufficient wear resistance cannot be exhibited over a long period of use, and the tool life cannot be said to be satisfactory.
Therefore, the present inventors have conducted intensive studies on the (Ti 1-x Al x ) (C y N 1-y ) layer constituting the hard coating layer, and found that the hard coating layer had Si, Zr, B, V, Cr. (Ti 1-xy Al x Me y ) (C z N 1-z ) layer mainly containing a NaCl type face centered cubic material. The cubic crystal grains are distorted by a completely new idea that they are composed of crystal grains having a structure and that periodic concentration changes (content ratios) of Ti, Al, and Me are formed in the cubic crystal phase. The inventors have succeeded in improving the hardness and toughness, and as a result, have found a novel finding that the chipping resistance and fracture resistance of the hard coating layer can be improved.
 具体的には、硬質被覆層が、平均層厚1~20μmのTiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、AlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg(但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足し、前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み(あるいはさらにウルツ鉱型の六方晶構造を有する結晶粒を含み)、前記複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、前記NaCl型の面心立方構造の結晶粒内に、組成式:(Ti1-x―yAlMe)(C1-z)におけるTiとAlとMeの周期的な濃度変化(含有割合)が存在し(即ち、x、y、zは、一定値ではなく、周期的に変化する値である)、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03~0.25であり、前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、その工具基体表面の法線方向に沿った周期が3~100nmであることにより、NaCl型の面心立方構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、(Ti1-x―yAlMe)(C1-z)層の硬さと靭性が高まり、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。 Specifically, the hard coating layer is a composite nitride of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 μm. Alternatively, when it includes at least a composite carbonitride layer and is represented by a composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), it occupies the total amount of Ti of Al and Al and Me. Average content ratio X avg and average content ratio Y avg in the total amount of Ti, Al, and Me in Me and average content ratio Z avg in the total amount of C and N in C (where X avg , Y avg , Z avg Are atomic ratios) of 0.60 ≦ X avg , 0.005 ≦ Y avg ≦ 0.10, 0 ≦ Z avg ≦ 0.005, 0.605 ≦ X avg + Y avg ≦ 0.95, respectively. Satisfied, said composite nitride or composite carbonitride The layer includes grains having a NaCl-type face-centered cubic structure (or further including grains having a wurtzite-type hexagonal structure), and the NaCl-type face in the composite nitride or composite carbonitride layer. When the crystal orientation of Ti / Al / Me composite nitride or composite carbonitride crystal grains having a centered cubic structure is analyzed from the longitudinal section direction using an electron beam backscattering diffractometer, the normal of the tool base surface An inclination angle formed by a normal line of the {110} plane which is a crystal plane of the crystal grain with respect to the direction is measured, and an inclination angle within a range of 0 to 45 degrees with respect to the normal direction is set to 0. When the slope angle distribution is determined by counting the frequencies existing in each section by dividing the pitch every 25 degrees, the highest peak exists in the slope angle section within the range of 0 to 12 degrees, and the above 0 to The sum of the frequencies existing in the range of 12 degrees is the inclination. Shows the percentage of more than 35% of the total power in the frequency distribution, in the crystal grains of a face-centered cubic structure of the NaCl type, composition formula: (Ti 1-x-y Al x Me y) (C z N 1-z ) There is a periodic concentration change (content ratio) of Ti, Al, and Me (that is, x, y, z are not constant values but values that change periodically), and the Al content ratio x periodically varying x average value X max of the maximum value of the value of addition, when the average value of the minimum value of the periodically value varying x in proportion x of Al was set to X min, X max and X difference Δx of min is 0.03-0.25, the composite nitride or composite carbonitride layer of Ti and Al and Me periodic density variation exists NaCl type face-centered cubic structure In the crystal grains having a period of 3 to 1 along the normal direction of the tool base surface By being 00 nm, the crystal grains having the NaCl-type face-centered cubic structure are distorted, and compared with the conventional hard coating layer, (Ti 1-xy Al x Me y ) (C z N 1 -Z ) It has been found that the hardness and toughness of the layer are increased, and as a result, chipping resistance and fracture resistance are improved, and excellent wear resistance is exhibited over a long period of time.
 そして、前述のような構成の(Ti1-x―yAlMe)(C1-z)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。
 用いる化学蒸着反応装置へは、NHとNとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(Meの塩化物)、NH、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(I)ガス群A、(II)ガス群Aとガス群Bの混合ガス、(III)ガス群Bと時間的に変化させることができる。ちなみに、本願発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(I)ガス群Aを主とする混合ガス、(II)ガス群Aとガス群Bの混合ガス、(III)ガス群Bを主とする混合ガス、と時間的に変化させることでも実現する事が可能である。
 工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:3.5~4.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%、N:0.0~12.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス供給Aとガス供給Bの位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1-x―yAlMe)(C1-z)層を成膜する。
The (Ti 1-xy Al x Me y ) (C z N 1-z ) layer having the above-described configuration is, for example, the following chemical vapor deposition that periodically changes the reaction gas composition on the tool base surface. The film can be formed by the method.
The chemical vapor deposition reactor used includes a gas group A composed of NH 3 , N 2 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), NH 3 , N 2. , H 2 gas groups B are supplied into the reactor from respective separate gas supply pipes, and the gas group A and the gas group B are supplied into the reactor, for example, at regular time intervals. The gas is supplied such that the gas flows for a time shorter than the period, and the gas supply of the gas group A and the gas group B causes a phase difference of a time shorter than the gas supply time so that the reaction gas composition on the tool base surface is set. , (I) gas group A, (II) mixed gas of gas group A and gas group B, and (III) gas group B can be changed with time. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as a gas supply method, for example, by rotating the gas supply port, rotating the tool base, or reciprocating the tool base, the reaction gas composition on the surface of the tool base is changed to (I) Gas group A This can also be realized by temporally changing to a mixed gas mainly composed of (II) a mixed gas composed of gas group A and gas group B, and (III) a mixed gas mainly composed of gas group B.
The reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 3.5 to 4.0% as the gas group A, H 2 : 65 to 75. %, As gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (Me chloride): 0.1 to 0.2%, Al ( CH 3 ) 3 : 0 to 0.5%, N 2 : 0.0 to 12.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C, With a supply period of 1 to 5 seconds, a gas supply time per cycle of 0.15 to 0.25 seconds, and a phase difference between gas supply A and gas supply B of 0.10 to 0.20 seconds, a thermal CVD method is performed for a predetermined time. As a result, a (Ti 1-xy Al x Me y ) (C z N 1-z ) layer having a predetermined target layer thickness is formed. The
 前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH:3.5~4.0%と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{110}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 As described above, the gas group A and the gas group B are supplied so as to have a difference in time to reach the tool base surface, and the nitrogen source gas in the gas group A is set to NH 3 : 3.5 to 4.0%. , AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (Me chloride): 0.1 -0.2%, Al (CH 3 ) 3 : Set to 0-0.5%, local distortion of the crystal lattice due to local compositional irregularities, dislocations and point defects in the crystal grains In addition, the degree of {110} orientation of the crystal grains on the tool base surface side and the film surface side can be changed. As a result, it has been found that toughness is dramatically improved while maintaining wear resistance. As a result, especially when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and chipping resistance are improved, and the intermittent and impact loads are applied to the cutting edge, It has been found that excellent cutting performance can be exhibited over use.
 本願発明は、前記知見に基づいてなされたものであって、以下の態様を有する。
 (1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
 (a)前記硬質被覆層は、平均層厚1~20μmのTiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg(但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足し、
 (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の相を少なくとも含み、
 (c) 前記複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、
 (d)また、前記NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒内に、組成式:(Ti1-x―yAlMe)(C1-z)におけるTiとAlとMeの周期的な濃度変化が存在し、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03~0.25であり、
 (e)前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、その工具基体表面の法線方向に沿った周期が3~100nmであることを特徴とする表面被覆切削工具。
 (2)前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3~100nmであり、その方位に直交する面内でのAlの含有割合xの変化量の最大値ΔXoは0.01以下であること特徴とする前記(1)に記載の表面被覆切削工具。
 (3)前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、
 (a)TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとすると、方位dに沿った周期が3~100nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodは0.01以下である領域A、
 (b)TiとAlとMeの周期的な濃度変化が、方位dと直交する立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとすると、方位dに沿った周期が3~100nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodは0.01以下である領域B、
 前記領域Aおよび領域Bが結晶粒内に存在し、前記領域Aと領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることを特徴とする前記(1)に記載の表面被覆切削工具。
 (4)前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.4aTiN+0.6aAlNの関係を満たすことを特徴とする前記(1)から前記(3)のいずれかひとつに記載の表面被覆切削工具。
 (5)前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、該層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする前記(1)から前記(4)のいずれかひとつに記載の表面被覆切削工具。
 (6)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の面積割合が70面積%以上であることを特徴とする前記(1)から前記(5)のいずれかひとつに記載の表面被覆切削工具。
 (7)前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlとMeの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1~20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする前記(1)から前記(6)のいずれかひとつに記載の表面被覆切削工具。
 (8)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で存在することを特徴とする前記(1)から前記(7)のいずれかひとつに記載の表面被覆切削工具。 
 (9)前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする前記(1)から前記(8)のいずれかひとつに記載の表面被覆切削工具の製造方法。
 なお、本願発明の一態様である表面被覆切削工具における硬質被覆層(以下、「本発明の硬質被覆層」と称する)は、前述のような複合窒化物または複合炭窒化物層をその本質的構成とするが、さらに、従来から知られている前記(7)の下部層や前記(8)の上部層などと併用することにより、複合窒化物または複合炭窒化物層が奏する効果と相俟って、一層すぐれた特性を創出することができることは言うまでもない。
This invention is made | formed based on the said knowledge, Comprising: It has the following aspects.
(1) Surface-coated cutting in which a hard coating layer is formed on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body In the tool
(A) The hard coating layer is a composite nitride of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 μm or When at least the composite carbonitride layer is included and expressed by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), the Ti of the composite nitride or the composite carbonitride layer The average content ratio X avg in the total amount of Al and Me and Me, the average content ratio Y avg in the total amount of Ti, Al and Me in Me and the average content ratio Z avg in the total amount of C and N in C , X avg , Y avg , and Z avg are all atomic ratios) are 0.60 ≦ X avg , 0.005 ≦ Y avg ≦ 0.10, 0 ≦ Z avg ≦ 0.005, 0.605 ≦ X avg + Y avg ≦ 0.95 is satisfied,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase of Ti, Al, and Me having a NaCl type face-centered cubic structure,
(C) Electron beam backscattering of crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains having NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer When analyzing from the longitudinal section direction using a diffractometer, the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured, When the inclination angle in the range of 0 to 45 degrees with respect to the line direction is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, 0 to 12 The highest peak exists in the inclination angle section within the range of degrees, and the total of the frequencies existing in the range of 0 to 12 degrees indicates a ratio of 35% or more of the entire degrees in the inclination angle frequency distribution,
(D) Further, in the crystal grains of the composite nitride or composite carbonitride of Ti, Al, and Me having the NaCl type face-centered cubic structure, the composition formula: (Ti 1-xy Al x Me y ) There is a periodic concentration change of Ti, Al, and Me in (C z N 1-z ), and the average value of the maximum value of the periodically changing x value of the Al content ratio x is expressed as X max , If the average value of the minimum value of the periodically value varying x in proportion x of Al was set to X min, the difference Δx of X max and X min is 0.03-0.25,
(E) In a crystal grain having a NaCl-type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists, the normal direction of the tool base surface A surface-coated cutting tool, wherein the period along the axis is 3 to 100 nm.
(2) In a crystal grain having a NaCl-type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists, the periodicity of Ti, Al, and Me There is a significant concentration change along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the period along the orientation is 3 to 100 nm, which is orthogonal to the orientation. The surface-coated cutting tool according to (1), wherein the maximum value ΔXo of the change amount of the Al content ratio x in the plane is 0.01 or less.
(3) In crystal grains having a NaCl-type face-centered cubic structure in which periodic concentration changes of Ti, Al, and Me in the composite nitride or composite carbonitride layer exist,
(A) A periodic concentration change of Ti, Al, and Me exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the orientation is defined as an orientation d A Then, the azimuth d cycle along the a is 3 ~ 100 nm, orientation d maximum value of the variation in the content ratio x of Al in a plane perpendicular to the a DerutaXod a region a is 0.01 or less,
Periodic density variation of (b) Ti, Al and Me is present along one of the orientation of the crystal orientation of the equivalent represented by <001> cubic crystal grains perpendicular to the orientation d A, When the azimuth and azimuth d B, a period is 3 ~ 100 nm along the direction d B, the maximum value DerutaXod B of variation of the proportion x of Al in a plane perpendicular to the direction d B 0.01 Region B, which is
The region A and the region B exist in crystal grains, and the boundary between the region A and the region B is formed on one of the equivalent crystal planes represented by {110}. The surface-coated cutting tool according to (1).
(4) For the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the crystal grains having the NaCl type face centered cubic structure are obtained. The lattice constant a satisfies the relationship of 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN with respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN. The surface-coated cutting tool according to any one of (1) to (3), characterized in that:
(5) When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the composite nitride of Ti, Al, and Me having a NaCl-type face-centered cubic structure in the layer or (1) to (4) above, wherein the composite carbonitride has a columnar structure having an average grain width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10 The surface-coated cutting tool according to any one of the above.
(6) The composite nitride or composite carbonitride layer has an area ratio of Ti, Al, and Me composite nitride or composite carbonitride having an NaCl type face-centered cubic structure of 70 area% or more. The surface-coated cutting tool according to any one of (1) to (5), which is characterized in that
(7) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbon of Ti, Al, and Me. Between the nitride layers, one or two or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer, and 0.1 to 20 μm The surface-coated cutting tool according to any one of (1) to (6), wherein a lower layer including a Ti compound layer having a total average layer thickness is present.
(8) The above (1) to (7), wherein an upper layer including at least an aluminum oxide layer is present on the composite nitride or composite carbonitride layer at a total average layer thickness of 1 to 25 μm. The surface-coated cutting tool according to any one of the above.
(9) The composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. The manufacturing method of the surface coating cutting tool as described in any one of 1).
In addition, the hard coating layer (hereinafter referred to as “hard coating layer of the present invention”) in the surface-coated cutting tool which is one embodiment of the present invention is essentially the above-described composite nitride or composite carbonitride layer. Further, the combined effect of the composite nitride or the composite carbonitride layer can be obtained by using it together with the conventionally known lower layer of (7) and the upper layer of (8). Needless to say, even better characteristics can be created.
 本願発明について、以下に詳細に説明する。 The present invention will be described in detail below.
硬質被覆層を構成する複合窒化物または複合炭窒化物層2の平均層厚:
 図1に、本発明の硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物層2の断面模式図を示す。
 本発明の硬質被覆層は、化学蒸着された組成式:(Ti1-x―yAlMe)(C1-z)で表されるTiとAlとMeの複合窒化物または複合炭窒化物層2を少なくとも含む。この複合窒化物または複合炭窒化物層2は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1~20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlとMeの複合窒化物または複合炭窒化物層2の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1~20μmと定めた。
 特に必須な構成ではないが、より好ましい平均層厚は3~15μmである。さらに好まし平均層厚は4~10μmである。
Average layer thickness of the composite nitride or composite carbonitride layer 2 constituting the hard coating layer:
In FIG. 1, the cross-sectional schematic diagram of the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me which comprises the hard coating layer of this invention is shown.
The hard coating layer of the present invention has a chemical vapor-deposited composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), a composite nitride or composite of Ti, Al, and Me. At least the carbonitride layer 2 is included. The composite nitride or composite carbonitride layer 2 has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, Ti and The crystal grains of the composite nitride or composite carbonitride layer 2 of Al and Me are likely to be coarsened, and chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 20 μm.
Although it is not particularly essential, a more preferable average layer thickness is 3 to 15 μm. Further preferably, the average layer thickness is 4 to 10 μm.
硬質被覆層を構成する複合窒化物または複合炭窒化物層2の組成:
 本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層2は、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)、AlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足するように制御する。
 その理由は、Alの平均含有割合Xavgが0.60未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層2の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。
 また、Meの平均含有割合Yavgが0.005未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層2の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、0.10を超えると粒界へのMeの偏析等により、TiとAlとMeの複合窒化物または複合炭窒化物層2の靭性が低下し、合金鋼等の高速断続切削に供した場合には、耐チッピング性が十分でない。したがって、Meの平均含有割合Yavgは、0.005≦Yavg≦0.10と定めた。
 一方、Alの平均含有割合XavgとMeの平均含有割合Yavgとの和Xavg+Yavgが0.605未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層2の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合XavgとMeの平均含有割合Yavgとの和Xavg+Yavgは、0.605≦Xavg+Yavg≦0.95と定めた。
 ここで、Meの具体的な成分としては、Si、Zr、B、V、Crの中から選ばれる一種の元素を使用する。
 Meとして、Yavgが0.005以上になるようにSi成分あるいはB成分を使用した場合には、複合窒化物または複合炭窒化物層2の硬さが向上するため耐摩耗性の向上が図られ、Zr成分は結晶粒界を強化する作用を有し、また、V成分は靭性を向上することから、耐チッピング性のより一層の向上が図られ、Cr成分は耐酸化性を向上させることから、工具寿命のよりいっそう長寿命化が期待される。しかし、いずれの成分も、平均含有割合Yavgが0.10を超えると、相対的にAl成分、Ti成分の平均含有割合が減少することから、耐摩耗性あるいは耐チッピング性が低下傾向を示すようになるため、Yavgが0.10を超えるような平均含有割合となることは避けなければならない。
 また、複合窒化物または複合炭窒化物層2に含まれるCの平均含有割合(原子比)Zavgは、0≦Zavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層2と工具基体3もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層2の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合Zavgが0≦Zavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層2の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Zavgは、0≦Zavg≦0.005と定めた。
 特に必須な構成ではないが、より好ましいXavg、YavgおよびZavgは、それぞれ、0.70≦Xavg≦0.85、0.01≦Yavg≦0.05、0≦Zavg≦0.003、0.7≦Xavg+Yavg≦0.90である。
Composition of composite nitride or composite carbonitride layer 2 constituting hard coating layer:
The composite nitride or composite carbonitride layer 2 constituting the hard coating layer of the present invention is represented by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ) (however, , Me is a kind of element selected from Si, Zr, B, V, and Cr), the average content ratio X avg in the total amount of Ti, Al, and Me of Al, and the combination of Ti, Al, and Me of Me The average content ratio Y avg in the amount and the average content ratio Z avg in the total amount of C and C in C, where X avg , Y avg , and Z avg are all atomic ratios) are 0.60 ≦ X avg , 0.005 ≦ Y avg ≦ 0.10, 0 ≦ Z avg ≦ 0.005, 0.605 ≦ X avg + Y avg ≦ 0.95.
The reason is that when the average content ratio X avg of Al is less than 0.60, the hardness of the composite nitride of Ti and Al and Me or the composite carbonitride layer 2 is inferior. When it is used, the wear resistance is not sufficient.
Further, when the average content ratio Y avg of Me is less than 0.005, the composite nitride of Ti, Al, and Me or the composite carbonitride layer 2 is inferior in hardness, so that it is used for high-speed intermittent cutting of alloy steel and the like. In such a case, the wear resistance is not sufficient. On the other hand, if it exceeds 0.10, the toughness of the composite nitride of Ti, Al, and Me or the composite carbonitride layer 2 decreases due to the segregation of Me to the grain boundary, etc., and is used for high-speed intermittent cutting of alloy steel and the like. In some cases, the chipping resistance is not sufficient. Therefore, the average content ratio Y avg of Me was determined as 0.005 ≦ Y avg ≦ 0.10.
On the other hand, when the sum X avg + Y avg of the average content ratio X avg of Al and the average content ratio Y avg of Me is less than 0.605, the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me Since it is inferior in hardness, when it is subjected to high-speed interrupted cutting of alloy steel or the like, the wear resistance is not sufficient. Inviting, chipping resistance decreases. Therefore, the sum X avg + Y avg of the average content ratio X avg of Al and the average content ratio Y avg of Me was determined as 0.605 ≦ X avg + Y avg ≦ 0.95.
Here, as a specific component of Me, a kind of element selected from Si, Zr, B, V, and Cr is used.
When Si component or B component is used so that Y avg is 0.005 or more as Me, the hardness of the composite nitride or composite carbonitride layer 2 is improved, so that the wear resistance is improved. The Zr component has the effect of strengthening the grain boundary, and the V component improves toughness, so that the chipping resistance can be further improved, and the Cr component improves oxidation resistance. Therefore, a longer tool life is expected. However, in any component, when the average content ratio Y avg exceeds 0.10, the average content ratios of the Al component and the Ti component are relatively decreased, so that the wear resistance or chipping resistance tends to decrease. Therefore, it must be avoided that the average content ratio is such that Y avg exceeds 0.10.
Further, when the average content ratio (atomic ratio) Z avg of C contained in the composite nitride or composite carbonitride layer 2 is a minute amount in the range of 0 ≦ Z avg ≦ 0.005, the composite nitride or composite carbon The adhesion between the nitride layer 2 and the tool base 3 or the lower layer is improved and the lubricity is improved to reduce the impact during cutting. As a result, the resistance of the composite nitride or the composite carbonitride layer 2 is improved. Defectability and chipping resistance are improved. On the other hand, if the average content ratio C avg of C deviates from the range of 0 ≦ Z avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer 2 is lowered, so that the chipping resistance and chipping resistance are reversed. Since it falls, it is not preferable. Therefore, the average content ratio Z avg of C was determined as 0 ≦ Z avg ≦ 0.005.
Although not particularly essential, more preferable X avg , Y avg and Z avg are 0.70 ≦ X avg ≦ 0.85, 0.01 ≦ Y avg ≦ 0.05, and 0 ≦ Z avg ≦ 0, respectively. 0.003, 0.7 ≦ X avg + Y avg ≦ 0.90.
TiとAlとMeの複合窒化物または複合炭窒化物層2((Ti1-x―yAlMe)(C1-z)層)内のNaCl型の面心立方構造を有する個々の結晶粒の結晶面である{110}面についての傾斜角度数分布:
 本発明の前記(Ti1-x―yAlMe)(C1-z)層について、電子線後方散乱回折装置を用いてNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、工具基体表面の法線5(断面研磨面における工具基体表面4と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線6がなす傾斜角(図2Aおよび図2B参照)を測定し、その傾斜角のうち、法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlとMeの複合窒化物または複合炭窒化物層2からなる硬質被覆層は、NaCl型の面心立方構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上する。
 したがって、このような被覆工具は、例えば、合金鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
 図3Aおよび図3Bに、本発明の一実施形態および比較である立方晶構造を有する結晶粒について上記の方法で測定し、求めた傾斜角度数分布の一例をグラフとして示す。
It has a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer 2 ((Ti 1-xy Al x Me y ) (C z N 1-z ) layer) of Ti, Al, and Me Inclination angle number distribution about {110} plane which is a crystal plane of each crystal grain:
For the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer of the present invention, the individual crystal grains having a NaCl-type face-centered cubic structure using an electron beam backscattering diffractometer. When the crystal orientation is analyzed from the longitudinal section direction, the normal line of the {110} plane which is the crystal plane of the crystal grain with respect to the normal line 5 of the tool base surface (the direction perpendicular to the tool base surface 4 in the cross-section polished surface) 6 is measured (see Fig. 2A and Fig. 2B), and the tilt angle within the range of 0 to 45 degrees with respect to the normal direction is classified for each pitch of 0.25 degrees. When the frequencies existing in each section are tabulated, the highest peak is present in the tilt angle section within the range of 0 to 12 degrees, and the total of the frequencies existing in the range of 0 to 12 degrees is the slope. Inclination angle that is 35% or more of the total frequency in the angle distribution In the case of showing a number distribution form, the hard coating layer composed of the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me has high hardness while maintaining the NaCl type face centered cubic structure, In addition, the adhesiveness between the hard coating layer and the substrate is dramatically improved by the above-described inclination angle number distribution form.
Therefore, even when such a coated tool is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.
FIG. 3A and FIG. 3B are graphs showing an example of the inclination angle number distribution obtained by measuring the crystal grains having a cubic structure, which is one embodiment of the present invention and a comparison, by the above method.
複合窒化物または複合炭窒化物層2を構成するNaCl型の面心立方構造(以下、単に「立方晶」という)を有する結晶粒:
 前記複合窒化物または複合炭窒化物層中の各立方晶結晶粒について、工具基体表面4と垂直な皮膜断面側から観察・測定した場合に、工具基体表面4と平行な方向の粒子幅をw、また、工具基体表面4に垂直な方向の粒子長さをlとし、前記wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10を満足するように制御することが望ましい。
 この条件を満たすとき、複合窒化物または複合炭窒化物層2を構成する立方晶結晶粒は柱状組織となり、すぐれた耐摩耗性を示す。一方、平均アスペクト比Aが2を下回ると、NaCl型の面心立方構造の結晶粒内に本発明の特徴である組成の周期的な分布(濃度変化、含有割合変化)を形成しにくくなり、10を超えた柱状晶になると、本発明の特徴である立方晶結晶相内の組成の周期的な分布に沿った面と複数の粒界を伝うようにクラックが成長し易くなるため好ましくない。また、平均粒子幅Wが0.1μm未満であると耐摩耗性が低下し、2.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層2を構成する立方晶結晶粒の平均粒子幅Wは、0.1~2.0μmであることが望ましい。
 特に必須な構成ではないが、より好ましい平均アスペクト比および平均粒子幅Wはそれぞれ、4~7および0.7~1.5μmである。
Crystal grains having a NaCl-type face-centered cubic structure (hereinafter simply referred to as “cubic crystal”) constituting the composite nitride or composite carbonitride layer 2:
When each cubic crystal grain in the composite nitride or composite carbonitride layer is observed and measured from the side of the coating cross section perpendicular to the tool base surface 4, the grain width in the direction parallel to the tool base surface 4 is expressed as w. Further, the grain length in the direction perpendicular to the tool substrate surface 4 is l, the ratio l / w between w and l is the aspect ratio a of each crystal grain, and the aspect ratio obtained for each crystal grain When the average value of a is the average aspect ratio A, and the average value of the particle width w obtained for each crystal grain is the average particle width W, the average particle width W is 0.1 to 2.0 μm and the average aspect ratio A is It is desirable to control so as to satisfy 2 to 10.
When this condition is satisfied, the cubic crystal grains constituting the composite nitride or composite carbonitride layer 2 have a columnar structure and exhibit excellent wear resistance. On the other hand, when the average aspect ratio A is less than 2, it becomes difficult to form a periodic distribution (concentration change, content ratio change) of the composition, which is a feature of the present invention, in the crystal grains of the NaCl type face-centered cubic structure. A columnar crystal exceeding 10 is not preferable because cracks are likely to grow along a plane along a periodic distribution of the composition in the cubic crystal phase, which is a feature of the present invention, and a plurality of grain boundaries. Further, when the average particle width W is less than 0.1 μm, the wear resistance is lowered, and when it exceeds 2.0 μm, the toughness is lowered. Therefore, the average grain width W of the cubic crystal grains constituting the composite nitride or composite carbonitride layer 2 is preferably 0.1 to 2.0 μm.
Although not particularly essential, the more preferable average aspect ratio and average particle width W are 4 to 7 and 0.7 to 1.5 μm, respectively.
立方晶結晶構造を有する結晶粒内に存在するTiとAlとMeの濃度変化:
 図4に、本発明の硬質被覆層に含まれるTiとAlとMeの複合窒化物層または複合炭窒化物層(以下、「本発明のTiとAlとMeの複合窒化物層または複合炭窒化物層」と称する)の立方晶結晶構造を有する結晶粒について、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に直交する面内でのAlの含有割合xの変化は小さいことを模式図として示す。
 また、図5には、本発明のTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、TiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒について、透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による線分析を行った結果のTiとAlとMeの合計に対するAlの周期的な濃度変化xのグラフの一例を示す。
 立方晶結晶構造を有する結晶を組成式:(Ti1-x―yAlSi)(C1-z)で表した場合、結晶粒内にTiとAlとMeの周期的な濃度変化が存在するとき(即ち、x、y、zは、一定値ではなく、周期的に変化する値であるとき)、結晶粒に歪みが生じ、硬さが向上する。しかしながら、TiとAlとMeの濃度変化の大きさの指標である前記組成式におけるAlの含有割合xの周期的に変化するxの値の極大値11a、11b、11c、・・・の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値12a、12b、12c、12d・・・の平均値をXminとした場合、XmaxとXminの差Δxが0.03より小さいと前述した結晶粒の歪みが小さく十分な硬さの向上が見込めない。一方、XmaxとXminの差Δxが0.25を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が大きくなり、硬さが低下する。そこで、立方晶結晶構造を有する結晶粒内に存在するTiとAlとMeの濃度変化は、XmaxとXminの差を0.03~0.25とした。
 特に必須な構成ではないが、より好ましいXmaxとXminの差は0.05~0.22である。さらにより好ましくは、0.08~0.15である。
 また、前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒において、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在した場合、結晶粒の歪みによる格子欠陥が生じにくく、靭性が向上する。
 また、前記のTiとAlとMeの周期的な濃度変化が存在する方位に直交する面内ではTiとAlとMeの濃度は実質的に変化せず、上記直交する面内でのAlのTiとAlとMeの合量に占める含有割合xの変化量の最大値ΔXoは0.01以下である。
 また、前記立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿った濃度変化の周期が3nm未満では靭性が低下し、100nmを超えると硬さの向上効果が十分に発揮されない。したがって、より望ましい前記濃度変化の周期は3~100nmである。
 特に必須な構成ではないが、より好ましい前記濃度変化の周期は15~80nmである。さらにより好ましくは、25~50nmである。
Changes in concentration of Ti, Al, and Me existing in crystal grains having a cubic crystal structure:
FIG. 4 shows a composite nitride layer or composite carbonitride layer of Ti, Al, and Me contained in the hard coating layer of the present invention (hereinafter referred to as “composite nitride layer or composite carbonitride of Ti, Al, and Me of the present invention”). A crystal grain having a cubic crystal structure), and a periodic concentration change of Ti, Al, and Me is one of the equivalent crystal orientations represented by <001> of the cubic crystal grain. It is shown as a schematic diagram that the change in the Al content ratio x is small in a plane that exists along the direction and is orthogonal to the direction.
FIG. 5 shows a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me exists in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me of the present invention. An example of a graph of periodic concentration change x of Al with respect to the total of Ti, Al, and Me as a result of performing a line analysis by energy dispersive X-ray spectroscopy (EDS) on a crystal grain using a transmission electron microscope Indicates.
When a crystal having a cubic crystal structure is represented by a composition formula: (Ti 1-xy Al x Si y ) (C z N 1-z ), periodic concentrations of Ti, Al, and Me in the crystal grains When there is a change (that is, when x, y, and z are not constant values but values that change periodically), the crystal grains are distorted and the hardness is improved. However, the average value of the maximum values 11a, 11b, 11c,... Of the periodically changing x value of the Al content ratio x in the composition formula, which is an index of the change in the concentration of Ti, Al, and Me. the X max also, if the minimum value 12a of periodically value varying x in proportion x of Al, 12b, 12c, an average value of 12d · · · and the X min, the difference of X max and X min When Δx is smaller than 0.03, the above-described crystal grain distortion is small and sufficient hardness cannot be expected. On the other hand, if the difference Δx between X max and X min exceeds 0.25, the distortion of the crystal grains becomes too large, lattice defects become large, and the hardness decreases. Therefore, for the change in the concentration of Ti, Al, and Me existing in the crystal grains having a cubic crystal structure, the difference between X max and X min was set to 0.03 to 0.25.
Although not particularly essential, a more preferable difference between X max and X min is 0.05 to 0.22. Even more preferably, it is 0.08 to 0.15.
Further, in the crystal grains having a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists, a periodic concentration change of Ti, Al, and Me occurs. When the crystal grains exist along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, lattice defects due to distortion of the crystal grains hardly occur, and the toughness is improved.
Further, the Ti, Al, and Me concentrations do not substantially change in the plane orthogonal to the orientation in which the periodic concentration changes of Ti, Al, and Me exist, and the Ti Ti in the orthogonal plane is not changed. And the maximum value ΔXo of the change amount of the content ratio x in the total amount of Al and Me is 0.01 or less.
Further, if the period of concentration change along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains is less than 3 nm, the toughness is lowered, and if it exceeds 100 nm, the hardness is improved. Is not fully demonstrated. Therefore, a more desirable period of the concentration change is 3 to 100 nm.
Although not particularly essential, the more preferable period of concentration change is 15 to 80 nm. Even more preferably, it is 25 to 50 nm.
 図6に、本発明のTiとAlとMeの複合窒化物層または複合炭窒化物層の断面において、TiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒について、結晶粒内に領域A13と領域B14が存在することを模式図として示す。
 TiとAlとMeの周期的な濃度変化が直交する2方向に存在する、領域A13と領域B14が結晶粒内に存在する結晶粒については、結晶粒内で2方向の歪みが存在することで靭性が向上する。さらに、領域Aと領域Bの境界15が{110}で表される等価な結晶面のうちの一つの面に形成されることで領域Aと領域Bの境界15のミスフィットが生じないため、高い靭性を維持することが出来る。
 即ち、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとした場合、方位dに沿った周期が3~100nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodが0.01以下である領域A13と、TiとAlとMeの周期的な濃度変化が、方位dと直交する立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとした場合、方位dに沿った周期が3~100nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodが0.01以下である領域B14が形成されている場合には、結晶粒内で2方向の歪みが存在することで靭性が向上し、さらに、領域Aと領域Bの境界15が{110}で表される等価な結晶面のうちの一つの面に形成されることで領域Aと領域Bの境界15のミスフィットが生じないため、高い靭性を維持することが出来る。
FIG. 6 shows a crystal grain having a cubic crystal structure in which a periodic concentration change of Ti, Al, and Me exists in the cross section of the composite nitride layer or composite carbonitride layer of Ti, Al, and Me of the present invention. FIG. 2 schematically shows that a region A13 and a region B14 exist in the crystal grains.
Regarding the crystal grains in which the region A13 and the region B14 exist in two directions in which the periodic concentration changes of Ti, Al, and Me are orthogonal to each other, there are two directions of strain in the crystal grains. Toughness is improved. Further, since the boundary 15 between the region A and the region B is formed on one of the equivalent crystal planes represented by {110}, misfit between the boundary 15 between the region A and the region B does not occur. High toughness can be maintained.
That is, present along the one of the orientation of the crystal orientation of the equivalent cyclic changes in the concentration of Ti and Al and Me are represented by cubic grains of <001> was the azimuth and azimuth d A If, azimuth cycle along the d a is 3 ~ 100 nm, a region A13 maximum DerutaXod a variation of the content x of Al in a plane perpendicular to the direction d a is 0.01 or less, periodic density variation of Ti and Al and Me is present along one of the orientation of the crystal orientation of the equivalent represented by <001> cubic crystal grains perpendicular to the orientation d a, the orientation If the orientation d B, a period is 3 ~ 100 nm along the direction d B, is 0.01 or less maximum DerutaXod B of variation of the proportion x of Al in a plane perpendicular to the direction d B When a certain region B14 is formed, strain in two directions exists in the crystal grains. In addition, the toughness is improved, and the boundary 15 between the region A and the region B is formed on one of the equivalent crystal planes represented by {110}, so that the boundary 15 between the region A and the region B is formed. Therefore, high toughness can be maintained.
複合窒化物または複合炭窒化物層内の立方晶結晶粒の格子定数a:
 前記複合窒化物または複合炭窒化物層2について、X線回折装置を用い、Cu-Kα線を線源としてX線回折試験を実施し、立方晶結晶粒の格子定数aを求めたとき、前記立方晶結晶粒の格子定数aが、立方晶TiN(JCPDS00-038-1420)の格子定数aTiN:4.24173Åと立方晶AlN(JCPDS00-046-1200)の格子定数aAlN:4.045Åに対して、0.05aTiN +0.95aAlN ≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことで、すぐれた耐摩耗性に加えて、すぐれた耐熱衝撃性を備える。
Lattice constant a of cubic crystal grains in the composite nitride or composite carbonitride layer:
The composite nitride or composite carbonitride layer 2 was subjected to an X-ray diffraction test using an X-ray diffractometer and Cu—Kα rays as a radiation source, and the lattice constant a of cubic crystal grains was determined. cubic grains lattice constant a cubic lattice constant a TiN of TiN (JCPDS00-038-1420): 4.24173Å and cubic lattice constant a AlN of AlN (JCPDS00-046-1200): in 4.045Å On the other hand, 0.05a TiN + 0.95a AlN ≤a ≤0.4a TiN + 0.6a When satisfying the relationship of AlN , it exhibits higher hardness and high thermal conductivity, thereby providing excellent wear resistance. In addition to performance, it has excellent thermal shock resistance.
複合窒化物または複合炭窒化物層2内の立方晶構造を有する個々の結晶粒からなる柱状組織の面積割合:
 立方晶構造を有する個々の結晶粒からなる柱状組織の面積割合が70面積%を下回ると相対的に硬さが低下し好ましくない。
 特に必須な構成ではないが、好ましい立方晶構造を有する個々の結晶粒からなる柱状組織の面積割合は85面積%以上である。より好ましくは95面積%以上である。
Area ratio of columnar structure made of individual crystal grains having a cubic structure in composite nitride or composite carbonitride layer 2:
When the area ratio of the columnar structure composed of individual crystal grains having a cubic crystal structure is less than 70% by area, the hardness is undesirably lowered.
Although it is not a particularly essential configuration, the area ratio of the columnar structure composed of individual crystal grains having a preferable cubic structure is 85 area% or more. More preferably, it is 95 area% or more.
 また、本発明の複合窒化物または複合炭窒化物層2は、下部層としてTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1~20μmの合計平均層厚を有するTi化合物層を含む場合および/または上部層として1~25μmの平均層厚を有する酸化アルミニウム層を含む場合においても、前述した特性が損なわれず、これらの公知の下部層や上部層などと併用することにより、これらの層が奏する効果と相俟って、いっそう、すぐれた特性を創出することができる。下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層を含む場合、Ti化合物層の合計平均層厚が20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、上部層として、酸化アルミニウム層を含む場合、酸化アルミニウム層の合計平均層厚が25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。一方で、下部層が0.1μmを下回ると、本発明の複合窒化物または複合炭窒化物層2の下部層との密着性向上効果を期待できず、また、上部層が1μmを下回ると、上部層を成膜する事による耐摩耗性向上効果が顕著ではない。 Further, the composite nitride or composite carbonitride layer 2 of the present invention has one or two of a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer as a lower layer. Even in the case of including a Ti compound layer having a total average layer thickness of 0.1 to 20 μm and / or including an aluminum oxide layer having an average layer thickness of 1 to 25 μm as an upper layer, The combined characteristics of these layers together with the effects of these layers can be further improved by using these known lower layers and upper layers together. When the lower layer includes a Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total of the Ti compound layer When the average layer thickness exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, when an aluminum oxide layer is included as the upper layer, if the total average layer thickness of the aluminum oxide layer exceeds 25 μm, crystal grains are likely to be coarsened and chipping is likely to occur. On the other hand, if the lower layer is less than 0.1 μm, the effect of improving the adhesion with the lower layer of the composite nitride or composite carbonitride layer 2 of the present invention can not be expected, and if the upper layer is less than 1 μm, The effect of improving the wear resistance by forming the upper layer is not remarkable.
 本発明は、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚1~20μmのTiとAlとMeの複合窒化物または複合炭窒化物層2を少なくとも含み、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、AlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg(但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足し、複合窒化物または複合炭窒化物層2は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相(立方晶結晶相)を少なくとも含み、前記立方晶構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線6がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、立方晶結晶構造を有する結晶粒内に、組成式:(Ti1-x―yAlMe)(C1-z)におけるTiとAlとMeの周期的な濃度変化が存在し、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03~0.25であり、TiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、その工具基体表面の法線方向に沿った周期が3~100nmであることにより、複合窒化物または複合炭窒化物の立方晶結晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さが向上し、高い耐摩耗性を保ちつつ、靭性が向上する。
 その結果、耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
The present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. The hard coating layer includes at least a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me having an average layer thickness of 1 to 20 μm, and has a composition formula: (Ti 1-xy Al x Me y ) ( C z N 1-z ), the average content ratio X avg in the total amount of Ti, Al and Me in Al and the average content ratio Y avg in the total amount of Ti, Al and Me in Me and C The average content ratio Z avg in the total amount of C and N (where X avg , Y avg , and Z avg are all atomic ratios) is 0.60 ≦ X avg , 0.005 ≦ Y avg ≦ 0. 10,0 ≦ Z satisfy vg ≦ 0.005,0.605 ≦ X avg + Y avg ≦ 0.95, complex nitride or composite carbonitride layer 2, composite nitride or composite carbonitride having a face-centered cubic structure of NaCl type The crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains containing at least a product phase (cubic crystal phase) and having the cubic structure using an electron beam backscatter diffractometer When analyzed from the longitudinal section direction, the inclination angle formed by the normal line 6 of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured. When the inclination angle in the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the range of 0 to 12 degrees is obtained. The highest peak exists in the tilt angle section of The frequency total of existing in a range of 12 degrees indicates the proportion of more than 35% of the total power at the inclination angle frequency distribution, crystal grains having a cubic crystal structure, the composition formula: (Ti 1-x- y Al x Me y ) (C z N 1-z ) There is a periodic concentration change of Ti, Al, and Me, and the average value of the maximum value of the periodically changing x value of the Al content ratio x the X max, also the average value of the minimum value of the periodically value varying x in proportion x of Al when the X min, the difference Δx from 0.03 to 0.25 X max and X min In a crystal grain having a NaCl type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me exists, the period along the normal direction of the surface of the tool base is 3 to 100 nm. Has a cubic crystal structure of composite nitride or composite carbonitride Since distortion occurs in the crystal grains, the hardness of the crystal grains is improved, and the toughness is improved while maintaining high wear resistance.
As a result, the effect of improving the chipping resistance is exhibited, the cutting performance is improved over a long period of use as compared with the conventional hard coating layer, and the life of the coated tool is extended.
本発明の硬質被覆層1を構成するTiとAlとMeの複合窒化物または複合炭窒化物層2の断面を模式的に表した膜構成模式図である。水平方向の縞模様は、Ti、Al、Meから成る複合窒化物または複合炭窒化物層中の結晶粒子内のAlの周期的な含有比率変化を示す。FIG. 2 is a schematic diagram of a film configuration schematically showing a cross section of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me constituting the hard coating layer 1 of the present invention. The horizontal stripe pattern indicates a periodic content ratio change of Al in crystal grains in the composite nitride or composite carbonitride layer made of Ti, Al, and Me. 工具基体表面の法線5(断面研磨面における工具基体表面4と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角が、0度の場合6を示した模式図である。6 is shown when the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal 5 of the tool base surface (the direction perpendicular to the tool base surface 4 on the cross-section polished surface) is 0 °. It is a schematic diagram. 工具基体表面の法線5(断面研磨面における工具基体表面4と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角が、45度の場合7を示した模式図である。7 is shown when the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal 5 of the tool base surface (the direction perpendicular to the tool base surface 4 on the cross-section polished surface) is 45 degrees. It is a schematic diagram. 本発明の硬質被覆層1を構成するTiとAlの複合窒化物層または複合炭窒化物層2の断面において、立方晶構造を有する結晶粒について求めた傾斜角度数分布の一例を示すグラフである。FIG. 3 is a graph showing an example of a tilt angle number distribution obtained for crystal grains having a cubic structure in a cross section of a composite nitride layer or composite carbonitride layer 2 of Ti and Al constituting the hard coating layer 1 of the present invention. . 比較例の一実施形態である硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層2の断面において、立方晶構造を有する結晶粒について求めた傾斜角度数分布の一例を示すグラフである。An example of an inclination angle number distribution obtained for a crystal grain having a cubic structure in a cross section of a composite nitride layer or composite carbonitride layer 2 of Ti and Al constituting a hard coating layer according to an embodiment of a comparative example It is a graph to show. 本発明の一実施態様に該当する硬質被覆層1を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層2の断面において、TiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒について、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位(矢印で表示)に沿って存在し、その方位に直交する面(矢印に直交する線で真上から見た面を表示)内でのAlの含有割合xの変化は小さいことを模式的に表した模式図である。 具体的には、直交する面内でのAlの含有割合xの変化は0.01以下である。 色調が明るい部分はAl含有量が相対的に多い領域9を示し、色調が暗い部分はAl含有量が相対的に少ない領域10を示す。In the cross section of the composite nitride layer of Ti, Al, and Me or the composite carbonitride layer 2 constituting the hard coating layer 1 corresponding to one embodiment of the present invention, there is a periodic concentration change of Ti, Al, and Me. One of the equivalent crystal orientations represented by <001> of the cubic crystal grains in which the periodic concentration change of Ti, Al, and Me is expressed for the crystal grains having a cubic crystal structure (indicated by arrows) Is a schematic diagram schematically showing that the change in the Al content ratio x is small in a plane perpendicular to the orientation (displayed from above with a line perpendicular to the arrow). is there. Specifically, the change in the Al content ratio x in the orthogonal plane is 0.01 or less. A bright color portion indicates a region 9 having a relatively high Al content, and a dark color portion indicates a region 10 having a relatively low Al content. 本発明の一実施態様に該当する硬質被覆層1を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層2の断面において、TiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒について、透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による線分析を行った結果のTiとAlとMeの合計に対するAlの周期的な濃度変化xのグラフの一例を示すものである。 具体的には、複合窒化物または複合炭窒化物層2中の立方晶構造を有する結晶粒内のAlの周期的な濃度変化を表している。グラフ中では三つの極大値11a、11b、および11と、四つの極小値12a、12b、12c、および12dが示されている。In the cross section of the composite nitride layer of Ti, Al, and Me or the composite carbonitride layer 2 constituting the hard coating layer 1 corresponding to one embodiment of the present invention, there is a periodic concentration change of Ti, Al, and Me. The periodicity of Al with respect to the total of Ti, Al, and Me as a result of performing line analysis by energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope for the crystal grains having a cubic crystal structure An example of the graph of density change x is shown. Specifically, it represents a periodic concentration change of Al in the crystal grains having a cubic structure in the composite nitride or composite carbonitride layer 2. In the graph, three maximum values 11a, 11b and 11 and four minimum values 12a, 12b, 12c and 12d are shown. 本発明の一実施態様に該当する硬質被覆層1を構成するTiとAlとMeの複合窒化物層または複合炭窒化物層2の断面において、TiとAlとMeの周期的な濃度変化が存在する立方晶結晶構造を有する結晶粒について、結晶粒内に領域A13と領域B14が存在することを模式的に表した模式図である。領域A13と領域B14とが接触する部分には領域Aと領域Bの境界15が形成される。In the cross section of the composite nitride layer of Ti, Al, and Me or the composite carbonitride layer 2 constituting the hard coating layer 1 corresponding to one embodiment of the present invention, there is a periodic concentration change of Ti, Al, and Me. It is the schematic diagram which represented typically that the area | region A13 and area | region B14 existed in a crystal grain about the crystal grain which has the cubic crystal structure to perform. A boundary 15 between the region A and the region B is formed at a portion where the region A13 and the region B14 are in contact with each other.
 本発明は、超硬製工具基体、すなわち、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体3の表面に、硬質被覆層1を設けた表面被覆切削工具において、硬質被覆層1が、化学蒸着法により成膜された平均層厚1~20μmのTiとAlとMeの複合窒化物または複合炭窒化物層2を少なくとも含み、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、AlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg(但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足し、複合窒化物または複合炭窒化物層2を構成する結晶粒は、立方晶結晶構造を有する結晶粒を少なくとも含み、前記立方晶構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線6がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、立方晶結晶構造を有する結晶粒内に、組成式:(Ti1-x―yAlMe)(C1-z)におけるTiとAlとMeの周期的な濃度変化が存在し、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03~0.25であり、TiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、その工具基体表面の法線方向に沿った周期が3~100nmであるという構成を有することにより、耐チッピング性が向上し、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成されるものであれば、その具体的な実施の態様はいかなるものであっても構わない。
 つぎに、本発明の被覆工具の一実施態様を、実施例を用いて具体的に説明する。
The present invention provides a hard tool substrate, that is, a hard surface on the surface of a tool substrate 3 made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. In the surface-coated cutting tool provided with the coating layer 1, the hard coating layer 1 is formed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition. Including at least the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), the average content ratios X avg and Me in the total amount of Ti, Al, and Me in Al The average content ratio Y avg occupying the total amount of Ti, Al, and Me and the average content ratio Z avg occupying the total amount of C and N in C (where X avg , Y avg , and Z avg are all atomic ratios) , 0. 0 ≦ X avg, 0.005 ≦ Y avg ≦ 0.10,0 satisfy ≦ Z avg ≦ 0.005,0.605 ≦ X avg + Y avg ≦ 0.95, complex nitride or composite carbonitride layer 2 includes at least crystal grains having a cubic crystal structure, and the crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains having the cubic crystal structure is expressed by an electron beam. When analyzing from the longitudinal section direction using a backscattering diffraction apparatus, the inclination angle formed by the normal line 6 of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal line direction of the tool base surface is measured. When the inclination angle in the range of 0 to 45 degrees with respect to the normal direction is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, The highest peak in the tilt angle section within the range of 0-12 degrees And the sum of the frequencies existing within the range of 0 to 12 degrees represents a ratio of 35% or more of the entire frequencies in the tilt angle frequency distribution, and the composition formula is included in the crystal grains having a cubic crystal structure. : (Ti 1-xy Al x Me y ) (C z N 1-z ) there is a periodic concentration change of Ti, Al, and Me, and the content ratio x of x that changes periodically is changed. mean value X max of the maximum value of the value addition, if the average value of the minimum value of the periodically value varying x in proportion x of Al was set to X min, the difference Δx of X max and X min is 0 0.03 to 0.25, and a crystal grain having an NaCl-type face-centered cubic structure in which periodic concentration changes of Ti, Al, and Me exist, the period along the normal direction of the tool base surface is 3 By having a structure of ˜100 nm, chip resistance If the cutting performance is improved, the cutting performance is excellent over a long period of use, and the life of the coated tool is extended, compared to the conventional hard coating layer, the specific implementation Any aspect may be used.
Next, one embodiment of the coated tool of the present invention will be specifically described using examples.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered under the condition of holding for 1 hour at a predetermined temperature in the range of ~ 1470 ° C, and after sintering, manufacture tool bodies A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、
(a)表4に示される形成条件、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか)、NH、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:3.5~4.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか):0.1~0.2%、N:0.0~12.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス供給Aとガス供給Bの位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表7に示される目標層厚を有する(Ti1-x―yAlMe)(C1-z)層からなる硬質被覆層1を形成することにより本発明被覆工具1~15を製造した。
 なお、本発明被覆工具6~13については、表3に示される形成条件で、表6に示される下部層、上部層のいずれかを形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
(A) Formation conditions shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , MeCl n (where SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ), NH 3 , N 2 , H 2 gas group B, and a method of supplying each gas, the reaction gas composition (gas group A and gas group B was combined) % As a gas group A, NH 3 : 3.5 to 4.0%, H 2 : 65 to 75%, as a gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, MeCl n (however, any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , CrCl 2 ): 0 .1 ~ 0.2%, N 2: 0 0 ~ 12.0%, H 2: remainder, reaction atmosphere pressure: 4.5 ~ 5.0 kPa, Temperature of reaction atmosphere: 700 ~ 900 ° C., the supply cycle 1 to 5 seconds, the gas supply time per cycle 0.15 A thermal CVD method is performed for a predetermined time with a phase difference between gas supply A and gas supply B of 0.25 to 0.25 seconds and a target layer thickness shown in Table 7 (Ti 1-x -y Al x Me y) (the present invention coated tool 1-15 were prepared by forming a hard coating layer 1 consisting of C z N 1-z) layer.
For the coated tools 6 to 13 of the present invention, either the lower layer or the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3.
 また、比較の目的で、工具基体A~Dの表面に、表5に示される条件かつ表8に示される目標層厚(μm)で、TiとAlとMeの複合窒化物または複合炭窒化物層2を含む硬質被覆層1を蒸着形成した。この時には、(Ti1-x―yAlMe)(C1-z)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層1を形成することにより比較被覆工具1~15を製造した。
 なお、本発明被覆工具6~13と同様に、比較被覆工具6~13については、表3に示される形成条件で、表6に示される下部層、上部層のいずれかを形成した。
For comparison purposes, Ti, Al, and Me composite nitride or composite carbonitride are formed on the surfaces of the tool bases A to D under the conditions shown in Table 5 and the target layer thickness (μm) shown in Table 8. The hard coating layer 1 including the layer 2 was formed by vapor deposition. At this time, the hard coating layer 1 is formed so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer. Comparative coated tools 1 to 15 were produced by forming.
As with the coated tools 6 to 13 of the present invention, for the comparative coated tools 6 to 13, either the lower layer or the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3.
前記本発明被覆工具1~15、比較被覆工具1~15の硬質被覆層1を構成するTiとAlとMeの複合窒化物または複合炭窒化物層2について、工具基体表面4に垂直な方向の硬質被覆層1の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面4と水平方向に長さ100μm、工具基体表面4と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内の該硬質被覆層1について0.01μm/stepの間隔で、基体表面の法線5(断面研磨面における基体表面4と垂直な方向)に対して、前記結晶粒の結晶面である{110}面の法線6がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~12度の範囲内に存在する度数のピークの存在を確認し、かつ0~12度の範囲内に存在する度数の割合を求めた。 The Ti, Al, and Me composite nitride or composite carbonitride layer 2 constituting the hard coating layer 1 of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 are perpendicular to the tool substrate surface 4 With the cross section of the hard coating layer 1 as a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA. Then, each crystal grain having a cubic crystal lattice existing within the measurement range of the cross-section polished surface is irradiated, and using an electron backscatter diffraction image apparatus, the tool base surface 4 and a length of 100 μm in the horizontal direction are used. With respect to the hard coating layer 1 within a measurement range of a distance equal to or less than the film thickness along a cross section in a direction perpendicular to the surface 4, the normal 5 of the substrate surface (the substrate surface 4 on the cross-section polished surface) at an interval of 0.01 μm / step. Direction) The inclination angle formed by the normal line 6 of the {110} plane which is the crystal plane of the crystal grain is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles Is divided into pitches of 0.25 degrees, and by counting the frequencies present in each section, the presence of a frequency peak within the range of 0 to 12 degrees is confirmed, and 0 to 12 degrees The ratio of the frequency existing in the range of was determined.
 また、前記本発明被覆工具1~15、比較被覆工具1~15の硬質被覆層1を構成するTiとAlとMeの複合窒化物または複合炭窒化物層2について、走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて複数視野に亘って観察した。
 本発明被覆工具1~15については、図1に示した膜構成模式図に示されるように立方晶結晶あるいは立方晶結晶と六方晶結晶の混合相を含む柱状組織の(Ti1-x―yAlMe)(C1-z)層が確認された。また、立方晶結晶粒内にTiとAlとMeの周期的な分布(濃度変化、含有割合変化)が存在していることが、透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による面分析により確認された。
 さらに、本発明被覆工具1~15、比較被覆工具1~15について、透過型電子顕微鏡を用いたEDSによる面分析の結果を用いて、複合窒化物または複合炭窒化物層2中に存在する立方晶結晶粒の5周期分のxの周期におけるxの極大値の平均値をXmaxとし、また、同じく5周期分のxの周期におけるxの極小値の平均値をXminとし、その差Δx(=Xmax-Xmin)を求めた。
 本発明被覆工具1~15については、その値Δxが0.03~0.25であることが確認された。
The Ti, Al, and Me composite nitride or composite carbonitride layer 2 constituting the hard coating layer 1 of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 was scanned with an electron microscope (magnification 5000). Multiple times and 20000 times).
With respect to the coated tools 1 to 15 of the present invention, a columnar structure (Ti 1-xy) containing a cubic crystal or a mixed phase of a cubic crystal and a hexagonal crystal as shown in the schematic diagram of the film structure shown in FIG. An Al x Me y ) (C z N 1-z ) layer was confirmed. In addition, the periodic distribution of Ti, Al, and Me (concentration change, content ratio change) exists in the cubic crystal grains, and energy dispersive X-ray spectroscopy (using a transmission electron microscope) It was confirmed by surface analysis by EDS).
Further, for the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15, cubic results existing in the composite nitride or composite carbonitride layer 2 using the results of surface analysis by EDS using a transmission electron microscope. The average value of the maximum value of x in the x period corresponding to five cycles of the crystal grains is defined as X max, and the average value of the minimum value of x in the same period of five cycles is defined as X min , and the difference Δx (= X max -X min ) was determined.
Regarding the coated tools 1 to 15 of the present invention, the value Δx was confirmed to be 0.03 to 0.25.
 また、本発明被覆工具1~15、比較被覆工具1~15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7、表8に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the cross-sections of the constituent layers of the inventive coated tools 1 to 15 and comparative coated tools 1 to 15 in the direction perpendicular to the tool substrate were measured using a scanning electron microscope (with a magnification of 5000 times). When the average layer thickness was obtained by measuring and averaging the five layer thicknesses, the average layer thickness was substantially the same as the target layer thickness shown in Tables 7 and 8.
 また、本発明被覆工具1~15、比較被覆工具1~15の複合窒化物または複合炭窒化物層2の平均Al含有割合、平均Me含有割合については、電子線マイクロアナライザ(EPMA,Electron-Probe-Micro-Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合XavgおよびMeの平均含有割合Yavgを求めた。
 また、平均C含有割合Zavgについては、二次イオン質量分析(SIMS,Secondary-Ion-Mass-Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合Zavgは、TiとAlとMeの複合窒化物または複合炭窒化物層2についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層2に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層2に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をZavgとして求めた。
The average Al content and the average Me content of the composite nitride or composite carbonitride layer 2 of the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15 were measured using an electron beam microanalyzer (EPMA, Electron-Probe). -In a sample whose surface was polished using Micro-Analyzer), an electron beam was irradiated from the sample surface side, and the average Al content ratio X avg and Me of Al was obtained from an average of 10 points of the analysis result of the characteristic X-ray obtained. The average content ratio Y avg was determined.
The average C content ratio Z avg was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio Z avg indicates an average value in the depth direction of the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or the composite carbonitride layer 2 when the supply amount of Al (CH 3 ) 3 is set to 0 is the inevitable C content ratio. The unavoidable C content is determined from the content (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer 2 obtained when Al (CH 3 ) 3 is intentionally supplied. The subtracted value was determined as Z avg .
 また、本発明被覆工具1~15および比較被覆工具1~15について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面4と水平方向に長さ10μmの範囲に存在する複合窒化物または複合炭窒化物層2を構成する(Ti1-x―yAlMe)(C1-z)層中の個々の結晶粒について、工具基体表面4と垂直な皮膜断面側から観察し、基体表面4と平行な方向の粒子幅w、基体表面4に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。 Further, with respect to the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15, the tool substrate surface 4 and the tool substrate surface 4 are horizontally aligned using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate. Individual crystal grains in the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer constituting the composite nitride or composite carbonitride layer 2 existing in the range of a length of 10 μm in the direction The particle width w in the direction parallel to the substrate surface 4 and the particle length l in the direction perpendicular to the substrate surface 4 are measured, and the aspect ratio of each crystal grain is observed. a (= l / w) is calculated, the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain is Calculated as average particle width W It was.
 また、電子線後方散乱回折装置を用いて、TiとAlとMeの複合窒化物または複合炭窒化物層2からなる硬質被覆層1の工具基体表面4に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体表面4と水平方向に長さ100μmに亘りTiとAlとMeの複合窒化物または複合炭窒化物層2からなる硬質被覆層全体について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで立方晶結晶構造あるいは六方晶結晶構造であるかを同定し、TiとAlとMeの複合窒化物または複合炭窒化物層2には、立方晶の複合窒化物または複合炭窒化物の相が含まれていることを確認するとともに、さらに、該層に含まれる立方晶結晶相の占める面積割合を求めた。 Further, by using an electron beam backscatter diffractometer, a cross section in a direction perpendicular to the tool base surface 4 of the hard coating layer 1 composed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me was used as a polished surface. In the state, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface within the measurement range of the sectional polished surface with an irradiation current of 1 nA. 0.01 μm / step is applied to the entire hard coating layer composed of a composite nitride or composite carbonitride layer 2 of Ti, Al, and Me over a length of 100 μm in the horizontal direction with respect to the tool base surface 4. Measure the electron backscatter diffraction image at intervals of, identify the cubic crystal structure or hexagonal crystal structure by analyzing the crystal structure of each crystal grain, and composite nitriding of Ti, Al and Me Or composite carbonitriding The physical layer 2 was confirmed to contain a cubic composite nitride or composite carbonitride phase, and the area ratio of the cubic crystal phase contained in the layer was determined.
 さらに、透過型電子顕微鏡を用いて、複合窒化物または複合炭窒化物層2の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行ったところ、前記立方晶結晶構造を有する結晶粒内に、組成式:(Ti1-x―yAlSi)(C1-z)におけるTiとAlとMeの周期的な濃度変化の存在の有無を確認した。この濃度変化が存在する場合には、該結晶粒について電子線回折を行うことで、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することを確認し、その方位に沿ったEDSによる線分析を5周期分の区間で行い、TiとAlとMeの合計に対するAlの周期的な濃度変化の極大値の平均値をXmaxとして求め、また、同区間での、TiとAlとMeの合計に対するAlの周期的な濃度変化の極小値の平均値をXminとして求め、その差Δx(=Xmax-Xmin)を求めた。 Further, a micro region of the composite nitride or composite carbonitride layer 2 was observed using a transmission electron microscope, and surface analysis was performed from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS). However, in the crystal grains having the cubic crystal structure, the periodic concentration change of Ti, Al, and Me in the composition formula: (Ti 1-xy Al x Si y ) (C z N 1-z ) The presence or absence was confirmed. When this concentration change exists, the equivalent crystal orientation represented by <001> of the cubic crystal grain is obtained by performing electron beam diffraction on the crystal grain, so that the periodic concentration change of Ti, Al, and Me is represented by <001> of the cubic crystal grain. It is confirmed that it exists along one azimuth direction, and line analysis by EDS along that azimuth is performed in a section for five periods, and the periodic concentration change of Al with respect to the total of Ti, Al, and Me is confirmed. The average value of the local maximum values is obtained as X max , and the average value of the local minimum values of the periodic concentration change of Al with respect to the sum of Ti, Al and Me in the same section is obtained as X min , and the difference Δx (= to determine the X max -X min).
 また、TiとAlとMeの周期的な濃度変化がある立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に直交する方向に沿った線分析を前記5周期分の距離に相当する区間で行い、その区間でのAlの含有割合xの最大値と最小値の差を、TiとAlとMeの周期的な濃度変化がある立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位と直交する面内での変化量の最大値ΔXoとして求めた。 Further, line analysis along a direction orthogonal to one of the equivalent crystal orientations represented by <001> of cubic crystal grains having periodic concentration changes of Ti, Al, and Me is performed in the five cycles. The difference between the maximum value and the minimum value of the Al content ratio x in the interval corresponding to the minute distance is calculated as <001> for the cubic crystal grains having a periodic concentration change of Ti, Al, and Me. The maximum change amount ΔXo in the plane perpendicular to one of the equivalent crystal orientations represented by
 さらに、領域A13と領域B14が結晶粒内に存在する結晶粒については、領域A13と領域B14のそれぞれに対して、前述と同様にTiとAlとMeの合計に対するAlの5周期分の周期的な濃度変化の極大値の平均値Xmaxと極小値の平均値の値Xminとの差量の最大値Δx(=Xmax-Xmin)を求めるとともに、TiとAlとMeの周期的な濃度変化がある立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位と直交する面内におけるTiとAlとMeの合計に対するAlの含有割合xの最大値と最小値の差を変化量の最大値として求めた。
 即ち、領域A13のTiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとした場合、方位dに沿った濃度変化の周期を求めるとともに、方位dに直交する方向に沿った線分析を前記5周期分の距離に相当する区間で行い、その区間でのAlの含有割合xの最大値と最小値の差を、TiとAlとMeの周期的な濃度変化がある立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位と直交する面内での変化量の最大値ΔXodとして求めた。
 また、領域B14のTiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとした場合、方位dに沿った濃度変化の周期を求めるとともに、方位dに直交する方向に沿った線分析を前記5周期分の距離に相当する区間で行い、その区間でのAlの含有割合xの最大値と最小値の差を、TiとAlとMeの周期的な濃度変化がある立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位と直交する面内での変化量の最大値ΔXodとして求めた。
 また、本発明被覆工具1~15については、dとdが直交し、領域Aと領域Bの境界15が{110}で表される等価な結晶面のうちの一つの面に形成されることを確認した。
 このような周期の確認は透過型電子顕微鏡を用いた複合窒化物または複合炭窒化物層2の微小領域の観察の視野における最低1個の該結晶粒で確認した。また、領域A13と領域B14が結晶粒内に存在する結晶粒については、透過型電子顕微鏡を用いた複合窒化物または複合炭窒化物層2の微小領域の観察の視野における最低1個の該結晶粒の該領域A13および領域B14のおのおので評価した値の平均を算出することによって求めた。
表7および表8に、上記の各種測定結果を示す。
Further, for the crystal grains in which the region A13 and the region B14 are present in the crystal grains, the periodicity corresponding to five periods of Al with respect to the total of Ti, Al, and Me is similarly provided for each of the regions A13 and B14. The maximum value Δx (= X max −X min ) of the difference between the maximum value X max and the minimum value X min of the minimum value of the concentration change is obtained, and the periodicity of Ti, Al, and Me is determined. Maximum value and minimum value of Al content ratio x with respect to the total of Ti, Al, and Me in a plane orthogonal to one of the equivalent crystal orientations represented by <001> of cubic crystal grains having a concentration change The difference in values was determined as the maximum amount of change.
That is, a periodic concentration change of Ti, Al, and Me in the region A13 exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the orientation is defined as the orientation d. If the a, along with determining the period of the concentration variation along the direction d a, perform line analysis along a direction perpendicular to the direction d a in a section corresponding to the distance of the five cycles, Al in the section The difference between the maximum value and the minimum value of the content ratio x of one of the equivalent crystal orientations represented by <001> of cubic crystal grains having a periodic concentration change of Ti, Al, and Me The maximum value ΔXod A of the amount of change in the orthogonal plane was obtained.
Further, a periodic concentration change of Ti, Al, and Me in the region B14 exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the orientation is defined as the orientation d. In the case of B , the period of concentration change along the direction d B is obtained, and the line analysis along the direction orthogonal to the direction d B is performed in the section corresponding to the distance of the five periods, and the Al in that section is obtained. The difference between the maximum value and the minimum value of the content ratio x of one of the equivalent crystal orientations represented by <001> of cubic crystal grains having a periodic concentration change of Ti, Al, and Me The maximum value ΔXod B of the amount of change within the orthogonal plane was obtained.
In the coated tools 1 to 15 of the present invention, d A and d B are orthogonal to each other, and the boundary 15 between the region A and the region B is formed on one of the equivalent crystal planes represented by {110}. I was sure that.
Such a period was confirmed with at least one crystal grain in the field of observation of a minute region of the composite nitride or composite carbonitride layer 2 using a transmission electron microscope. Regarding the crystal grains in which the region A13 and the region B14 exist in the crystal grains, at least one of the crystals in the field of observation of the minute region of the composite nitride or composite carbonitride layer 2 using a transmission electron microscope is used. It calculated | required by calculating the average of the value evaluated by each of this area | region A13 and area | region B14 of a grain.
Tables 7 and 8 show the various measurement results described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~15、比較被覆工具1~15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 15 in the state where each of the various coated tools is clamped by a fixing jig at the tip of a tool steel cutter having a cutter diameter of 125 mm is described below. The dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured.
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験: 乾式高速正面フライス、センターカット切削加工、
 被削材:  JIS・SCM440幅100mm、長さ400mmのブロック材、
 回転速度:  980 min-1
 切削速度:  385 m/min、
 切り込み:  1.2 mm、
 一刃送り量: 0.12 mm/刃、
 切削時間:  8 分、
  表9に、切削加工試験結果を示す。
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: Dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 980 min −1
Cutting speed: 385 m / min,
Cutting depth: 1.2 mm,
Single blade feed amount: 0.12 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the cutting test results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases α to γ made of WC-base cemented carbide having the insert shape of CNMG120212 were manufactured.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.
 つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例1と同様にして、表4に示される形成条件で、所定時間、熱CVD法を行うことにより、表13に示される(Ti1-x―yAlMe)(C1-z)層を成膜することにより本発明被覆工具16~30を製造した。
 なお、本発明被覆工具19~28については、表3に示される形成条件で、表12に示される下部層、上部層を形成した。
Next, using the chemical vapor deposition apparatus on the surfaces of the tool bases α to γ and the tool base δ, a thermal CVD method is performed for a predetermined time under the formation conditions shown in Table 4 in the same manner as in Example 1. Thus, the coated tools 16 to 30 of the present invention were manufactured by forming the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer shown in Table 13.
For the coated tools 19 to 28 of the present invention, the lower layer and the upper layer shown in Table 12 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、表5に示される条件かつ表14に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16~30を製造した。
 なお、本発明被覆工具19~28と同様に、比較被覆工具19~28については、表3に示される形成条件で、表12に示される下部層、上部層を形成した。
For comparison purposes, a chemical vapor deposition apparatus is used on the surfaces of the tool bases α to γ and the tool base δ, and the conditions shown in Table 5 and the target layer thickness shown in Table 14 are the same as those of the coated tool of the present invention. Comparative coating tools 16 to 30 shown in Table 14 were manufactured by vapor-depositing a hard coating layer.
Similar to the coated tools 19 to 28 of the present invention, the comparative coated tools 19 to 28 were formed with the lower layer and the upper layer shown in Table 12 under the forming conditions shown in Table 3.
 また、本発明被覆工具16~30、比較被覆工具16~30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13、表14に示される目標層厚と実質的に同じ平均層厚を示した。
 また、前記本発明被覆工具16~30、比較被覆工具16~30の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均Me含有割合Yavg、平均C含有割合Zavg、傾斜角度数分布、周期的濃度変化の差Δx(=Xmax-Xmin)と周期、格子定数a、結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。
 表13、表14にその結果を示す。
In addition, the cross-section of each component layer of the inventive coated tool 16 to 30 and the comparative coated tool 16 to 30 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness at five points in the observation field is measured. When the average layer thickness was obtained on average, both showed the same average layer thickness as the target layer thicknesses shown in Tables 13 and 14.
For the hard coating layers of the inventive coated tools 16 to 30 and comparative coated tools 16 to 30, the average Al content ratio X avg and the average Me content ratio Y were obtained using the same method as that shown in Example 1. avg , average C content ratio Z avg , inclination angle number distribution, periodic concentration change difference Δx (= X max -X min ) and period, lattice constant a, average grain width W of crystal grains, average aspect ratio A, crystal The area ratio of the cubic crystal phase in the grains was determined.
Tables 13 and 14 show the results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16~30、比較被覆工具16~30について、以下に示す、合金鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度: 380 m/min、
 切り込み: 1.5 mm、
 送り: 0.15 mm/rev、
 切削時間: 5 分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
 切削速度: 330 m/min、
 切り込み: 1.0 mm、
 送り: 0.1 mm/rev、
 切削時間: 5 分、
(通常の切削速度は、200m/min)、
 表15に、前記切削試験の結果を示す。
Next, the present coated tools 16 to 30 and the comparative coated tools 16 to 30 are shown below with all of the various coated tools screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test of alloy steel and a wet high-speed intermittent cutting test of cast iron were carried out, and both measured the flank wear width of the cutting edge.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 380 m / min,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 330 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200 m / min),
Table 15 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 原料粉末として、いずれも0.5~4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900~1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200~1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi-Zr-Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体2A、2Bをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: a predetermined temperature within the range of 1200 to 1400 ° C., holding at a high pressure under a condition of holding time: 0.8 hour, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy having a predetermined dimension, the cutting edge portion is subjected to honing with a width of 0.13 mm and an angle of 25 °, and further subjected to finish polishing. ISO regulations Tool substrate 2A having the insert shape of CNGA120412, 2B were prepared, respectively.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 つぎに、これらの工具基体2A、2Bの表面に、化学蒸着装置を用い、実施例1と同様の方法により表4に示される条件で、(Ti1-x―yAlMe)(C1-z)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31~40を製造した。
 なお、本発明被覆工具34~39については、表3に示される形成条件で、表17に示す下部層、上部層を形成した。
Next, (Ti 1-xy Al x Me y ) (C) is used on the surfaces of these tool bases 2A and 2B under the conditions shown in Table 4 by the same method as in Example 1 using a chemical vapor deposition apparatus. The coated tools 31 to 40 of the present invention shown in Table 18 were manufactured by vapor-depositing a hard coating layer including a z N 1-z ) layer with a target layer thickness.
For the inventive coated tools 34 to 39, the lower layer and the upper layer shown in Table 17 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体2A、2Bの表面に、化学蒸着装置を用い、表5に示される条件で、(Ti1-x―yAlMe)(C1-z)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表19に示される比較被覆工具31~40を製造した。
 なお、本発明被覆工具34~39と同様に、比較被覆工具34~39については、表3に示される形成条件で、表17に示す下部層、上部層を形成した。
Further, for the purpose of comparison, a chemical vapor deposition apparatus was used on the surfaces of the tool bases 2A and 2B, and (Ti 1-xy Al x Me y ) (C z N 1-z ) under the conditions shown in Table 5. The comparative coating tools 31 to 40 shown in Table 19 were manufactured by vapor-depositing a hard coating layer including a layer) with a target layer thickness.
As with the inventive coated tools 34 to 39, for the comparative coated tools 34 to 39, the lower layer and the upper layer shown in Table 17 were formed under the formation conditions shown in Table 3.
 また、本発明被覆工具31~40、比較被覆工具31~40の各構成層の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18、19に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the cross-sections of the constituent layers of the inventive coated tools 31 to 40 and comparative coated tools 31 to 40 were measured using a scanning electron microscope (5000 times magnification) to measure the layer thickness at five points in the observation field. As a result, the average layer thickness was obtained by averaging, and both showed an average layer thickness substantially the same as the target layer thickness shown in Tables 18 and 19.
 また、前記本発明被覆工具31~40、比較被覆工具31~40の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均層厚、平均Al含有割合Xavg、平均Me含有割合Yavg、平均C含有割合Zavg、傾斜角度数分布、周期的濃度変化の差Δx(=Xmax-Xmin)と周期、格子定数a、結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。
 表18、19にその結果を示す。
For the hard coating layers of the inventive coated tools 31 to 40 and comparative coated tools 31 to 40, using the same method as that shown in Example 1, the average layer thickness, the average Al content ratio X avg , the average Me content ratio Y avg , average C content ratio Z avg , inclination angle number distribution, periodic concentration change difference Δx (= X max −X min ) and period, lattice constant a, average grain width W of crystal grains, average aspect The ratio A and the area ratio of the cubic crystal phase in the crystal grains were determined.
Tables 18 and 19 show the results.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31~40、比較被覆工具31~40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
 切削試験:浸炭焼入れ合金鋼の乾式高速断続切削加工、
 被削材:JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:250 m/min、
 切り込み:0.12 mm、
 送り:0.12 mm/rev、
 切削時間:4 分、
 表20に、前記切削試験の結果を示す。
Next, carburizing as shown below for the coated tools 31 to 40 of the present invention and the comparative coated tools 31 to 40 in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test was performed on the quenched alloy steel, and the flank wear width of the cutting edge was measured.
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min,
Incision: 0.12 mm,
Feed: 0.12 mm / rev,
Cutting time: 4 minutes,
Table 20 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例1と同様に、原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As in Example 1, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 1 to 3 μm were prepared as raw material powders. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. WC based cemented carbide tool with ISO standard SEEN1203AFSN insert shape after vacuum sintering in 5 Pa vacuum at a predetermined temperature in the range of 1370-1470 ° C. for 1 hour. Substrates A to C were produced respectively.
 つぎに、これらの工具基体A~Cの表面に、化学蒸着装置を用い、実施例1と同様にして、表4に示される形成条件で、所定時間、熱CVD法を行うことにより、表23に示される(Ti1-x―yAlMe)(C1-z)層を成膜することにより本発明被覆工具41~55を製造した。
 なお、本発明被覆工具45~52については、表3に示される形成条件で、表22に示される下部層、上部層を形成した。
Next, by using a chemical vapor deposition apparatus on the surfaces of these tool bases A to C, a thermal CVD method is performed for a predetermined time under the formation conditions shown in Table 4 in the same manner as in Example 1, so that Table 23 The coated tools 41 to 55 of the present invention were manufactured by forming the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer shown in FIG.
For the inventive coated tools 45 to 52, the lower layer and the upper layer shown in Table 22 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体A~Cの表面に、化学蒸着装置を用い、表21に示される条件かつ表24に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表24に示される比較被覆工具41~55を製造した。
 なお、本発明被覆工具45~52と同様に、比較被覆工具45~52については、表3に示される形成条件で、表22に示される下部層、上部層を形成した。
For comparison purposes, a hard coating layer is similarly applied to the surfaces of the tool bases A to C in the same manner as in the coated tool of the present invention using the chemical vapor deposition apparatus and the conditions shown in Table 21 and the target layer thickness shown in Table 24. Comparative coating tools 41 to 55 shown in Table 24 were manufactured by vapor deposition.
As with the coated tools 45 to 52 of the present invention, the lower and upper layers shown in Table 22 were formed for the comparative coated tools 45 to 52 under the forming conditions shown in Table 3.
 また、本発明被覆工具41~55、比較被覆工具41~55の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表23、表24に示される目標層厚と実質的に同じ平均層厚を示した。
 また、前記本発明被覆工具41~55、比較被覆工具41~55の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均Me含有割合Yavg、平均C含有割合Zavg、傾斜角度数分布、周期的濃度変化の差Δx(=Xmax-Xmin)と周期、格子定数a、結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。
 表23、表24にその結果を示す。
Further, the cross-sections of the constituent layers of the inventive coated tools 41 to 55 and the comparative coated tools 41 to 55 are measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured. When the average layer thickness was obtained on average, both showed the same average layer thickness as the target layer thicknesses shown in Tables 23 and 24.
Further, with respect to the hard coating layers of the inventive coated tools 41 to 55 and the comparative coated tools 41 to 55, the average Al content ratio X avg and the average Me content ratio Y are obtained using the same method as that shown in Example 1. avg , average C content ratio Z avg , inclination angle number distribution, periodic concentration change difference Δx (= X max -X min ) and period, lattice constant a, average grain width W of crystal grains, average aspect ratio A, crystal The area ratio of the cubic crystal phase in the grains was determined.
Tables 23 and 24 show the results.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具41~55、比較被覆工具41~55について、以下に示す、炭素鋼の高速断続切削の一種である湿式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, with respect to the inventive coated tools 41 to 55 and the comparative coated tools 41 to 55, the various coated tools are clamped on a tool steel cutter tip having a cutter diameter of 125 mm by a fixing jig. A wet high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
 工具基体:炭化タングステン基超硬合金
 切削試験:湿式高速正面フライス、センターカット切削加工、
 被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
 回転速度:980 min-1
 切削速度:385 m/min、
 切り込み:1.2 mm、
 一刃送り量:0.12 mm/刃、
 切削油:あり
 切削時間:5 分、
  表25に、切削加工試験結果を示す。
Tool base: Tungsten carbide-based cemented carbide cutting test: wet high-speed face milling, center cut machining,
Work material: Block material of JIS / S55C width 100mm, length 400mm,
Rotational speed: 980 min −1
Cutting speed: 385 m / min,
Cutting depth: 1.2 mm,
Single blade feed: 0.12 mm / tooth,
Cutting oil: Yes Cutting time: 5 minutes
Table 25 shows the cutting test results.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表9、表15、表20および表25に示される結果から、本発明の被覆工具は、TiとAlとMeの複合窒化物または複合炭窒化物の少なくとも立方晶結晶粒を含む硬質被覆層において、該立方晶結晶粒は{110}面配向を示し、柱状組織であって、該結晶粒内には、TiとAlとMeの濃度変化が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Table 9, Table 15, Table 20 and Table 25, the coated tool of the present invention is a hard coating layer containing at least cubic crystal grains of a composite nitride or composite carbonitride of Ti, Al and Me. The cubic crystal grains exhibit {110} plane orientation and have a columnar structure, and the presence of changes in the concentration of Ti, Al, and Me in the crystal grains causes hardness due to distortion of the crystal grains. Improves toughness while maintaining high wear resistance. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.
 これに対して、硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物の少なくとも立方晶結晶粒を含む硬質被覆層において、本発明で規定する要件を備えていないため、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, in the hard coating layer containing at least cubic crystal grains of the composite nitride or composite carbonitride of Ti, Al and Me constituting the hard coating layer, since it does not have the requirements specified in the present invention, When used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads acting on the cutting edge, it is apparent that the life is shortened in a short time due to occurrence of chipping, chipping and the like.
 前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
 1  硬質被覆層
 2  Ti、Al、Meから成る複合窒化物または複合炭窒化物層
 3  工具基体
 4  基体表面
 5  基体表面の法線
 6  {110}面の傾斜角度が0度の法線
 7  {110}面の傾斜角度が45度の法線
 8  {110}面の傾斜角度が45度のときの結晶面
 9  Al含有量が相対的に多い領域
 10  Al含有量が相対的に少ない領域
 11a  極大値1
 11b  極大値2
 11c  極大値3
 12a  極小値1
 12b  極小値2
 12c  極小値3
 12d  極小値4
 13  領域A
 14  領域B
 15  領域AとBとの境界
DESCRIPTION OF SYMBOLS 1 Hard coating layer 2 The composite nitride or composite carbonitride layer which consists of Ti, Al, and Me 3 Tool base | substrate 4 Base | substrate surface 5 Normal of the base | substrate surface 6 Normal whose inclination angle of {110} plane is 0 degree 7 {110 } Normal with 45 ° tilt angle 8 Crystalline plane with {110} tilt angle 45 ° 9 Region with relatively high Al content 10 Region with relatively low Al content 11a Maximum value 1
11b Maximum value 2
11c maximum 3
12a Minimum 1
12b Minimum value 2
12c local minimum 3
12d local minimum 4
13 Area A
14 Area B
15 Boundary between regions A and B

Claims (9)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
     (a)前記硬質被覆層は、平均層厚1~20μmのTiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合XavgおよびMeのTiとAlとMeの合量に占める平均含有割合YavgならびにCのCとNの合量に占める平均含有割合Zavg(但し、Xavg、Yavg、Zavgはいずれも原子比)が、それぞれ、0.60≦Xavg、0.005≦Yavg≦0.10、0≦Zavg≦0.005、0.605≦Xavg+Yavg≦0.95を満足し、
     (b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の相を少なくとも含み、
    (c) 前記複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、
    (d)また、前記NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒内に、組成式:(Ti1-x―yAlMe)(C1-z)におけるTiとAlとMeの周期的な濃度変化が存在し、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03~0.25であり、
    (e)前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、その工具基体表面の法線方向に沿った周期が3~100nmであることを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body,
    (A) The hard coating layer is a composite nitride of Ti, Al, and Me (where Me is a kind of element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 μm or When at least the composite carbonitride layer is included and expressed by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), the Ti of the composite nitride or the composite carbonitride layer The average content ratio X avg in the total amount of Al and Me and Me, the average content ratio Y avg in the total amount of Ti, Al and Me in Me and the average content ratio Z avg in the total amount of C and N in C , X avg , Y avg , and Z avg are all atomic ratios) are 0.60 ≦ X avg , 0.005 ≦ Y avg ≦ 0.10, 0 ≦ Z avg ≦ 0.005, 0.605 ≦ X avg + Y avg ≦ 0.95 is satisfied,
    (B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase of Ti, Al, and Me having a NaCl type face-centered cubic structure,
    (C) Electron beam backscattering of crystal orientation of Ti, Al, and Me composite nitride or composite carbonitride crystal grains having NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer When analyzing from the longitudinal section direction using a diffractometer, the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured, When the inclination angle in the range of 0 to 45 degrees with respect to the line direction is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, 0 to 12 The highest peak exists in the inclination angle section within the range of degrees, and the total of the frequencies existing in the range of 0 to 12 degrees indicates a ratio of 35% or more of the entire degrees in the inclination angle frequency distribution,
    (D) Further, in the crystal grains of the composite nitride or composite carbonitride of Ti, Al, and Me having the NaCl type face-centered cubic structure, the composition formula: (Ti 1-xy Al x Me y ) There is a periodic concentration change of Ti, Al, and Me in (C z N 1-z ), and the average value of the maximum value of the periodically changing x value of the Al content ratio x is expressed as X max , If the average value of the minimum value of the periodically value varying x in proportion x of Al was set to X min, the difference Δx of X max and X min is 0.03-0.25,
    (E) In a crystal grain having a NaCl-type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists, the normal direction of the tool base surface A surface-coated cutting tool, wherein the period along the axis is 3 to 100 nm.
  2.  前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3~100nmであり、その方位に直交する面内でのAlの含有割合xの変化量の最大値ΔXoは0.01以下であること特徴とする請求項1に記載の表面被覆切削工具。 Periodic concentration change of Ti, Al, and Me in a crystal grain having a NaCl type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me exists in the composite nitride or composite carbonitride layer Is present along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the period along the orientation is 3 to 100 nm, and in a plane perpendicular to the orientation. 2. The surface-coated cutting tool according to claim 1, wherein the maximum value ΔXo of the amount of change in the Al content ratio x is 0.01 or less.
  3.  前記複合窒化物または複合炭窒化物層中のTiとAlとMeの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒において、
    (a)TiとAlとMeの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとすると、方位dに沿った周期が3~30nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodは0.01以下である領域A、
    (b)TiとAlとMeの周期的な濃度変化が、方位dと直交する立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dとすると、方位dに沿った周期が3~30nmであり、方位dに直交する面内でのAlの含有割合xの変化量の最大値ΔXodは0.01以下である領域B、
     前記領域Aおよび領域Bが結晶粒内に存在し、前記領域Aと領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることを特徴とする請求項1に記載の表面被覆切削工具。
    In a crystal grain having a NaCl-type face-centered cubic structure in which a periodic concentration change of Ti, Al, and Me in the composite nitride or composite carbonitride layer exists,
    (A) A periodic concentration change of Ti, Al, and Me exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the orientation is defined as an orientation d A Then, the azimuth d cycle along the a is 3 ~ 30 nm, orientation d maximum value of the variation in the content ratio x of Al in a plane perpendicular to the a DerutaXod a region a is 0.01 or less,
    Periodic density variation of (b) Ti, Al and Me is present along one of the orientation of the crystal orientation of the equivalent represented by <001> cubic crystal grains perpendicular to the orientation d A, When the azimuth and azimuth d B, a period is 3 ~ 30 nm along the direction d B, the maximum value DerutaXod B of variation of the proportion x of Al in a plane perpendicular to the direction d B 0.01 Region B, which is
    The region A and the region B exist in a crystal grain, and a boundary between the region A and the region B is formed on one of the equivalent crystal planes represented by {110}. Item 4. The surface-coated cutting tool according to Item 1.
  4.  前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.4aTiN+0.6aAlNの関係を満たすことを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆切削工具。 With respect to the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained. but the feature that the relative cubic TiN lattice constant a TiN and cubic AlN lattice constant a AlN, satisfying the relationship 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN The surface-coated cutting tool according to any one of claims 1 to 3.
  5. 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、該層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする請求項1乃至請求項4のいずれかに記載の表面被覆切削工具。 When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the composite nitride or composite carbonitride of Ti, Al, and Me having a NaCl-type face-centered cubic structure in the layer 5. The columnar structure according to claim 1, wherein the average grain width W of the crystal grains of the product is 0.1 to 2.0 μm and the average aspect ratio A is 2 to 10. Surface coated cutting tool.
  6.  前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の面積割合が70面積%以上であることを特徴とする請求項1乃至請求項4のいずれかに記載の表面被覆切削工具。 The composite nitride or the composite carbonitride layer is characterized in that an area ratio of Ti, Al, and Me composite nitride or composite carbonitride having a NaCl type face-centered cubic structure is 70% by area or more. The surface-coated cutting tool according to any one of claims 1 to 4.
  7.  前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlとMeの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1~20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1乃至6のいずれかに記載の表面被覆切削工具。 Tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and the composite nitride or composite carbonitride layer of Ti, Al, and Me Between the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average layer of 0.1 to 20 μm The surface-coated cutting tool according to any one of claims 1 to 6, wherein a lower layer including a Ti compound layer having a thickness exists.
  8.  前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で存在することを特徴とする請求項1乃至7のいずれかに記載の表面被覆切削工具。 8. The upper layer including at least an aluminum oxide layer is present on the composite nitride or composite carbonitride layer at a total average layer thickness of 1 to 25 μm. Surface coated cutting tool.
  9.  前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至8のいずれかに記載の表面被覆切削工具の製造方法。 9. The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. A method of manufacturing a surface-coated cutting tool.
PCT/JP2015/080225 2014-10-28 2015-10-27 Surface-coated cutting tool WO2016068122A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/522,603 US20170321322A1 (en) 2014-10-28 2015-10-27 Surface coated cutting tool
KR1020177011091A KR20170072897A (en) 2014-10-28 2015-10-27 Surface-coated cutting tool
CN201580058339.XA CN107073593A (en) 2014-10-28 2015-10-27 Surface-coated cutting tool
EP15855606.8A EP3213840A4 (en) 2014-10-28 2015-10-27 Surface-coated cutting tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014219207 2014-10-28
JP2014-219207 2014-10-28
JP2015-208164 2015-10-22
JP2015208164A JP6709526B2 (en) 2014-10-28 2015-10-22 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
WO2016068122A1 true WO2016068122A1 (en) 2016-05-06

Family

ID=55857458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080225 WO2016068122A1 (en) 2014-10-28 2015-10-27 Surface-coated cutting tool

Country Status (1)

Country Link
WO (1) WO2016068122A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034858A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating
JP2003071611A (en) * 2001-06-19 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015147160A1 (en) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 Surface-coated cutting tool and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003071611A (en) * 2001-06-19 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003034858A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance
JP2015157351A (en) * 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015147160A1 (en) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 Surface-coated cutting tool and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3213840A4 *

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP6709526B2 (en) Surface coated cutting tool
JP6617917B2 (en) Surface coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2019010707A (en) Surface-coated cutting tool of which hard coating layer exhibits excellent abrasion resistance and chipping resistance
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2019005855A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016084938A1 (en) Surface-coated cutting tool
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
WO2016068122A1 (en) Surface-coated cutting tool
JP2019115957A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177011091

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855606

Country of ref document: EP