JP7119264B2 - A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance. - Google Patents

A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance. Download PDF

Info

Publication number
JP7119264B2
JP7119264B2 JP2020144979A JP2020144979A JP7119264B2 JP 7119264 B2 JP7119264 B2 JP 7119264B2 JP 2020144979 A JP2020144979 A JP 2020144979A JP 2020144979 A JP2020144979 A JP 2020144979A JP 7119264 B2 JP7119264 B2 JP 7119264B2
Authority
JP
Japan
Prior art keywords
layer
composite
avg
average
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020144979A
Other languages
Japanese (ja)
Other versions
JP2020196128A (en
Inventor
翔 龍岡
賢一 佐藤
光亮 柳澤
真 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2020196128A publication Critical patent/JP2020196128A/en
Application granted granted Critical
Publication of JP7119264B2 publication Critical patent/JP7119264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention is used in high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., which generates high heat and applies an impact load to the cutting edge, and the hard coating layer has excellent chipping resistance. , a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Cr-Al系やTi-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のCr-Al系やTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, in general, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body A coated tool in which a Cr--Al-based or Ti--Al-based composite nitride layer is formed as a hard coating layer by physical vapor deposition on the surface of the tool base (hereinafter collectively referred to as the tool base). These are known to exhibit excellent wear resistance.
However, although the conventional coated tools coated with a Cr-Al-based or Ti-Al-based composite nitride layer are relatively excellent in wear resistance, they may cause abnormalities such as chipping when used under high-speed interrupted cutting conditions. Various proposals have been made to improve the hard coating layer because it is prone to wear.

例えば、特許文献1には、ステンレス鋼やTi合金等の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるために、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の平均層厚を有し、かつ、Ti1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合(原子比)で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶構造を有するTiAl化合物で構成し、中間層は、所定の平均層厚を有し、かつ、Cr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合(原子比)で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶構造を有するCrAl化合物で構成し、上部層を、所定の平均層厚を有するAlで構成することによって、下部層と上部層の密着強度を向上させ、これによって、耐チッピング性および耐摩耗性を向上させることが提案されている。 For example, in Patent Document 1, in order to improve chipping resistance and wear resistance in high-speed interrupted cutting of stainless steel, Ti alloy, etc., a hard coating consisting of a lower layer, an intermediate layer and an upper layer is applied to the surface of the tool substrate. A layer is provided, the lower layer has a predetermined average layer thickness, and is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al The content ratio (atomic ratio) of 0.65 ≤ X ≤ 0.95) is composed of a TiAl compound having a cubic crystal structure consisting of one or more layers, and the intermediate layer has a predetermined average layer thickness and a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, and a Cr 1-Y Al Y CN layer (Y is the Al content ratio (atomic ratio), and 0.60 ≤ Y ≤ 0.90) , the lower layer and the It has been proposed to improve the adhesion strength of the top layer, thereby improving chipping and abrasion resistance.

また、特許文献2には、析出硬化系ステンレス鋼やインコネル等の耐熱合金の高速断続切削加工における耐チッピング性および耐摩耗性を向上させるため、工具基体表面に、下部層、中間層及び上部層からなる硬質被覆層を設け、下部層は、所定の一層平均層厚のTi1-XAlN層、Ti1-XAlC層、Ti1-XAlCN層(Xは、Alの含有割合を示し原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成し、中間層は、所定の一層平均層厚のCr1-YAlN層、Cr1-YAlC層、Cr1-YAlCN層(Yは、Alの含有割合を示し原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成し、また、上部層は所定の孔径と空孔密度の微小空孔と平均層厚を有するAlで構成することにより、下部層と上部層の密着強度を向上させるとともに、上部層を所定の孔径と空孔密度の微小空孔を有するAl層とすることにより、機械的、熱的衝撃の緩和を図り、もって、耐チッピング性および耐摩耗性を向上させることが提案されている。 In addition, Patent Document 2 discloses that a lower layer, an intermediate layer and an upper layer are applied to the surface of a tool substrate in order to improve chipping resistance and wear resistance in high-speed interrupted cutting of heat-resistant alloys such as precipitation hardened stainless steel and Inconel. The lower layer is a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (X is Al is composed of a Ti compound having a cubic crystal structure consisting of one or more layers of 0.65 ≤ X ≤ 0.95), and the intermediate layer is a predetermined average layer A thick Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, and a Cr 1-Y Al Y CN layer (Y indicates the content of Al, and the atomic ratio is 0.60≦Y≦0.60). 90), composed of a Cr compound having a cubic crystal structure consisting of one or more layers, and the upper layer is Al 2 O 3 having micropores with a predetermined pore diameter and pore density and an average layer thickness By configuring with, the adhesion strength between the lower layer and the upper layer is improved, and by making the upper layer an Al 2 O 3 layer having micropores with a predetermined pore diameter and pore density, mechanical and thermal It has been proposed to reduce the impact and thereby improve chipping resistance and wear resistance.

さらに、特許文献3には、切刃に対して高負荷が作用する鋼や鋳鉄の重切削加工における硬質被覆層の耐欠損性を高めるために、工具基体表面に、(Al1-XCr)N(ただし、Xは原子比で、X=0.3~0.6)層からなる硬質被覆層を設け、工具基体の表面研磨面の法線に対して、{100}面の法線がなす傾斜角を測定して作成した傾斜角度数分布グラフにおいて、30~40度の傾斜角区分に最高ピークが存在し、その度数合計が、全体の60%以上であり、また、表面研磨面の法線に対して、{112}面の法線がなす傾斜角を測定して作成した構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、その分布割合が全体の50%以上である結晶配向性と構成原子共有格子点分布形態を形成することにより、(Al1-XCr)N層の高温強度を向上させ、もって、重切削加工における硬質被覆層の耐欠損性を向上させることが提案されている。 Furthermore, Patent Document 3 discloses that (Al 1-X Cr X ) N (where X is the atomic ratio, and X=0.3 to 0.6) layer is provided, and the normal line of the {100} plane is provided with respect to the normal line of the polished surface of the tool substrate. In the inclination angle number distribution graph created by measuring the inclination angle formed by, the highest peak exists in the inclination angle section of 30 to 40 degrees, the total frequency is 60% or more of the whole, and the surface polished surface In the constituent atom sharing lattice point distribution graph created by measuring the tilt angle formed by the normal of the {112} plane with respect to the normal of The high-temperature strength of the (Al 1-X Cr X )N layer is improved by forming the crystal orientation and the lattice point distribution morphology shared by the constituent atoms, thereby improving the chipping resistance of the hard coating layer in heavy cutting. It is proposed to improve

また、特許文献4には、工具基体と、その基体上に形成された硬質被覆層とを備える表面被覆切削工具であって、硬質被覆層は、AlまたはCrのいずれか一方または両方の元素と、周期律表4a,5a,6a族元素およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことにより、硬質被覆層の耐摩耗性と耐酸化性とを飛躍的に向上することが開示されている。 Further, Patent Document 4 discloses a surface-coated cutting tool comprising a tool substrate and a hard coating layer formed on the substrate, wherein the hard coating layer contains either one or both of Al and Cr. , at least one element selected from the group consisting of Groups 4a, 5a, and 6a of the periodic table and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron. and chlorine, the wear resistance and oxidation resistance of the hard coating layer are dramatically improved.

また、例えば、特許文献5には、TiCl、AlCl、NHの混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65~0.95である(Ti1-xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであって、xの値を0.65~0.95まで高めた(Ti1-xAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。 Further, for example, in Patent Document 5, chemical vapor deposition is performed in a mixed reaction gas of TiCl 4 , AlCl 3 and NH 3 in a temperature range of 650 to 900° C. to reduce the Al content ratio x to 0.00. 65-0.95 (Ti 1-x Al x )N layer can be deposited, but this document also mentions Al 2 O on top of this (Ti 1-x Al x )N layer. By forming a (Ti 1-x Al x )N layer with a three -layer coating and thereby increasing the thermal insulation effect, with the value of x increased from 0.65 to 0.95, There is no disclosure as to what effect it has on cutting performance.

また、特許文献6には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶結晶構造あるいは六方晶結晶構造を含む立方晶結晶構造の(Ti1-xAl)N層(但し、xは0.65~0.9)を外層として被覆するとともに、該外層に100~1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, in Patent Document 6, a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a (Ti 1-x Al x )N layer (where x is 0.65 to 0.9) is coated as an outer layer, and a compressive stress of 100 to 1100 MPa is applied to the outer layer to improve the heat resistance and fatigue strength of the coated tool. It is proposed to

特開2014-208394号公報JP 2014-208394 A 特開2014-198362号公報JP 2014-198362 A 特開2009-56539号公報JP 2009-56539 A 特開2006-82207号公報Japanese Patent Application Laid-Open No. 2006-82207 特表2011-516722号公報Japanese translation of PCT publication No. 2011-516722 特表2011-513594号公報Japanese Patent Publication No. 2011-513594

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1、2に記載されている被覆工具は、硬質被覆層の中間層として、CrAl化合物、Cr化合物を介在形成することにより、下部層と上部層の密着強度を向上させ、耐チッピング性の改善を図っているものの、CrAl化合物、Cr化合物自体の強度・硬さが十分でないため、高速断続切削加工に供した場合には、耐チッピング性、耐摩耗性が十分であるとはいえない。
また、前記特許文献3に記載されている被覆工具においては、(Al1-XCr)Nからなる硬質被覆層のCr含有割合を調整し、また、結晶配向性と構成原子共有格子点分布形態を制御することにより、硬質被覆層の強度を向上させることができ、その結果、耐チッピング性、耐欠損性を高めることはできるものの、やはり(Al1-XCr)N層の強度・硬さが十分でないため、長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮することはできず、合金鋼の高速断続切削においては工具寿命が短命であるという問題があった。
また、前記特許文献4に記載されている被覆工具は、耐摩耗性、耐酸化特性を向上させることを意図しているが、高速断続切削等の衝撃が伴うような切削条件下では、耐チッピング性が十分でないという課題があった。
また、前記特許文献5に記載されている化学蒸着法で蒸着形成した(Ti1-xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、靭性に劣るという課題があった。
さらに、前記特許文献6に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
そこで、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、すぐれた耐摩耗性を相兼ね備える被覆工具が求められている。
In recent years, there has been a strong demand for labor saving and energy saving in cutting. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance over long-term use is also required.
However, in the coated tools described in Patent Documents 1 and 2, the adhesion strength between the lower layer and the upper layer is improved by interposing a CrAl compound and a Cr compound as an intermediate layer of the hard coating layer, thereby improving the durability. Despite efforts to improve chipping resistance, the strength and hardness of the CrAl compound and Cr compound themselves are not sufficient. I can't say
In addition, in the coated tool described in Patent Document 3, the Cr content ratio of the hard coating layer made of (Al 1-X Cr X )N is adjusted, and the crystal orientation and the constituent atom shared lattice point distribution By controlling the morphology, the strength of the hard coating layer can be improved, and as a result, the chipping resistance and fracture resistance can be improved, but the strength and strength of the (Al 1-X Cr X )N layer Since the hardness is not sufficient, excellent chipping resistance and wear resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed interrupted cutting of alloy steel.
In addition, the coated tool described in Patent Document 4 is intended to improve wear resistance and oxidation resistance, but under cutting conditions that involve impact such as high-speed interrupted cutting, chipping resistance There was a problem that the sex was not enough.
In addition, in the (Ti 1-x Al x )N layer formed by chemical vapor deposition described in Patent Document 5, the content x of Al can be increased and a cubic crystal structure can be formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the toughness is inferior.
Furthermore, although the coated tool described in Patent Document 6 has a predetermined hardness and is excellent in wear resistance, it is inferior in toughness. However, there is a problem that abnormal damage such as chipping, chipping, and peeling is likely to occur, and satisfactory cutting performance cannot be said to be exhibited.
Therefore, in high-speed interrupted cutting of carbon steel, alloy steel, cast iron, etc. with high heat generation and impact load acting on the cutting edge, the hard coating layer has excellent chipping resistance and excellent wear resistance. There is a demand for a coated tool that combines

そこで、本発明者らは、上記の観点から、工具基体表面に、少なくともCrとAlの複合窒化物または複合炭窒化物(以下、「(Cr,Al)(C,N)」あるいは「(Cr1-xAl)(C1-y)」で示すことがある)を含む硬質被覆層を設けた被覆工具、および、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1-αAlα)(Cγ1-γ)」で示すことがある)を含む硬質被覆層を設けた被覆工具の耐チッピング性の向上と耐摩耗性の向上をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 Therefore, from the above viewpoint, the present inventors have found that at least a composite nitride or composite carbonitride of Cr and Al (hereinafter referred to as "(Cr, Al) (C, N)" or "(Cr 1-x Al x ) (C y N 1-y )”), and a composite nitride or composite carbonitride of at least Ti and Al (hereinafter referred to as Chipping resistance of a coated tool provided with a hard coating layer containing "(Ti, Al) (C, N)" or "(Ti 1-α Al α ) (C γ N 1-γ )") As a result of intensive research aimed at improving the durability and wear resistance, the following findings were obtained.

即ち、従来の少なくとも1層の(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の異方性が高くなるほど(Cr1-xAl)(C1-y)層、または、(Ti1-αAlα)(Cγ1-γ)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層を構成する(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層について鋭意研究したところ、(Cr1-xAl)(C1-y)層、および、(Ti1-αAlα)(Cγ1-γ)層にSi、Zr、B、V、Crの中から選ばれる一種の元素(以下、「Me」で示す。)を含有させた(Ti1-α―βAlαMeβ)(Cγ1-γ)層がNaCl型の面心立方構造(以下、単に、「立方晶構造」という場合もある)を有する結晶粒を含有し該立方晶構造を有する結晶粒の結晶粒内平均方位差を2度以上とするという全く新規な着想により、立方晶構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、(Cr1-xAl)(C1-y)層においては、硬質被覆層の耐チッピング性とともに耐摩耗性を向上させることができるという新規な知見を見出し、また、(Ti1-α―βAlαMeβ)(Cγ1-γ)層においては、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, it includes at least one conventional (Cr 1-x Al x ) (C y N 1-y ) layer or (Ti 1-α Al α )(C γ N 1-γ ) layer, and a predetermined The hard coating layer having an average layer thickness of (Cr 1-x Al x ) (C y N 1-y ) layer or (Ti 1-α Al α ) (C γ N 1-γ ) layer is the tool When it is formed in a columnar shape perpendicular to the substrate, it has high abrasion resistance. On the other hand, the higher the anisotropy of the (Cr 1-x Al x ) (C y N 1-y ) layer or the (Ti 1-α Al α ) (C γ N 1-γ ) layer, the higher the (Cr 1 -x Al x ) (C y N 1-y ) layer or (Ti 1-α Al α ) (C γ N 1-γ ) layer is reduced in toughness, resulting in chipping resistance and fracture resistance. However, it cannot be said that sufficient wear resistance can be exhibited over a long period of use, and that the tool life is also unsatisfactory.
Therefore, the present inventors have investigated (Cr 1-x Al x ) (C y N 1-y ) layers and (Ti 1-α Al α ) (C γ N 1-γ ) layers that constitute the hard coating layer. As a result of intensive research on the layers , Si , Zr , B , V, and Cr (hereinafter referred to as “Me”) containing (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer is NaCl type It contains crystal grains having a face-centered cubic structure (hereinafter sometimes simply referred to as “cubic crystal structure”), and the average orientation difference within the crystal grains of the crystal grains having the cubic crystal structure is 2 degrees or more. With a new idea, we succeeded in increasing both hardness and toughness by inducing strain in grains having a cubic crystal structure, and as a result, (Cr 1-x Al x )(C y N 1-y ) As for the layer, we found a new finding that it is possible to improve the wear resistance as well as the chipping resistance of the hard coating layer . As for the layer, the inventors have found new knowledge that the chipping resistance and fracture resistance of the hard coating layer can be improved.

具体的には、
(1)硬質被覆層が、少なくともCrとAlの複合窒化物または複合炭窒化物層を含むものとして構成され、該層は、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で40%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、(Cr1-xAl)(C1-y)層の硬さと靭性が高まり、その結果、耐チッピング性とともに耐摩耗性が向上することを見出し、また、
(2)硬質被覆層が、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で40%以上存在することにより、立方晶構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、(Ti1-α―βAlαMeβ)(Cγ1-γ)層の硬さと靭性が高まり、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
In particular,
(1) The hard coating layer is configured to include at least a composite nitride or composite carbonitride layer of Cr and Al, and the layer has a composition formula: (Cr 1-x Al x ) (C y N 1- y ), in particular, the average content ratio x avg of Al in the total amount of Cr and Al and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are either atomic ratio) satisfy 0.70 ≤ x avg ≤ 0.95 and 0 ≤ y avg ≤ 0.005, respectively, and have a cubic crystal structure in the crystal grains constituting the composite nitride or composite carbonitride layer When the crystal orientation of the crystal grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device and the average orientation difference within the crystal grain is obtained, the average orientation within the crystal grain Crystal grains exhibiting a difference of 2 degrees or more are present in an area ratio of 40% or more of the composite nitride or composite carbonitride layer, so that the crystal grains having a cubic crystal structure are distorted, and the conventional hard coating layer In comparison, the hardness and toughness of the (Cr 1-x Al x )(C y N 1-y ) layer are increased, resulting in improved wear resistance as well as chipping resistance.
(2) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me (where Me is one element selected from Si, Zr, B, V, and Cr). , the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), in particular, the average content ratio of Al to the total amount of Ti, Al and Me α avg and Me The average content ratio β avg of C in the total amount of Ti, Al and Me and the average content ratio γ avg of C in the total amount of C and N (where α avg , β avg , and γ avg are all atomic ratios) , respectively, satisfying 0.60≦α avg , 0.005≦β avg ≦0.10, 0≦γ avg ≦0.005, 0.605≦α avgavg ≦0.95, and a composite nitride or Some crystal grains constituting the composite carbonitride layer have a cubic crystal structure, and the crystal orientation of the crystal grains is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffraction device, and the crystals of the individual crystal grains. When the average orientation difference within the grain is determined, the crystal grains exhibiting the average orientation difference within the grain of 2 degrees or more are present in an area ratio of the composite nitride or composite carbonitride layer of 40% or more. The grains having the _ It has been found that chipping resistance and fracture resistance are improved, and excellent wear resistance is exhibited over a long period of time.

そして、前述のような構成の(Cr1-xAl)(C1-y)層、および、(Ti1-α―βAlαMeβ)(Cγ1-γ)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。 Then, the (Cr 1-x Al x ) (C y N 1-y ) layer and the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer having the above configuration are For example, the film can be formed by the following chemical vapor deposition method in which the reaction gas composition is periodically changed on the tool substrate surface.

(1)(Cr1-xAl)(C1-y)層について
用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、CrCl、AlCl、Al(CH、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(イ)ガス群A、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bと時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(イ)ガス群Aを主とする混合ガス、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bを主とする混合ガス、と時間的に変化させることでも実現する事が可能である。
工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:750~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Cr1-xAl)(C1-y)層を成膜する。
(1) For the (Cr 1-x Al x )(C y N 1-y ) layer The chemical vapor deposition reactor used contains gas group A consisting of NH 3 and H 2 and CrCl 3 , AlCl 3 , Al(CH 3 ) A gas group B consisting of 3 , N 2 and H 2 is supplied into the reactor from separate gas supply pipes, and the supply of gas group A and gas group B into the reactor is, for example, at a constant cycle The gas is supplied so as to flow for a period of time shorter than the cycle, and the gas supply of the gas group A and the gas group B is caused to have a phase difference shorter than the gas supply time. The composition of the reaction gas on the surface can be temporally changed to (a) gas group A, (b) a mixed gas of gas group A and gas group B, and (c) gas group B. By the way, in the present invention, there is no need to introduce a long-time evacuation process intended for strict gas replacement. Therefore, as a gas supply method, for example, by rotating the gas supply port, rotating the tool base, or reciprocating the tool base, the reaction gas composition on the surface of the tool base is changed to (a) gas group A (b) a mixed gas of gas group A and gas group B; (c) a mixed gas mainly of gas group B;
On the surface of the tool substrate, the reaction gas composition (% by volume of the total gas group A and gas group B) is added, for example, gas group A is NH 3 : 2.0 to 3.0%, H 2 : 65 to 75. %, gas group B: AlCl 3 : 0.6 to 0.9%, CrCl 3 : 0.2 to 0.3%, Al(CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 ~15.0%, H 2 : balance, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 750 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to By performing the thermal CVD method for a predetermined time with a phase difference of 0.25 seconds between the supply of gas group A and gas group B of 0.10 to 0.20 seconds, a predetermined target layer thickness of (Cr 1-x Al x ) Deposit a (C y N 1-y ) layer.

そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、その結果、硬さが向上し、その結果、特に、耐摩耗性が改善され、切刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に供した場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 As described above, gas group A and gas group B are supplied so that there is a difference in the time it takes to reach the surface of the tool substrate. High-speed cutting of alloy steels, etc., where a local distortion of the crystal lattice is formed, as a result of which the hardness is improved, and as a result, the wear resistance is improved, and the cutting edge is subjected to intermittent and impact loads. It was found that the hard coating layer can exhibit excellent cutting performance over a long period of use even when subjected to cutting.

(2)(Ti1-α―βAlαMeβ)(Cγ1-γ)層について
用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(Meの塩化物)、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、ガス群A(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群B(第三反応ガス)と時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、ガス群Aを主とする混合ガス(第一反応ガス)、ガス群Aとガス群Bの混合ガス(第二反応ガス)、ガス群Bを主とする混合ガス(第三反応ガス)と時間的に変化させることでも実現する事が可能である。
工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、MeCl(Meの塩化物):0.1~0.2%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1-α―βAlαMeβ)(Cγ1-γ)層を成膜する。
(2) (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer The chemical vapor deposition reactor used contains gas group A consisting of NH 3 and H 2 , TiCl 4 , Al ( Gas group B consisting of CH 3 ) 3 , AlCl 3 , MeCl n (Me chloride), N 2 , and H 2 is supplied into the reactor from separate gas supply pipes, and gas group A and gas group B The gas is supplied into the reactor, for example, at a time interval of a certain cycle, and the gas is supplied so as to flow for a time period shorter than the cycle. The composition of the reaction gas on the surface of the tool substrate is divided into gas group A (first reaction gas), mixed gas of gas group A and gas group B (second reaction gas), gas group B (the third reaction gas) can be changed over time. By the way, in the present invention, there is no need to introduce a long-time evacuation process intended for strict gas replacement. Therefore, as a gas supply method, for example, by rotating the gas supply port, rotating the tool base, or reciprocating the tool base, the reaction gas composition on the surface of the tool base is changed mainly to gas group A. mixed gas (first reaction gas), mixed gas of gas group A and gas group B (second reaction gas), and mixed gas mainly composed of gas group B (third reaction gas). Realization is possible.
On the surface of the tool substrate, the reaction gas composition (% by volume of the total gas group A and gas group B) is added, for example, gas group A is NH 3 : 2.0 to 3.0%, H 2 : 65 to 75. %, AlCl 3 as gas group B: 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, MeCl n (chloride of Me): 0.1 to 0.2%, Al ( CH 3 ) 3 : 0 to 0.5%, N 2 : 12.5 to 15.0%, H 2 : balance, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900°C, Thermal CVD is performed for a predetermined time with a supply cycle of 1 to 5 seconds, a gas supply time of 0.15 to 0.25 seconds per cycle, and a phase difference between the gas group A and the gas group B of 0.10 to 0.20 seconds. A (Ti 1-α-β Al α Me β )(C γ N 1-γ ) layer having a predetermined target layer thickness is formed by performing the method.

そして、前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、その結果、靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 As described above, gas group A and gas group B are supplied so that there is a difference in the time it takes to reach the surface of the tool substrate. It has been found that a local distortion of the crystal lattice is formed, resulting in a dramatic improvement in toughness. As a result, the fracture resistance and chipping resistance are particularly improved, and even when used for high-speed interrupted cutting of alloy steel, etc., where intermittent and impact loads are applied to the cutting edge, the hard coating layer can be used for a long time. It has been found that excellent cutting performance can be exhibited over use.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1~20μmのTiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
その組成を、
組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で40%以上存在することを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMe複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする(1)または(2)記載の表面被覆切削工具。
(4) 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする(1)乃至(4)のいずれかに記載の表面被覆切削工具。
(6) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
なお、“結晶粒内平均方位差”とは、後述するGOS(Grain Orientation Spread)値のことを意味する。
The present invention was made based on the above findings,
"(1) A surface coating in which a hard coating layer is formed on the surface of a tool substrate made of any one of a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, and a cubic boron nitride-based ultra-high pressure sintered body. In cutting tools,
(a) the hard coating layer is a composite nitride of Ti , Al, and Me (where Me is one element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 μm; or including at least a composite carbonitride layer,
its composition,
When represented by the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), the proportion of Al in the composite nitride or composite carbonitride layer to the total amount of Ti, Al, and Me The average content ratio α avg , the average content ratio β avg of Me in the total amount of Ti, Al, and Me, and the average content ratio γ avg of C in the total amount of C and N (where α avg , β avg , γ avg are atomic ratios) are respectively 0.60 ≤ α avg , 0.005 ≤ β avg ≤ 0.10, 0 ≤ γ avg ≤ 0.005, 0.605 ≤ α avg + β avg ≤ 0.95 satisfied,
(b) the composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure;
(c) The crystal orientation of the crystal grains of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or composite carbonitride layer is determined by electron beam backscattering. When the average misorientation in each crystal grain is obtained by analyzing from the longitudinal cross-sectional direction using a diffractometer, the crystal grains exhibiting the average misorientation in the crystal grain of 2 degrees or more are composite nitrides or composite carbons. A surface-coated cutting tool, wherein the nitride layer is present in an area ratio of 40% or more of the total area.
(2) The composite nitride or composite carbonitride layer is composed of a single phase of a composite nitride or composite carbonitride of Ti, Al, and Me having a NaCl-type face-centered cubic structure (1 ), the surface-coated cutting tool described in .
(3) The composite nitride or composite carbonitride layer contains at least 70 area % or more of a composite nitride or composite carbonitride phase of Ti, Al, and Me having a NaCl-type face-centered cubic structure. The surface-coated cutting tool according to (1) or (2).
(4) Between the tool substrate and the composite nitride or composite carbonitride layer, one layer of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, or A surface-coated cutting tool according to any one of (1) to (3), characterized in that there is a lower layer consisting of two or more Ti compound layers and having a total average layer thickness of 0.1 to 20 μm.
(5) An upper layer containing at least an aluminum oxide layer is formed on the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm (1) to (4) ) The surface-coated cutting tool according to any one of ).
(6) Any one of (1) to (5), wherein the composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. A method for manufacturing a surface-coated cutting tool. ”
It is characterized by
The term "average orientation difference within crystal grains" means a GOS (Grain Orientation Spread) value, which will be described later.

本発明の参考の被覆工具の態様である表面被覆切削工具(以下、「本発明の参考被覆工具」ともいう)では、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、平均層厚1~20μmのCrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Cr1-xAl)(C1-y)で表した場合、特に、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で40%以上存在することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さと靭性が向上し、その結果、耐チッピング性を損なうことなく耐摩耗性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
また、前記工具基体の表面に、硬質被覆層を設けた本発明の実施形態(態様)である表面被覆切削工具(以下、「本発明被覆工具」または「本発明の切削工具」ともいう。)において、硬質被覆層は、平均層厚1~20μmのTiとAlとMeの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合、特に、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合該結晶粒内平均方位差が2度以上を示す結晶粒が複合窒化物または複合炭窒化物層全体に対して面積割合で40%以上存在することによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さおよび靭性が向上する。その結果、耐摩耗性を損なうことなく耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
In the surface-coated cutting tool, which is an embodiment of the reference coated tool of the present invention (hereinafter also referred to as "the reference coated tool of the present invention") , the surface-coated cutting tool in which a hard coating layer is provided on the surface of the tool substrate, The coating layer includes at least a composite nitride or composite carbonitride layer of Cr and Al with an average layer thickness of 1 to 20 μm, and is represented by the composition formula: (Cr 1-x Al x ) (C y N 1-y ) In particular, the average content ratio x avg of Al in the total amount of Cr and Al and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are both atomic ratios) are , respectively satisfying 0.70 ≤ x avg ≤ 0.95 and 0 ≤ y avg ≤ 0.005, and a NaCl type face-centered cubic structure in the crystal grains constituting the composite nitride or composite carbonitride layer When the crystal orientation of the crystal grain is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device to obtain the average orientation difference in the crystal grain of each crystal grain, the average orientation in the crystal grain When crystal grains exhibiting a difference of 2 degrees or more exist in an area ratio of 40% or more with respect to the entire composite nitride or composite carbonitride layer, strain occurs in the crystal grains having a cubic crystal structure. As a result, the effect of improving wear resistance without impairing chipping resistance is exhibited, and compared to conventional hard coating layers, excellent cutting performance over long periods of use is exhibited, and the long life of the coated tool is achieved.
Further, a surface-coated cutting tool (hereinafter also referred to as " coated tool of the present invention" or "cutting tool of the present invention" ), which is an embodiment (mode) of the present invention, in which a hard coating layer is provided on the surface of the tool substrate. , the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Me with an average layer thickness of 1 to 20 μm, and has a composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ), in particular, the average content ratio α avg of Al to the total amount of Ti, Al, and Me in the composite nitride or composite carbonitride layer and the total amount of Ti, Al, and Me of Me The average content ratio β avg in the amount and the average content ratio γ avg of C in the total amount of C and N (where α avg , β avg , and γ avg are all atomic ratios) are each 0.60 ≤ α avg , 0.005 ≤ β avg ≤ 0.10, 0 ≤ γ avg ≤ 0.005, 0.605 ≤ α avg + β avg ≤ 0.95, and constitutes a composite nitride or composite carbonitride layer Some crystal grains have a cubic crystal structure, and the crystal orientation of the crystal grains was analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffraction device to obtain the average orientation difference within each crystal grain. In this case, crystal grains exhibiting an average misorientation in the crystal grains of 2 degrees or more are present in an area ratio of 40% or more of the entire composite nitride or composite carbonitride layer, so that the crystal grains having a cubic crystal structure Due to the strain, the hardness and toughness of the grains are improved. As a result, the chipping resistance is improved without impairing the wear resistance. Longevity is achieved.

本発明の参考被覆工具の実施形態(態様)としてのCrとAlの複合窒化物もしくは複合炭窒化物層、または、本発明被覆工具のTiとAlとMeの複合窒化物もしくは複合炭窒化物層のNaCl型の面心立方構造(立方晶)を有する結晶粒の結晶粒内平均方位差の測定方法の概略説明図を示す。A composite nitride or composite carbonitride layer of Cr and Al as an embodiment (aspect) of the reference coated tool of the present invention, or a composite nitride or composite carbonitride layer of Ti, Al and Me of the coated tool of the present invention 1 is a schematic illustration of a method for measuring the average misorientation in crystal grains of crystal grains having an NaCl-type face-centered cubic structure (cubic crystal). 本発明の参考被覆工具の実施形態(態様)が有する硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物、または、本発明被覆工具の態様としてのTiとAlとMeの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。A composite nitride or composite carbonitride layer of Cr and Al that constitutes the hard coating layer of the embodiment (aspect) of the reference coated tool of the present invention, or a layer of Ti, Al, and Me as an aspect of the coated tool of the present invention FIG. 2 is a schematic diagram of a film configuration, schematically showing a cross section of a composite nitride or composite carbonitride layer. 本発明の参考被覆工具の実施形態(態様)としての硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS)の面積割合を示すヒストグラムの一例を示す。 なお、ヒストグラム中の垂直方向の点線は結晶粒内平均方位差が2°の境界線を示し、図中においてこの垂直方向の点線よりも右側のバーは、結晶粒内平均方位差が2°以上のものを示す。以下、図4から図6においても同様である。In the cross section of the composite nitride or composite carbonitride layer of Cr and Al that constitutes the hard coating layer as an embodiment (aspect) of the reference coated tool of the present invention, it has a NaCl type face-centered cubic structure (cubic crystal) An example of a histogram showing the area ratio of the grain intra-grain mean misorientation (GOS) of individual grains is shown. The vertical dotted line in the histogram indicates the boundary line where the average orientation difference within the crystal grain is 2°, and the bar on the right side of the vertical dotted line in the figure indicates the average orientation difference within the crystal grain of 2° or more. of the The same applies to FIGS . 4 to 6 below. 本発明の参考被覆工具の比較例である参考比較被覆工具の硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS)の面積割合を示すヒストグラムの一例を示す。NaCl-type face-centered cubic structure (cubic crystal) in the cross section of the composite nitride or composite carbonitride layer of Cr and Al constituting the hard coating layer of the reference comparative coated tool, which is a comparative example of the reference coated tool of the present invention. 1 shows an example of a histogram showing the area ratio of grain average misorientation (GOS) of individual grains having . 本発明の実施態様に該当する本発明被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合を示すヒストグラムの一例を示すものである。In the cross section of the composite nitride or composite carbonitride layer of Ti, Al and Me that constitutes the hard coating layer of the coated tool of the present invention, which corresponds to an embodiment of the present invention, a NaCl type face-centered cubic structure (cubic crystal) is formed. 1 shows an example of a histogram showing the area ratio of the average misorientation (GOS value) in crystal grains of individual crystal grains. 本発明被覆工具の比較例である比較被覆工具の硬質被覆層を構成するTiとAlとMeの複合窒化物または複合炭窒化物層の断面において、NaCl型の面心立方構造(立方晶)を有する個々の結晶粒の結晶粒内平均方位差(GOS値)の面積割合を示すヒストグラムの一例を示すものである。In the cross section of the composite nitride or composite carbonitride layer of Ti, Al and Me that constitutes the hard coating layer of the comparative coated tool, which is a comparative example of the coated tool of the present invention , a NaCl type face-centered cubic structure (cubic crystal) is formed. 1 shows an example of a histogram showing the area ratio of the average orientation difference (GOS value) within crystal grains of individual crystal grains.

以下、本発明の参考実施形態である本発明の参考被覆工具および本発明の実施形態である本発明被覆工具について詳述する。Hereinafter, the reference coated tool of the present invention, which is a reference embodiment of the present invention, and the coated tool of the present invention, which is an embodiment of the present invention, will be described in detail.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
本発明の参考実施形態である硬質被覆層は、化学蒸着された前記組成式:(Cr1-xAl)(C1-y)で表されるCrとAlの複合窒化物もしくは複合炭窒化物層を少なくとも含み、また、本発明の実施形態である硬質被覆層は、化学蒸着された前記組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表されるTiとAlとMeの複合窒化物もしくは複合炭窒化物層を少なくとも含む。これらの複合窒化物または複合炭窒化物層は、高温硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1~20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmをえると、その複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
したがって、その平均層厚を1~20μmと定めた。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
The hard coating layer, which is a reference embodiment of the present invention, is a composite nitride or composite of Cr and Al represented by the chemical vapor deposition composition formula: (Cr 1-x Al x ) (C y N 1-y ) The hard coating layer, which includes at least a carbonitride layer and is an embodiment of the present invention, is chemically vapor-deposited with the composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) contains at least a composite nitride or composite carbonitride layer of Ti, Al and Me represented by These composite nitride or composite carbonitride layers have high high-temperature hardness and excellent wear resistance, and the effect is conspicuous especially when the average layer thickness is 1 to 20 μm. The reason for this is that if the average layer thickness is less than 1 μm, the layer thickness is too thin to ensure sufficient wear resistance over long-term use, while if the average layer thickness exceeds 20 μm, the This is because the crystal grains of the composite nitride or composite carbonitride layer tend to coarsen, and chipping tends to occur.
Therefore, the average layer thickness was set to 1 to 20 μm.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
(1)本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層について
組成式:(Cr1-xAl)(C1-y)で表した場合、AlのCrとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.70≦xavg≦0.95、0≦yavg≦0.005を満足するように制御することが好ましい。
その理由は、Alの平均含有割合xavgが0.70未満であると、CrとAlの複合窒化物または複合炭窒化物層の高温硬さは十分ではなく、耐酸化性にも劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、相対的にCrの平均含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合xavgは、0.70≦xavg≦0.95と定めた。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合(原子比)yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、C成分の平均含有割合yavgは、0≦yavg≦0.005と定めた。
(2)本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層について
組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ)で表した場合(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)、AlのTiとAlとMeの合量に占める平均含有割合αavgおよびMeのTiとAlとMeの合量に占める平均含有割合βavgならびにCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足するように制御することが好ましい。
その理由は、Alの平均含有割合αavgが0.60未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。
また、Meの平均含有割合βavgが0.005未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層2の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、0.10を超えると粒界へのMeの偏析等により、TiとAlとMeの複合窒化物または複合炭窒化物層の靭性が低下し、合金鋼等の高速断続切削に供した場合には、耐チッピング性が十分でない。したがって、Meの平均含有割合βavgは、0.005≦βavg≦0.10と定めた。
一方、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgが0.605未満であると、TiとAlとMeの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合αavgとMeの平均含有割合βavgとの和αavg+βavgは、0.605≦αavg+βavg≦0.95と定めた。
ここで、Meの具体的な成分としては、Si、Zr、B、V、Crの中から選ばれる一種の元素を使用する。
Meとして、βavgが0.005以上になるようにSi成分あるいはB成分を使用した場合には、複合窒化物または複合炭窒化物層の硬さが向上するため耐摩耗性の向上が図られ、Zr成分は結晶粒界を強化する作用を有し、また、V成分は靭性を向上することから、耐チッピング性のより一層の向上が図られ、Cr成分は耐酸化性を向上させることから、工具寿命のよりいっそう長寿命化が期待される。しかし、いずれの成分も、平均含有割合βavgが0.10を超えると、相対的にAl成分、Ti成分の平均含有割合が減少することから、耐摩耗性あるいは耐チッピング性が低下傾向を示すようになるため、βavgが0.10を超えるような平均含有割合となることは避けなければならない。
また、複合窒化物または複合炭窒化物層に含まれるCの平均含有割合(原子比)γavgは、0≦γavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合γavgが0≦γavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合γavgは、0≦γavg≦0.005と定めた。
Composition of the composite nitride or composite carbonitride layer constituting the hard coating layer:
( 1 ) Composite nitride or composite carbonitride layer of Cr and Al , which is a reference embodiment of the present invention. The average content ratio x avg of C in the total amount of Cr and Al, and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are both atomic ratios) are 0.5. It is preferable to control so as to satisfy 70≦x avg ≦0.95 and 0≦y avg ≦0.005.
The reason for this is that if the average Al content x avg is less than 0.70, the high-temperature hardness of the composite nitride or composite carbonitride layer of Cr and Al is insufficient and the oxidation resistance is also poor. Wear resistance is not sufficient when subjected to high-speed interrupted cutting of alloy steel or the like. On the other hand, when the average Al content x avg exceeds 0.95, the average Cr content decreases relatively, which causes embrittlement and lowers the chipping resistance. Therefore, the average Al content x avg is set to 0.70≦x avg ≦0.95.
Further, when the average content ratio (atomic ratio) y avg of the C component contained in the composite nitride or composite carbonitride layer is a trace amount in the range of 0 ≤ y avg ≤ 0.005, the composite nitride or composite carbon The adhesion between the nitride layer and the tool substrate or lower layer is improved, and the lubricity is improved, thereby reducing the impact during cutting, and as a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved. Chipping resistance is improved. On the other hand, when the average content ratio y of the C component deviates from the range of 0 ≤ y avg ≤ 0.005, the toughness of the composite nitride or composite carbonitride layer decreases, so the fracture resistance and chipping resistance decrease. It is not preferable because Therefore, the average content ratio y avg of the C component was defined as 0≦y avg ≦0.005.
(2) Composite nitride or composite carbonitride layer of Ti, Al, and Me according to the embodiment of the present invention Composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) (where Me is a kind of element selected from Si, Zr, B, V, and Cr), the average content ratio α avg of Al in the total amount of Ti and Al and Me and Ti of Me and The average content ratio β avg in the total amount of Al and Me and the average content ratio γ avg of C in the total amount of C and N ( where α avg , β avg , and γ avg are all atomic ratios) are, respectively, It is preferable to control to satisfy 0.60≦α avg , 0.005≦β avg ≦0.10, 0≦γ avg ≦0.005, and 0.605≦α avgavg ≦0.95.
The reason for this is that if the average content ratio α avg of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti, Al and Me is inferior in hardness, so that it is not suitable for high-speed intermittent cutting of alloy steel and the like. If it is used, the wear resistance is not sufficient.
In addition, when the average content ratio β avg of Me is less than 0.005, the composite nitride or composite carbonitride layer 2 of Ti, Al, and Me is inferior in hardness, so that it is suitable for high-speed intermittent cutting of alloy steel and the like. If so, the wear resistance is not sufficient. On the other hand, if it exceeds 0.10, the segregation of Me to the grain boundary, etc., reduces the toughness of the composite nitride or composite carbonitride layer of Ti, Al, and Me, and when subjected to high-speed interrupted cutting of alloy steel, etc. have insufficient chipping resistance. Therefore, the average content ratio β avg of Me was defined as 0.005≦β avg ≦0.10.
On the other hand, when the sum α avgavg of the average content ratio α avg of Al and the average content ratio β avg of Me is less than 0.605, the hardness of the composite nitride or composite carbonitride layer of Ti, Al, and Me is Therefore, when subjected to high-speed intermittent cutting of alloy steel, etc., the wear resistance is not sufficient. , the chipping resistance decreases. Therefore, the sum α avgavg of the average Al content α avg and the average Me content β avg was determined to be 0.605≦α avgavg ≦0.95.
Here, as a specific component of Me, one type of element selected from Si, Zr, B, V and Cr is used.
When Si component or B component is used as Me so that β avg is 0.005 or more, the hardness of the composite nitride or composite carbonitride layer is improved, so that the wear resistance is improved. , the Zr component has the effect of strengthening the grain boundaries, the V component improves the toughness, further improving the chipping resistance, and the Cr component improves the oxidation resistance. , further extension of tool life is expected. However, for any component, when the average content ratio β avg exceeds 0.10, the average content ratio of the Al component and the Ti component relatively decreases, so the wear resistance or chipping resistance tends to decrease. Therefore, it is necessary to avoid an average content ratio in which β avg exceeds 0.10.
In addition, when the average content ratio (atomic ratio) γ avg of C contained in the composite nitride or composite carbonitride layer is a trace amount in the range of 0 ≤ γ avg ≤ 0.005, the composite nitride or composite carbonitride layer The adhesion between the material layer and the tool substrate or lower layer is improved, and the impact during cutting is reduced by improving the lubricity, and as a result, the chipping resistance and resistance of the composite nitride or composite carbonitride layer are improved. Chipping resistance is improved. On the other hand, if the average C content γ avg is outside the range of 0 ≤ γ avg ≤ 0.005, the toughness of the composite nitride or composite carbonitride layer decreases, resulting in a decrease in fracture resistance and chipping resistance. It is not preferable because Therefore, the average content ratio γ avg of C is defined as 0≦γ avg ≦0.005.

複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒個々の結晶粒内平均方位差(GOS値):
電子線後方散乱回折装置を用いて、本発明の参考被覆工具の実施形態(態様)としてのCrとAlの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒(立方晶)の結晶粒内平均方位差、および、本発明被覆工具のTiとAlとMeの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶(立方晶)の結晶粒内平均方位差を求める。
具体的には、前記本発明の参考被覆工具の実施形態(態様)としてのCrとAlの複合窒化物または複合炭窒化物層、または、前記本発明被覆工具の実施形態(態様)としてのTiとAlとMeの複合窒化物または複合炭窒化物層について、それぞれ、その表面に垂直な方向からその表面研磨面について0.1μm間隔で解析し、図1に示すように、隣接する測定点(以下、「ピクセル」ともいう)間で5度以上の方位差がある場合、そこを粒界と定義する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
そして、立方晶構造を有する結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間での方位差を計算し、これを結晶粒内方位差として求め、それを平均化したものをGOS(Grain Orientation Spread)値として定義する。概略図を図1に示す。GOS値については、例えば文献「日本機械学会論文集(A編) 71巻712号(2005-12) 論文No.05-0367 1722~1728」に説明がなされている。
前記本発明の参考被覆工具の実施形態(態様)、および、前記本発明被覆工具の実施形態(態様)における“結晶粒内平均方位差”とは、前記のGOS値を意味する。GOS値を数式で表す場合、同一結晶粒内のピクセル数をn、同一結晶粒内の異なるピクセルにおのおの付けた番号をiおよびj(ここで 1≦i、j≦nとなる)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)とすると、


Figure 0007119264000001

で表すことができる。
なお、結晶粒内平均方位差、GOS値は、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間での方位差を求め、その値を平均化した数値であると言い換えることができるが、結晶粒内に連続的な方位変化が多いと大きな数値となる。 Average misorientation (GOS value) in individual crystal grains having a NaCl-type face-centered cubic structure that constitutes a composite nitride or composite carbonitride layer:
A crystal having a NaCl-type face-centered cubic structure constituting a composite nitride or composite carbonitride layer of Cr and Al as an embodiment (aspect) of the reference coated tool of the present invention using an electron beam backscatter diffraction apparatus. Crystal grains having an average orientation difference in the grains (cubic crystals) and a NaCl-type face-centered cubic structure that constitutes the composite nitride or composite carbonitride layer of Ti, Al and Me of the coated tool of the present invention ( The average misorientation in crystal grains of a cubic crystal) is obtained.
Specifically, a composite nitride or composite carbonitride layer of Cr and Al as an embodiment (aspect) of the reference coated tool of the present invention, or Ti as an embodiment (aspect) of the coated tool of the present invention and Al and Me composite nitride or composite carbonitride layers, respectively, are analyzed from the direction perpendicular to the surface at intervals of 0.1 μm on the surface polished surface, and as shown in FIG. 1, the adjacent measurement points ( Hereafter, when there is an orientation difference of 5 degrees or more between (also referred to as "pixels"), it is defined as a grain boundary. A region surrounded by grain boundaries is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with respect to all adjacent pixels is not treated as a crystal grain, but a crystal grain in which two or more pixels are connected is treated as a crystal grain.
Then, the misorientation between a pixel in a crystal grain having a cubic crystal structure and all other pixels in the same crystal grain is calculated, obtained as the misorientation in the crystal grain, and averaged. is defined as the GOS (Grain Orientation Spread) value. A schematic diagram is shown in FIG. The GOS value is described, for example, in the document "Journal of the Japan Society of Mechanical Engineers, Vol.
In the embodiment (mode) of the reference coated tool of the present invention and the embodiment (mode) of the coated tool of the present invention, the "average misorientation in crystal grains" means the GOS value described above. When the GOS value is represented by a formula, n is the number of pixels within the same crystal grain, i and j are numbers assigned to different pixels within the same crystal grain (where 1≤i and j≤n), and pixel i Let α ij (i≠j) be the crystal orientation difference obtained from the crystal orientation at pixel j and the crystal orientation at pixel j.


Figure 0007119264000001

can be expressed as
In addition, the average misorientation within a crystal grain, or the GOS value, is a numerical value obtained by averaging the misorientation values between a certain pixel within a crystal grain and all other pixels within the same crystal grain. However, if there are many continuous orientation changes in the crystal grains, the value will be large.

結晶粒内平均方位差(GOS値)は、複合窒化物または複合炭窒化物層の表面に垂直な方向からその表面研磨面について電子線後方散乱回折装置を用いて、25×25μmの測定範囲内での測定を0.1μm/stepの間隔で、5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、結晶粒内平均方位差を1度間隔で分割し、その値の範囲内に結晶粒内平均方位差が含まれる結晶粒のピクセルを集計して上記全ピクセル数で割ることによって、結晶粒内平均方位差の面積割合を示すヒストグラムを作成する事によって求めることができる。
図3~図6に、このようにして作成されたヒストグラムの一例を示す。
The average misorientation (GOS value) within the crystal grain is within a measurement range of 25 × 25 μm from the direction perpendicular to the surface of the composite nitride or composite carbonitride layer on the polished surface using an electron beam backscattering diffraction device. Measurement is performed at intervals of 0.1 μm / step in 5 fields of view, and the total number of pixels belonging to the crystal grains having a cubic crystal structure that constitutes the composite nitride or composite carbonitride layer is obtained. By dividing the average misorientation at intervals of 1 degree, summing up the pixels of the crystal grains containing the average misorientation within the grain within the range of the values, and dividing by the above total number of pixels, the average misorientation within the grain is obtained. It can be obtained by creating a histogram showing the area ratio.
3 to 6 show examples of histograms created in this way.

(1)本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層について
図3は、本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図3に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上であることが分かる。
図4は、本発明の参考実施形態の比較例である参考比較被覆工具における従来のCrとAlの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図4においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%未満である。
このように、本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒は、従来のものと比較して、結晶粒内で結晶方位のばらつきが大きく、そのため、結晶粒内での歪が高くなることが硬さと靭性の向上、耐摩耗性の向上に寄与している。
そして、前記結晶粒内平均方位差を備える(Cr1-xAl)(C1-y)層を少なくとも含む本発明の参考実施形態である硬質被覆層を工具基体表面に被覆形成した被覆工具は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
ただ、前記結晶粒内平均方位差が2度以上を示す結晶粒の、CrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合が40%未満である場合には、結晶粒の内部歪による硬さと靭性の向上効果が十分でないことから、結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒がCrとAlの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上とする。
好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は45~70%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は50~65%である。
(1) Composite nitride or composite carbonitride layer of Cr and Al that is a reference embodiment of the present invention FIG. 3 is a composite nitride or composite carbonitride layer of Cr and Al that is a reference embodiment of the present invention Fig. 3 is an example of a histogram of the average orientation difference within the crystal grains obtained for the crystal grains having a cubic crystal structure. It can be seen that a certain crystal grain accounts for 40% or more of the total area of the composite nitride or composite carbonitride layer of Cr and Al.
FIG. 4 shows the crystal grains having a cubic crystal structure of a conventional Cr and Al composite nitride or composite carbonitride layer in a reference comparison coated tool, which is a comparative example of the reference embodiment of the present invention . An example of a histogram of the average misorientation, in FIG. 4, the crystal grains having the value of the average misorientation (GOS) in the grains of 2 degrees or more are composite nitrides or composite carbonitride layers of Cr and Al. The area ratio to the total area is less than 40%.
As described above, the crystal grains having a cubic crystal structure constituting the composite nitride or composite carbonitride layer of Cr and Al, which is a reference embodiment of the present invention, have a crystal grain within the crystal grain compared to the conventional one. The variation in orientation is large, so the strain in the crystal grains is high, which contributes to the improvement of hardness and toughness, as well as the improvement of wear resistance.
Then, a hard coating layer, which is a reference embodiment of the present invention including at least a (Cr 1-x Al x )(C y N 1-y ) layer having the average orientation difference in crystal grains, was formed on the surface of the tool substrate. Coated tools exhibit excellent chipping resistance and wear resistance in high-speed intermittent cutting of alloy steel, etc., in which high heat is generated and an impact load acts on the cutting edge.
However, when the area ratio of the crystal grains showing the average orientation difference in the crystal grains of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Cr and Al is less than 40%, the crystal Since the effect of improving the hardness and toughness due to the internal strain of the grain is not sufficient, the crystal grain having a cubic crystal structure exhibiting an average orientation difference in the grain of 2 degrees or more is a composite nitride or composite carbonitride layer of Cr and Al. The area ratio of the total area of is 40% or more.
The area ratio of crystal grains exhibiting an average misorientation in crystal grains of 2 degrees or more to the area of the composite nitride or composite carbonitride layer is preferably 45 to 70%. More preferably, the area ratio of crystal grains exhibiting an average misorientation in crystal grains of 2 degrees or more to the area of the composite nitride or composite carbonitride layer is 50 to 65%.

(2)本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層について
図5は、本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図5に示されるように、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上であることが分かる。
図6は、本発明の実施形態の比較例である比較被覆工具における従来のTiとAlとMeの複合窒化物または複合炭窒化物層の立方晶構造を有する結晶粒について求めた、結晶粒内平均方位差のヒストグラムの一例であるが、図6においては、結晶粒内平均方位差(GOS)の値が2度以上である結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%未満である。
このように、本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒は、従来のものと比較して、結晶粒内で結晶方位のばらつきが大きく、そのため、結晶粒内での歪が高くなることが硬さと靱性の向上に寄与している。
そして、前記結晶粒内平均方位差を備える(Ti1-α―βAlαMeβ)(Cγ1-γ)層を少なくとも含む本発明の実施形態である硬質被覆層を工具基体表面に被覆形成した被覆工具は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
ただ、前記結晶粒内平均方位差が2度以上を示す結晶粒の、TiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合が40%未満である場合には、結晶粒の内部歪による硬さと靱性の向上効果が十分でないことから、結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層の全面積に占める面積割合は40%以上とする。
このように本発明の実施形態である表面被覆切削工具が有するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する結晶粒は、従来のTiAlN層を構成している結晶粒と比較して、結晶粒内で結晶方位のばらつきが大きく、すなわち、歪みがあるため、このことが硬さや靭性の向上に寄与している。
好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は45~70%である。より好ましい複合窒化物または複合炭窒化物層の面積に対する、結晶粒内平均方位差が2度以上を示す結晶粒の面積割合は50~65%である。
(2) Composite nitride or composite carbonitride layer of Ti, Al and Me, which is an embodiment of the present invention FIG. FIG. 5 is an example of a histogram of the average orientation difference within the crystal grains obtained for the crystal grains having the cubic crystal structure of the monolayer. As shown in FIG. It can be seen that the above crystal grains account for 40% or more of the total area of the composite nitride or composite carbonitride layer of Ti, Al and Me.
FIG. 6 shows the grains having a cubic crystal structure of a conventional composite nitride or composite carbonitride layer of Ti, Al, and Me in a comparative coated tool, which is a comparative example of the embodiment of the present invention . An example of the histogram of the average misorientation, in FIG. 6, the crystal grains having the value of the average misorientation (GOS) in the grains of 2 degrees or more are composite nitrides or composite carbonitrides of Ti, Al, and Me The area percentage of the total area of the layer is less than 40%.
As described above, the crystal grains having a cubic crystal structure that constitute the composite nitride or composite carbonitride layer of Ti, Al, and Me according to the embodiment of the present invention have a higher The variation in crystal orientation is large, which contributes to the improvement of hardness and toughness due to the high strain in the crystal grains.
Then, a hard coating layer, which is an embodiment of the present invention including at least a (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer having the average orientation difference in crystal grains, is formed on the surface of the tool substrate. A coated tool with a coating exhibits excellent chipping resistance and wear resistance in high-speed interrupted cutting of alloy steel, etc., in which high heat is generated and an impact load acts on the cutting edge.
However, when the area ratio of the crystal grains showing the average orientation difference in the crystal grains of 2 degrees or more to the total area of the composite nitride or composite carbonitride layer of Ti, Al and Me is less than 40% Since the effect of improving hardness and toughness due to the internal strain of the crystal grains is not sufficient, the crystal grains having a cubic crystal structure exhibiting an average orientation difference in the crystal grains of 2 degrees or more are composite nitrides or composites of Ti, Al, and Me. The area ratio of the carbonitride layer to the total area is set to 40% or more.
As described above, the crystal grains constituting the composite nitride or composite carbonitride layer of Al, Ti and Me possessed by the surface-coated cutting tool according to the embodiment of the present invention are different from the crystal grains constituting the conventional TiAlN layer. In comparison, crystal orientation variation within crystal grains is large, that is, there is strain, which contributes to improvement in hardness and toughness.
The area ratio of crystal grains exhibiting an average misorientation in crystal grains of 2 degrees or more to the area of the composite nitride or composite carbonitride layer is preferably 45 to 70%. More preferably, the area ratio of crystal grains exhibiting an average misorientation in crystal grains of 2 degrees or more to the area of the composite nitride or composite carbonitride layer is 50 to 65%.

硬質被覆層の結晶構造:
(1)本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層について
本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層が、NaCl型の面心立方構造を有するCrとAlの複合窒化物または複合炭窒化物の単相からなる場合、特に優れた耐チッピング性、耐摩耗性を示す。
また、前記CrとAlの複合窒化物または複合炭窒化物層が、NaCl型の面心立方構造単相でない場合であっても、CrとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒の面積割合を求めたとき、NaCl型の面心立方構造の結晶粒の面積割合が70面積%未満の場合には、耐摩耗性の低下傾向がみられ、一方、この面積割合が70面積%以上である場合には、すぐれた耐チッピング性、耐摩耗性が発揮されることから、NaCl型の面心立方構造のCrとAlの複合窒化物または複合炭窒化物相の割合は、70面積%以上とすることが望ましい。
(2)本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層について
本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層からなる硬質被覆層が立方晶構造単相である場合、特に優れた耐摩耗性を示す。
また、硬質被覆層が立方晶構造単相でない場合であっても、該硬質被覆層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での該硬質被覆層に対する測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒の面積割合を求めたとき、立方晶構造を有する結晶粒の面積割合が70%未満の場合には、耐摩耗性の低下傾向がみられ、一方、この面積割合が70%以上である場合には、すぐれた耐チッピング性、耐摩耗性が発揮されることから、立方晶構造のTiとAlとMeの複合窒化物または複合炭窒化物の相は、70面積%以上とすることが望ましい。
Crystal structure of the hard coating layer:
(1) Composite nitride or composite carbonitride layer of Cr and Al, which is a reference embodiment of the present invention
When the composite nitride or composite carbonitride layer of Cr and Al, which is a reference embodiment of the present invention, consists of a single phase of a composite nitride or composite carbonitride of Cr and Al having a NaCl-type face-centered cubic structure , shows particularly excellent chipping resistance and wear resistance.
Further, even if the composite nitride or composite carbonitride layer of Cr and Al is not a NaCl-type face-centered cubic structure single phase, the composite nitride or composite carbonitride layer of Cr and Al can be electron Analyze at intervals of 0.1 μm from the longitudinal cross-sectional direction using a linear backscatter diffraction device, measure from the longitudinal cross-sectional direction within the measurement range of 10 μm width and film thickness in 5 fields of view, and the composite nitride Alternatively, the total number of pixels belonging to crystal grains having a cubic crystal structure that constitutes the composite carbonitride layer is obtained, and the composite nitride or the composite nitride or When the area ratio of the NaCl-type face-centered cubic structure crystal grains constituting the composite carbonitride layer is obtained, when the area ratio of the NaCl-type face-centered cubic structure crystal grains is less than 70 area%, the resistance On the other hand, when this area ratio is 70 area % or more, excellent chipping resistance and wear resistance are exhibited, so the NaCl type face-centered cubic structure Cr The ratio of the composite nitride or composite carbonitride phase of Al and Al is desirably 70 area % or more.
(2) Composite nitride or composite carbonitride layer of Ti, Al and Me according to the embodiment of the present invention
Particularly excellent wear resistance is exhibited when the hard coating layer comprising a composite nitride or composite carbonitride layer of Ti, Al and Me, which is an embodiment of the present invention, is a cubic crystal structure single phase.
In addition, even if the hard coating layer is not a single phase with a cubic crystal structure, the hard coating layer is analyzed at intervals of 0.1 μm from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device, and the width is 10 μm and the length is Measurement from the vertical cross-sectional direction within the film thickness measurement range is performed in 5 fields of view, and the total number of pixels belonging to the crystal grains having a cubic crystal structure that constitutes the composite nitride or composite carbonitride layer is obtained. When the area ratio of the crystal grains having a cubic crystal structure constituting the composite nitride or composite carbonitride layer is obtained by the ratio to the total number of pixels measured in the measurement of the hard coating layer in 5 fields of view, the cubic crystal When the area ratio of structured crystal grains is less than 70%, wear resistance tends to decrease, while when this area ratio is 70% or more, excellent chipping resistance and wear resistance are obtained. It is desirable that the phase of the composite nitride or composite carbonitride of Ti, Al and Me having a cubic crystal structure is 70 area % or more.

下部層および上部層:
本発明の参考実施形態であるCrとAlの複合窒化物または複合炭窒化物層、および、本発明の実施形態であるTiとAlとMeの複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層を1~25μmの合計平均層厚で設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Bottom layer and top layer:
The composite nitride or composite carbonitride layer of Cr and Al, which is a reference embodiment of the present invention, and the composite nitride or composite carbonitride layer of Ti, Al, and Me, which is an embodiment of the present invention, are Although it has a sufficient effect, it consists of one or more Ti compound layers selected from Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. If the lower layer is provided with a total average layer thickness of 20 μm and/or if the upper layer containing at least the aluminum oxide layer is provided with a total average layer thickness of 1 to 25 μm, the effects of these layers and Together, it is possible to create even better characteristics. When providing a lower layer consisting of one or more Ti compound layers selected from Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20 μm, crystal grains tend to coarsen and chipping tends to occur. If the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently exhibited. .

本発明の参考被覆工具の実施形態である硬質被覆層を構成するCrとAlの複合窒化物もしくは複合炭窒化物層、または、本発明被覆工具が有する硬質被覆層の実施形態を構成するTiとAlとMeの複合窒化物もしくは複合炭窒化物層の断面を模式的に表した図を図2に示す。 A composite nitride or composite carbonitride layer of Cr and Al that constitutes the hard coating layer that is an embodiment of the reference coated tool of the present invention, or Ti that constitutes an embodiment of the hard coating layer of the coated tool of the present invention FIG. 2 shows a schematic cross-sectional view of a composite nitride or composite carbonitride layer of Al and Me.

つぎに、本発明被覆工具を実施例により、参考実施形態である本発明の参考被覆工具を参考例により具体的に説明する。
なお、実施例、参考例としては、WC基超硬合金あるいはTiCN基サーメットを工具基体とする被覆工具について述べるが、工具基体として立方晶窒化ホウ素基超高圧焼結体を用いた場合も同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples , and the reference coated tool of the present invention, which is a reference embodiment, will be specifically described with reference examples.
As examples and reference examples, a coated tool using a WC-based cemented carbide or a TiCN-based cermet as a tool substrate will be described. be.

<参考例1>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
<Reference example 1>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. After blending with the composition, wax is further added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintering is performed at a predetermined temperature within the range of ~1470°C for 1 hour, and after sintering, WC-based cemented carbide tool substrates A to C having an insert shape of ISO standard SEEN1203AFSN are produced respectively. did.

また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 As raw material powders, TiCN (TiC/TiN=50/50 by mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, and Co powder, all having an average particle size of 0.5 to 2 μm. and Ni powder are prepared, these raw material powders are blended in the formulation shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500° C. for 1 hour. After sintering, a TiCN-based cermet tool base D having an insert shape of ISO standard SEEN1203AFSN was produced.

つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、
表4、表5に示される形成条件A~J、すなわち、NHとHからなるガス群Aと、CrCl、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、CrCl:0.2~0.3%、Al(CH:0~0.5%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期3~4秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表7に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表7に示される面積割合存在し、表7に示される目標層厚を有する(Cr1-xAl)(C1-y)層を含む硬質被覆層を形成することにより本発明の参考被覆工具1~15を製造した。
なお、本発明の参考被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表7に示される上部層を形成した。
Next, using a chemical vapor deposition apparatus on the surfaces of these tool substrates A to D,
Formation conditions A to J shown in Tables 4 and 5, that is, gas group A consisting of NH 3 and H 2 and gas group B consisting of CrCl 3 , AlCl 3 , N 2 and H 2 , and supply of each gas As a method, the reaction gas composition (% by volume of the total of gas group A and gas group B) was prepared as gas group A: NH 3 : 2.0 to 3.0%, H 2 : 65 to 75%, gas group AlCl 3 as B: 0.6-0.9%, CrCl 3 : 0.2-0.3%, Al(CH 3 ) 3 : 0-0.5%, N 2 : 12.5-15.0 %, H 2 : remainder, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900° C., supply cycle 3 to 4 seconds, gas supply time per cycle 0.15 to 0.25 seconds , the phase difference between the gas group A and the gas group B is set to 0.10 to 0.20 seconds, and the thermal CVD method is performed for a predetermined time. A hard coating layer containing a (Cr 1-x Al x ) (C y N 1-y ) layer having crystal grains having a crystal structure in the area ratio shown in Table 7 and having the target layer thickness shown in Table 7 Reference coated tools 1-15 of the present invention were produced by forming.
For reference coated tools 6 to 13 of the present invention, the lower layer shown in Table 6 and/or the upper layer shown in Table 7 were formed under the formation conditions shown in Table 3.

また、本発明の参考被覆工具に対して、比較の目的で、工具基体A~Dの表面に、表4及び表5に示される参考比較成膜工程の形成条件A’~J’かつ表8に示される目標層厚(μm)で、少なくともCrとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Cr1-xAl)(C1-y)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより参考比較被覆工具1~13を製造した。
なお、本発明の参考被覆工具6~13と同様に、参考比較被覆工具6~13については、表3に示される形成条件で、表6に示される下部層および/または表8に示される上部層を形成した。
In addition, for the purpose of comparison, the reference coated tool of the present invention was subjected to the formation conditions A' to J' of the reference comparative film formation process shown in Tables 4 and 5 and Table 8 on the surfaces of the tool substrates A to D. A hard coating layer containing at least a composite nitride or composite carbonitride layer of Cr and Al was vapor-deposited with a target layer thickness (μm) shown in FIG. At this time, a hard coating layer is formed so that the reaction gas composition on the surface of the tool substrate does not change with time during the process of forming the (Cr 1-x Al x ) (C y N 1-y ) layer. Comparative coated tools 1-13 were made.
As with the reference coated tools 6 to 13 of the present invention, for the reference comparative coated tools 6 to 13, under the forming conditions shown in Table 3, the lower layer shown in Table 6 and/or the upper layer shown in Table 8 formed a layer.

参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、また、カソード電極(蒸発源)として、所定組成のAl-Cr合金を配置し、
(b)まず、装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、かつAl-Cr合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびCrイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に-50Vの直流バイアス電圧を印加し、かつ、前記Al-Cr合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Cr1-xAl)(C1-y)層を蒸着形成し、参考被覆工具14、15を製造した。
For reference, a (Cr 1-x Al x )(C y N 1-y ) layer of the reference example was formed on the surfaces of the tool substrate B and the tool substrate C by arc ion plating using a conventional physical vapor deposition apparatus. at the target layer thickness to produce the reference coated tools 14, 15 shown in Table 8.
The arc ion plating conditions used for vapor deposition in Reference Examples are as follows.
(a) The tool substrates B and C are ultrasonically cleaned in acetone, dried, and placed radially at a predetermined distance from the central axis on the rotary table in the arc ion plating apparatus. Also, as a cathode electrode (evaporation source), an Al-Cr alloy with a predetermined composition is arranged,
(b) First, while the inside of the apparatus is evacuated and maintained at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500° C. with a heater, and then −1000 V is applied to the tool substrate rotating while rotating on the rotary table. is applied, and a current of 200 A is passed between the cathode electrode and the anode electrode made of Al--Cr alloy to generate arc discharge, generate Al and Cr ions in the device, and thereby the tool substrate Bombard clean the surface,
(c) Next, nitrogen gas is introduced into the apparatus as a reaction gas to create a reaction atmosphere of 4 Pa, and a DC bias voltage of −50 V is applied to the tool base rotating while rotating on the rotary table, and , A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al-Cr alloy and the anode electrode to generate an arc discharge, and the target composition shown in Table 8 and the target layer are applied to the surface of the tool substrate. A thick (Cr 1-x Al x )(C y N 1-y ) layer was deposited to fabricate reference coated tools 14,15.

また、本発明の参考被覆工具1~15、参考比較被覆工具1~13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6~表8に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, cross sections in the direction perpendicular to the tool substrate of each constituent layer of the reference coated tools 1 to 15, reference comparative coated tools 1 to 13, and reference coated tools 14 and 15 of the present invention were examined with a scanning electron microscope (magnification: 5000). , and the average layer thickness was obtained by measuring the layer thickness at five points in the observation field, and the average layer thickness was substantially the same as the target layer thickness shown in Tables 6 to 8. showed that.

また、複合窒化物または複合炭窒化物層の平均Al含有割合xavgについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合xavgを求めた。平均C含有割合 avg については、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合yavgはCrとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をyavgとして求めた。 In addition, the average Al content x avg of the composite nitride or composite carbonitride layer was measured using an electron-probe-micro-analyser (EPMA) in a sample whose surface was polished. The average Al content x avg of Al was obtained from the 10-point average of the characteristic X-ray analysis results obtained by irradiating from the surface side. The average C content y avg was determined by secondary-ion-mass-spectroscopy (SIMS). An ion beam was irradiated in a range of 70 μm×70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio y avg indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Cr and Al. However, the content ratio of C excludes the unavoidable content ratio of C that is included even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al(CH 3 ) 3 is 0 is obtained as the inevitable C content ratio. , the unavoidable C content ratio was subtracted from the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer obtained when Al(CH 3 ) 3 was intentionally supplied. The value was determined as yavg .

また、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
図3に、本発明の参考被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示し、また、図4には、参考比較被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
さらに、CrとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて縦断面方向から0.1μm間隔で解析し、幅10μm、縦は膜厚の測定範囲内での縦断面方向からの測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属する全ピクセル数を求め、前記5視野での測定において全測定ピクセル数との比によって、該複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒が、CrとAlの複合窒化物または複合炭窒化物層の縦断面に占める面積割合(面積%)を求めた。
表7、表8に、これらの結果を示す。
In addition, the crystal orientation of individual crystal grains having a cubic crystal structure that constitutes the composite nitride or carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device, and the adjacent pixels If there is an orientation difference of 5 degrees or more between the The crystal grain orientation difference is determined between 0 degrees and less than 1 degree, 1 degree and less than 2 degrees, 2 degrees and less than 3 degrees, 3 degrees and less than 4 degrees, and so on. The range of 10 degrees was separated by 1 degree and mapped. From the mapping diagram, the area ratio of crystal grains having an average misorientation in the crystal grains of 2 degrees or more in the entire Cr-Al composite nitride or composite carbonitride layer was determined.
FIG. 3 shows an example of the histogram of the average grain orientation difference measured for the reference coated tool of the present invention, and FIG. 4 shows an example of the histogram of the average grain orientation difference measured for the reference comparative coated tool. indicates
Furthermore, the composite nitride or composite carbonitride layer of Cr and Al is analyzed at intervals of 0.1 μm from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device, the width is 10 μm, and the vertical is within the measurement range of the film thickness. Measurement from the longitudinal cross-sectional direction is carried out in 5 fields of view, the total number of pixels belonging to the crystal grains having a cubic crystal structure that constitutes the composite nitride or composite carbonitride layer is obtained, and in the measurement in the 5 fields of view, all Depending on the ratio to the number of measured pixels, the NaCl-type face-centered cubic crystal grains constituting the composite nitride or composite carbonitride layer are in the longitudinal section of the Cr and Al composite nitride or composite carbonitride layer. The area ratio (area %) occupied was determined.
Tables 7 and 8 show these results.

Figure 0007119264000002
Figure 0007119264000002

Figure 0007119264000003
Figure 0007119264000003

Figure 0007119264000004
Figure 0007119264000004

Figure 0007119264000005
Figure 0007119264000005

Figure 0007119264000006
Figure 0007119264000006

Figure 0007119264000007
Figure 0007119264000007

Figure 0007119264000008
Figure 0007119264000008

Figure 0007119264000009
Figure 0007119264000009

つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明の参考被覆工具1~15、参考比較被覆工具1~13および参考被覆工具14,15について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験:乾式高速正面フライス、センターカット切削加工、
被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
回転速度:815 min-1
切削速度:320 m/min、
切り込み:1.0 mm、
一刃送り量:0.1 mm/刃、
切削時間:8分、
その結果を表9に示す。
Next, with each of the various coated tools described above being clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig, reference coated tools 1 to 15 of the present invention, reference comparative coated tools 1 to 13, and The reference coated tools 14 and 15 were subjected to the following high-speed dry face milling and center-cut cutting tests, which are a type of high-speed interrupted cutting of carbon steel, and the flank wear width of the cutting edge was measured.
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cut machining,
Work material: JIS/S55C block material with a width of 100 mm and a length of 400 mm,
Rotation speed: 815 min -1 ,
Cutting speed: 320 m/min,
Notch: 1.0 mm,
Single blade feed amount: 0.1 mm/blade,
Cutting time: 8 minutes,
Table 9 shows the results.

Figure 0007119264000010
Figure 0007119264000010

<参考例2>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
<Reference example 2>
As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder, all having an average particle size of 1 to 3 μm, were prepared. The blending composition shown in Table 10 was blended, further wax was added, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within the range of 1370 to 1470 ° C. for 1 hour. Tool substrates α to γ made of WC-based cemented carbide with insert geometry of CNMG120412 were respectively produced.

また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 In addition, as raw material powders, TiCN (TiC/TiN=50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder, all of which have an average particle size of 0.5 to 2 μm, are prepared, These raw material powders were blended in the formulation shown in Table 11, wet-mixed in a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500°C for 1 hour. After sintering, the cutting edge was honed to a radius of 0.09 mm to obtain a TiCN base with an insert shape conforming to ISO standard CNMG120412. A tool base δ made of cermet was formed.

つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、参考例1と同様の方法により表4及び表5に示される本発明の参考成膜工程の形成条件A~Jで、少なくとも(Cr1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表13に示される本発明の参考被覆工具16~30を製造した。
なお、本発明の参考被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表13に示される上部層を形成した。
Next, on the surfaces of these tool substrates α to γ and tool substrate δ, using a chemical vapor deposition apparatus, the formation conditions of the reference film formation process of the present invention shown in Tables 4 and 5 are applied in the same manner as in Reference Example 1. Reference coated tools of the present invention shown in Table 13 by depositing a hard coat layer comprising at least a (Cr 1-x Al x )(C y N 1-y ) layer in A to J to a target layer thickness. 16-30 were produced.
For reference coated tools 19 to 28 of the present invention, the lower layer shown in Table 12 and/or the upper layer shown in Table 13 were formed under the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、表4及び表5に示される参考比較成膜工程の形成条件A’~J’かつ表14に示される目標層厚で硬質被覆層を蒸着形成することにより、表14に示される参考比較被覆工具16~28を製造した。
なお、本発明の参考被覆工具19~28と同様に、参考比較被覆工具19~28については、表3に示される形成条件で、表12に示される下部層および/または表14に示される上部層を形成した。
For the purpose of comparison, a chemical vapor deposition apparatus was also used on the surfaces of the tool substrates α to γ and the tool substrate δ, and the formation conditions A′ to J′ of the reference comparative film formation process shown in Tables 4 and 5 and Table Reference comparative coated tools 16-28 shown in Table 14 were produced by depositing a hardcoat layer with the target layer thickness shown in Table 14.
As with the reference coated tools 19 to 28 of the present invention, for the reference comparative coated tools 19 to 28, under the forming conditions shown in Table 3, the lower layer shown in Table 12 and/or the upper layer shown in Table 14 formed a layer.

参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Cr1-xAl)(C1-y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
なお、アークイオンプレーティングの条件は、参考例1に示される条件と同様の条件を用いた。
For reference, a (Cr 1-x Al x )(C y N 1-y ) layer of the reference example was formed on the surfaces of the tool substrate β and the tool substrate γ by arc ion plating using a conventional physical vapor deposition apparatus. to a target layer thickness to produce reference coated tools 29 and 30 shown in Table 14.
The same arc ion plating conditions as those shown in Reference Example 1 were used.

また、本発明の参考被覆工具16~30、参考比較被覆工具16~28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12~表14に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the section of each constituent layer of the reference coated tools 16 to 30, the reference comparative coated tools 16 to 28, and the reference coated tools 29 and 30 of the present invention was measured using a scanning electron microscope (magnification: 5,000 times), and the observation field of view was When the average layer thickness was obtained by measuring the layer thickness at five points inside, the average layer thickness was substantially the same as the target layer thickness shown in Tables 12 to 14.

また、電子線後方散乱回折装置を用いてCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がCrとAlの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。
さらに、CrとAlの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒が、CrとAlの複合窒化物または複合炭窒化物層の縦断面に占める面積割合(面積%)を求めた
その結果を表13および表14に示す。
In addition, the crystal orientation of individual crystal grains having a cubic crystal structure that constitutes the composite nitride or carbonitride layer of Cr and Al is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device, and the crystal grains 0 to 1 degree, 1 to 2 degrees, 2 to 3 degrees, 3 to 4 degrees, and so on. did. From the mapping diagram, the area ratio of crystal grains having an average intra-grain orientation difference and an intra-grain orientation difference of 2 degrees or more in the entire Cr-Al composite nitride or composite carbonitride layer was determined.
Furthermore, the area ratio of the NaCl-type face-centered cubic structure crystal grains constituting the Cr and Al composite nitride or composite carbonitride layer to the longitudinal section of the Cr and Al composite nitride or composite carbonitride layer Tables 13 and 14 show the results of determining (area %).

Figure 0007119264000011
Figure 0007119264000011

Figure 0007119264000012
Figure 0007119264000012

Figure 0007119264000013
Figure 0007119264000013

Figure 0007119264000014
Figure 0007119264000014

Figure 0007119264000015
Figure 0007119264000015

つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明の参考被覆工具16~30、参考比較被覆工具16~28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、ダクタイル鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:345m/min、
切り込み:2.0mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:325m/min、
切り込み:1.5mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表15に、前記切削試験の結果を示す。
Next, the reference coated tools 16 to 30 of the present invention, the reference comparative coated tools 16 to 28, and the reference coated tools were prepared in a state in which each of the various coated tools was screwed to the tip of the tool steel cutting tool with a fixing jig. Tools 29 and 30 were subjected to the following carbon steel dry high-speed interrupted cutting test and ductile cast iron wet high-speed interrupted cutting test, and the flank wear width of the cutting edge was measured in both cases.
Cutting condition 1:
Work material: JIS S55C round bar with 4 equally spaced longitudinal grooves,
Cutting speed: 345m/min,
Notch: 2.0 mm,
feed: 0.1mm/rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220m/min),
Cutting condition 2:
Work material: JIS FCD700 round bar with 4 equally spaced longitudinal grooves,
Cutting speed: 325m/min,
Notch: 1.5 mm,
feed: 0.1mm/rev,
Cutting time: 5 minutes,
(Normal cutting speed is 180m/min),
Table 15 shows the results of the cutting test.

Figure 0007119264000016
Figure 0007119264000016

表9、表15に示される結果から、本発明の参考被覆工具1~15、16~30は、CrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 9 and 15, the reference coated tools 1 to 15 and 16 to 30 of the present invention have a cubic crystal structure constituting a composite nitride or composite carbonitride layer of Cr and Al. In the above, the presence of a predetermined average orientation difference in crystal grains improves hardness due to distortion of crystal grains, and improves toughness while maintaining high wear resistance. Moreover, even when used in high-speed interrupted cutting where high intermittent and impact loads act on the cutting edge, it has excellent chipping resistance and fracture resistance, resulting in excellent wear resistance over long-term use. It is clear that it works.

これに対して、硬質被覆層を構成するCrとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していない参考比較被覆工具1~13、16~28および参考被覆工具14、15、29、30については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, in the crystal grains having a cubic crystal structure constituting the composite nitride or carbonitride layer of Cr and Al constituting the hard coating layer, there is no predetermined average orientation difference within the crystal grains. The reference comparative coated tools 1 to 13, 16 to 28 and the reference coated tools 14, 15, 29, and 30 are used for high-speed interrupted cutting that involves high heat generation and intermittent/impact high load acting on the cutting edge. When used, it is clear that chipping, breakage, and the like occur in a short period of time.

<実施例1>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表16に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体E~Gをそれぞれ製造した。
<Example 1>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. After blending with the composition, wax is further added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintering is performed at a predetermined temperature within the range of ~1470°C for 1 hour, and after sintering, WC-based cemented carbide tool substrates E to G having an insert shape of ISO standard SEEN1203AFSN are produced respectively. did.

また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表17に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Hを作製した。 As raw material powders, TiCN (TiC/TiN=50/50 in mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, and Co powder, all having an average particle size of 0.5 to 2 μm. and Ni powders are prepared, these raw material powders are blended in the formulation shown in Table 17, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500° C. for 1 hour. After sintering, a TiCN-based cermet tool base H having an insert shape of ISO standard SEEN1203AFSN was produced.

つぎに、これらの工具基体E~H表面に、化学蒸着装置を用い、表19、表20において、本発明成膜工程として示される形成条件、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか)、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~3.0%、H:65~75%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、Al(CH:0~0.5%、MeCl(但し、SiCl,ZrCl,BCl,VCl,CrClのうちのいずれか):0.1~0.2%、N:12.5~15.0%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒として、所定時間、熱CVD法を行い、表22に示される結晶粒内平均方位差が2度以上を示す立方晶構造を有する結晶粒が表22に示される面積割合存在し、表22に示される目標層厚を有する(Ti1-α―βAlαMeβ)(Cγ1-γ)層からなる硬質被覆層を形成することにより本発明被覆工具31~45を製造した。
なお、本発明被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表22に示される上部層を形成した。
Next, on the surfaces of these tool substrates E to H, using a chemical vapor deposition apparatus, the formation conditions shown as the film formation process of the present invention in Tables 19 and 20, that is, gas group A consisting of NH 3 and H 2 and , TiCl 4 , Al(CH 3 ) 3 , AlCl 3 , MeCl n (any one of SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 and CrCl 2 ), N 2 and H 2 , and each gas supply method, the reaction gas composition (% by volume of the total of gas group A and gas group B) is NH 3 : 2.0 to 3.0%, H 2 : 65% for gas group A ~75%, gas group B: AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al(CH 3 ) 3 : 0 to 0.5%, MeCl n (however, , SiCl 4 , ZrCl 4 , BCl 3 , VCl 4 , or CrCl 2 ): 0.1-0.2%, N 2 : 12.5-15.0%, H 2 : remainder, reaction atmosphere Pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 seconds, gas group A and gas group B Thermal CVD is performed for a predetermined time with a supply phase difference of 0.10 to 0.20 seconds. and having the target layer thickness shown in Table 22 (Ti 1-α-β Al α Me β ) (C γ N 1-γ ). Invention coated tools 31-45 were manufactured.
For the coated tools 36 to 43 of the present invention, the lower layer shown in Table 21 and/or the upper layer shown in Table 22 were formed under the formation conditions shown in Table 18.

また、比較の目的で、工具基体E~Hの表面に、表19、表20において比較成膜工程として示される条件かつ表23に示される目標層厚(μm)で本発明被覆工具31~45と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Ti1-α―βAlαMeβ)(Cγ1-γ)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具31~45を製造した。
なお、本発明被覆工具36~43と同様に、比較被覆工具36~43については、表18に示される形成条件で、表21に示される下部層および/または表23に示される上部層を形成した。
For the purpose of comparison, the coated tool 31 of the present invention was applied to the surfaces of the tool substrates E to H under the conditions shown in Tables 19 and 20 as the comparative film forming process and the target layer thickness (μm) shown in Table 23. 45, a hard coating layer containing at least a compound nitride or compound carbonitride layer of Ti and Al was vapor-deposited. At this time, a hard coating layer is formed so that the reaction gas composition on the surface of the tool substrate does not change with time during the process of forming the (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer. Comparative coated tools 31-45 were produced by doing so.
As with the coated tools 36 to 43 of the present invention, the lower layers shown in Table 21 and/or the upper layers shown in Table 23 were formed under the formation conditions shown in Table 18 for the comparative coated tools 36 to 43. did.

また、本発明被覆工具31~45、比較被覆工具31~45の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表21~表23に示される目標層厚と実質的に同じ平均層厚を示した。 In addition, the cross section of each component layer of the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 in the direction perpendicular to the tool substrate was measured using a scanning electron microscope (magnification: 5000 times). When the layer thickness was measured at five points and averaged to find the average layer thickness, all of them showed substantially the same average layer thickness as the target layer thickness shown in Tables 21 to 23.

また、複合窒化物または複合炭窒化物層の平均Al含有割合、平均Me含有割合については、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合αavgおよびMeの平均含有割合βavgを求めた。平均C含有割合γavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合γavgはTiとAlとMeの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をγavgとして求めた。 In addition, the average Al content and the average Me content of the composite nitride or composite carbonitride layer were measured using an electron-probe-micro-analyser (EPMA) in a sample whose surface was polished. The average Al content α avg and the average Me content β avg were obtained from the 10-point average of the characteristic X-ray analysis results obtained by irradiating the sample from the surface side. The average C content γ avg was determined by secondary-ion-mass-spectroscopy (SIMS). An ion beam was irradiated in a range of 70 μm×70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio γ avg indicates the average value in the depth direction of the composite nitride or composite carbonitride layer of Ti, Al and Me. However, the content ratio of C excludes the unavoidable content ratio of C that is included even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al(CH 3 ) 3 is 0 is obtained as the inevitable C content ratio. , the unavoidable C content ratio was subtracted from the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer obtained when Al(CH 3 ) 3 was intentionally supplied. Values were determined as γ avg .

さらに、電子線後方散乱回折装置を用いてTiとAlとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表22および表23に示す。
図5に、本発明被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示し、また、図6には、比較被覆工具について測定した結晶粒内平均方位差のヒストグラムの一例を示す。
Furthermore, the crystal orientation of individual crystal grains having a cubic crystal structure that constitutes the composite nitride or composite carbonitride layer of Ti, Al, and Me is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffractometer. If there is an orientation difference of 5 degrees or more between pixels, the grain boundary is defined as a grain boundary. The crystal grain orientation difference is obtained between pixels, and the crystal grain orientation difference is 0 degrees or more and less than 1 degree, 1 degree or more and less than 2 degrees, 2 degrees or more and less than 3 degrees, 3 degrees or more and less than 4 degrees, and so on. The range of 0 to 10 degrees was divided by 1 degree and mapped. From the mapping diagram, the area ratio of crystal grains having an average misorientation in the crystal grains of 2 degrees or more in the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was determined. The results are shown in Tables 22 and 23.
FIG. 5 shows an example of a histogram of the average grain misorientation measured for the coated tool of the present invention, and FIG. 6 shows an example of a histogram of the average grain misorientation measured for the comparative coated tool.

Figure 0007119264000017
Figure 0007119264000017

Figure 0007119264000018
Figure 0007119264000018

Figure 0007119264000019
Figure 0007119264000019

Figure 0007119264000020
Figure 0007119264000020

Figure 0007119264000021
Figure 0007119264000021

Figure 0007119264000022
Figure 0007119264000022



Figure 0007119264000023
Figure 0007119264000023


Figure 0007119264000024
Figure 0007119264000024

つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具31~45、比較被覆工具31~45について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表24に示す。 Next, the coated tools 31 to 45 of the present invention and the comparative coated tools 31 to 45 were measured in a state where each of the various coated tools was clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. A dry high-speed face milling and center-cut cutting test, which is a type of high-speed interrupted cutting of carbon steel, was performed to measure the flank wear width of the cutting edge. The results are shown in Table 24.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験:乾式高速正面フライス、センターカット切削加工、
被削材:JIS・S55C幅100mm、長さ400mmのブロック材、
回転速度:815 min-1
切削速度:320 m/min、
切り込み:1.5 mm、
一刃送り量:0.1 mm/刃、
切削時間:8分、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cut machining,
Work material: JIS/S55C block material with a width of 100 mm and a length of 400 mm,
Rotation speed: 815 min -1 ,
Cutting speed: 320 m/min,
Notch: 1.5 mm,
Single blade feed amount: 0.1 mm/blade,
Cutting time: 8 minutes,

Figure 0007119264000025
Figure 0007119264000025

<実施例2>
参考例2と同一の原料粉末を用い、同一配合組成(表10および表11を参照。)にて混合し、同一製造方法(段落0051および0052を参照。)により、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γおよびTiCN基サーメット製の工具基体δをそれぞれ製造した。
<Example 2>
Using the same raw material powder as in Reference Example 2, mixing in the same composition (see Tables 10 and 11), and using the same manufacturing method (see paragraphs 0051 and 0052), the insert shape of ISO standard CNMG120412 was obtained. Tool substrates α to γ made of WC-based cemented carbide and tool substrate δ made of TiCN-based cermet were produced, respectively.

つぎに、これらの工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、実施例と同様の方法(段落0069参照)により表19及び表20に示される本発明成膜工程の条件で、少なくとも(Ti1-α―βAlαMeβ)(Cγ1-γ)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表26に示される本発明被覆工具46~60を製造した。
なお、本発明被覆工具49~58については、表18に示される形成条件で、表25に示される下部層および/または表26に示される上部層を形成した。
Next, on the surfaces of these tool substrates α to γ and tool substrate δ, using a chemical vapor deposition apparatus, the present invention film-forming process shown in Tables 19 and 20 was performed in the same manner as in Example 1 (see paragraph 0069). The coating of the present invention shown in Table 26 was formed by vapor-depositing a hard coating layer containing at least a (Ti 1-α-β Al α Me β ) (C γ N 1-γ ) layer with a target layer thickness under the conditions of Tools 46-60 were manufactured.
For the coated tools 49 to 58 of the present invention, the lower layer shown in Table 25 and/or the upper layer shown in Table 26 were formed under the formation conditions shown in Table 18.

また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、化学蒸着装置を用い、表19および表20に示される比較成膜工程の条件かつ表27に示される目標層厚で硬質被覆層を蒸着形成することにより、表27に示される比較被覆工具46~60を製造した。
なお、本発明被覆工具49~58と同様に、比較被覆工具49~58については、表18に示される形成条件で、表25に示される下部層および/または表27に示される上部層を形成した。
For the purpose of comparison, the surfaces of the tool substrates α to γ and the tool substrate δ were similarly subjected to the chemical vapor deposition apparatus under the conditions of the comparative film formation process shown in Tables 19 and 20 and the target layer thickness shown in Table 27. Comparative coated tools 46-60 shown in Table 27 were made by depositing a hard coat layer at .
As with the coated tools 49 to 58 of the present invention, the lower layers shown in Table 25 and/or the upper layers shown in Table 27 were formed under the formation conditions shown in Table 18 for the comparative coated tools 49 to 58. did.

また、本発明被覆工具46~60、比較被覆工具46~60の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表25~表27に示される目標層厚と実質的に同じ平均層厚を示した。
また、前記本発明被覆工具46~60、比較被覆工具46~60の硬質被覆層について、実施例に示される方法と同様の方法を用いて、平均Al含有割合αavg、平均Me含有割合βavg、平均C含有割合γavg、結晶粒における立方晶結晶相の占める面積割合を求めた。
In addition, the section of each constituent layer of the coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 was measured using a scanning electron microscope (magnification of 5000 times), and the layer thickness was measured at five points within the observation field. When the average layer thickness was determined by averaging, all of them showed substantially the same average layer thickness as the target layer thicknesses shown in Tables 25 to 27.
Further, for the hard coating layers of the coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60, the average Al content α avg and the average Me content β avg , the average C content γ avg , and the area ratio of the cubic crystal phase in the crystal grains were obtained.

さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0~10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内平均方位差と結晶粒内方位差が2度以上となる結晶粒がTiとAlとMeの複合窒化物または複合炭窒化物層全体に占める面積割合を求めた。その結果を表26および表27に示す。 Furthermore, the crystal orientation of individual crystal grains having a cubic crystal structure that constitutes the Ti and Al composite nitride or composite carbonitride layer is analyzed from the longitudinal cross-sectional direction using an electron beam backscatter diffraction device, and the crystal grains 0 degrees to less than 1 degree, 1 degree to less than 2 degrees, 2 degrees to less than 3 degrees, 3 degrees to less than 4 degrees, etc. did. From the mapping diagram, the area ratio of crystal grains having an average orientation difference in crystal grains and an orientation difference in crystal grains of 2 degrees or more in the entire composite nitride or composite carbonitride layer of Ti, Al, and Me was determined. The results are shown in Tables 26 and 27.

Figure 0007119264000026
Figure 0007119264000026


Figure 0007119264000027
Figure 0007119264000027

Figure 0007119264000028
Figure 0007119264000028

つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具46~60、比較被覆工具46~60について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:355m/min、
切り込み:2.0mm、
送り:0.12mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:335m/min、
切り込み:1.5mm、
送り:0.12mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表28に、前記切削試験の結果を示す。
Next, the coated tools 46 to 60 of the present invention and the comparative coated tools 46 to 60 are shown below with each of the various coated tools screwed to the tip of the tool steel cutting tool with a fixing jig. A dry high-speed interrupted cutting test of carbon steel and a wet high-speed interrupted cutting test of cast iron were carried out, and the flank wear width of the cutting edge was measured in both cases.
Cutting condition 1:
Work material: JIS S55C round bar with 4 equally spaced longitudinal grooves,
Cutting speed: 355m/min,
Notch: 2.0 mm,
Feed: 0.12mm/rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220m/min),
Cutting condition 2:
Work material: JIS FCD700 round bar with 4 equally spaced longitudinal grooves,
Cutting speed: 335m/min,
Notch: 1.5 mm,
Feed: 0.12mm/rev,
Cutting time: 5 minutes,
(Normal cutting speed is 180m/min),
Table 28 shows the results of the cutting test.

Figure 0007119264000029
Figure 0007119264000029

表24、表28に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 24 and 28, the coated tool of the present invention has a cubic crystal structure that constitutes a composite nitride or composite carbonitride layer of Al, Ti, and Me that constitutes the hard coating layer. In the above, the presence of a predetermined average orientation difference in crystal grains improves hardness due to distortion of crystal grains, and improves toughness while maintaining high wear resistance. Moreover, even when used in high-speed interrupted cutting where high intermittent and impact loads act on the cutting edge, it has excellent chipping resistance and fracture resistance, resulting in excellent wear resistance over long-term use. It is clear that it works.

これに対して、硬質被覆層を構成するAlとTiとMeの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒内において、所定の結晶粒内平均方位差が存在していない比較被覆工具31~45、46~60については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, in the crystal grains having a cubic crystal structure that constitute the composite nitride or composite carbonitride layer of Al, Ti, and Me that constitute the hard coating layer, there is a predetermined average orientation difference within the crystal grains. Regarding the comparative coated tools 31 to 45 and 46 to 60 that are not coated, when used for high-speed interrupted cutting that involves high heat generation and intermittent and impactful high loads act on the cutting edge, chipping, fracture, etc. It is clear that the life span is shortened by the

前述のように、本発明の被覆工具は、炭素鋼、合金鋼、鋳鉄等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for high-speed interrupted cutting of carbon steel, alloy steel, cast iron, etc., but also as a coated tool for various work materials. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily meet demands for high performance cutting equipment, labor saving and energy saving in cutting, and cost reduction.

1 工具基体
2 硬質被覆層
3 複合窒化物または複合炭窒化物層



REFERENCE SIGNS LIST 1 tool substrate 2 hard coating layer 3 composite nitride or composite carbonitride layer



Claims (6)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1~20μmのTiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層を少なくとも含み、
その組成を、
組成式:(Ti1-α―βAlαMeβ)(Cγ1-γ
で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlとMeの合量に占める平均含有割合αavg、MeのTiとAlとMeの合量に占める平均含有割合βavgおよびCのCとNの合量に占める平均含有割合γavg(但し、αavg、βavg、γavgはいずれも原子比)が、それぞれ、0.60≦αavg、0.005≦βavg≦0.10、0≦γavg≦0.005、0.605≦αavg+βavg≦0.95を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層を構成する結晶粒のうちのNaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差を求めた場合、該結晶粒内平均方位差が2度以上を示す結晶粒が、複合窒化物または複合炭窒化物層の全面積に対する面積割合で40%以上存在することを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a hard coating layer formed on the surface of a tool substrate made of any one of a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, and a cubic boron nitride-based ultrahigh-pressure sintered body,
(a) the hard coating layer is a composite nitride of Ti, Al, and Me (where Me is one element selected from Si, Zr, B, V, and Cr) having an average layer thickness of 1 to 20 μm; or including at least a composite carbonitride layer,
its composition,
Composition formula: (Ti 1-α-β Al α Me β ) (C γ N 1-γ )
, the average content ratio α avg of Al in the total amount of Ti, Al, and Me in the composite nitride or composite carbonitride layer, and the average content ratio β avg of Me in the total amount of Ti, Al, and Me and the average content ratio γ avg of C in the total amount of C and N (where α avg , β avg , and γ avg are all atomic ratios) are respectively 0.60 ≤ α avg and 0.005 ≤ β avg satisfying ≦0.10, 0≦γ avg ≦0.005, 0.605≦α avgavg ≦0.95,
(b) the composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure;
(c) The crystal orientation of the crystal grains of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride or composite carbonitride layer is determined by electron beam backscattering. When the average misorientation in each crystal grain is obtained by analyzing from the longitudinal cross-sectional direction using a diffractometer, the crystal grains exhibiting the average misorientation in the crystal grain of 2 degrees or more are composite nitrides or composite carbons. A surface-coated cutting tool, wherein the nitride layer is present in an area ratio of 40% or more of the total area.
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1に記載の表面被覆切削工具。 2. The composite nitride or composite carbonitride layer according to claim 1, wherein the composite nitride or composite carbonitride layer is composed of a single phase of a composite nitride or composite carbonitride of Ti, Al, and Me having a NaCl-type face-centered cubic structure. coated cutting tools. 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlとMe複合窒化物または複合炭窒化物の相を少なくとも70面積%以上含むことを特徴とする請求項1または2に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer contains at least 70 area % or more of a composite nitride or composite carbonitride phase of Ti, Al and Me having a NaCl-type face-centered cubic structure. Item 3. The surface-coated cutting tool according to Item 1 or 2. 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。 Between the tool substrate and the composite nitride or composite carbonitride layer, one or more layers selected from Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer The surface-coated cutting tool according to any one of claims 1 to 3, characterized in that there is a lower layer consisting of a Ti compound layer of 0.1 to 20 µm in total average layer thickness. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1~25μmの合計平均層厚で形成されていることを特徴とする請求項1乃至4のいずれかに記載の表面被覆切削工具。 5. Any one of claims 1 to 4, wherein an upper layer containing at least an aluminum oxide layer is formed on the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. A surface-coated cutting tool as described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1乃至5のいずれかに記載の表面被覆切削工具の製造方法。 The surface-coated cutting tool according to any one of claims 1 to 5, wherein the composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. manufacturing method.
JP2020144979A 2015-10-30 2020-08-28 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance. Active JP7119264B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015214522 2015-10-30
JP2015214528 2015-10-30
JP2015214522 2015-10-30
JP2015214528 2015-10-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016211416A Division JP6778413B2 (en) 2015-10-30 2016-10-28 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Publications (2)

Publication Number Publication Date
JP2020196128A JP2020196128A (en) 2020-12-10
JP7119264B2 true JP7119264B2 (en) 2022-08-17

Family

ID=58714034

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016211416A Active JP6778413B2 (en) 2015-10-30 2016-10-28 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2020144979A Active JP7119264B2 (en) 2015-10-30 2020-08-28 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016211416A Active JP6778413B2 (en) 2015-10-30 2016-10-28 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Country Status (1)

Country Link
JP (2) JP6778413B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571881B1 (en) * 2017-11-16 2023-08-28 가부시키가이샤 몰디노 Coated Cutting Tool, Manufacturing Method and Chemical Vapor Deposition Apparatus
JP7425990B2 (en) 2020-03-19 2024-02-01 三菱マテリアル株式会社 Manufacturing method for surface-coated cutting tools

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157351A (en) 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015163391A1 (en) 2014-04-23 2015-10-29 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072155B2 (en) * 2004-12-28 2008-04-09 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
SE533883C2 (en) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminated coated cutting tool
JP6139058B2 (en) * 2012-01-04 2017-05-31 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157351A (en) 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
WO2015163391A1 (en) 2014-04-23 2015-10-29 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance

Also Published As

Publication number Publication date
JP2017080885A (en) 2017-05-18
JP2020196128A (en) 2020-12-10
JP6778413B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6931453B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2014034730A1 (en) Surface-coated cutting tool
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2015193071A (en) Surface coated cutting tool and manufacturing method of the same
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP7119264B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance.
KR20170072897A (en) Surface-coated cutting tool
JP6931454B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6931452B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
WO2017073787A1 (en) Surface-coated cutting tool, and production method therefor
WO2016084938A1 (en) Surface-coated cutting tool
WO2017073789A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance, and production method therefor
WO2017073792A1 (en) Surface-coated cutting tool, and production method therefor
WO2017073790A1 (en) Surface-coated cutting tool, and production method therefor
JP2019115957A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220710

R150 Certificate of patent or registration of utility model

Ref document number: 7119264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150