WO2021177406A1 - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
WO2021177406A1
WO2021177406A1 PCT/JP2021/008448 JP2021008448W WO2021177406A1 WO 2021177406 A1 WO2021177406 A1 WO 2021177406A1 JP 2021008448 W JP2021008448 W JP 2021008448W WO 2021177406 A1 WO2021177406 A1 WO 2021177406A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zrhf
content ratio
content
maximum
Prior art date
Application number
PCT/JP2021/008448
Other languages
French (fr)
Japanese (ja)
Inventor
晃浩 村上
正樹 奥出
尚志 本間
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021011702A external-priority patent/JP2021137955A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021177406A1 publication Critical patent/WO2021177406A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention relates to a surface covering tool having excellent cutting performance over a long period of use. More specifically, the present invention relates to a surface coating tool having excellent cutting performance over a long period of time because the hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal damage resistance. be.
  • the present application claims priority based on Japanese Patent Application No. 2020-038704 filed in Japan on March 6, 2020 and Japanese Patent Application No. 2021-011702 filed in Japan on January 28, 2021. The contents are used here.
  • a coating tool having a cemented carbide substrate such as a tungsten carbide group and a hard coating layer formed on the surface of the cemented carbide substrate has been generally used.
  • the hard coating layer has a Ti compound layer such as a carbonitride (TiCN) layer of Ti chemically vapor-deposited as a lower layer, and an aluminum oxide layer chemically vapor-deposited as an upper layer.
  • TiCN carbonitride
  • welding chipping occurs in the conventional covering tool, for example, a conventional insert having a film structure of Al 2 O 3 / TiCN / cemented carbide. It is easy to do, welding chipping does not occur, and even when normal wear occurs, normal wear progresses quickly. For this reason, it is becoming difficult to meet the needs.
  • Patent Document 1 in a coating cutting tool having a TiZr carbonitride film on the surface of a substrate, the film contains Zr in an amount of 0.3% by mass or more and 50% by mass or less and chlorine in an amount of 2% by mass or less.
  • Coated cutting tools have been proposed. Since this coated cutting tool has tensile residual stress, it has high film hardness and excellent wear resistance when cutting machine structural steel and the like, and also has excellent cutting durability characteristics. Further, in Patent Document 2, in a coated cutting tool having a TiZr carbonitride film, the grain boundary strength is further increased by orienting the crystal orientation of the film toward the (422) plane or the (311) plane. Coated cutting tools have been proposed.
  • the film hardness at high temperature is high as a coating layer for a base material made of cemented carbide or cermet, and the width of crystal grains near the film surface becomes coarser as the film thickness increases.
  • it has good wear resistance and toughness, and exhibits excellent cutting durability characteristics.
  • the present invention has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance over a long period of time even when used for intermittent cutting of heat-resistant steel, and brings about an improvement in tool life.
  • the purpose is to provide.
  • the present inventors have excellent welding resistance, plastic deformation resistance and resistance to welding even when used for intermittent cutting of heat-resistant steel in the covering tool over a long period of time.
  • the following findings were obtained.
  • the welding resistance is enhanced by increasing the ratio of the amount of N to the amount of C of the TiZr composite carbonitride or the TiZrHf composite carbonitride. , It was found that the problem of welding chipping, which was a problem, can be improved.
  • the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf (hereinafter, referred to as "ZrHf content ratio”).
  • ZrHf content ratio the content ratio of the amount of C to the total amount of N and C
  • C content ratio has a composition-variable structure that changes periodically.
  • the composition-variable structure has a content ratio in which the Ti content accounts for the total amount of Ti, Zr, and Hf (hereinafter, may be referred to as "Ti content ratio”), and an N content is N and C.
  • a composition-variable structure in which the content ratio in the total amount (hereinafter, also referred to as “N content ratio”) changes periodically.
  • N content ratio the content ratio in the total amount
  • the period and position of the ZrHf maximum content point indicating the maximum content ratio and the ZrHf minimum content point indicating the minimum content ratio for the ZrHf content ratio, and the C maximum content point and the minimum content ratio indicating the maximum content ratio for the C content ratio are shown.
  • C Contains high-hardness crystal grains in which the period and position of the lowest content point are synchronized.
  • the composite carbonitride layer has a vertically long crystal structure, that is, a structure containing 50% or more of crystals having an aspect ratio of 2.0 or more in terms of area ratio.
  • a vertically long crystal structure that is, a structure containing 50% or more of crystals having an aspect ratio of 2.0 or more in terms of area ratio.
  • an electric field emission scanning electron microscope and an electron backscatter diffraction device are used to form individual crystal grains having a rock salt-type cubic crystal lattice existing within the measurement range of the cross-section polished surface. Irradiate an electron beam.
  • the inclination angle formed by the normal of the ⁇ 112 ⁇ plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate.
  • a slope angle distribution graph is created by classifying the measurement tilt angle for each pitch of 0.25 degrees and summing up the degrees existing in each section.
  • the tilt angle number distribution graph is a graph in which the horizontal axis is the tilt angle and the vertical axis is the frequency. In this case, the highest peak exists in the inclination angle division in which the inclination angle of the surface of the tool substrate with respect to the normal is in the range of 0 to 10 degrees, and exists in the inclination angle division in the range of 0 to 10 degrees.
  • the total frequency accounts for 35% or more of the total frequency in the inclination angle distribution graph.
  • it has been found that it has excellent welding resistance, plastic deformation resistance and abnormal damage resistance, and also for intermittent cutting of heat-resistant steel, it brings about an improvement in tool life over a long period of use.
  • the TiZr composite carbonitride and the TiZrHf composite carbonitride according to one aspect of the present invention have a higher ratio of N content to C content than the conventional ones, in the present specification, TiZrNC and TiZrNC, respectively, It may also be expressed as TiZrHfNC.
  • a surface-coated cutting tool having a tool substrate and a hard coating layer provided on the surface of the tool substrate.
  • the hard coating layer has at least a lower layer and a composite carbonitride layer from the surface side of the tool substrate.
  • the lower layer has at least one compound layer containing Ti and / or Zr and also containing carbon and nitrogen, and the total film thickness thereof is 0.8 ⁇ m or more.
  • the composite carbonitride layer includes at least one layer of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 ⁇ m or more and 20.0 ⁇ m or less.
  • the composite carbonitride layer contains a TiZr composite carbonitride or a TiZrHf composite carbonitride, and the composite carbonitride has a composition formula (Ti (1-x) Zr xy Hf x (1-y). ) ) (N (1-z) C z ) The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C.
  • the average content ratio z (where x, y and z are all atomic ratios) of the amount of C with respect to the total amount of and is 0.10 ⁇ x ⁇ 0.90 and 0 ⁇ y ⁇ 1.0, respectively. , And have an average composition satisfying 0.05 ⁇ z ⁇ 0.75.
  • the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and N and C are contained in at least a part of the crystal grains. It has a composition-variable structure in which the content ratio of C amount to the total amount of C changes periodically.
  • the area ratio of the composition-variable structure to the structure of the composite carbonitride layer is 10% or more.
  • E-2 Regarding the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf in the composition-variable structure, the maximum content ratio x max of ZrHf content point and the minimum content The ZrHf minimum content point indicating the ratio x min is repeated, and the average interval, which is the average value of the intervals between the repeated adjacent ZrHf maximum content points and the ZrHf minimum content points, is 5 to 100 nm.
  • the average value of the absolute value of the difference ⁇ x between the maximum content ratio x max and the minimum content ratio x min of the ZrHf minimum content point is 0.02 or more.
  • E-3 Regarding the content ratio of the C amount to the total amount of the N and C in the composition-variable structure, the C maximum content point indicating the maximum content ratio z max and the C minimum content indicating the minimum content ratio z min.
  • the content points are repeated, and the average interval, which is the average value of the intervals between the repeated adjacent C maximum content points and the C minimum content points, is 5 to 100 nm, and the maximum content ratio z max of the C maximum content points and the above
  • the average value of the absolute values of the difference ⁇ z from the C minimum content ratio z min is 0.02 or more.
  • the respective cycles and positions of the C minimum content point indicating the minimum content ratio z min are synchronized with each other, and the ZrHf maximum content point and the C maximum position closest to the ZrHf maximum content point are synchronized with each other.
  • the average value of the interval from the content point is 1/5 or less of the average interval between the ZrHf maximum content point and the adjacent ZrHf minimum content point.
  • the surface-coated cutting tool contains C by having a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer in a hard coating layer formed on the surface of a tool substrate. It solves the problem of welding chipping, which has been a problem in intermittent cutting of heat-resistant steel, by achieving both the improvement of hardness and the improvement of welding resistance by increasing the ratio of N content to C content. be. Further, the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer has a composition-variable structure in which the ZrHf content ratio and the C content ratio change periodically.
  • the period and position of the ZrHf maximum content point and the ZrHf minimum content point are synchronized with the period and position of the C maximum content point and the C minimum content point, respectively, and the hardness is lower than that of ZrC, HfC, TiC, and TiN.
  • crystal grains having higher hardness are generated, excellent plastic deformation resistance is exhibited, and the problem of abnormal damage is solved.
  • the structure is a vertically long crystal structure, there are few grain boundaries parallel to the surface of the substrate, and the film particles are unlikely to fall off.
  • a coated cutting tool having such a composite carbonitride layer as a hard coating layer has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance in intermittent cutting of heat-resistant steel, and has a long-term effect. It improves the tool life over use. Further, by orienting the TiZrNC film on the ⁇ 112 ⁇ plane, when TiCN + ⁇ -Al 2 O 3 is formed as an upper layer, ⁇ -Al 2 O 3 is oriented on the ⁇ 0001 ⁇ plane having excellent wear resistance. It has the characteristic of
  • the composition variation of the TiZrHf composite carbonitride layer of the coating tool of the present invention The ZrHf content ratio and the C content ratio in the composition variation direction of the structure will be described below with respect to the ZrHf maximum content ratio, the ZrHf minimum content ratio, and the ZrHf average content ratio. , C maximum content ratio, C minimum content ratio, and C average content ratio, and ZrHf maximum content point, ZrHf minimum content point, ZrHf average content point, C maximum content point, C minimum content corresponding to each content ratio. It is a conceptual diagram which shows the relationship with the position of a point and a C average content point. 6 is a graph of inclination angle number distribution of ⁇ 112 ⁇ plane in the TiZrHf carbonitride layer constituting the composite carbonitride layer of the hard coating layer of the coating tool 5 of the present invention.
  • any substrate conventionally known as this type of tool substrate can be used as long as it does not hinder the achievement of the object of the present embodiment.
  • cemented carbide WC-based cemented carbide, WC, as well as those containing Co, or those containing carbides such as Ti, Ta, Nb, etc.
  • cermets TiC, TiN, TiCN, etc.
  • cermets, etc. Is the main component, etc.
  • ceramics titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc. are preferable.
  • the hard coating layer according to the present embodiment has at least a lower layer and a composite carbonitride layer from the surface side of the tool substrate, and the lower layer contains either one or both of Ti and Zr. Moreover, it contains at least one compound layer containing carbon and nitrogen.
  • the composite carbonitride layer includes at least one layer of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer.
  • an intermediate layer can be provided between the tool substrate and the lower layer and / or between the lower layer and the composite carbonitride layer, and the composite carbonitride can be provided.
  • An upper layer can be provided on top of the layer.
  • the average layer thickness of the hard coating layer is measured, for example, by using an SEM (scanning electron microscope) or a TEM (transmission electron microscope) in a cross section perpendicular to the tool substrate (cross section along the thickness direction). be able to.
  • the lower layer formed on the tool substrate is a compound layer containing either one or both of Ti and Zr and containing carbon and nitrogen, for example, a carbonitride layer of Ti, a carbon dioxide oxide layer of Ti, and Ti.
  • the adhesion between the tool substrate and the composite carbonitride layer having a Ti and Zr composite carbonitride layer or the composite carbonitride layer having a Ti and Zr and Hf composite carbonitride layer can be enhanced, so that defects, peeling, etc. can be achieved. The occurrence of abnormal damage can be suppressed. Further, by forming a composite carbonitride layer on the lower layer by a limited method described later, the composite carbonitride layer can be oriented in the ⁇ 112 ⁇ plane.
  • the reason why the composite carbonitride layer is oriented on the ⁇ 112 ⁇ plane is that at least the outermost surface of the lower layer is oriented on the ⁇ 112 ⁇ plane, and the film forming method described later (that is, the film forming proceeds by the surface reaction). It is considered that the composite carbonitride layer inherited the orientation from the outermost surface of the lower layer by forming the composite carbonitride layer by a film forming method in which the vapor phase reaction hardly contributes.
  • the intermediate layer is, for example, a TiN layer, and by using the film forming method described later, the outermost surface of the lower layer is ⁇ 112 ⁇ .
  • the plane orientation can be passed on to the composite carbonitride layer via the intermediate layer.
  • the total average layer thickness of the lower layer is less than 0.8 ⁇ m, the film thickness is thin and the orientation planes are not aligned with the ⁇ 112 ⁇ plane on the outermost surface of the lower layer, so that the composite carbonitride layer is oriented to the ⁇ 112 ⁇ plane. It's difficult.
  • the total average layer thickness of the lower layer exceeds 20.0 ⁇ m, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the total average layer thickness of the lower layer is preferably 0.8 to 20.0 ⁇ m.
  • Composite carbonitride layer (1) Component Composition, Average Layer Thickness
  • the composite carbonitride layer according to the present embodiment is arranged on the lower layer, and is a TiZr composite carbonitride layer or a TiZrHf composite having an average layer thickness of 0.5 ⁇ m or more and 20.0 ⁇ m or less. It comprises at least one layer of carbonitride layer.
  • the TiZr composite carbonitride or the TiZrHf composite carbonitride constituting the composite carbonitride layer has a composition formula (Ti (1-x) Zr xy Hf x (1-y) ) (N (1).
  • x represents the average content ratio of the total amount of Zr and Hf to the total amount of Ti
  • Zr and Hf the average content ratio of the total amount of Zr and Hf to the total amount of Zr and Hf. Represents the average content ratio.
  • z indicates the average content ratio of the amount of C to the total amount of N and C.
  • x, y and z are all atomic ratios.
  • the average content ratio of C is about N, which is an element for improving welding resistance, and C, which is an element for improving hardness.
  • z is contained at 0.05 ⁇ z ⁇ 0.75.
  • x is smaller than 0.10 or x is larger than 0.90, sufficient lattice strain is not introduced and sufficient hardness cannot be secured, so 0.10 ⁇ x. It was defined as ⁇ 0.90.
  • the composite carbonitride layer also contains impurity elements that are inevitably contained in production, and in particular, it contains 5.0 atoms of oxygen (O). % Or less, chlorine can be contained in 0.50 atomic% or less.
  • the average layer thickness of the composite carbonitride layer is set to 0.5 to 20.0 ⁇ m.
  • the average thickness of the composite carbonitride layer is 5 within the observation field of view in the direction perpendicular to the tool substrate (cross section along the thickness direction) using a scanning electron microscope (magnification 5000 times). The layer thickness of the points can be measured and averaged to obtain the average layer thickness.
  • the ZrHf content ratio is, for example, ZrHf maximum content ratio-ZrHf minimum content ratio-ZrHf maximum content ratio-along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized.
  • ZrHf minimum content ratio etc., keeps a predetermined interval and shows a periodic change in the content ratio.
  • ZrHf maximum content referred to herein (x max) will be described.
  • the maximum value of the ZrHf content ratio in a continuous region equal to or higher than the content ratio (x av) value.
  • the maximum value of the ZrHf content ratio in each region is defined as the ZrHf maximum content ratio
  • the ZrHf content ratio in each region is defined as the maximum content ratio.
  • the position where the maximum value is taken is defined as the ZrHf maximum content point in each region.
  • the maximum content ratio of ZrHf may be described as x max.
  • the ZrHf minimum content ratio (x min ) means that the ZrHf content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1-y) ) (N (1-).
  • the minimum value of the ZrHf content ratio in a continuous region that is equal to or less than the value of the average content ratio (x av ) of the total amount of Zr and Hf with respect to the total amount of Ti, Zr, and Hf in C z). say.
  • the minimum value of the ZrHf content ratio in each region is defined as the ZrHf minimum content ratio (x min ), and the ZrHf content ratio in each region is the minimum value. Is defined as the lowest ZrHf content point in each region.
  • the minimum content ratio of ZrHf may be described as x min.
  • the ZrHf maximum content point and the ZrHf minimum content point appear alternately.
  • the ZrHf maximum content point and the ZrHf minimum content point appear alternately.
  • the ZrHf content ratio is as follows: ZrHf average content point (P1) -ZrHf maximum content point 1 (Pmax1) -ZrHf average content point (P2) -ZrHf minimum content point 1 (Pmin1).
  • the minimum points continuously below the average content ratio (x av ) of ZrHf are (Pmin1) and (Pq).
  • the position (Pmin1) showing a lower ZrHf content ratio (x min1 ) is defined as the ZrHf minimum content point according to the above definition.
  • the maximum content point in each region the position where the maximum value is taken in each region in a continuous region equal to or higher than the value of the average content ratio is referred to as the maximum content point in each region, and the content of each component is defined as the maximum content point.
  • the position where the minimum value is taken in the continuous region below the value of the average content ratio is called the minimum content point in each region.
  • Ti maximum content point Ti maximum content ratio ⁇ max , Ti minimum content point, Ti minimum content ratio ⁇ min
  • the content ratio of the Ti amount to the total amount of Ti, Zr, and Hf (hereinafter, also referred to as the Ti content ratio) is such that the periodic width of the periodic composition change of the ZrHf content ratio is the minimum.
  • is an atomic ratio.
  • the Ti content ratio is the Ti minimum content ratio-Ti maximum content ratio-Ti minimum content ratio-Ti in the same cycle along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. It shows the change of the content ratio such as the maximum content ratio.
  • the definitions of the Ti maximum content point, the Ti maximum content ratio, the Ti minimum content point, and the Ti minimum content ratio referred to here are the same definitions in which ZrHf is replaced with Ti.
  • C maximum content point C maximum content ratio (z max ), C minimum content point, C minimum content ratio (z min);
  • the C content ratio is C maximum content ratio-C minimum content ratio-C maximum content ratio-C minimum along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. A predetermined interval is maintained, such as the content ratio, and a periodic change in the content ratio is shown.
  • the C maximum content ratio means that the C content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1).
  • the maximum value of the C content ratio in each region is defined as the maximum C content ratio, and the C content ratio in each region takes the maximum value.
  • the position is defined as the highest C content point in each region.
  • the maximum C content ratio may be referred to as z max .
  • the C minimum content point means that the C content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1-y) ) (N (1-z) C z. ) refers to a minimum value of C content in the continuous area to be the value or less of the average proportion of the amount of C is occupied (z av) against the total amount of N and C in.
  • the minimum value of the C content ratio in each region is defined as the C minimum content ratio
  • the C content ratio in each region takes the minimum value.
  • the position is defined as the C minimum content point in each region.
  • the minimum C content ratio may be referred to as z min .
  • z min when there is a periodic change near the value of the C average content ratio (zav ), the highest content point and the lowest content point appear alternately.
  • the C content ratio is also specifically shown in FIG. 1 in the same manner as the ZrHf content ratio.
  • the C content ratio is as follows: C average content point (R1) -C maximum content point 1 (Rmax1) -C average content point (R2) -C minimum content point 1 (Rmin1).
  • C average content point and (R2) between the position of the C average content point (R3), the minimum point below the average content of C in succession (z av) is the (Rmin1) (Rq)
  • the position (R min1) showing the lower C content ratio (z min1 ) is defined as the C minimum content point according to the above definition.
  • the content ratio of the N amount to the total amount of N and C (hereinafter, also referred to as the N content ratio) is the direction in which the periodic width of the periodic composition change of the C content ratio becomes the minimum.
  • is an atomic ratio.
  • the direction in which the periodic width of the periodic composition change of the C content ratio is minimized is the same as the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. That is, the N content ratio is N minimum content ratio-N maximum content ratio-N minimum content ratio-N in the same cycle along the direction in which the periodic width of the periodic composition change of the C content ratio is minimized. It shows the change of the content ratio such as the maximum content ratio.
  • the definitions of the N maximum content point, the N maximum content ratio, the N minimum content point, and the N minimum content ratio referred to here are the same definitions in which C is replaced with N.
  • the positions of the ZrHf maximum content point and the C maximum content point, and the cycles of the respective maximum content points and the minimum content points can be synchronized in the film forming method described later.
  • the average value of the absolute values of the difference ⁇ x between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is 0.02 or more
  • the absolute value of the difference ⁇ z between the C maximum content ratio z max and the C minimum content ratio z min is absolute.
  • the hardness is improved by using a composition-variable structure having an average value of 0.02 or more.
  • the following two points can be considered as factors for improving the hardness. (1) The movement of dislocations is hindered and the hardness is improved between the region where Zr, Hf and C are increased (enriched region) and the region where Zr, Hf and C are decreased (poor region). be able to. (2) Since C is increased in the region where Zr and Hf are increased, the "effect of the bond between Zr and N" and the "effect of the bond between Hf and N" are smaller than those of the uniform TiZrHfNC layer.
  • the difference between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is more preferably 0.02 or more and 0.90 or less, and the difference between the C maximum content ratio z max and the C minimum content ratio z min is 0. More preferably, it is 0.02 or more and 0.75 or less. If these differences are too large, abnormal damage such as minute chipping is likely to occur. Although the cause of this is not clear, it is presumed that the change in the lattice constant within the composition-variable structure becomes too large and the toughness as a crystal grain decreases.
  • the interval (Pmin1-Pmax1) between the ZrHf maximum content point 1 (Pmax1) and the ZrHf minimum content point 1 (Pmin1), and the ZrHf maximum content point 2 (Pmax2) and the ZrHf minimum content point 2 (Pmin2) It can be obtained as an average value with the interval (Pmin2-Pmax2).
  • the average interval measured in the direction in which the period of periodic composition change is minimized is 5 to 5 to. It is necessary to be 100 nm.
  • the vertical cross section is a cross section along the thickness direction of the coating layer.
  • composition-variable structure occupies a large area ratio in the structure of the composite carbonitride layer. It is necessary that the area ratio of the nitride layer to the structure is 10% or more.
  • the upper limit of the area ratio of the composition-variable structure to the structure of the composite carbonitride layer is not particularly limited, and is 100% or less, preferably 96% or less.
  • the composition-variable structure is preferably a laminated structure.
  • the stacking direction of the laminated structure is the film thickness. It does not have to match the direction.
  • a composite carbonitride layer containing crystal grains having a laminated structure can be obtained, but the laminated direction of the laminated structure does not always coincide with the film thickness direction.
  • the vicinity of the grain boundary is not a laminated structure, or there are cases where any of the elements Ti, Zr, Hf, C, N, O, and Cl is concentrated near the grain boundary.
  • the area ratio of the structure (in this case, the composition-variable structure of the laminated structure) to the structure of the composite carbonitride layer is 10% or more, the hardness improving effect is exhibited.
  • the composite carbonitride layer according to the present embodiment has a vertically long crystal structure, so that particles are suppressed from falling off from the coating layer, and the composite carbonitride layer has excellent wear resistance and abnormal damage resistance. Demonstrate.
  • the vertically elongated crystal structure referred to here is defined as follows. When observing the longitudinal cross section of the composite carbonitride layer, the maximum value of the height (long side) of the crystal grains in the layer thickness direction was defined as the maximum particle length (L) for each crystal grain.
  • the maximum grain width (W) is the largest value in the width (short side) of the crystal grains in the direction perpendicular to the layer thickness direction.
  • the structure in which the area ratio of the crystal grains (vertical crystal grains) having an aspect ratio of 2.0 or more defined by L / W in the vertical cross section of the composite carbonic nitride layer is 50% or more is vertically long. It is called a crystal structure.
  • the aspect ratio and the area ratio of the vertically elongated crystal grains are measured, for example, as follows. For vertical cross-sectional images obtained by cross-sectional observation at a magnification of 5000 using a scanning electron microscope (SEM), the maximum particle length and maximum particle width for each crystal grain by electron backscatter diffraction (EBSD). , And measure the area of the longitudinal section. Obtain the aspect ratio from the maximum particle length and maximum particle width.
  • the total area of the crystal grains having an aspect ratio of 2.0 or more in the vertical cross section is divided by the area of the vertical cross section to be measured to obtain a ratio, and this ratio is obtained as the area ratio. That is, by defining a structure in which the area ratio of crystal grains having an aspect ratio of 2.0 or more is 50% or more as a vertically long crystal structure, the effect of improving toughness and wear resistance can be exhibited.
  • the inclined angle number distribution in the composite carbonic nitride crystal grains of the composite carbonic nitride layer is obtained by using a field emission scanning electron microscope and an electron backscatter diffraction device, and the cross-sectional polished surface thereof. It can be measured by irradiating individual crystal grains having a rock salt-type cubic crystal lattice existing within the measurement range (cross section along the thickness direction of the coating layer) with an electron beam. That is, specifically, the inclination angle formed by the normal of the ⁇ 112 ⁇ plane, which is the crystal plane of the composite carbonitride crystal grains in the composite carbonitride layer, is 0 with respect to the normal of the surface of the tool substrate.
  • the measurement inclination angle is divided into pitches of 0.25 degrees, and the degrees existing in each division are totaled to create an inclination angle number distribution graph.
  • the tilt angle number distribution graph is a graph in which the horizontal axis is the tilt angle and the vertical axis is the frequency.
  • the frequency is the number of pixels, and the pixel is the smallest unit measured by electron backscatter diffraction (EBSD), and the unit size of the pixel is 10 nm ⁇ 10 nm.
  • the highest peak exists in the inclination angle division in which the inclination angle of the surface of the tool substrate with respect to the normal is in the range of 0 to 10 degrees, and exists in the inclination angle division in the range of 0 to 10 degrees.
  • the total frequency accounts for 35% or more of the total frequency in the inclination angle distribution graph.
  • the carbonitride layer has a structure in which the crystal grains have a high orientation tendency with respect to the ⁇ 112 ⁇ plane and are less likely to undergo plastic deformation.
  • the upper limit of the ratio of the total of the frequencies existing in the inclination angle division within the range of 0 to 10 degrees to the entire frequency is not particularly limited, and is 100% or less, preferably 96% or less.
  • the inclination angle number is constant regardless of the inclination angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the tool substrate surface. It is standardized so that it becomes the value of.
  • a Ti compound layer such as TiN or TiC is provided as an intermediate layer between the tool substrate and the lower layer to improve the adhesion between the tool substrate and the lower layer. be able to.
  • a TiN layer, a TiC layer, or the like can be provided as an intermediate layer between the lower layer and the composite carbonitride layer.
  • the TiN layer has excellent peel resistance because it can inherit the orientation of the ⁇ 112 ⁇ plane on the outermost surface of the lower layer. It is considered that this is because the TiN layer has high adhesion strength in both the lower layer and the composite carbonitride layer and high deformation followability.
  • the conditions for forming the TiN layer are common when it is provided between the tool substrate and the lower layer and when it is provided between the lower layer and the composite carbonitride layer.
  • basic components such as Co and C are diffused from the substrate, resulting in a fine granular structure.
  • diffusion unlike the former does not occur, it is considered that a highly oriented structure that inherits the structure of the lower layer is obtained.
  • an upper layer such as an Al oxide or a titanium compound such as TiN or TiCN can be further provided on the composite carbonitride layer, and a peening treatment or the like is performed after the film formation. You can also do it.
  • the hard coating layer according to the present embodiment can be formed in the order of at least the lower layer and the composite carbonitride layer, for example, by using the film forming method shown below.
  • (1) Method for forming a film on the lower layer The lower layer of the hard coating layer has at least one layer of a compound layer containing Ti and / or Zr and containing carbon and nitrogen.
  • the lower layer can be formed by using a normal chemical vapor deposition method and adjusting the reaction gas composition and the reaction atmosphere such as pressure and temperature for each compound layer to be formed within an appropriate range. (See Table 3 etc.
  • the compound layer containing Ti can be selected from a carbonitride layer of Ti, a carbonitride oxide layer, a carbonitride boride layer, and the like.
  • the compound layer containing Zr can be selected from a ZrCN layer, a ZrCNO layer, a ZrCNB layer and the like.
  • the compound layer containing both Ti and Zr can be selected from a TiZrCN layer, a TiZrCNO layer, a TiZrCBN layer and the like.
  • TiZrNC layer or TiZrHfNC layer has a specific component composition, a specific composition variation structure, and a specific vertically long structure. It has a crystal structure and the crystal grains are oriented in the ⁇ 112 ⁇ plane.
  • the TiZrNC layer or the TiZrHfNC layer can be formed by forming at least the lower layer on the tool substrate and then forming a film under the following conditions, for example, by using a chemical vapor deposition method. That is, the film forming conditions of the TiZrNC layer or the TiZrHfNC layer are shown below.
  • TiCl 4 gas, ZrCl 4 gas or a mixed gas of ZrCl 4 gas and HfCl 4 gas, CH 4 gas, N 2 gas, H 2 gas are used, and the film formation temperature is 980 ° C or higher and lower than 1080 ° C, pressure.
  • the condition is that the film can be formed at 16 kPa or more and less than 40 kPa using a CVD apparatus capable of periodic supply.
  • the gas group A and the gas group B are periodically introduced into the furnace as many times as necessary and repeatedly reacted to cause TiNC and TiZrNC or TiZrHfNC.
  • the initial nuclei of the are scattered and formed.
  • the gas group C and the gas group D are periodically introduced into the furnace as many times as necessary and reacted to grow the initial nuclei into crystals.
  • the gas group C and the gas group D are periodically introduced into the furnace as many times as necessary and reacted to grow the initial nuclei into crystals.
  • the supply time of each gas group is 5 seconds or more for both the gas group A and the gas group B, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it becomes difficult to clearly distinguish and form the initial nuclei. On the other hand, if the gas supply time per cycle is too long, it is difficult to obtain initial nuclei in which TiNC and TiZrNC or TiZrHfNC are interspersed. Therefore, the gas supply time per cycle is preferably 180 seconds or less. Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less. c) Reaction atmosphere temperature: 980 ° C. or higher and lower than 1080 ° C.
  • reaction atmosphere temperature if it is lower than 980 ° C., it tends to be difficult to obtain a sufficient film formation rate. On the other hand, at 1080 ° C. or higher, elements such as C may diffuse into the film from the cemented carbide base material, and sufficient adhesion strength may not be obtained. Therefore, the reaction atmosphere temperature is preferably 980 ° C. or higher and lower than 1080 ° C. d) Reaction atmosphere pressure: 16 kPa or more and less than 40 kPa At less than 16 kPa, a sufficient film forming rate cannot be obtained, and at 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
  • Second step (crystal growth step) a) Reaction gas composition (% by volume): Gas group C; TiCl 4 : 0.4-0.7%, ZrCl 4 : 0.1 to 1.8%, HfCl 4 : 0.0 to 1.7%, However, ZrCl 4 + HfCl 4 : 0.5 to 1.8%, CH 4 : 1.0 to 6.0%, N 2 : 25.0 to 60.0%, H 2 : The rest, Gas group D; TiCl 4 : 0.2 to 0.5%, but less than the TiCl 4 concentration of gas group C, ZrCl 4 : 0.1-2.2%, HfCl 4 : 0.0-2.2%, However, ZrCl 4 + HfCl 4 : 0.8 to 2.2%, And the concentration of ZrCl 4 + HfCl 4 in the gas group C was exceeded, CH 4 : 2.0 to 8.0%, however, exceeding the CH 4 concentration of gas group C, N 2 : 15.0 to 50.0%, but less than the N 2 concentration of gas group C
  • the supply time of each gas group is 5 seconds or more for both the gas group C and the gas group D, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it becomes difficult to clearly distinguish and form the composition-variable structure. On the other hand, as the gas supply time per cycle is lengthened, the composition fluctuation of the composition variation structure in the crystal grains becomes longer. As a result, the above-mentioned "effect of hindering the movement of dislocations between the region enriched with Zr, Hf and C and the region enriched with Zr, Hf and C" and improving the hardness is reduced. Hardness decreases. In order to set the period of periodic composition change to 100 nm or less, the gas supply time per cycle is preferably 180 seconds or less.
  • the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
  • the layer thickness of the composite carbonitride layer is adjusted by increasing or decreasing the number of repetitions of the gas supply cycle (gas group C ⁇ gas group D).
  • the reaction atmosphere temperature if the temperature is lower than 980 ° C., a sufficient film forming rate cannot be obtained, and the chlorine content of the TiZrNC layer or the TiZrHfNC layer tends to increase.
  • elements such as C may diffuse into the film from the cemented carbide base material, and sufficient adhesion strength may not be obtained.
  • reaction atmosphere temperature is preferably 980 ° C. or higher and lower than 1080 ° C.
  • Reaction atmosphere pressure 16 kPa or more and less than 40 kPa At less than 16 kPa, a sufficient film forming rate cannot be obtained, and at 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
  • the covering tool of this embodiment will be described by way of examples.
  • a tool applied to a WC-based cemented carbide or an insert cutting tool using a cermet as a tool base will be described, but the tool base may be a conventionally known base material.
  • any of them can be used as long as it does not hinder the achievement of the object of the present embodiment.
  • cemented carbide including WC-based cemented carbide, WC, those containing Co, or those to which carbides such as Ti, Ta, Nb are added
  • cermet TiC, TiN, TiCN, etc.
  • cermet TiC, TiN, TiCN, etc.
  • Mainn component cubic boron nitride sintered body
  • high-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof, etc.), diamond sintered body And so on.
  • each of these tool substrates A to E is charged into a chemical vapor deposition apparatus, and the lower layer and the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer are formed in this order to form a film.
  • Invention covering tools 1 to 16 were manufactured, respectively (see Tables 4 and 5 and Tables 6 and 7).
  • an intermediate layer is provided between the tool substrate and the lower layer and / or between the lower layer and the composite carbonitride layer, and the composite carbonitride layer is provided.
  • An upper layer was provided on the upper part.
  • the intermediate layer, the lower layer and the upper layer were vapor-deposited at the target layer thickness shown in Tables 8 and 9 and under the forming conditions shown in Table 3.
  • the hard coating layer is the TiZrNC layer / TiZrHfNC layer of the film forming step of the present invention with respect to the tool substrate of Table 1 or Table 2 shown by the tool substrate symbol based on Tables 4 and 5 and Tables 6 and 7. Film formation was performed according to the film formation conditions of the formation symbol.
  • Comparative Example Covering Tools 1 to 9 were manufactured in the same procedure as the Covering Tools 1 to 16 of the present invention.
  • A A lower layer having a target layer thickness shown in Table 13 was deposited and formed on the tool substrate under the formation conditions shown in Table 3.
  • B Next, based on Tables 4 and 5 and Tables 6 and 7, the formation symbols of the TiZrNC layer and the TiZrHfNC layer in the comparative example film forming step were applied to the tool substrates of Table 1 or Table 2 shown in the tool substrate symbols. The film was formed according to the film forming conditions of.
  • Average value C maximum content ratio (average value), C minimum content ratio (average value), interval between ZrHf maximum content point and ZrHf minimum content point (average value), interval between C maximum content point and C minimum content point (average value)
  • Tables 14 to 16 show the average value), the interval (average value) between the ZrHf maximum content point and the C maximum content point closest to the ZrHf maximum content point, and the average film thickness.
  • a scanning electron microscope (magnification of 5000 times) was used to measure the film thickness.
  • polishing was performed so that the cross section in the direction perpendicular to the surface of the tool substrate was exposed at a position 100 ⁇ m away from the cutting edge.
  • the TiZrNC layer and the TiZrHfNC layer were observed with a field of view of 5000 times so as to include a position 100 ⁇ m away from the cutting edge of the rake face near the cutting edge, the layer thicknesses of 5 points in the observation field of view were measured, and the average values were averaged.
  • the layer thickness was set.
  • a vertical cross section perpendicular to the surface of the tool substrate was cut out using a focused ion beam (FIB), and the composition of the TiZrNC layer or the TiZrHfNC layer was measured as follows.
  • HAADF-STEM High-angle scattering annular dark-field scanning transmission microscopy
  • EDS energy dispersive X-
  • HAADF-STEM was used to determine the area ratio of the composition-variable structure to the structure of the composite carbonitride layer. Specifically, in a field of view of 1.0 ⁇ m ⁇ 1.0 ⁇ m (when the film thickness of the TiZrNC layer or TiZrHfNC layer is 1.0 ⁇ m or less, the film thickness of the TiZrNC layer or TiZrHfNC layer ⁇ 1.0 ⁇ m field of view), HAADF -The STEM image was observed in five different visual fields, and the composition-variable structure was determined as the average value of the area ratio of the composite carbonitride layer to the structure.
  • the "texture with periodic light and darkness in the HAADF-STEM image" observed here is "periodic between Ti, Zr and Hf". It can be presumed that the tissue has a composition change. Next, it was confirmed whether or not the tissue having periodic light and dark had a periodic compositional change between Ti, Zr and Hf by using a line analysis method using EDS.
  • the composition-variable structure of the laminated structure can be seen in the crystal grains, and the composition-variable structure of the laminated structure can be line-analyzed by EDS.
  • the direction in which the period of periodic composition change between Ti, Zr, and Hf is minimized that is, the direction in which the period width of the contrast between light and dark in the HAADF-STEM image is minimized.
  • the crystal orientation mapping by the electron diffraction pattern is measured at 10 nm intervals at the same location, and the crystal orientation relationship between the measurement points is analyzed.
  • the directional difference between adjacent measurement points (hereinafter, also referred to as "pixels") is measured, and if there is a directional difference of 5 degrees or more, that is defined as a grain boundary. Then, the region surrounded by the grain boundaries is defined as one crystal grain.
  • pixels that exist independently with all adjacent pixels and an orientation difference of 5 degrees or more are not treated as crystal grains, and those in which two or more pixels are connected are treated as crystal grains.
  • the ZrHf maximum content ratio, the ZrHf minimum content ratio, and the C maximum content ratio by performing a line analysis by EDS in the above-mentioned "direction in which the periodic width of the periodic composition change between Ti, Zr and Hf is minimized", the ZrHf maximum content ratio, the ZrHf minimum content ratio, and the C maximum content ratio, The C minimum content ratio, the interval between the ZrHf maximum content point and the ZrHf minimum content point, the interval between the C maximum content point and the C minimum content point, and the ZrHf maximum content point and the C located closest to the ZrHf maximum content point. The distance from the highest content point was measured.
  • the tilt angle number distribution of the crystal grains constituting the composite carbide layer of the hard coating layers of the coating tools 1 to 16 of the present invention and the coating tools 1 to 9 of the comparative examples was examined with a field emission scanning electron microscope and an electron beam rear. It was measured using a scattering diffractometer. That is, the measurement range of the cross-sectional polished surface (0. 3 ⁇ m ⁇ 50 ⁇ m) was set in the lens barrel of a field emission scanning electron microscope.
  • An electron beam with an acceleration voltage of 15 kV is irradiated to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA, and each crystal grain having a rock salt-type cubic crystal lattice existing in the measurement range of the polished surface is individually irradiated. bottom.
  • a measurement region of 0.3 ⁇ m ⁇ 50 ⁇ m was measured at intervals of 0.1 ⁇ m / step with respect to the normal of the tool substrate surface on the surface polished surface.
  • the inclination angle formed by the normal of the ⁇ 112 ⁇ plane, which is the crystal plane of the crystal grain, is measured by dividing it into pitches of 0.25 degrees over a range of 0 to 45 degrees, and the frequencies existing in each division are measured. To create a tilt angle number distribution graph. Based on this measurement result, the total frequency of the crystal grains whose inclination angle classification is in the range of 0 to 10 degrees is obtained, and further, the frequency ratio of the total frequency to the entire inclination angle frequency distribution graph is obtained. It is shown in Tables 10 to 12 and Tables 14 to 16.
  • the number of tilt angles should be a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the surface of the tool substrate. It is standardized to.
  • the covering tools 1 to 16 of the present invention and the comparative example tools 1 to 9 are subjected to intermittent cutting of the heat-resistant steel shown below.
  • the test was carried out. The wear width of the flank of the cutting edge was measured, and the presence or absence of welding was observed, and the results are shown in Table 17.
  • ⁇ Cutting condition A Heat-resistant steel 1 slit material Wet high-feed intermittent cutting processing test Work material: JIS / SCH13, Cutting speed: 115m / min, Notch: 1.6 mm, Feed amount: 0.42 mm / rev, Cutting time: 4.0 minutes, ⁇ Cutting condition B ⁇ Cutting test: Heat-resistant steel 1 slit material Wet high-feed intermittent cutting processing test Work material: JIS / SCH13, Cutting speed: 95m / min, Notch: 1.3 mm, Feed amount: 0.37 mm / rev, Cutting time: 1.0 minutes,
  • each component element satisfies the desired average composition, and the ZrHf content ratio and the C content ratio are periodic. It had a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having a composition-variable structure of a laminated structure in which the periods and positions of the ZrHf maximum content point and the C maximum content point were synchronized with each other.
  • the maximum wear width of the flank was small, and excellent welding resistance, plastic deformation resistance, and abnormal damage resistance were exhibited.
  • the comparative example coating tool contains ZrHf even when the composite carbonitride layer contained as the hard coating layer does not satisfy the desired average composition or satisfies the desired average composition. It did not have a composition-variable structure in which the ratio and the C content ratio changed periodically. As a result, the desired characteristics could not be exhibited, and the life was reached in a short time due to the progress of wear, the occurrence of welding, the occurrence of chipping, and the like.
  • the coating tool of the present embodiment has a desired composition-variable structure in which the content ratio of each component changes periodically in the composite carbonitride layer included as the hard coating layer. As a result, for example, in intermittent cutting of heat-resistant steel, excellent welding resistance, chipping resistance, and wear resistance are exhibited. Therefore, the covering tool of the present embodiment is sufficiently satisfied with high performance of the cutting device, labor saving and energy saving of the cutting process, and cost reduction.

Abstract

This surface-coated cutting tool has, on a surface of a tool base, a hard coating layer comprising a composite carbonitride layer containing (Ti(1-x)ZrxyHfx(1-y))(N(1-z)Cz) (0.10 ≤ x ≤ 0.90, 0 < y ≤ 1.0, and 0.05 < z < 0.75), wherein: a ZrHf content ratio and a C content ratio vary periodically; a periodic interval between a maximum ZrHf content point and an adjacent minimum ZrHf content point, and a periodic interval between a maximum C content point and an adjacent minimum C content point are 5–100 nm; an average value of content ratio differences Δx and Δz is at least 0.02; a distance between the maximum ZrHf content point and the closest maximum C content point is no greater than 1/5 a distance between the maximum content point and the minimum content point of the ZrHf component adjacent to each other; and a composition variation structure is at least 10% in area ratio. The hard coating layer has a longitudinal crystalline structure, and a maximum peak of an inclination angle segment formed by a normal to the {112} face is present in an inclination angle segment within a range of inclination angles of 0–10 degrees with respect to a normal to the surface of the tool base.

Description

表面被覆切削工具Surface coating cutting tool
 本発明は、長期の使用に亘り、すぐれた切削性能を有する表面被覆工具に関するものである。詳細には、本発明は、硬質被覆層がすぐれた耐溶着性、耐塑性変形性および耐異常損傷性を備えることにより、長期の使用に亘り、すぐれた切削性能を有する表面被覆工具に関するものである。
 本願は、2020年3月6日に日本に出願された特願2020-038704号、及び2021年1月28日に日本に出願された特願2021-011702号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a surface covering tool having excellent cutting performance over a long period of use. More specifically, the present invention relates to a surface coating tool having excellent cutting performance over a long period of time because the hard coating layer has excellent welding resistance, plastic deformation resistance and abnormal damage resistance. be.
The present application claims priority based on Japanese Patent Application No. 2020-038704 filed in Japan on March 6, 2020 and Japanese Patent Application No. 2021-011702 filed in Japan on January 28, 2021. The contents are used here.
 従来、一般に、各種鋼の切削加工においては、炭化タングステン基等の超硬合金基体と、超硬合金基体表面に形成された硬質被覆層とを有する被覆工具が用いられている。硬質被覆層は、下部層として化学蒸着形成されたTiの炭窒化物(TiCN)層等のTi化合物層と、上部層として化学蒸着形成された酸化アルミニウム層と、を有する。
 しかしながら、近年、各種鋼の断続切削加工における高能率化が求められている。特に、耐熱鋼の断続切削加工においては、高能率化が求められる中、従来の前記被覆工具、例えば、従来のAl/TiCN/超硬合金の膜構成のインサートでは、溶着チッピングが発生し易く、また、溶着チッピングが発生せず、正常摩耗となった場合においても正常摩耗の進行が早い。このため、ニーズへの対応は困難化しつつある。
Conventionally, in the cutting of various steels, a coating tool having a cemented carbide substrate such as a tungsten carbide group and a hard coating layer formed on the surface of the cemented carbide substrate has been generally used. The hard coating layer has a Ti compound layer such as a carbonitride (TiCN) layer of Ti chemically vapor-deposited as a lower layer, and an aluminum oxide layer chemically vapor-deposited as an upper layer.
However, in recent years, there has been a demand for higher efficiency in intermittent cutting of various steels. In particular, in the intermittent cutting of heat-resistant steel, while high efficiency is required, welding chipping occurs in the conventional covering tool, for example, a conventional insert having a film structure of Al 2 O 3 / TiCN / cemented carbide. It is easy to do, welding chipping does not occur, and even when normal wear occurs, normal wear progresses quickly. For this reason, it is becoming difficult to meet the needs.
 そこで、例えば、特許文献1では、基体表面にTiZr炭窒化物皮膜を有する被覆切削工具において、前記皮膜が、Zrを0.3質量%以上50質量%以下、塩素を2質量%以下にて含有する被覆切削工具が提案されている。この被覆切削工具は、引っ張り残留応力を有することにより、機械構造用鋼等の切削加工に際し、膜硬度が高まり耐摩耗性にすぐれるとともに、すぐれた切削耐久特性を有する。
 また、特許文献2では、TiZr炭窒化物皮膜を有する被覆切削工具において、さらに、前記皮膜の結晶方位を(422)面、または、(311)面に配向させることにより、粒界強度を高めた被覆切削工具が提案されている。この被覆切削工具では、超硬合金やサーメットなどからなる基材に対し、被覆層として、高温での膜硬度が高く、膜厚が厚くなるにつれても膜表面付近の結晶粒の幅が粗大化せず、良好な耐摩耗性と靱性を有し、すぐれた切削耐久特性を示す。
Therefore, for example, in Patent Document 1, in a coating cutting tool having a TiZr carbonitride film on the surface of a substrate, the film contains Zr in an amount of 0.3% by mass or more and 50% by mass or less and chlorine in an amount of 2% by mass or less. Coated cutting tools have been proposed. Since this coated cutting tool has tensile residual stress, it has high film hardness and excellent wear resistance when cutting machine structural steel and the like, and also has excellent cutting durability characteristics.
Further, in Patent Document 2, in a coated cutting tool having a TiZr carbonitride film, the grain boundary strength is further increased by orienting the crystal orientation of the film toward the (422) plane or the (311) plane. Coated cutting tools have been proposed. In this coating cutting tool, the film hardness at high temperature is high as a coating layer for a base material made of cemented carbide or cermet, and the width of crystal grains near the film surface becomes coarser as the film thickness increases. However, it has good wear resistance and toughness, and exhibits excellent cutting durability characteristics.
 近年の切削加工における省力化および省エネ化への要求は強く、これに伴い、被覆工具は一段と過酷な条件下にて使用されるようになってきている。このため、例えば、耐熱鋼(一例としてJIS-SCH13)の断続切削加工においては、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を発揮することが求められている。
 しかしながら、前記特許文献1および特許文献2にて提案されている、TiZr炭窒化物皮膜を有する被覆層を具備する被覆工具を耐熱鋼の断続切削加工に用いた場合において、以下の問題点が挙げられた。前者では、耐摩耗性の向上効果は認められるものの、皮膜の微小チッピングが生じ易く、また、耐溶着性が不足しているために溶着チッピングが頻発し、実用に耐えないという問題点を有していた。また、後者では、皮膜の微小チッピングはある程度抑制されるものの、粒界強度が不十分であり、耐溶着性が不足するため、溶着チッピングが発生しやすく、実用には不向きであるという問題点を有していた。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, covering tools have come to be used under more severe conditions. Therefore, for example, in the intermittent cutting of heat-resistant steel (JIS-SCH13 as an example), it is required to exhibit excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
However, when the coating tool provided with the coating layer having the TiZr carbonitride film proposed in Patent Document 1 and Patent Document 2 is used for intermittent cutting of heat-resistant steel, the following problems are raised. Was done. In the former case, although the effect of improving wear resistance is recognized, there is a problem that minute chipping of the film is likely to occur, and welding chipping occurs frequently due to insufficient welding resistance, which makes it unusable for practical use. Was there. Further, in the latter case, although minute chipping of the film is suppressed to some extent, the grain boundary strength is insufficient and the welding resistance is insufficient, so that welding chipping is likely to occur, which is not suitable for practical use. Had had.
特開2001-11632号公報Japanese Unexamined Patent Publication No. 2001-11632 特開2001-170804号公報Japanese Unexamined Patent Publication No. 2001-170804
 本発明は、耐熱鋼の断続切削加工に用いた場合であっても、長期の使用にわたり、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、工具寿命の向上をもたらす被覆工具を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance over a long period of time even when used for intermittent cutting of heat-resistant steel, and brings about an improvement in tool life. The purpose is to provide.
 そこで、本発明者らは、前述の観点から、前記被覆工具において、耐熱鋼の断続切削加工に用いた場合であっても、長期の使用にわたり、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、工具寿命の向上をもたらす、被覆工具について、鋭意研究を行った。その結果、以下の知見を得た。
 TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を有する硬質被覆層において、TiZr複合炭窒化物またはTiZrHf複合炭窒化物のC量に対するN量の比を増加させることにより、耐溶着性を高め、課題とされた溶着チッピングの問題を改善できることを知見した。
 また、前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層には、ZrとHfとの合量がTiとZrとHfとの合量に占める含有割合(以後、「ZrHf含有割合」と記すこともある)、および、C量がNとCとの合量に占める含有割合(以後、「C含有割合」と記すこともある)が、周期的に変化する組成変動組織を有し、前記組成変動組織は、それに対応し、Ti量がTiとZrとHfとの合量に占める含有割合(以後、「Ti含有割合」と記すこともある)、および、N量がNとCとの合量に占める含有割合(以後、「N含有割合」と記すこともある)が、周期的に変化する組成変動組織とする。特に、ZrHf含有割合について最高含有割合を示すZrHf最高含有点および最低含有割合を示すZrHf最低含有点の周期および位置と、C含有割合について最高含有割合を示すC最高含有点および最低含有割合を示すC最低含有点の周期および位置がそれぞれ同期した高硬度の結晶粒を含有させる。これにより、耐塑性変形性を発揮し、異常損傷の問題を解決できる、耐異常損傷性にすぐれた硬質被覆層が得られることを知見した。
 また、前記複合炭窒化物層を縦長結晶組織、すなわち、アスペクト比が2.0以上の結晶が面積比にて50%以上含まれる組織とする。これにより、被覆層からの粒子の脱落を抑制し、耐摩耗性および耐異常損傷性を発揮することを知見した。
 さらに、前記複合炭窒化物層において、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射する。前記工具基体の表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定する。測定傾斜角を0.25度のピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成する。なお、傾斜角度数分布グラフとは、横軸を傾斜角とし、縦軸を度数としたグラフである。この場合に、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める。これにより、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、耐熱鋼の断続切削加工用としても、長期の使用にわたり、工具寿命の向上をもたらすものであることを見出した。
 なお、本発明の一態様に係るTiZr複合炭窒化物およびTiZrHf複合炭窒化物は、従来のものよりも、C含有量に対するN含有量の比率が高いため、本明細書では、それぞれ、TiZrNCおよびTiZrHfNCと表現する場合もある。
Therefore, from the above viewpoint, the present inventors have excellent welding resistance, plastic deformation resistance and resistance to welding even when used for intermittent cutting of heat-resistant steel in the covering tool over a long period of time. We conducted intensive research on coated tools that have abnormal damage and improve tool life. As a result, the following findings were obtained.
In a hard coating layer having a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer, the welding resistance is enhanced by increasing the ratio of the amount of N to the amount of C of the TiZr composite carbonitride or the TiZrHf composite carbonitride. , It was found that the problem of welding chipping, which was a problem, can be improved.
Further, in the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf (hereinafter, referred to as "ZrHf content ratio"). (Sometimes), and the content ratio of the amount of C to the total amount of N and C (hereinafter, also referred to as “C content ratio”) has a composition-variable structure that changes periodically. Correspondingly, the composition-variable structure has a content ratio in which the Ti content accounts for the total amount of Ti, Zr, and Hf (hereinafter, may be referred to as "Ti content ratio"), and an N content is N and C. A composition-variable structure in which the content ratio in the total amount (hereinafter, also referred to as “N content ratio”) changes periodically. In particular, the period and position of the ZrHf maximum content point indicating the maximum content ratio and the ZrHf minimum content point indicating the minimum content ratio for the ZrHf content ratio, and the C maximum content point and the minimum content ratio indicating the maximum content ratio for the C content ratio are shown. C Contains high-hardness crystal grains in which the period and position of the lowest content point are synchronized. As a result, it was found that a hard coating layer having excellent plastic deformation resistance, which can exhibit the problem of abnormal damage and can solve the problem of abnormal damage, can be obtained.
Further, the composite carbonitride layer has a vertically long crystal structure, that is, a structure containing 50% or more of crystals having an aspect ratio of 2.0 or more in terms of area ratio. As a result, it was found that the particles were suppressed from falling off from the coating layer, and that they exhibited wear resistance and abnormal damage resistance.
Further, in the composite carbonitride layer, an electric field emission scanning electron microscope and an electron backscatter diffraction device are used to form individual crystal grains having a rock salt-type cubic crystal lattice existing within the measurement range of the cross-section polished surface. Irradiate an electron beam. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate. A slope angle distribution graph is created by classifying the measurement tilt angle for each pitch of 0.25 degrees and summing up the degrees existing in each section. The tilt angle number distribution graph is a graph in which the horizontal axis is the tilt angle and the vertical axis is the frequency. In this case, the highest peak exists in the inclination angle division in which the inclination angle of the surface of the tool substrate with respect to the normal is in the range of 0 to 10 degrees, and exists in the inclination angle division in the range of 0 to 10 degrees. The total frequency accounts for 35% or more of the total frequency in the inclination angle distribution graph. As a result, it has been found that it has excellent welding resistance, plastic deformation resistance and abnormal damage resistance, and also for intermittent cutting of heat-resistant steel, it brings about an improvement in tool life over a long period of use.
Since the TiZr composite carbonitride and the TiZrHf composite carbonitride according to one aspect of the present invention have a higher ratio of N content to C content than the conventional ones, in the present specification, TiZrNC and TiZrNC, respectively, It may also be expressed as TiZrHfNC.
 本発明の一態様は、前記知見に基づいてなされたものであって、以下の要件を有する。
(1)工具基体と、前記工具基体の表面に設けられた硬質被覆層と、を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、前記工具基体の表面側から少なくとも下部層および複合炭窒化物層を有してなり、
(b)前記下部層は、Tiおよび/またはZrを含み、かつ炭素と窒素とを含む化合物層を少なくとも一層有し、その合計膜厚は0.8μm以上であり、
(c)前記複合炭窒化物層は、平均層厚0.5μm以上20.0μm以下のTiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含み、
(d)前記複合炭窒化物層は、TiZr複合炭窒化物またはTiZrHf複合炭窒化物を含有し、前記複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表わした場合、
 TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合x、ZrとHfとの合量に対してZr量が占める平均含有割合y、および、NとCとの合量に対してC量が占める平均含有割合z(但し、x、yおよびzはいずれも原子比)が、それぞれ、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75を満足する平均組成を有し、
(e)前記複合炭窒化物層は、少なくとも一部の結晶粒内に、TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合、および、NとCとの合量に対してC量が占める含有割合が周期的に変化する組成変動組織を有し、
(e-1)縦断面観察において、前記組成変動組織が前記複合炭窒化物層の組織に占める面積割合が10%以上であり、
(e-2)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とが繰り返され、前記繰り返される隣接するZrHf最高含有点とZrHf最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記ZrHf最高含有点の最高含有割合xmaxと前記ZrHf最低含有点の最低含有割合xminとの差Δxの絶対値の平均値が0.02以上であり、
(e-3)前記組成変動組織における前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と最低含有割合zminを示すC最低含有点とが繰り返され、前記繰り返される隣接するC最高含有点とC最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記C最高含有点の最高含有割合zmaxと前記C最低含有割合zminとの差Δzの絶対値の平均値が0.02以上であり、
(e-4)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とのそれぞれの周期および位置と、前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と、最低含有割合zminを示すC最低含有点とのそれぞれの周期および位置とはそれぞれに対応して同期しており、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値が、前記ZrHf最高含有点とその隣接するZrHf最低含有点との平均間隔の1/5以下であり、
(f)前記複合炭窒化物層は、縦長結晶組織を有し、
(g)電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、前記複合炭窒化物層の断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒のそれぞれに電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定して傾斜角度数分布グラフを作成した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める層を少なくとも一層を有することを特徴とする表面被覆切削工具。
(2)前記組成変動組織が、積層組織であることを特徴とする前記(1)に記載された表面被覆切削工具。
 なお、本明細書および特許請求の範囲の記載において、数値範囲を示す際に、「~」、あるいは「-」を用いて表現する場合に、その範囲は、数値の上限および下限を含むことを意味する。
One aspect of the present invention has been made based on the above findings and has the following requirements.
(1) A surface-coated cutting tool having a tool substrate and a hard coating layer provided on the surface of the tool substrate.
(A) The hard coating layer has at least a lower layer and a composite carbonitride layer from the surface side of the tool substrate.
(B) The lower layer has at least one compound layer containing Ti and / or Zr and also containing carbon and nitrogen, and the total film thickness thereof is 0.8 μm or more.
(C) The composite carbonitride layer includes at least one layer of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 μm or more and 20.0 μm or less.
(D) The composite carbonitride layer contains a TiZr composite carbonitride or a TiZrHf composite carbonitride, and the composite carbonitride has a composition formula (Ti (1-x) Zr xy Hf x (1-y). ) ) (N (1-z) C z )
The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C. The average content ratio z (where x, y and z are all atomic ratios) of the amount of C with respect to the total amount of and is 0.10 ≦ x ≦ 0.90 and 0 <y ≦ 1.0, respectively. , And have an average composition satisfying 0.05 <z <0.75.
(E) In the composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and N and C are contained in at least a part of the crystal grains. It has a composition-variable structure in which the content ratio of C amount to the total amount of C changes periodically.
(E-1) In the vertical cross-sectional observation, the area ratio of the composition-variable structure to the structure of the composite carbonitride layer is 10% or more.
(E-2) Regarding the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf in the composition-variable structure, the maximum content ratio x max of ZrHf content point and the minimum content The ZrHf minimum content point indicating the ratio x min is repeated, and the average interval, which is the average value of the intervals between the repeated adjacent ZrHf maximum content points and the ZrHf minimum content points, is 5 to 100 nm. The average value of the absolute value of the difference Δx between the maximum content ratio x max and the minimum content ratio x min of the ZrHf minimum content point is 0.02 or more.
(E-3) Regarding the content ratio of the C amount to the total amount of the N and C in the composition-variable structure, the C maximum content point indicating the maximum content ratio z max and the C minimum content indicating the minimum content ratio z min. The content points are repeated, and the average interval, which is the average value of the intervals between the repeated adjacent C maximum content points and the C minimum content points, is 5 to 100 nm, and the maximum content ratio z max of the C maximum content points and the above The average value of the absolute values of the difference Δz from the C minimum content ratio z min is 0.02 or more.
(E-4) Regarding the content ratio of the total amount of Zr and Hf to the total amount of the Ti, Zr and Hf in the composition-variable structure, the ZrHf maximum content point and the minimum content indicating the maximum content ratio x max. Regarding the respective cycles and positions of the ZrHf minimum content point indicating the ratio x min , and the content ratio of the C amount to the total amount of the N and C, the C maximum content point indicating the maximum content ratio z max and the C maximum content point indicating the maximum content ratio z max. The respective cycles and positions of the C minimum content point indicating the minimum content ratio z min are synchronized with each other, and the ZrHf maximum content point and the C maximum position closest to the ZrHf maximum content point are synchronized with each other. The average value of the interval from the content point is 1/5 or less of the average interval between the ZrHf maximum content point and the adjacent ZrHf minimum content point.
(F) The composite carbonitride layer has a vertically long crystal structure and has a vertically long crystal structure.
(G) Using an electro-emission scanning electron microscope and an electron beam backscattering diffractometer, electrons are generated in each of the crystal grains having a rock salt type cubic crystal lattice existing within the measurement range of the cross-sectional polished surface of the composite carbonitride layer. A line is irradiated, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate. When the number distribution graph is created, the highest peak exists in the inclination angle division in which the inclination angle with respect to the normal of the surface of the tool substrate is in the range of 0 to 10 degrees, and the inclination angle division in the range of 0 to 10 degrees is described. A surface coating cutting tool characterized in that the total number of degrees present in is at least one layer that occupies 35% or more of the total degrees in the inclination angle distribution graph.
(2) The surface coating cutting tool according to (1) above, wherein the composition-variable structure is a laminated structure.
In the description of the present specification and the claims, when the numerical range is expressed by using "-" or "-", the range includes the upper limit and the lower limit of the numerical value. means.
 本発明の一態様に係る表面被覆切削工具は、工具基体の表面に形成されている硬質被覆層において、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層を有することにより、Cを含有することによる硬さの向上と、C含有量に対するN含有量の比を増加させることによる耐溶着性の向上を両立させ、耐熱鋼の断続切削加工において課題とされた溶着チッピングの問題を解決したものである。
 さらに、前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層は、ZrHf含有割合、および、C含有割合が、周期的に変化する組成変動組織を有する。特に、ZrHf最高含有点およびZrHf最低含有点の周期および位置と、C最高含有点およびC最低含有点の周期および位置をそれぞれ同期させ、ZrC、HfC、TiC、TiNと比較して硬さの低いZrNおよびHfNの生成を少なくする。これにより、均一なTiZrHfNC層に比較し、硬さの高い結晶粒を生成させ、すぐれた耐塑性変形性を発揮し、異常損傷の問題を解決したものである。
 加えて、前記組織は、縦長結晶組織であるため、基体表面と平行な粒界が少なく、皮膜粒子が脱落しにくい。また、前記組織は、{112}面を有することで対応粒界比率が高く、粒界強度が高く、塑性変形を生じにくい。このため、かかる複合炭窒化物層を硬質被覆層として有する被覆切削工具は、耐熱鋼の断続切削加工において、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備えており、長期の使用にわたり、工具寿命の向上をもたらすものである。
 さらに、TiZrNC皮膜が{112}面に配向することにより、上部層としてTiCN+α-Alを成膜した際に、α-Alが耐摩耗性にすぐれる{0001}面に配向するという特徴を有する。
The surface-coated cutting tool according to one aspect of the present invention contains C by having a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer in a hard coating layer formed on the surface of a tool substrate. It solves the problem of welding chipping, which has been a problem in intermittent cutting of heat-resistant steel, by achieving both the improvement of hardness and the improvement of welding resistance by increasing the ratio of N content to C content. be.
Further, the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer has a composition-variable structure in which the ZrHf content ratio and the C content ratio change periodically. In particular, the period and position of the ZrHf maximum content point and the ZrHf minimum content point are synchronized with the period and position of the C maximum content point and the C minimum content point, respectively, and the hardness is lower than that of ZrC, HfC, TiC, and TiN. Reduce the production of ZrN and HfN. As a result, compared to the uniform TiZrHfNC layer, crystal grains having higher hardness are generated, excellent plastic deformation resistance is exhibited, and the problem of abnormal damage is solved.
In addition, since the structure is a vertically long crystal structure, there are few grain boundaries parallel to the surface of the substrate, and the film particles are unlikely to fall off. Further, since the structure has a {112} plane, the corresponding grain boundary ratio is high, the grain boundary strength is high, and plastic deformation is unlikely to occur. Therefore, a coated cutting tool having such a composite carbonitride layer as a hard coating layer has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance in intermittent cutting of heat-resistant steel, and has a long-term effect. It improves the tool life over use.
Further, by orienting the TiZrNC film on the {112} plane, when TiCN + α-Al 2 O 3 is formed as an upper layer, α-Al 2 O 3 is oriented on the {0001} plane having excellent wear resistance. It has the characteristic of
本発明被覆工具のTiZrHf複合炭窒化物層の組成変動組織の組成変動方向における、ZrHf含有割合およびC含有割合について、以下で説明される、ZrHf最高含有割合、ZrHf最低含有割合、ZrHf平均含有割合、C最高含有割合、C最低含有割合、および、C平均含有割合と、それぞれの含有割合に対応する、ZrHf最高含有点、ZrHf最低含有点、ZrHf平均含有点、C最高含有点、C最低含有点、および、C平均含有点の位置との関係を示す概念図である。The composition variation of the TiZrHf composite carbonitride layer of the coating tool of the present invention The ZrHf content ratio and the C content ratio in the composition variation direction of the structure will be described below with respect to the ZrHf maximum content ratio, the ZrHf minimum content ratio, and the ZrHf average content ratio. , C maximum content ratio, C minimum content ratio, and C average content ratio, and ZrHf maximum content point, ZrHf minimum content point, ZrHf average content point, C maximum content point, C minimum content corresponding to each content ratio. It is a conceptual diagram which shows the relationship with the position of a point and a C average content point. 本発明被覆工具5の硬質被覆層の複合炭窒化物層を構成するTiZrHf炭窒化物層における{112}面の傾斜角度数分布グラフである。6 is a graph of inclination angle number distribution of {112} plane in the TiZrHf carbonitride layer constituting the composite carbonitride layer of the hard coating layer of the coating tool 5 of the present invention.
 つぎに、本実施形態の被覆工具について、詳細に説明する。 Next, the covering tool of this embodiment will be described in detail.
工具基体;
 工具基体は、この種の工具基体として従来公知の基材であれば、本実施形態の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。
 例えば、超硬合金(WC基超硬合金、WCの他、Coを含むもの、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、または、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)のいずれかであることが好ましい。
Tool base;
As the tool substrate, any substrate conventionally known as this type of tool substrate can be used as long as it does not hinder the achievement of the object of the present embodiment.
For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co, or those containing carbides such as Ti, Ta, Nb, etc.), cermets (TiC, TiN, TiCN, etc.), cermets, etc. Is the main component, etc.), or ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.) are preferable.
硬質被覆層;
 本実施形態に係る硬質被覆層は、工具基体の表面側より、少なくとも下部層および複合炭窒化物層を有しており、前記下部層は、TiおよびZrのうちいずれか一方又は両方を含み、かつ炭素と窒素とを含む化合物層を少なくとも一層含んでなるものである。
 従来の窒化物からなる組成変動組織を炭窒化物からなる組成変動組織とすることにより、一層の硬さ向上が図られる。
 また、前記複合炭窒化物層は、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含んでなるものである。
 また、必要に応じ、その他の層として、工具基体と下部層との間、および/または、下部層と複合炭窒化物層との間に中間層を設けることができ、また、複合炭窒化物層の上に上部層を設けることができる。
 ここで、硬質被覆層の平均層厚は、1.3μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、30.0μmを超えて厚くなると硬質被覆層全体として欠損やチッピングが発生しやすくなるため、1.3~30.0μmとすることが望ましい。
 硬質被覆層の平均層厚は、例えば、工具基体に対し垂直方向の断面(厚さ方向に沿った断面)において、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)を用いて測定することができる。
Hard coating layer;
The hard coating layer according to the present embodiment has at least a lower layer and a composite carbonitride layer from the surface side of the tool substrate, and the lower layer contains either one or both of Ti and Zr. Moreover, it contains at least one compound layer containing carbon and nitrogen.
By changing the conventional composition-variable structure made of nitride to a composition-variable structure made of carbonitride, the hardness can be further improved.
Further, the composite carbonitride layer includes at least one layer of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer.
Further, if necessary, as another layer, an intermediate layer can be provided between the tool substrate and the lower layer and / or between the lower layer and the composite carbonitride layer, and the composite carbonitride can be provided. An upper layer can be provided on top of the layer.
Here, if the average thickness of the hard coating layer is less than 1.3 μm, long-term wear resistance cannot be exhibited, while if it exceeds 30.0 μm, the hard coating layer as a whole is chipped or chipped. It is desirable to set it to 1.3 to 30.0 μm because it is likely to occur.
The average layer thickness of the hard coating layer is measured, for example, by using an SEM (scanning electron microscope) or a TEM (transmission electron microscope) in a cross section perpendicular to the tool substrate (cross section along the thickness direction). be able to.
下部層;
 工具基体上に形成する下部層は、TiおよびZrのうちいずれか一方又は両方を含み、かつ炭素と窒素を含む化合物層、例えば、Tiの炭窒化物層、Tiの炭窒酸化物層、Tiの炭窒硼化物層、または、Zrの炭窒化物層、Zrの炭窒酸化物、Zrの炭窒硼化物層、または、TiとZrの炭窒化物層、TiとZrの炭窒酸化物層、TiとZrの炭窒硼化物層などからなる少なくとも一層を有する。これにより、工具基体と、TiとZrの複合炭窒化物層またはTiとZrとHfの複合炭窒化物層を有する複合炭窒化物層との密着性を高めることができるため、欠損、剥離等の異常損傷の発生を抑制することができる。
 また、この下部層の上に、後述の限定された方法で複合炭窒化物層を成膜することで、複合炭窒化物層を{112}面に配向させることができる。複合炭窒化物層が{112}面に配向する理由については、少なくとも下部層の最表面は{112}面に配向しており、後述の成膜方法(すなわち、表面反応によって成膜が進行し、気相反応の寄与がほとんど無い成膜方法)にて複合炭窒化物層を形成することで、複合炭窒化物層が下部層最表面から配向を引き継いだものと考えられる。
 また、下部層と複合炭窒化物層の間に中間層を設ける場合には、中間層を、例えば、TiN層とし、後述の成膜方法を用いることにより、下部層の最表面の{112}面配向を中間層を経て、複合炭窒化物層に引き継ぐことができる。
 下部層の合計平均層厚が0.8μm未満では、膜厚が薄く、下部層最表面において、配向面が{112}面に揃わないため、複合炭窒化物層を{112}面に配向させることがむずかしい。一方、下部層の合計平均層厚が20.0μmを超えると、結晶粒が粗大化し易く、チッピングが発生しやすくなる。このため、下部層の合計平均層厚は、0.8~20.0μmとすることが好ましい。
Lower layer;
The lower layer formed on the tool substrate is a compound layer containing either one or both of Ti and Zr and containing carbon and nitrogen, for example, a carbonitride layer of Ti, a carbon dioxide oxide layer of Ti, and Ti. Boride layer of carbon dioxide, or carbonitoxide layer of Zr, carbon dioxide oxide of Zr, boron dioxide layer of Zr, or carbonitoxide layer of Ti and Zr, carbon dioxide oxide of Ti and Zr. It has at least one layer, which is composed of a layer, a charcoal-boride layer of Ti and Zr, and the like. As a result, the adhesion between the tool substrate and the composite carbonitride layer having a Ti and Zr composite carbonitride layer or the composite carbonitride layer having a Ti and Zr and Hf composite carbonitride layer can be enhanced, so that defects, peeling, etc. can be achieved. The occurrence of abnormal damage can be suppressed.
Further, by forming a composite carbonitride layer on the lower layer by a limited method described later, the composite carbonitride layer can be oriented in the {112} plane. The reason why the composite carbonitride layer is oriented on the {112} plane is that at least the outermost surface of the lower layer is oriented on the {112} plane, and the film forming method described later (that is, the film forming proceeds by the surface reaction). It is considered that the composite carbonitride layer inherited the orientation from the outermost surface of the lower layer by forming the composite carbonitride layer by a film forming method in which the vapor phase reaction hardly contributes.
When an intermediate layer is provided between the lower layer and the composite carbonitride layer, the intermediate layer is, for example, a TiN layer, and by using the film forming method described later, the outermost surface of the lower layer is {112}. The plane orientation can be passed on to the composite carbonitride layer via the intermediate layer.
When the total average layer thickness of the lower layer is less than 0.8 μm, the film thickness is thin and the orientation planes are not aligned with the {112} plane on the outermost surface of the lower layer, so that the composite carbonitride layer is oriented to the {112} plane. It's difficult. On the other hand, when the total average layer thickness of the lower layer exceeds 20.0 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the total average layer thickness of the lower layer is preferably 0.8 to 20.0 μm.
複合炭窒化物層;
(1)成分組成、平均層厚
 本実施形態に係る複合炭窒化物層は、前記下部層上に配置され、平均層厚0.5μm以上20.0μm以下のTiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含んでなる。具体的には、前記複合炭窒化物層を構成するTiZr複合炭窒化物またはTiZrHf複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表した場合、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75をそれぞれ満足する。
 ここで、xは、TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合を表し、yは、ZrとHfとの合量に対してZr量が占める平均含有割合を表す。また、zは、NとCとの合量に対してC量が占める平均含有割合を示す。但し、x、yおよびzはいずれも原子比である。
 本実施形態に係る前記TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層においては、耐溶着性を向上させる元素であるNと、硬さを向上させる元素であるCについて、Cの平均含有割合zを0.05<z<0.75にて含有させる。これにより、高耐溶着性、高硬度の両特性にすぐれた硬質被覆層を得ることができる。
 ここで、xが0.10より小さい、もしくは、xが0.90よりも大きい場合は、十分な格子ひずみが導入されず、十分な硬さを確保することができないため、0.10≦x≦0.90と規定した。
 なお、前記複合炭窒化物層は、Ti、Zr、Hf、N、Cの各成分以外にも、製造上不可避的に含まれる不純物元素は存在し、特に、酸素(O)を5.0原子%以下、塩素を0.50原子%以下にて含むことができる。
Composite carbonitride layer;
(1) Component Composition, Average Layer Thickness The composite carbonitride layer according to the present embodiment is arranged on the lower layer, and is a TiZr composite carbonitride layer or a TiZrHf composite having an average layer thickness of 0.5 μm or more and 20.0 μm or less. It comprises at least one layer of carbonitride layer. Specifically, the TiZr composite carbonitride or the TiZrHf composite carbonitride constituting the composite carbonitride layer has a composition formula (Ti (1-x) Zr xy Hf x (1-y) ) (N (1). -z) when expressed in C z), 0.10 ≦ x ≦ 0.90,0 <y ≦ 1.0, and satisfy 0.05 <z <0.75, respectively.
Here, x represents the average content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and y represents the average content ratio of the total amount of Zr and Hf to the total amount of Zr and Hf. Represents the average content ratio. Further, z indicates the average content ratio of the amount of C to the total amount of N and C. However, x, y and z are all atomic ratios.
In the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer according to the present embodiment, the average content ratio of C is about N, which is an element for improving welding resistance, and C, which is an element for improving hardness. z is contained at 0.05 <z <0.75. As a result, a hard coating layer having both high welding resistance and high hardness can be obtained.
Here, when x is smaller than 0.10 or x is larger than 0.90, sufficient lattice strain is not introduced and sufficient hardness cannot be secured, so 0.10 ≦ x. It was defined as ≤0.90.
In addition to the components Ti, Zr, Hf, N, and C, the composite carbonitride layer also contains impurity elements that are inevitably contained in production, and in particular, it contains 5.0 atoms of oxygen (O). % Or less, chlorine can be contained in 0.50 atomic% or less.
 また、前記複合炭窒化物層の平均層厚が0.5μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、複合炭窒化物層の平均層厚が20.0μmを超えると、欠損やチッピングが発生しやすくなる。このため、硬さおよび耐摩耗性の観点からすぐれた効果を発揮するために、複合炭窒化物層の平均層厚を0.5~20.0μmとする。
 なお、前記複合炭窒化物層の平均層厚は、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体に垂直な方向の断面(厚さ方向に沿った断面)の観察視野内の5点の層厚を測り、これらを平均して平均層厚を求めることができる。
Further, if the average layer thickness of the composite carbonitride layer is less than 0.5 μm, long-term wear resistance cannot be exhibited, while if the average layer thickness of the composite carbonitride layer exceeds 20.0 μm. , Defects and chipping are likely to occur. Therefore, in order to exert excellent effects from the viewpoint of hardness and wear resistance, the average layer thickness of the composite carbonitride layer is set to 0.5 to 20.0 μm.
The average thickness of the composite carbonitride layer is 5 within the observation field of view in the direction perpendicular to the tool substrate (cross section along the thickness direction) using a scanning electron microscope (magnification 5000 times). The layer thickness of the points can be measured and averaged to obtain the average layer thickness.
(2)組成変動組織を有する結晶粒
 本実施形態に係る前記複合炭窒化物(TiZrNCまたはTiZrHfNC)層において、ZrHf含有割合、Ti含有割合、C含有割合およびN含有割合が周期的に変化する組成変動組織を有する結晶粒を含む。
(2) Crystal grains having a composition-variable structure In the composite carbonitride (TiZrNC or TiZrHfNC) layer according to the present embodiment, the composition in which the ZrHf content ratio, Ti content ratio, C content ratio and N content ratio change periodically. Contains crystal grains with variable structure.
1)ZrHf最高含有点、ZrHf最高含有割合(xmax)、ZrHf最低含有点、ZrHf最低含有割合(xmin)の定義;
 前記組成変動組織において、ZrHf含有割合は、前記ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、例えば、ZrHf最高含有割合-ZrHf最低含有割合-ZrHf最高含有割合-ZrHf最低含有割合・・・というように所定の間隔を保ち、周期的な含有割合の変化を示す。
 ここでいうZrHf最高含有割合(xmax)、ZrHf最低含有割合(xmin)について説明すると、ZrHf最高含有割合(xmax)とは、各測定点におけるZrHf含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるTiとZrとHfとの合量に対してZrとHfとの合量が占めるZrHf平均含有割合(xav)の値以上の連続した領域におけるZrHf含有割合の最大値をいう。連続してZrHf平均含有割合(xav)の値以上となる領域が複数ある場合は、それぞれの領域におけるZrHf含有割合の最大値をZrHf最高含有割合と定義し、それぞれの領域におけるZrHf含有割合が最大値をとる位置をそれぞれの領域におけるZrHf最高含有点と定義する。以後、ZrHf最高含有割合についてはxmaxと記すこともある。
 同様に、ZrHf最低含有割合(xmin)とは、各測定点におけるZrHf含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるTiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合(xav)の値以下となる連続した領域におけるZrHf含有割合の最小値をいう。連続してxavの値以下となる領域が複数ある場合は、それぞれの領域におけるZrHf含有割合の最小値をZrHf最低含有割合(xmin)と定義し、それぞれの領域におけるZrHf含有割合が最小値をとる位置をそれぞれの領域におけるZrHf最低含有点と定義する。以後、ZrHf最低含有割合についてはxminと記すこともある。
 この定義によれば、xの値近傍での周期的な変化が存在する場合、ZrHf最高含有点とZrHf最低含有点が交互に出現する。
 この定義によれば、ZrHf平均含有割合(xav)の値近傍での周期的な変化が存在する場合、ZrHf最高含有点とZrHf最低含有点が交互に出現する。
 具体的に図1に基づき説明する。図1の左側を積層上部位置とするとZrHf含有割合は、上部より、ZrHf平均含有点(P1)-ZrHf最高含有点1(Pmax1)-ZrHf平均含有点(P2)-ZrHf最低含有点1(Pmin1)-ZrHf平均含有点(P3)-ZrHf最高含有点2(Pmax2)-ZrHf平均含有点(P4)-ZrHf最低含有点2(Pmin2)-ZrHf平均含有点(P5)の位置において、ZrHf含有割合は、ZrHf平均含有割合(xav)-ZrHf最高含有割合1(xmax1)-ZrHf平均含有割合(xav)-ZrHf最低含有割合1(xmin1)-ZrHf平均含有割合(xav)-ZrHf最高含有割合2(xmax2)-ZrHf平均含有割合(xav)-ZrHf最低含有割合2(xmin2)-ZrHf平均含有割合(xav)の順に変化する。
 ここで、例えば、ZrHf平均含有点(P2)とZrHf平均含有点(P3)の位置の間において、連続してZrHfの平均含有割合(xav)を下回る極小点が(Pmin1)と(Pq)との2か所にて出現するが、その場合には、上記の定義により、より低いZrHf含有割合(xmin1)を示す(Pmin1)位置をZrHf最低含有点とする。
 以下、Ti成分、C成分、N成分についても、その平均含有割合の値以上の連続した領域において、それぞれの各領域における最大値をとる位置をそれぞれの領域における最高含有点といい、各成分の平均含有割合の値以下の連続した領域における最小値をとる位置をそれぞれの領域における最低含有点という。
1) Definitions of ZrHf maximum content point, ZrHf maximum content ratio (x max ), ZrHf minimum content point, ZrHf minimum content ratio (x min );
In the composition-variable structure, the ZrHf content ratio is, for example, ZrHf maximum content ratio-ZrHf minimum content ratio-ZrHf maximum content ratio-along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. ZrHf minimum content ratio, etc., keeps a predetermined interval and shows a periodic change in the content ratio.
ZrHf maximum content referred to herein (x max), will be described. ZrHf lowest proportion (x min), ZrHf The highest proportion (x max), ZrHf content at each measurement point, the total layer composition formula ( ZrHf average of the total amount of Zr and Hf with respect to the total amount of Ti, Zr and Hf in Ti (1-x) Zr xy Hf x (1-y) ) (N (1-z) C z) The maximum value of the ZrHf content ratio in a continuous region equal to or higher than the content ratio (x av) value. When there are a plurality of regions that continuously exceed the value of the ZrHf average content ratio (x av ), the maximum value of the ZrHf content ratio in each region is defined as the ZrHf maximum content ratio, and the ZrHf content ratio in each region is defined as the maximum content ratio. The position where the maximum value is taken is defined as the ZrHf maximum content point in each region. Hereinafter, the maximum content ratio of ZrHf may be described as x max.
Similarly, the ZrHf minimum content ratio (x min ) means that the ZrHf content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1-y) ) (N (1-). z) The minimum value of the ZrHf content ratio in a continuous region that is equal to or less than the value of the average content ratio (x av ) of the total amount of Zr and Hf with respect to the total amount of Ti, Zr, and Hf in C z). say. When there are a plurality of regions that are continuously equal to or less than the value of x av , the minimum value of the ZrHf content ratio in each region is defined as the ZrHf minimum content ratio (x min ), and the ZrHf content ratio in each region is the minimum value. Is defined as the lowest ZrHf content point in each region. Hereinafter, the minimum content ratio of ZrHf may be described as x min.
According to this definition, when there is a periodic change in the vicinity of the value of x, the ZrHf maximum content point and the ZrHf minimum content point appear alternately.
According to this definition, when there is a periodic change in the vicinity of the value of the ZrHf average content ratio (x av ), the ZrHf maximum content point and the ZrHf minimum content point appear alternately.
Specifically, it will be described with reference to FIG. When the left side of FIG. 1 is the stacking upper position, the ZrHf content ratio is as follows: ZrHf average content point (P1) -ZrHf maximum content point 1 (Pmax1) -ZrHf average content point (P2) -ZrHf minimum content point 1 (Pmin1). ) -ZrHf average content point (P3) -ZrHf maximum content point 2 (Pmax2) -ZrHf average content point (P4) -ZrHf minimum content point 2 (Pmin2) -ZrHf average content point (P5) ZrHf average content ratio (x av ) -ZrHf maximum content ratio 1 (x max1 ) -ZrHf average content ratio (x av ) -ZrHf minimum content ratio 1 (x min 1) -ZrHf average content ratio (x av ) -ZrHf The maximum content ratio 2 (x max2 ) -ZrHf average content ratio (x av ) -ZrHf minimum content ratio 2 (x min2 ) -ZrHf average content ratio (x av ) changes in this order.
Here, for example, between the positions of the ZrHf average content point (P2) and the ZrHf average content point (P3), the minimum points continuously below the average content ratio (x av ) of ZrHf are (Pmin1) and (Pq). In that case, the position (Pmin1) showing a lower ZrHf content ratio (x min1 ) is defined as the ZrHf minimum content point according to the above definition.
Hereinafter, with respect to the Ti component, the C component, and the N component, the position where the maximum value is taken in each region in a continuous region equal to or higher than the value of the average content ratio is referred to as the maximum content point in each region, and the content of each component is defined as the maximum content point. The position where the minimum value is taken in the continuous region below the value of the average content ratio is called the minimum content point in each region.
2)Ti最高含有点、Ti最高含有割合αmax、Ti最低含有点、Ti最低含有割合αminの定義;
 前記組成変動組織において、TiとZrとHfとの合量に対してTi量が占める含有割合(以後、Ti含有割合とも記す)は、ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、ZrHf最高含有点では、Ti最低含有割合αmin(=1-xmax)を示し、ZrHf最低含有点では、Ti最高含有割合αmax(=1-xmin)を示す。なお、αは原子比である。
 すなわち、Ti含有割合は、前記ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、同周期にて、Ti最低含有割合-Ti最高含有割合-Ti最低含有割合-Ti最高含有割合・・・という含有割合の変化を示す。ここでいう、Ti最高含有点、Ti最高含有割合、Ti最低含有点、Ti最低含有割合の定義は、前記ZrHfをTiに置き換え同様の定義である。
2) Definitions of Ti maximum content point, Ti maximum content ratio α max , Ti minimum content point, Ti minimum content ratio α min;
In the composition-variable structure, the content ratio of the Ti amount to the total amount of Ti, Zr, and Hf (hereinafter, also referred to as the Ti content ratio) is such that the periodic width of the periodic composition change of the ZrHf content ratio is the minimum. At the ZrHf maximum content point, the Ti minimum content ratio α min (= 1-x max ) is shown, and at the ZrHf minimum content point, the Ti maximum content ratio α max (= 1-x min ) is shown. In addition, α is an atomic ratio.
That is, the Ti content ratio is the Ti minimum content ratio-Ti maximum content ratio-Ti minimum content ratio-Ti in the same cycle along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. It shows the change of the content ratio such as the maximum content ratio. The definitions of the Ti maximum content point, the Ti maximum content ratio, the Ti minimum content point, and the Ti minimum content ratio referred to here are the same definitions in which ZrHf is replaced with Ti.
3)C最高含有点、C最高含有割合(zmax)、C最低含有点、C最低含有割合(zmin)の定義;
 前記組成変動組織において、C含有割合は、前記ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、C最高含有割合-C最低含有割合-C最高含有割合-C最低含有割合・・・というように所定の間隔を保ち、周期的な含有割合の変化を示す。
 ここでいうC最高含有割合、C最低含有割合について説明すると、C最高含有割合とは、各測定点におけるC含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるNとCとの合量に対してC量が占める平均含有割合(zav)の値以上の連続した領域におけるC含有割合の最大値をいう。連続して(zav)の値以上となる領域が複数ある場合は、それぞれの領域におけるC含有割合の最大値をC最高含有割合と定義し、それぞれの領域におけるC含有割合が最大値をとる位置をそれぞれの領域におけるC最高含有点と定義する。以後、C最高含有割合についてはzmaxと記すこともある。
 同様に、C最低含有点とは、各測定点におけるC含有割合が、層全体の組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))におけるNとCとの合量に対してC量が占める平均含有割合(zav)の値以下となる連続した領域におけるC含有割合の最小値をいう。連続して(zav)の値以下となる領域が複数ある場合は、それぞれの領域におけるC含有割合の最小値をC最低含有割合と定義し、それぞれの領域におけるC含有割合が最小値をとる位置をそれぞれの領域におけるC最低含有点と定義する。以後、C最低含有割合についてはzminと記すこともある。
 この定義によれば、C平均含有割合(zav)の値近傍での周期的な変化が存在する場合、最高含有点と最低含有点が交互に出現する。
 C含有割合についても、ZrHf含有割合と同様、具体的に図1に示す。図1の左側を積層上部位置とするとC含有割合は、上部より、C平均含有点(R1)-C最高含有点1(Rmax1)-C平均含有点(R2)-C最低含有点1(Rmin1)-C平均含有点(R3)-C最高含有点2(Rmax2)-C平均含有点(R4)-C最低含有点2(Rmin2)-C平均含有点(R5)の位置において、C平均含有割合(zav)-C最高含有割合1(zmax1)-C平均含有割合(zav)-C最低含有割合1(zmin1)-C平均含有割合(zav)-C最高含有割合2(zmax2)-C平均含有割合(zav)-C最低含有割合2(zmin2)-C平均含有割合(zav)の順に変化する。
 ここで、例えば、C平均含有点(R2)とC平均含有点(R3)の位置の間において、連続してCの平均含有割合(zav)を下回る極小点が(Rmin1)と(Rq)の2か所出現するが、その場合には、前記の定義により、より低いC含有割合(zmin1)を示す位置(Rmin1)をC最低含有点とする。
3) Definitions of C maximum content point, C maximum content ratio (z max ), C minimum content point, C minimum content ratio (z min);
In the composition-variable structure, the C content ratio is C maximum content ratio-C minimum content ratio-C maximum content ratio-C minimum along the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized. A predetermined interval is maintained, such as the content ratio, and a periodic change in the content ratio is shown.
Explaining the C maximum content ratio and the C minimum content ratio here, the C maximum content ratio means that the C content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1). -y)) (N (1- z) the maximum value of C content in the contiguous area of greater than or equal to the average proportion of the amount of C is occupied (z av) against the total amount of N and C in C z) To say. When there are multiple regions that continuously exceed the value of (zav ), the maximum value of the C content ratio in each region is defined as the maximum C content ratio, and the C content ratio in each region takes the maximum value. The position is defined as the highest C content point in each region. Hereinafter, the maximum C content ratio may be referred to as z max .
Similarly, the C minimum content point means that the C content ratio at each measurement point is the composition formula of the entire layer (Ti (1-x) Zr xy Hf x (1-y) ) (N (1-z) C z. ) refers to a minimum value of C content in the continuous area to be the value or less of the average proportion of the amount of C is occupied (z av) against the total amount of N and C in. When there are a plurality of regions that are continuously equal to or less than the value of (zav ), the minimum value of the C content ratio in each region is defined as the C minimum content ratio, and the C content ratio in each region takes the minimum value. The position is defined as the C minimum content point in each region. Hereinafter, the minimum C content ratio may be referred to as z min .
According to this definition, when there is a periodic change near the value of the C average content ratio (zav ), the highest content point and the lowest content point appear alternately.
The C content ratio is also specifically shown in FIG. 1 in the same manner as the ZrHf content ratio. When the left side of FIG. 1 is the upper layer position, the C content ratio is as follows: C average content point (R1) -C maximum content point 1 (Rmax1) -C average content point (R2) -C minimum content point 1 (Rmin1). ) -C average content point (R3) -C maximum content point 2 (Rmax2) -C average content point (R4) -C minimum content point 2 (Rmin2) -C average content point (R5) ratio (z av) -C highest proportion 1 (z max1) -C mean proportion (z av) -C minimum content 1 (z min1) -C mean proportion (z av) -C highest content 2 ( z max2 ) -C average content ratio ( zav ) -C minimum content ratio 2 (z min2 ) -C average content ratio ( zav ).
Here, for example, C average content point and (R2) between the position of the C average content point (R3), the minimum point below the average content of C in succession (z av) is the (Rmin1) (Rq) In that case, the position (R min1) showing the lower C content ratio (z min1 ) is defined as the C minimum content point according to the above definition.
4)N最高含有点、N最高含有割合(βmax)、N最低含有点、N最低含有割合(βmin);
 前記組成変動組織において、NとCとの合量に対してN量が占める含有割合(以後、N含有割合とも記す)は、C含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、C最高含有点では、N最低含有割合βmin(=1-zmax)を示し、C最低含有点では、N最高含有割合βmax(=1-zmin)示す。なお、βは原子比である。なお、C含有割合の周期的な組成変化の周期幅が最小となる方向は、ZrHf含有割合の周期的な組成変化の周期幅が最小となる方向と同一である。
 すなわち、N含有割合は、前記C含有割合の周期的な組成変化の周期幅が最小となる方向に沿って、同周期にて、N最低含有割合-N最高含有割合-N最低含有割合-N最高含有割合・・・という含有割合の変化を示す。ここでいう、N最高含有点、N最高含有割合、N最低含有点、N最低含有割合の定義は、前記CをNに置き換え同様の定義である。
4) N maximum content point, N maximum content ratio (β max ), N minimum content point, N minimum content ratio (β min );
In the composition-variable structure, the content ratio of the N amount to the total amount of N and C (hereinafter, also referred to as the N content ratio) is the direction in which the periodic width of the periodic composition change of the C content ratio becomes the minimum. At the C maximum content point, the N minimum content ratio β min (= 1-z max ) is shown, and at the C minimum content point, the N maximum content ratio β max (= 1-z min ) is shown. In addition, β is an atomic ratio. The direction in which the periodic width of the periodic composition change of the C content ratio is minimized is the same as the direction in which the periodic width of the periodic composition change of the ZrHf content ratio is minimized.
That is, the N content ratio is N minimum content ratio-N maximum content ratio-N minimum content ratio-N in the same cycle along the direction in which the periodic width of the periodic composition change of the C content ratio is minimized. It shows the change of the content ratio such as the maximum content ratio. The definitions of the N maximum content point, the N maximum content ratio, the N minimum content point, and the N minimum content ratio referred to here are the same definitions in which C is replaced with N.
5)ZrHf最高含有点およびZrHf最低含有点におけるZrHf含有割合差(xmax-xmin)ならびにC最高含有点およびC最低含有点におけるC含有割合差(zmax-zmin);
 ZrHf最高含有点およびC最高含有点の位置、および、それぞれの最高含有点と最低含有点の周期は、後述する成膜方法において、同期させることができる。
 さらに、ZrHf最高含有割合xmaxとZrHf最低含有割合xminの差Δxの絶対値の平均値が0.02以上、かつ、C最高含有割合zmaxとC最低含有割合zminの差Δzの絶対値の平均値が0.02以上の組成変動組織とすることにより、硬さが向上する。硬さが向上する要因は下記の2点が考えられる。
(1)ZrおよびHfとCが増加した領域(富化された領域)とZrおよびHfとCが減少した領域(貧化された領域)の間において転位の移動を妨げ、硬さを向上させることができる。
(2)ZrおよびHfが増加した領域においてCを増加させているため、均一なTiZrHfNC層に比較して「ZrとNの結合の影響」および「HfとNの結合の影響」が小さい。ZrNおよびHfNは、ZrC、TiC、TiNと比較して硬さが低いため、ZrおよびHfとNの結合の影響を小さくすることで硬さを向上させることができる。
 なお、ZrHf最高含有割合xmaxとZrHf最低含有割合xminの差は、0.02以上、0.90以下がより好ましく、C最高含有割合zmaxとC最低含有割合zminの差は、0.02以上、0.75以下がより好ましい。これらの差が大きすぎると微小チッピング等の異常損傷が起こり易くなる。この原因は明らかではないが、組成変動組織内での格子定数の変化が大きくなり過ぎ、結晶粒としての靭性が低下したものと推定している。
5) ZrHf content ratio difference between ZrHf maximum content point and ZrHf minimum content point (x max -x min ) and C content ratio difference between C maximum content point and C minimum content point (z max -z min );
The positions of the ZrHf maximum content point and the C maximum content point, and the cycles of the respective maximum content points and the minimum content points can be synchronized in the film forming method described later.
Further, the average value of the absolute values of the difference Δx between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is 0.02 or more, and the absolute value of the difference Δz between the C maximum content ratio z max and the C minimum content ratio z min is absolute. The hardness is improved by using a composition-variable structure having an average value of 0.02 or more. The following two points can be considered as factors for improving the hardness.
(1) The movement of dislocations is hindered and the hardness is improved between the region where Zr, Hf and C are increased (enriched region) and the region where Zr, Hf and C are decreased (poor region). be able to.
(2) Since C is increased in the region where Zr and Hf are increased, the "effect of the bond between Zr and N" and the "effect of the bond between Hf and N" are smaller than those of the uniform TiZrHfNC layer. Since ZrN and HfN have lower hardness than ZrC, TiC, and TiN, the hardness can be improved by reducing the influence of the bond between Zr and Hf and N.
The difference between the ZrHf maximum content ratio x max and the ZrHf minimum content ratio x min is more preferably 0.02 or more and 0.90 or less, and the difference between the C maximum content ratio z max and the C minimum content ratio z min is 0. More preferably, it is 0.02 or more and 0.75 or less. If these differences are too large, abnormal damage such as minute chipping is likely to occur. Although the cause of this is not clear, it is presumed that the change in the lattice constant within the composition-variable structure becomes too large and the toughness as a crystal grain decreases.
6)隣接するZrHf最高含有点とZrHf最低含有点の間隔(平均値)、及び隣接するC最高含有点とC最低含有点の間隔(平均値);
 ZrHf最高含有点とZrHf最低含有点の間隔については「複合炭窒化物層の縦断面観察において、周期的な組成変化の周期が最小になる方向で測定される平均間隔が5~100nmであること」が、硬さ向上のために必要である。
 前記硬さ向上効果を発揮させるためには、平均間隔は小さい方が望ましく、100nm以下であることが必要である。一方、平均間隔が5nm未満では、それぞれを明確に区別して形成することが困難となるため、所望の硬さが得られず、耐摩耗性を確保することができない。
 例えば、図1では、ZrHf最高含有点1(Pmax1)とZrHf最低含有点1(Pmin1)との間隔(Pmin1-Pmax1)と、ZrHf最高含有点2(Pmax2)とZrHf最低含有点2(Pmin2)との間隔(Pmin2-Pmax2)との平均値として求めることができる。
 同様に、C最高含有点とC最低含有点の間隔については、「複合炭窒化物層の縦断面観察において、周期的な組成変化の周期が最小になる方向で測定される平均間隔が5~100nmであること」が必要である。
 本明細書では、縦断面とは、被覆層の厚さ方向に沿った断面である。
6) The interval between the adjacent ZrHf maximum content points and the ZrHf minimum content points (average value), and the interval between the adjacent C maximum content points and the C minimum content points (average value);
Regarding the interval between the highest ZrHf content point and the lowest ZrHf content point, "In the vertical cross-sectional observation of the composite carbonitride layer, the average interval measured in the direction that minimizes the period of periodic composition change is 5 to 100 nm. Is necessary for improving hardness.
In order to exert the hardness improving effect, it is desirable that the average interval is small, and it is necessary that the average interval is 100 nm or less. On the other hand, if the average interval is less than 5 nm, it is difficult to clearly distinguish each of them, so that the desired hardness cannot be obtained and the wear resistance cannot be ensured.
For example, in FIG. 1, the interval (Pmin1-Pmax1) between the ZrHf maximum content point 1 (Pmax1) and the ZrHf minimum content point 1 (Pmin1), and the ZrHf maximum content point 2 (Pmax2) and the ZrHf minimum content point 2 (Pmin2) It can be obtained as an average value with the interval (Pmin2-Pmax2).
Similarly, regarding the interval between the C maximum content point and the C minimum content point, "In the vertical cross-sectional observation of the composite carbonitride layer, the average interval measured in the direction in which the period of periodic composition change is minimized is 5 to 5 to. It is necessary to be 100 nm.
In the present specification, the vertical cross section is a cross section along the thickness direction of the coating layer.
7)ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値;
 前記硬さ向上効果(上述した項目(2)の効果)を発揮させるためには、「ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値」は、小さい方が好ましく、隣接するZrHf最高含有点とZrHf最低含有点の平均間隔の1/5以下であることが必要である。「ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値」の下限値は、特に限定されず、0以上である。
7) The average value of the distance between the highest ZrHf content point and the highest C content point closest to the highest ZrHf content point;
In order to exert the hardness improving effect (the effect of the above-mentioned item (2)), "the average value of the intervals between the ZrHf maximum content point and the C maximum content point closest to the ZrHf maximum content point". "Is smaller, and needs to be 1/5 or less of the average interval between the adjacent ZrHf maximum content points and the ZrHf minimum content points. The lower limit of "the average value of the intervals between the ZrHf maximum content point and the C maximum content point closest to the ZrHf maximum content point" is not particularly limited and is 0 or more.
8)組成変動組織が複合炭窒化物層の組織に占める面積割合;
 前記硬さ向上効果を発揮させるためには、組成変動組織が複合炭窒化物層の組織に占める面積割合は大きい方が好ましく、複合炭窒化物層の縦断面観察において、組成変動組織が複合炭窒化物層の組織に占める面積割合が10%以上であることが必要である。組成変動組織が複合炭窒化物層の組織に占める面積割合の上限値は、特に限定されず、100%以下であり、好ましくは96%以下である。
8) Area ratio of the composition-variable structure to the structure of the composite carbonitride layer;
In order to exert the hardness improving effect, it is preferable that the composition-variable structure occupies a large area ratio in the structure of the composite carbonitride layer. It is necessary that the area ratio of the nitride layer to the structure is 10% or more. The upper limit of the area ratio of the composition-variable structure to the structure of the composite carbonitride layer is not particularly limited, and is 100% or less, preferably 96% or less.
9)積層組織;
 前記硬さ向上効果をより発揮させるためには、前記組成変動組織は積層組織であることが好ましい。なお、硬さ向上の観点からは、積層組織の積層方向(TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の縦断面観察において周期的な組成変化の周期が最小になる方向)は膜厚方向と一致する必要は無い。後述する成膜方法の場合、積層組織を有する結晶粒を含む複合炭窒化物層が得られるが、積層組織の積層方向は膜厚方向と一致するとは限らない。
 その他、粒界近傍は積層構造でない場合や、粒界近傍にTi、Zr、Hf、C、N、O、Clのいずれかの元素が濃化している場合があるが、前述の通り、組成変動組織(この場合、積層構造の組成変動組織)が複合炭窒化物層の組織に占める面積割合が10%以上であれば、硬さ向上効果を発揮する。
9) Laminated structure;
In order to further exert the hardness improving effect, the composition-variable structure is preferably a laminated structure. From the viewpoint of improving hardness, the stacking direction of the laminated structure (the direction in which the period of periodic composition change is minimized in the vertical cross-sectional observation of the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer) is the film thickness. It does not have to match the direction. In the case of the film forming method described later, a composite carbonitride layer containing crystal grains having a laminated structure can be obtained, but the laminated direction of the laminated structure does not always coincide with the film thickness direction.
In addition, there are cases where the vicinity of the grain boundary is not a laminated structure, or there are cases where any of the elements Ti, Zr, Hf, C, N, O, and Cl is concentrated near the grain boundary. When the area ratio of the structure (in this case, the composition-variable structure of the laminated structure) to the structure of the composite carbonitride layer is 10% or more, the hardness improving effect is exhibited.
10)縦長結晶組織;
 また、本実施形態に係る複合炭窒化物層は、前記のとおり、縦長結晶組織を有することにより、被覆層からの粒子の脱落が抑制され、耐摩耗性および耐異常損傷性にすぐれた特性を発揮する。
 なお、ここでいう縦長結晶組織とは、以下のように定義される。前記複合炭窒化物層の縦断面を観察した際に、個々の結晶粒について、層厚方向の結晶粒の高さ(長辺)にて、最も大きい値を最大粒子長さ(L)とし、層厚方向に垂直な方向の結晶粒の幅(短辺)にて、最も大きい値を最大粒子幅(W)とする。このとき、L/Wにて定義されるアスペクト比が2.0以上である結晶粒(縦長結晶粒)の前記複合炭窒化物層の縦断面において占める面積割合が50%以上である組織を縦長結晶組織という。
 アスペクト比および縦長結晶粒の面積割合の測定は、例えば、以下のように行われる。走査型電子顕微鏡(SEM)を用い、倍率5000にて断面観察により得られた縦断面画像について、電子線後方散乱回折法(EBSD)により、個々の結晶粒につき、最大粒子長さ、最大粒子幅、および、縦断面の面積を測定する。最大粒子長さおよび最大粒子幅よりアスペクト比を求める。次いで、アスペクト比が2.0以上である結晶粒の縦断面における面積の総和を、測定対象となった縦断面の面積で割って比率を得て、この比率を面積割合として求める。
 すなわち、アスペクト比が2.0以上となる結晶粒の面積率が50%以上である組織を縦長結晶組織と規定することにより、靱性および耐摩耗性が向上する効果を発揮させることができる。
10) Vertical crystal structure;
Further, as described above, the composite carbonitride layer according to the present embodiment has a vertically long crystal structure, so that particles are suppressed from falling off from the coating layer, and the composite carbonitride layer has excellent wear resistance and abnormal damage resistance. Demonstrate.
The vertically elongated crystal structure referred to here is defined as follows. When observing the longitudinal cross section of the composite carbonitride layer, the maximum value of the height (long side) of the crystal grains in the layer thickness direction was defined as the maximum particle length (L) for each crystal grain. The maximum grain width (W) is the largest value in the width (short side) of the crystal grains in the direction perpendicular to the layer thickness direction. At this time, the structure in which the area ratio of the crystal grains (vertical crystal grains) having an aspect ratio of 2.0 or more defined by L / W in the vertical cross section of the composite carbonic nitride layer is 50% or more is vertically long. It is called a crystal structure.
The aspect ratio and the area ratio of the vertically elongated crystal grains are measured, for example, as follows. For vertical cross-sectional images obtained by cross-sectional observation at a magnification of 5000 using a scanning electron microscope (SEM), the maximum particle length and maximum particle width for each crystal grain by electron backscatter diffraction (EBSD). , And measure the area of the longitudinal section. Obtain the aspect ratio from the maximum particle length and maximum particle width. Next, the total area of the crystal grains having an aspect ratio of 2.0 or more in the vertical cross section is divided by the area of the vertical cross section to be measured to obtain a ratio, and this ratio is obtained as the area ratio.
That is, by defining a structure in which the area ratio of crystal grains having an aspect ratio of 2.0 or more is 50% or more as a vertically long crystal structure, the effect of improving toughness and wear resistance can be exhibited.
11)傾斜角度数分布
 本実施形態において複合炭窒化物層の複合炭窒化物結晶粒における前記傾斜角度数分布は、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面(被覆層の厚さ方向に沿った断面)の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射することにより測定することができる。
 すなわち、具体的には、前記工具基体の表面の法線に対して、前記複合炭窒化物層における複合炭窒化物結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定する。測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計して傾斜角度数分布グラフを作成する。なお、傾斜角度数分布グラフとは、横軸を傾斜角とし、縦軸を度数としたグラフである。度数は、ピクセル数であるが、ピクセルとは、電子線後方散乱回折法(EBSD)で計測される最小単位であり、ピクセルの単位サイズは10nm×10nmである。この場合に、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、前記傾斜角度数分布グラフにおける度数全体の35%以上を占める。前記炭窒化物層の結晶粒の{112}面に対する配向傾向が高く、塑性変形を生じにくい組織を有するものである。度数全体に対する0~10度の範囲内の傾斜角区分に存在する度数の合計の割合の上限値は、特に限定されず、100%以下であり、好ましくは96%以下である。
 なお、EBSD分析において、傾斜角度数分布を求めるに当たっては、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値となるよう規格化している。
11) Inclined angle number distribution In the present embodiment, the inclined angle number distribution in the composite carbonic nitride crystal grains of the composite carbonic nitride layer is obtained by using a field emission scanning electron microscope and an electron backscatter diffraction device, and the cross-sectional polished surface thereof. It can be measured by irradiating individual crystal grains having a rock salt-type cubic crystal lattice existing within the measurement range (cross section along the thickness direction of the coating layer) with an electron beam.
That is, specifically, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the composite carbonitride crystal grains in the composite carbonitride layer, is 0 with respect to the normal of the surface of the tool substrate. Measure within the range of ~ 45 degrees. The measurement inclination angle is divided into pitches of 0.25 degrees, and the degrees existing in each division are totaled to create an inclination angle number distribution graph. The tilt angle number distribution graph is a graph in which the horizontal axis is the tilt angle and the vertical axis is the frequency. The frequency is the number of pixels, and the pixel is the smallest unit measured by electron backscatter diffraction (EBSD), and the unit size of the pixel is 10 nm × 10 nm. In this case, the highest peak exists in the inclination angle division in which the inclination angle of the surface of the tool substrate with respect to the normal is in the range of 0 to 10 degrees, and exists in the inclination angle division in the range of 0 to 10 degrees. The total frequency accounts for 35% or more of the total frequency in the inclination angle distribution graph. The carbonitride layer has a structure in which the crystal grains have a high orientation tendency with respect to the {112} plane and are less likely to undergo plastic deformation. The upper limit of the ratio of the total of the frequencies existing in the inclination angle division within the range of 0 to 10 degrees to the entire frequency is not particularly limited, and is 100% or less, preferably 96% or less.
In the EBSD analysis, when determining the inclination angle number distribution, in the case of ideal random orientation, the inclination angle number is constant regardless of the inclination angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the tool substrate surface. It is standardized so that it becomes the value of.
その他の層;
(1)中間層
 本実施形態において、工具基体と下部層との間には、TiNやTiC等のTi化合物層を中間層として設けることにより、工具基体と下部層との密着性向上などを図ることができる。
 また、本実施形態においては、下部層と複合炭窒化物層との間においても、中間層として、例えば、TiN層やTiC層等を設けることができる。なかでも、特に、TiN層は、下部層最表面の{112}面の配向を引き継ぐことができるため、耐剥離性にもすぐれた特性を有する。
 これは、特に、TiN層は、下部層と複合炭窒化物層のいずれとも付着強度が高く、また、変形追従性が高いことによるものと考えられる。
 なお、TiN層の成膜条件は、工具基体と下部層の間に設ける場合および下部層と複合炭窒化物層の間に設ける場合において共通である。しかし、前者では、基体からCo、C等の基本成分が拡散するため、微細粒状組織となる。一方、後者では、前者のような拡散が生じないため、下部層の組織を引き継いだ配向性の高い組織が得られたものと考えられる。
(2)上部層
 本実施形態においては、複合炭窒化物層の上にさらにAl酸化物やTiN、TiCNなどのチタン化合物などの上部層を設けることができ、成膜後、ピーニング処理等を行うこともできる。
Other layers;
(1) Intermediate layer In the present embodiment, a Ti compound layer such as TiN or TiC is provided as an intermediate layer between the tool substrate and the lower layer to improve the adhesion between the tool substrate and the lower layer. be able to.
Further, in the present embodiment, for example, a TiN layer, a TiC layer, or the like can be provided as an intermediate layer between the lower layer and the composite carbonitride layer. In particular, the TiN layer has excellent peel resistance because it can inherit the orientation of the {112} plane on the outermost surface of the lower layer.
It is considered that this is because the TiN layer has high adhesion strength in both the lower layer and the composite carbonitride layer and high deformation followability.
The conditions for forming the TiN layer are common when it is provided between the tool substrate and the lower layer and when it is provided between the lower layer and the composite carbonitride layer. However, in the former case, basic components such as Co and C are diffused from the substrate, resulting in a fine granular structure. On the other hand, in the latter case, since diffusion unlike the former does not occur, it is considered that a highly oriented structure that inherits the structure of the lower layer is obtained.
(2) Upper layer In the present embodiment, an upper layer such as an Al oxide or a titanium compound such as TiN or TiCN can be further provided on the composite carbonitride layer, and a peening treatment or the like is performed after the film formation. You can also do it.
硬質被覆層の成膜方法;
 本実施形態に係る硬質被覆層は、少なくとも下部層、複合炭窒化物層の順に、例えば、以下に示す成膜法を用いて形成することができる。
(1)下部層の成膜方法
 硬質被覆層の下部層は、Tiおよび/またはZrを含み、かつ、炭素と窒素とを含む化合物層の少なくとも一層を有する。通常の化学蒸着法を用い、成膜する化合物層ごとに反応ガス組成、および、圧力、温度等の反応雰囲気を適正範囲に調整することにより、下部層を成膜することができる。(後述する表3等を参照。)
 Tiを含む化合物層としては、Tiの炭窒化物層、炭窒酸化物層、あるいは、炭窒硼化物層などから選択することができる。また、Zrを含む化合物層としては、ZrCN層、ZrCNO層、ZrCNB層などから選択することができる。
 さらに、TiおよびZrの両者を含む化合物層としては、TiZrCN層、TiZrCNO層、TiZrCBN層などから選択することができる。
Method of forming a hard coating layer;
The hard coating layer according to the present embodiment can be formed in the order of at least the lower layer and the composite carbonitride layer, for example, by using the film forming method shown below.
(1) Method for forming a film on the lower layer The lower layer of the hard coating layer has at least one layer of a compound layer containing Ti and / or Zr and containing carbon and nitrogen. The lower layer can be formed by using a normal chemical vapor deposition method and adjusting the reaction gas composition and the reaction atmosphere such as pressure and temperature for each compound layer to be formed within an appropriate range. (See Table 3 etc. described later.)
The compound layer containing Ti can be selected from a carbonitride layer of Ti, a carbonitride oxide layer, a carbonitride boride layer, and the like. Further, the compound layer containing Zr can be selected from a ZrCN layer, a ZrCNO layer, a ZrCNB layer and the like.
Further, the compound layer containing both Ti and Zr can be selected from a TiZrCN layer, a TiZrCNO layer, a TiZrCBN layer and the like.
(2)複合炭窒化物層(TiZrNC層またはTiZrHfNC層)の成膜方法
 本実施形態におけるTiZrNC層またはTiZrHfNC層は、特定の成分組成を有し、特定の組成変動組織を有し、特定の縦長結晶組織を有し、かつ、結晶粒を{112}面に配向させている。このTiZrNC層またはTiZrHfNC層は、工具基体に対し、少なくとも前記下部層を形成した後、例えば、化学蒸着法を用いて、以下に示す条件にて成膜を行なうことにより、形成することができる。
 すなわち、TiZrNC層またはTiZrHfNC層の成膜条件を以下に示す。原料として、TiClガス、ZrClガスまたはZrClガスとHfClガスとの混合ガス、CHガス、Nガス、Hガスを用い、成膜温度は、980℃以上1080℃未満、圧力条件は、16kPa以上40kPa未満にて、周期供給可能なCVD装置を用いて成膜を行うことができる。
 具体的には、まず、第1工程(初期核形成工程)において、ガス群Aとガス群Bとを周期的に必要回数、繰り返し炉内に導入し、反応させることにより、TiNCとTiZrNCまたはTiZrHfNCの初期核を点在して形成させる。次いで、第2工程(結晶成長工程)において、ガス群Cとガス群Dとを周期的に必要回数、繰り返し炉内に導入し、反応させることにより、前記初期核を結晶成長させる。これにより、前記組成変動組織を有する縦長結晶組織を有し、{112}面に配向したTiZrNC層またはTiZrHfNC層を形成することにより、粒界強度が高く、塑性変形を生じにくい組織を得ることができる。
(2) Film formation method of composite carbonitride layer (TiZrNC layer or TiZrHfNC layer) The TiZrNC layer or TiZrHfNC layer in the present embodiment has a specific component composition, a specific composition variation structure, and a specific vertically long structure. It has a crystal structure and the crystal grains are oriented in the {112} plane. The TiZrNC layer or the TiZrHfNC layer can be formed by forming at least the lower layer on the tool substrate and then forming a film under the following conditions, for example, by using a chemical vapor deposition method.
That is, the film forming conditions of the TiZrNC layer or the TiZrHfNC layer are shown below. As raw materials, TiCl 4 gas, ZrCl 4 gas or a mixed gas of ZrCl 4 gas and HfCl 4 gas, CH 4 gas, N 2 gas, H 2 gas are used, and the film formation temperature is 980 ° C or higher and lower than 1080 ° C, pressure. The condition is that the film can be formed at 16 kPa or more and less than 40 kPa using a CVD apparatus capable of periodic supply.
Specifically, first, in the first step (initial nucleation step), the gas group A and the gas group B are periodically introduced into the furnace as many times as necessary and repeatedly reacted to cause TiNC and TiZrNC or TiZrHfNC. The initial nuclei of the are scattered and formed. Next, in the second step (crystal growth step), the gas group C and the gas group D are periodically introduced into the furnace as many times as necessary and reacted to grow the initial nuclei into crystals. As a result, by forming a TiZrNC layer or a TiZrHfNC layer having a vertically elongated crystal structure having the composition-variable structure and oriented on the {112} plane, it is possible to obtain a structure having high grain boundary strength and less likely to cause plastic deformation. can.
[成膜条件]
1)第1工程(初期核形成工程)
 a)反応ガス組成(容量%):
   ガス群A;TiCl:0.4~0.7%、
        N:15.0~60.0%、
        H:残部、
   ガス群B;ZrCl:0.1~1.3%、HfCl:0.0~1.2%、
        ただし、ZrCl+HfCl:0.5~1.3%、
        CHCN:0.2~0.6%、
        N:15.0~60.0%、
        H:残部、
b)供給周期:
 (ガス群A→ガス群B)を一周期としてこれを繰り返す。
 各ガス群の供給時間は、ガス群A、ガス群Bのいずれも5秒以上であり、一周期当たりのガス供給時間は、10秒以上である。一周期当たりのガス供給時間が、10秒未満では、初期核を明確に区別して形成することが困難となる。一方、一周期当たりのガス供給時間が長すぎると、TiNCとTiZrNCまたはTiZrHfNCとが点在した初期核を得ることが難しいため、一周期当たりのガス供給時間は180秒以下が好ましい。
 よって、一周期当たりのガス供給時間は10秒以上180秒以下とすることが好ましい。
 c)反応雰囲気温度:980℃以上1080℃未満
 反応雰囲気温度については、980℃未満では、十分な成膜速度を得にくい傾向がある。一方1080℃以上では、超硬合金母材からC等の元素が皮膜中に拡散し、十分な付着強度が得られないことがある。よって、反応雰囲気温度については980℃以上1080℃未満が好ましい。
 d)反応雰囲気圧力:16kPa以上40kPa未満
 16kPa未満では、十分な成膜速度が得られず、40kPa以上では、皮膜中にポアが含まれやすくなる。よって、反応雰囲気圧力については16kPa以上40kPa未満が好ましい。
[Film formation conditions]
1) First step (initial nucleation step)
a) Reaction gas composition (% by volume):
Gas group A; TiCl 4 : 0.4-0.7%,
N 2 : 15.0 to 60.0%,
H 2 : The rest,
Gas group B; ZrCl 4 : 0.1 to 1.3%, HfCl 4 : 0.0 to 1.2%,
However, ZrCl 4 + HfCl 4 : 0.5 to 1.3%,
CH 3 CN: 0.2-0.6%,
N 2 : 15.0 to 60.0%,
H 2 : The rest,
b) Supply cycle:
This is repeated with (gas group A → gas group B) as one cycle.
The supply time of each gas group is 5 seconds or more for both the gas group A and the gas group B, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it becomes difficult to clearly distinguish and form the initial nuclei. On the other hand, if the gas supply time per cycle is too long, it is difficult to obtain initial nuclei in which TiNC and TiZrNC or TiZrHfNC are interspersed. Therefore, the gas supply time per cycle is preferably 180 seconds or less.
Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
c) Reaction atmosphere temperature: 980 ° C. or higher and lower than 1080 ° C. Regarding the reaction atmosphere temperature, if it is lower than 980 ° C., it tends to be difficult to obtain a sufficient film formation rate. On the other hand, at 1080 ° C. or higher, elements such as C may diffuse into the film from the cemented carbide base material, and sufficient adhesion strength may not be obtained. Therefore, the reaction atmosphere temperature is preferably 980 ° C. or higher and lower than 1080 ° C.
d) Reaction atmosphere pressure: 16 kPa or more and less than 40 kPa At less than 16 kPa, a sufficient film forming rate cannot be obtained, and at 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
2)第2工程(結晶成長工程)
 a)反応ガス組成(容量%):
   ガス群C;TiCl:0.4~0.7%、
        ZrCl:0.1~1.8%、HfCl:0.0~1.7%、
        ただし、ZrCl+HfCl:0.5~1.8%、
        CH:1.0~6.0%、
        N:25.0~60.0%、
        H:残部、
   ガス群D;TiCl:0.2~0.5%、ただし、ガス群CのTiCl濃度未満、
        ZrCl:0.1~2.2%、HfCl:0.0~2.2%、
        ただし、ZrCl+HfCl:0.8~2.2%、
        かつ、ガス群CのZrCl+HfCl濃度を超え、
        CH:2.0~8.0%、ただし、ガス群CのCH濃度を超え、
        N:15.0~50.0%、ただし、ガス群CのN濃度未満、
        H:残部、
 b)供給周期:
 (ガス群C→ガス群D)を一周期としてこれを繰り返す。
 各ガス群の供給時間は、ガス群C、ガス群Dのいずれも5秒以上であり、一周期当たりのガス供給時間は、10秒以上である。一周期当たりのガス供給時間が、10秒未満では、組成変動組織を明確に区別して形成することが困難となる。一方、一周期当たりのガス供給時間を長くするに従い、結晶粒内の組成変動組織の組成変動が長周期化する。その結果、前述の「ZrおよびHfとCが富化された領域とZrおよびHfとCが貧化された領域の間で転位の移動を妨げ、硬さを向上させる効果」が小さくなるため、硬さが低下する。周期的な組成変化の周期を100nm以下とするためには、一周期当たりのガス供給時間は180秒以下が好ましい。よって一周期当たりのガス供給時間は10秒以上180秒以下とすることが好ましい。
 複合炭窒化物層の層厚の調整は、前記ガス供給周期(ガス群C→ガス群D)の繰り返し回数を増減させることにより行う。
 c)反応雰囲気温度:980℃以上1080℃未満
 反応雰囲気温度については、980℃未満では、十分な成膜速度が得られず、TiZrNC層またはTiZrHfNC層の塩素含有量が多くなり易い傾向がある。一方1080℃以上では、超硬合金母材からC等の元素が皮膜中に拡散し、十分な付着強度が得られないことがある。よって、反応雰囲気温度については980℃以上1080℃未満が好ましい。
 d)反応雰囲気圧力:16kPa以上40kPa未満
 16kPa未満では、十分な成膜速度が得られず、40kPa以上では、皮膜中にポアが含まれやすくなる。よって、反応雰囲気圧力については16kPa以上40kPa未満が好ましい。
2) Second step (crystal growth step)
a) Reaction gas composition (% by volume):
Gas group C; TiCl 4 : 0.4-0.7%,
ZrCl 4 : 0.1 to 1.8%, HfCl 4 : 0.0 to 1.7%,
However, ZrCl 4 + HfCl 4 : 0.5 to 1.8%,
CH 4 : 1.0 to 6.0%,
N 2 : 25.0 to 60.0%,
H 2 : The rest,
Gas group D; TiCl 4 : 0.2 to 0.5%, but less than the TiCl 4 concentration of gas group C,
ZrCl 4 : 0.1-2.2%, HfCl 4 : 0.0-2.2%,
However, ZrCl 4 + HfCl 4 : 0.8 to 2.2%,
And the concentration of ZrCl 4 + HfCl 4 in the gas group C was exceeded,
CH 4 : 2.0 to 8.0%, however, exceeding the CH 4 concentration of gas group C,
N 2 : 15.0 to 50.0%, but less than the N 2 concentration of gas group C,
H 2 : The rest,
b) Supply cycle:
This is repeated with (gas group C → gas group D) as one cycle.
The supply time of each gas group is 5 seconds or more for both the gas group C and the gas group D, and the gas supply time per cycle is 10 seconds or more. If the gas supply time per cycle is less than 10 seconds, it becomes difficult to clearly distinguish and form the composition-variable structure. On the other hand, as the gas supply time per cycle is lengthened, the composition fluctuation of the composition variation structure in the crystal grains becomes longer. As a result, the above-mentioned "effect of hindering the movement of dislocations between the region enriched with Zr, Hf and C and the region enriched with Zr, Hf and C" and improving the hardness is reduced. Hardness decreases. In order to set the period of periodic composition change to 100 nm or less, the gas supply time per cycle is preferably 180 seconds or less. Therefore, the gas supply time per cycle is preferably 10 seconds or more and 180 seconds or less.
The layer thickness of the composite carbonitride layer is adjusted by increasing or decreasing the number of repetitions of the gas supply cycle (gas group C → gas group D).
c) Reaction atmosphere temperature: 980 ° C. or higher and lower than 1080 ° C. As for the reaction atmosphere temperature, if the temperature is lower than 980 ° C., a sufficient film forming rate cannot be obtained, and the chlorine content of the TiZrNC layer or the TiZrHfNC layer tends to increase. On the other hand, at 1080 ° C. or higher, elements such as C may diffuse into the film from the cemented carbide base material, and sufficient adhesion strength may not be obtained. Therefore, the reaction atmosphere temperature is preferably 980 ° C. or higher and lower than 1080 ° C.
d) Reaction atmosphere pressure: 16 kPa or more and less than 40 kPa At less than 16 kPa, a sufficient film forming rate cannot be obtained, and at 40 kPa or more, pores are likely to be contained in the film. Therefore, the reaction atmosphere pressure is preferably 16 kPa or more and less than 40 kPa.
(4)中間層および上部層の成膜方法
 前述のとおり、本実施形態においては、工具基体と下部層との間、および/または、下部層と複合炭窒化物層(TiZrNC層またはTiZrHfNC層)との間に中間層を設けることができる。また、複合炭窒化物層(TiZrNC層またはTiZrHfNC層)の上に上部層を成膜することができる。
 成膜する化合物および成膜条件については、後記の表3を参照せよ。
(4) Method for forming an intermediate layer and an upper layer As described above, in the present embodiment, between the tool substrate and the lower layer and / or between the lower layer and the composite carbonitride layer (TiZrNC layer or TiZrHfNC layer). An intermediate layer can be provided between and. Further, an upper layer can be formed on the composite carbonitride layer (TiZrNC layer or TiZrHfNC layer).
See Table 3 below for the compounds to be filmed and the filming conditions.
 つぎに、本実施形態の被覆工具を実施例により説明する。
 ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金、または、サーメットを用いたインサート切削工具に適用したものについて述べるが、工具基体としては、従来公知の基材であれば、本実施形態の目的の達成を阻害するものでない限り、いずれのものも使用可能である。例えば、超硬合金(WC基超硬合金、WCの他、Coを含むもの、あるいは更にTi、Ta、Nb等の炭窒化物等を添加したものを含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、立方晶型窒化硼素焼結体、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、ダイヤモンド焼結体等を挙げることができる。
Next, the covering tool of this embodiment will be described by way of examples.
Here, as a specific example of the coated tool of the present invention, a tool applied to a WC-based cemented carbide or an insert cutting tool using a cermet as a tool base will be described, but the tool base may be a conventionally known base material. For example, any of them can be used as long as it does not hinder the achievement of the object of the present embodiment. For example, cemented carbide (including WC-based cemented carbide, WC, those containing Co, or those to which carbides such as Ti, Ta, Nb are added), cermet (TiC, TiN, TiCN, etc.), cermet (TiC, TiN, TiCN, etc.) (Main component), cubic boron nitride sintered body, high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof, etc.), diamond sintered body And so on.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、98MPaの圧力で所定形状の圧粉体にプレス成形した。この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した(表1参照)。 As raw material powders, both WC powder having an average particle size of 1 ~ 3 [mu] m, TiC powder, ZrC powder, were prepared TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder. These raw material powders were blended into the blending composition shown in Table 1, wax was further added, the mixture was ball mill mixed in acetone for 24 hours, and dried under reduced pressure. Then, it was press-molded into a green compact having a predetermined shape at a pressure of 98 MPa. This green compact was vacuum sintered in a vacuum of 5 Pa under the condition of holding at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. After sintering, tool bases A to C made of WC-based cemented carbide having an insert shape of ISO standard CNMG120408 were manufactured (see Table 1).
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、NbC粉末、MoC粉末、WC粉末、Co粉末およびNi粉末を用意した。これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した。その後、98MPaの圧力で圧粉体にプレス成形した。この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結した。焼結後、ISO規格CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体D、Eを作製した(表2参照)。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5 ~ 2 [mu] m powder, ZrC powder, TaC powder, NbC powder, Mo 2 C powder, WC powder , Co powder and Ni powder were prepared. These raw material powders were blended into the blending composition shown in Table 2, wet-mixed with a ball mill for 24 hours, and dried. Then, it was press-molded into a green compact at a pressure of 98 MPa. This green compact was sintered in a nitrogen atmosphere of 1.3 kPa under the condition of holding at a temperature of 1500 ° C. for 1 hour. After sintering, tool bases D and E made of TiCN-based cermet having an insert shape of ISO standard CNMG120408 were prepared (see Table 2).
 ついで、これらの工具基体A~Eのそれぞれを、化学蒸着装置に装入し、下部層、および、TiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の順にて成膜を行なうことにより、本発明被覆工具1~16をそれぞれ製造した(表4,5、表6,7を参照)。
 なお、その際に、必要に応じて、工具基体と下部層との間、および/または、下部層と複合炭窒化物層との間に中間層を設け、また、前記複合炭窒化物層の上部に上部層を設けた。
(a)中間層、下部層および上部層は、表8,9に示される目標層厚にて、表3に示される形成条件にて、蒸着形成した。
(b)硬質被覆層は、表4,5および表6,7に基づいて、工具基体記号に示される表1もしくは表2の工具基体に対し、本発明成膜工程のTiZrNC層・TiZrHfNC層の形成記号の成膜条件により成膜を行った。得られた本発明被覆工具1~16のTiZrNC層・TiZrHfNC層の平均組成、組成変動組織が複合炭窒化物層の組織に占める面積割合、ZrHf最高含有割合(平均値)、ZrHf最低含有割合(平均値)、C最高含有割合(平均値)、C最低含有割合(平均値)、ZrHf最高含有点とZrHf最低含有点の間隔(平均値)、C最高含有点とC最低含有点の間隔(平均値)、および、ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔(平均値)、平均膜厚を表10~12に示す。
Then, each of these tool substrates A to E is charged into a chemical vapor deposition apparatus, and the lower layer and the TiZr composite carbonitride layer or the TiZrHf composite carbonitride layer are formed in this order to form a film. Invention covering tools 1 to 16 were manufactured, respectively (see Tables 4 and 5 and Tables 6 and 7).
At that time, if necessary, an intermediate layer is provided between the tool substrate and the lower layer and / or between the lower layer and the composite carbonitride layer, and the composite carbonitride layer is provided. An upper layer was provided on the upper part.
(A) The intermediate layer, the lower layer and the upper layer were vapor-deposited at the target layer thickness shown in Tables 8 and 9 and under the forming conditions shown in Table 3.
(B) The hard coating layer is the TiZrNC layer / TiZrHfNC layer of the film forming step of the present invention with respect to the tool substrate of Table 1 or Table 2 shown by the tool substrate symbol based on Tables 4 and 5 and Tables 6 and 7. Film formation was performed according to the film formation conditions of the formation symbol. The average composition of the TiZrNC layer and the TiZrHfNC layer of the obtained coating tools 1 to 16 of the present invention, the area ratio of the composition-variable structure to the structure of the composite carbonic nitride layer, the maximum content ratio (average value) of ZrHf, and the minimum content ratio of ZrHf (average value). Average value), C maximum content ratio (average value), C minimum content ratio (average value), interval between ZrHf maximum content point and ZrHf minimum content point (average value), interval between C maximum content point and C minimum content point (average value) Tables 10 to 12 show the average value), the interval (average value) between the ZrHf maximum content point and the C maximum content point closest to the ZrHf maximum content point, and the average film thickness.
 また、比較の目的で、本発明被覆工具1~16と同様の手順で比較例被覆工具1~9をそれぞれ製造した。
(a)工具基体に表3に示される形成条件にて、表13に示される目標層厚の下部層を蒸着形成した。
(b)次に、表4,5および表6,7に基づいて、工具基体記号に示される表1もしくは表2の工具基体に対し、比較例成膜工程のTiZrNC層・TiZrHfNC層の形成記号の成膜条件により成膜を行った。得られた比較例被覆工具1~9のTiZrNC層・TiZrHfNC層の平均組成、組成変動組織が複合炭窒化物層の組織に占める面積割合、ZrHf最高含有割合(平均値)、ZrHf最低含有割合(平均値)、C最高含有割合(平均値)、C最低含有割合(平均値)、ZrHf最高含有点とZrHf最低含有点の間隔(平均値)、C最高含有点とC最低含有点の間隔(平均値)、および、ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔(平均値)、平均膜厚を表14~16に示す。
Further, for the purpose of comparison, Comparative Example Covering Tools 1 to 9 were manufactured in the same procedure as the Covering Tools 1 to 16 of the present invention.
(A) A lower layer having a target layer thickness shown in Table 13 was deposited and formed on the tool substrate under the formation conditions shown in Table 3.
(B) Next, based on Tables 4 and 5 and Tables 6 and 7, the formation symbols of the TiZrNC layer and the TiZrHfNC layer in the comparative example film forming step were applied to the tool substrates of Table 1 or Table 2 shown in the tool substrate symbols. The film was formed according to the film forming conditions of. Obtained Comparative Examples The average composition of the TiZrNC layer and the TiZrHfNC layer of the covering tools 1 to 9, the area ratio of the composition-variable structure to the structure of the composite carbonic nitride layer, the maximum content ratio (average value) of ZrHf, and the minimum content ratio of ZrHf (average value). Average value), C maximum content ratio (average value), C minimum content ratio (average value), interval between ZrHf maximum content point and ZrHf minimum content point (average value), interval between C maximum content point and C minimum content point (average value) Tables 14 to 16 show the average value), the interval (average value) between the ZrHf maximum content point and the C maximum content point closest to the ZrHf maximum content point, and the average film thickness.
 ここで、本発明被覆工具1~16、および、比較例被覆工具1~9の分析方法について述べる。
 膜厚の測定は、走査型電子顕微鏡(倍率5000倍)を用いた。まず、刃先近傍のすくい面のうち、刃先から100μm離れた位置において、工具基体の表面に垂直な方向の断面が露出するように研磨を施した。次に刃先近傍のすくい面の刃先から100μm離れた位置を含むように、5000倍の視野でTiZrNC層およびTiZrHfNC層を観察し、観察視野内の5点の層厚を測定し、平均値を平均層厚とした。
Here, the analysis methods of the covering tools 1 to 16 of the present invention and the covering tools 1 to 9 of the comparative example will be described.
A scanning electron microscope (magnification of 5000 times) was used to measure the film thickness. First, on the rake face near the cutting edge, polishing was performed so that the cross section in the direction perpendicular to the surface of the tool substrate was exposed at a position 100 μm away from the cutting edge. Next, the TiZrNC layer and the TiZrHfNC layer were observed with a field of view of 5000 times so as to include a position 100 μm away from the cutting edge of the rake face near the cutting edge, the layer thicknesses of 5 points in the observation field of view were measured, and the average values were averaged. The layer thickness was set.
 次に、収束イオンビーム(FIB)を用いて工具基体表面に垂直な縦断面を切り出し、TiZrNC層またはTiZrHfNC層の組成を以下のように測定した。その層厚方向に沿って、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるように設定された視野について、高角散乱環状暗視野走査透過顕微鏡法(HAADF-STEM)およびエネルギー分散型X線分析法(EDS)を用いて1.0μm×1.0μmの視野(TiZrNC層またはTiZrHfNC層の膜厚が1.0μm以下の場合は、TiZrNC層またはTiZrHfNC層の膜厚×1.0μmの視野)にて異なる5箇所にて組成分析を行い、その平均値からTiZrNC層またはTiZrHfNC層全体の平均組成を求めた。 Next, a vertical cross section perpendicular to the surface of the tool substrate was cut out using a focused ion beam (FIB), and the composition of the TiZrNC layer or the TiZrHfNC layer was measured as follows. High-angle scattering annular dark-field scanning transmission microscopy ( HAADF-STEM) and energy dispersive X-ray analysis (EDS) with a 1.0 μm × 1.0 μm field of view (TiZrNC layer or TiZrHfNC layer if the thickness of the TiZrNC layer or TiZrHfNC layer is 1.0 μm or less, the TiZrNC layer or TiZrHfNC layer Composition analysis was performed at five different locations with a film thickness (field of view of 1.0 μm), and the average composition of the entire TiZrNC layer or TiZrHfNC layer was determined from the average value.
 次に、HAADF-STEMを用いて組成変動組織が、複合炭窒化物層の組織に占める面積割合を求めた。具体的には、1.0μm×1.0μmの視野(TiZrNC層またはTiZrHfNC層の膜厚が1.0μm以下の場合は、TiZrNC層またはTiZrHfNC層の膜厚×1.0μmの視野)において、HAADF-STEM像を異なる5視野で観察し、組成変動組織が、前記複合炭窒化物層の組織に占める面積割合の平均値として求めた。
 HAADF-STEM像では構成元素の原子量差に起因するコントラストが強いため、ここで観察された、「HAADF-STEM像で周期的な明暗がある組織」は「TiとZrおよびHfとの周期的な組成変化を有する組織」であることを推定することができる。
 次いで、前記周期的な明暗のある組織について、EDSによるライン分析法を用いて、TiとZrおよびHfとの周期的な組成変化を有するものであるか確認を行った。
Next, HAADF-STEM was used to determine the area ratio of the composition-variable structure to the structure of the composite carbonitride layer. Specifically, in a field of view of 1.0 μm × 1.0 μm (when the film thickness of the TiZrNC layer or TiZrHfNC layer is 1.0 μm or less, the film thickness of the TiZrNC layer or TiZrHfNC layer × 1.0 μm field of view), HAADF -The STEM image was observed in five different visual fields, and the composition-variable structure was determined as the average value of the area ratio of the composite carbonitride layer to the structure.
Since the contrast in the HAADF-STEM image is strong due to the difference in atomic weight of the constituent elements, the "texture with periodic light and darkness in the HAADF-STEM image" observed here is "periodic between Ti, Zr and Hf". It can be presumed that the tissue has a composition change.
Next, it was confirmed whether or not the tissue having periodic light and dark had a periodic compositional change between Ti, Zr and Hf by using a line analysis method using EDS.
 HAADF-STEM像によれば、結晶粒内には、積層構造の組成変動組織を複数見ることができ、積層構造の組成変動組織について、EDSによるライン分析を行うことができる。
 初めに、HAADF-STEM像から「TiとZrおよびHfとの周期的な組成変化の周期が最小となる方向(すなわち、HAADF-STEM像における明暗のコントラストの周期幅が最小となる方向)」を求めた。
 なお、前述の通り、HAADF-STEM像では構成元素の原子量差に起因するコントラストが強く、HAADF-STEM像において、明るい部分ほどZrが多く含有されている。なお、HAADF-STEMによって粒界が明瞭に観察できない場合は、同じ個所について、電子回折パターンによる結晶方位マッピングを10nm間隔で測定し、各々の測定点同士の結晶方位関係を解析する。隣接する測定点(以下、「ピクセル」ともいう)間での方位差を測定し、5度以上の方位差がある場合、そこを粒界と定義する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセルすべてと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱った。
 そして、前記「TiとZrおよびHfとの周期的な組成変化の周期幅が最小となる方向」にEDSによるライン分析を行うことにより、ZrHf最高含有割合、ZrHf最低含有割合、C最高含有割合、C最低含有割合、ZrHf最高含有点とZrHf最低含有点の間隔、C最高含有点とC最低含有点の間隔、および、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔を測定した。
 これらは、いずれも5個の積層構造の組成変動組織に対してEDSによるライン分析を行い、各々の積層構造の組成変動組織における測定値(各積層構造毎に10点)の平均値として求めたものである。
 表10~12および表14~16に測定値および算出した値のそれぞれを示す。
According to the HAADF-STEM image, a plurality of composition-variable structures of the laminated structure can be seen in the crystal grains, and the composition-variable structure of the laminated structure can be line-analyzed by EDS.
First, from the HAADF-STEM image, "the direction in which the period of periodic composition change between Ti, Zr, and Hf is minimized (that is, the direction in which the period width of the contrast between light and dark in the HAADF-STEM image is minimized)". I asked.
As described above, in the HAADF-STEM image, the contrast due to the difference in atomic weight of the constituent elements is strong, and in the HAADF-STEM image, the brighter the portion, the more Zr is contained. If the grain boundaries cannot be clearly observed by HAADF-STEM, the crystal orientation mapping by the electron diffraction pattern is measured at 10 nm intervals at the same location, and the crystal orientation relationship between the measurement points is analyzed. The directional difference between adjacent measurement points (hereinafter, also referred to as "pixels") is measured, and if there is a directional difference of 5 degrees or more, that is defined as a grain boundary. Then, the region surrounded by the grain boundaries is defined as one crystal grain. However, pixels that exist independently with all adjacent pixels and an orientation difference of 5 degrees or more are not treated as crystal grains, and those in which two or more pixels are connected are treated as crystal grains.
Then, by performing a line analysis by EDS in the above-mentioned "direction in which the periodic width of the periodic composition change between Ti, Zr and Hf is minimized", the ZrHf maximum content ratio, the ZrHf minimum content ratio, and the C maximum content ratio, The C minimum content ratio, the interval between the ZrHf maximum content point and the ZrHf minimum content point, the interval between the C maximum content point and the C minimum content point, and the ZrHf maximum content point and the C located closest to the ZrHf maximum content point. The distance from the highest content point was measured.
All of these were line-analyzed by EDS for the composition-variable structures of five laminated structures, and obtained as the average value of the measured values (10 points for each laminated structure) in the composition-variable structure of each laminated structure. It is a thing.
Tables 10 to 12 and 14 to 16 show the measured values and the calculated values, respectively.
 次いで、本発明被覆工具1~16および比較例被覆工具1~9の硬質被覆層の複合炭窒化物層を構成する結晶粒についての傾斜角度数分布を、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。
 すなわち、前記下部層と前記複合炭窒化物層との界面から複合炭窒化物層の層厚方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットした。前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流にて、それぞれの前記研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒個々に照射した。電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて、0.3μm×50μmの測定領域を0.1μm/stepの間隔にて、前記表面研磨面における工具基体表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲にわたって、0.25度のピッチ毎に区分して測定し、各区分内に存在する度数を集計して傾斜角度数分布グラフを作成した。この測定結果に基づいて、前記傾斜角区分が0~10度の範囲内にある結晶粒の度数の合計を求め、さらに、その度数の合計が傾斜角度数分布グラフ全体に占める度数割合を求め、表10~12、表14~16に示す。
 なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化している。
Next, the tilt angle number distribution of the crystal grains constituting the composite carbide layer of the hard coating layers of the coating tools 1 to 16 of the present invention and the coating tools 1 to 9 of the comparative examples was examined with a field emission scanning electron microscope and an electron beam rear. It was measured using a scattering diffractometer.
That is, the measurement range of the cross-sectional polished surface (0. 3 μm × 50 μm) was set in the lens barrel of a field emission scanning electron microscope. An electron beam with an acceleration voltage of 15 kV is irradiated to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA, and each crystal grain having a rock salt-type cubic crystal lattice existing in the measurement range of the polished surface is individually irradiated. bottom. Using a field emission scanning electron microscope and an electron backscatter diffraction imager, a measurement region of 0.3 μm × 50 μm was measured at intervals of 0.1 μm / step with respect to the normal of the tool substrate surface on the surface polished surface. , The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured by dividing it into pitches of 0.25 degrees over a range of 0 to 45 degrees, and the frequencies existing in each division are measured. To create a tilt angle number distribution graph. Based on this measurement result, the total frequency of the crystal grains whose inclination angle classification is in the range of 0 to 10 degrees is obtained, and further, the frequency ratio of the total frequency to the entire inclination angle frequency distribution graph is obtained. It is shown in Tables 10 to 12 and Tables 14 to 16.
In finding the distribution of the number of tilt angles, in the case of ideal random orientation, the number of tilt angles should be a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the surface of the tool substrate. It is standardized to.
 また、本発明被覆工具1~16および比較例被覆工具1~9の硬質被覆層の複合炭窒化物層の縦断面について、走査型電子顕微鏡(SEM)を用い、倍率5000にて、工具基体と平行な方向に10μm、工具基体と垂直な方向に複合炭窒化物層の層厚分の高さの領域内に存在する複合炭窒化物結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが2以上である結晶粒が、複合炭窒化物層の縦断面に占める面積割合を求め、表10~12、表14~16に示す。 Further, regarding the vertical cross section of the composite carbonitride layer of the hard coating layers of the coating tools 1 to 16 of the present invention and the coating tools 1 to 9 of the comparative examples, a scanning electron microscope (SEM) was used, and the tool substrate and the tool substrate were used at a magnification of 5000. Maximum particle width W and maximum particle length L for each of the composite carbonitride crystal grains existing in the region of 10 μm in the parallel direction and the height of the layer thickness of the composite carbonitride layer in the direction perpendicular to the tool substrate. The value of the aspect ratio L / W was obtained, and the area ratio of the crystal grains having the aspect ratio L / W of 2 or more to the vertical cross section of the composite carbonitride layer was obtained. 14 to 16 are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 つぎに、前記各種の被覆工具を工具鋼製バイト先端部に固定治具にてクランプした状態で、本発明被覆工具1~16、比較例工具1~9について、以下に示す耐熱鋼の断続切削試験を実施した。切刃の逃げ面摩耗幅を測定するとともに、溶着の発生等の有無について観察を行い、結果を表17に示す。 Next, with the various covering tools clamped to the tip of the tool steel cutting tool with a fixing jig, the covering tools 1 to 16 of the present invention and the comparative example tools 1 to 9 are subjected to intermittent cutting of the heat-resistant steel shown below. The test was carried out. The wear width of the flank of the cutting edge was measured, and the presence or absence of welding was observed, and the results are shown in Table 17.
≪切削条件A≫
 切削試験:耐熱鋼1スリット材湿式高送り断続切削加工試験
 被削材:JIS・SCH13、
 切削速度:115m/min、
 切り込み:1.6mm、
 送り量:0.42mm/rev、
 切削時間:4.0分、
≪切削条件B≫
 切削試験:耐熱鋼1スリット材湿式高送り断続切削加工試験
 被削材:JIS・SCH13、
 切削速度:95m/min、
 切り込み:1.3mm、
 送り量:0.37mm/rev、
 切削時間:1.0分、
≪Cutting condition A≫
Cutting test: Heat-resistant steel 1 slit material Wet high-feed intermittent cutting processing test Work material: JIS / SCH13,
Cutting speed: 115m / min,
Notch: 1.6 mm,
Feed amount: 0.42 mm / rev,
Cutting time: 4.0 minutes,
≪Cutting condition B≫
Cutting test: Heat-resistant steel 1 slit material Wet high-feed intermittent cutting processing test Work material: JIS / SCH13,
Cutting speed: 95m / min,
Notch: 1.3 mm,
Feed amount: 0.37 mm / rev,
Cutting time: 1.0 minutes,
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表17の切削加工試験結果からも明らかなように、本発明被覆工具は、表10~12において、各成分元素が所望の平均組成を満たし、また、ZrHf含有割合およびC含有割合が周期的に変化し、ZrHf最高含有点とC最高含有点の周期および位置がそれぞれ同期した積層構造の組成変動組織を備えたTiZr複合炭窒化層またはTiZrHf複合炭窒化物層を有した。これにより、例えば、耐熱鋼の断続切削加工において、剥離、チッピングを発生することなく、逃げ面最大摩耗幅も小さく、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を発揮した。
 これに対し、比較例被覆工具は、硬質被覆層として含まれる複合炭窒化物層が、所望の平均組成を満たしていない、あるいは、所望の平均組成を満たしている場合であっても、ZrHf含有割合およびC含有割合が周期的に変化する組成変動組織を有していなかった。これにより、所望の特性を発揮することができず、摩耗の進展、溶着の発生、チッピングの発生等により、短時間で寿命に至るものであった。
As is clear from the cutting test results in Table 17, in Tables 10 to 12, each component element satisfies the desired average composition, and the ZrHf content ratio and the C content ratio are periodic. It had a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having a composition-variable structure of a laminated structure in which the periods and positions of the ZrHf maximum content point and the C maximum content point were synchronized with each other. As a result, for example, in the intermittent cutting of heat-resistant steel, peeling and chipping did not occur, the maximum wear width of the flank was small, and excellent welding resistance, plastic deformation resistance, and abnormal damage resistance were exhibited.
On the other hand, the comparative example coating tool contains ZrHf even when the composite carbonitride layer contained as the hard coating layer does not satisfy the desired average composition or satisfies the desired average composition. It did not have a composition-variable structure in which the ratio and the C content ratio changed periodically. As a result, the desired characteristics could not be exhibited, and the life was reached in a short time due to the progress of wear, the occurrence of welding, the occurrence of chipping, and the like.
 前述のとおり、本実施形態の被覆工具は、硬質被覆層として含まれる複合炭窒化物層において、各成分の含有割合が周期的に変化する、所望の組成変動組織を有する。これにより、例えば、耐熱鋼の断続切削加工において、すぐれた耐溶着性、耐チッピング性、耐摩耗性を発揮する。このため、本実施形態の被覆工具は、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに、低コスト化に十分満足するものである。 As described above, the coating tool of the present embodiment has a desired composition-variable structure in which the content ratio of each component changes periodically in the composite carbonitride layer included as the hard coating layer. As a result, for example, in intermittent cutting of heat-resistant steel, excellent welding resistance, chipping resistance, and wear resistance are exhibited. Therefore, the covering tool of the present embodiment is sufficiently satisfied with high performance of the cutting device, labor saving and energy saving of the cutting process, and cost reduction.

Claims (2)

  1.  工具基体と、前記工具基体の表面に設けられた硬質被覆層と、を有する表面被覆切削工具であって、
    (a)前記硬質被覆層は、前記工具基体の表面側から少なくとも下部層および複合炭窒化物層を有してなり、
    (b)前記下部層は、Tiおよび/またはZrを含み、かつ炭素と窒素とを含む化合物層を少なくとも一層有し、その合計膜厚は0.8μm以上であり、
    (c)前記複合炭窒化物層は、平均層厚0.5μm以上20.0μm以下のTiZr複合炭窒化物層またはTiZrHf複合炭窒化物層の少なくとも一層を含み、
    (d)前記複合炭窒化物層は、TiZr複合炭窒化物またはTiZrHf複合炭窒化物を含有し、前記複合炭窒化物は、組成式(Ti(1-x)ZrxyHfx(1-y))(N(1-z))にて表わした場合、
     TiとZrとHfとの合量に対してZrとHfとの合量が占める平均含有割合x、ZrとHfとの合量に対してZr量が占める平均含有割合y、および、NとCとの合量に対してC量が占める平均含有割合z(但し、x、yおよびzはいずれも原子比)が、それぞれ、0.10≦x≦0.90、0<y≦1.0、および、0.05<z<0.75を満足する平均組成を有し、
    (e)前記複合炭窒化物層は、少なくとも一部の結晶粒内に、TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合、および、NとCとの合量に対してC量が占める含有割合が周期的に変化する組成変動組織を有し、
    (e-1)縦断面観察において、前記組成変動組織が前記複合炭窒化物層の組織に占める面積割合が10%以上であり、
    (e-2)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とが繰り返され、前記繰り返される隣接するZrHf最高含有点とZrHf最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記ZrHf最高含有点の最高含有割合xmaxと前記ZrHf最低含有点の最低含有割合xminとの差Δxの絶対値の平均値が0.02以上であり、
    (e-3)前記組成変動組織における前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と最低含有割合zminを示すC最低含有点とが繰り返され、前記繰り返される隣接するC最高含有点とC最低含有点の間隔の平均値である平均間隔が5~100nmであり、前記C最高含有点の最高含有割合zmaxと前記C最低含有割合zminとの差Δzの絶対値の平均値が0.02以上であり、
    (e-4)前記組成変動組織における前記TiとZrとHfとの合量に対してZrとHfとの合量が占める含有割合について、最高含有割合xmaxを示すZrHf最高含有点と最低含有割合xminを示すZrHf最低含有点とのそれぞれの周期および位置と、前記NとCとの合量に対してC量が占める含有割合について、最高含有割合zmaxを示すC最高含有点と、最低含有割合zminを示すC最低含有点とのそれぞれの周期および位置とはそれぞれに対応して同期しており、前記ZrHf最高含有点と、そのZrHf最高含有点から最も近い位置にあるC最高含有点との間隔の平均値が、前記ZrHf最高含有点とその隣接するZrHf最低含有点との平均間隔の1/5以下であり、
    (f)前記複合炭窒化物層は、縦長結晶組織を有し、
    (g)電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、前記複合炭窒化物層の断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒のそれぞれに電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定して傾斜角度数分布グラフを作成した場合、工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占める層を少なくとも一層を有することを特徴とする表面被覆切削工具。
    A surface-coated cutting tool having a tool substrate and a hard coating layer provided on the surface of the tool substrate.
    (A) The hard coating layer has at least a lower layer and a composite carbonitride layer from the surface side of the tool substrate.
    (B) The lower layer has at least one compound layer containing Ti and / or Zr and also containing carbon and nitrogen, and the total film thickness thereof is 0.8 μm or more.
    (C) The composite carbonitride layer includes at least one layer of a TiZr composite carbonitride layer or a TiZrHf composite carbonitride layer having an average layer thickness of 0.5 μm or more and 20.0 μm or less.
    (D) The composite carbonitride layer contains a TiZr composite carbonitride or a TiZrHf composite carbonitride, and the composite carbonitride has a composition formula (Ti (1-x) Zr xy Hf x (1-y). ) ) (N (1-z) C z )
    The average content ratio x of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, the average content ratio y of the Zr amount to the total amount of Zr and Hf, and N and C. The average content ratio z (where x, y and z are all atomic ratios) of the amount of C with respect to the total amount of and is 0.10 ≦ x ≦ 0.90 and 0 <y ≦ 1.0, respectively. , And have an average composition satisfying 0.05 <z <0.75.
    (E) In the composite carbonitride layer, the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf, and N and C are contained in at least a part of the crystal grains. It has a composition-variable structure in which the content ratio of C amount to the total amount of C changes periodically.
    (E-1) In the vertical cross-sectional observation, the area ratio of the composition-variable structure to the structure of the composite carbonitride layer is 10% or more.
    (E-2) Regarding the content ratio of the total amount of Zr and Hf to the total amount of Ti, Zr and Hf in the composition-variable structure, the maximum content ratio x max of ZrHf content point and the minimum content The ZrHf minimum content point indicating the ratio x min is repeated, and the average interval, which is the average value of the intervals between the repeated adjacent ZrHf maximum content points and the ZrHf minimum content points, is 5 to 100 nm. The average value of the absolute value of the difference Δx between the maximum content ratio x max and the minimum content ratio x min of the ZrHf minimum content point is 0.02 or more.
    (E-3) Regarding the content ratio of the C amount to the total amount of the N and C in the composition-variable structure, the C maximum content point indicating the maximum content ratio z max and the C minimum content indicating the minimum content ratio z min. The content points are repeated, and the average interval, which is the average value of the intervals between the repeated adjacent C maximum content points and the C minimum content points, is 5 to 100 nm, and the maximum content ratio z max of the C maximum content points and the above The average value of the absolute values of the difference Δz from the C minimum content ratio z min is 0.02 or more.
    (E-4) Regarding the content ratio of the total amount of Zr and Hf to the total amount of the Ti, Zr and Hf in the composition-variable structure, the ZrHf maximum content point and the minimum content indicating the maximum content ratio x max. Regarding the respective cycles and positions of the ZrHf minimum content point indicating the ratio x min , and the content ratio of the C amount to the total amount of the N and C, the C maximum content point indicating the maximum content ratio z max and the C maximum content point indicating the maximum content ratio z max. The respective cycles and positions of the C minimum content point indicating the minimum content ratio z min are synchronized with each other, and the ZrHf maximum content point and the C maximum position closest to the ZrHf maximum content point are synchronized with each other. The average value of the interval from the content point is 1/5 or less of the average interval between the ZrHf maximum content point and the adjacent ZrHf minimum content point.
    (F) The composite carbonitride layer has a vertically long crystal structure and has a vertically long crystal structure.
    (G) Using an electro-emission scanning electron microscope and an electron beam backscattering diffractometer, electrons are generated in each of the crystal grains having a rock salt type cubic crystal lattice existing within the measurement range of the cross-sectional polished surface of the composite carbonitride layer. A line is irradiated, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate. When the number distribution graph is created, the highest peak exists in the inclination angle division in which the inclination angle with respect to the normal of the surface of the tool substrate is in the range of 0 to 10 degrees, and the inclination angle division in the range of 0 to 10 degrees is described. A surface coating cutting tool characterized in that the total number of degrees present in is at least one layer that occupies 35% or more of the total degrees in the inclination angle distribution graph.
  2.  前記組成変動組織が、積層組織であることを特徴とする請求項1に記載された表面被覆切削工具。 The surface coating cutting tool according to claim 1, wherein the composition-variable structure is a laminated structure.
PCT/JP2021/008448 2020-03-06 2021-03-04 Surface-coated cutting tool WO2021177406A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-038704 2020-03-06
JP2020038704 2020-03-06
JP2021011702A JP2021137955A (en) 2020-03-06 2021-01-28 Surface coated cutting tool
JP2021-011702 2021-01-28

Publications (1)

Publication Number Publication Date
WO2021177406A1 true WO2021177406A1 (en) 2021-09-10

Family

ID=77612630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008448 WO2021177406A1 (en) 2020-03-06 2021-03-04 Surface-coated cutting tool

Country Status (1)

Country Link
WO (1) WO2021177406A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074302A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition
JP2004074300A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2009166195A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent chipping resistance and abrasion resistance by high-speed intermittent cutting work
JP2019136823A (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent deposition resistance and abnormal damage resistance
JP2019166584A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074302A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition
JP2004074300A (en) * 2002-08-09 2004-03-11 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2009166195A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent chipping resistance and abrasion resistance by high-speed intermittent cutting work
JP2019136823A (en) * 2018-02-13 2019-08-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent deposition resistance and abnormal damage resistance
JP2019166584A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance

Similar Documents

Publication Publication Date Title
US10100403B2 (en) Surface-coated cutting tool and method of producing the same
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3444052B1 (en) Surface-coated cutting tool and manufacturing method therefor
EP3444053B1 (en) Surface-coated cutting tool and manufacturing method therefor
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3412386B1 (en) Surface-coated cutting tool and manufacturing method therefor
EP3415255B1 (en) Surface-coated cutting tool and method for producing same
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP7043869B2 (en) Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer
WO2021177406A1 (en) Surface-coated cutting tool
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
EP3868501A1 (en) Cutting tool
JP2021154446A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance
WO2020162365A1 (en) Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance
JP2021137955A (en) Surface coated cutting tool
WO2023190000A1 (en) Surface-coated cutting tool
WO2018181123A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
WO2022202882A1 (en) Surface-coated cutting tool
WO2016084938A1 (en) Surface-coated cutting tool
CN112839760B (en) Cutting tool
JP2020128001A (en) Surface-coated cutting tool whose hard coating layer exhibiting excellent deposition resistance, plastic-deformation resistance, and abnormal damage resistance
EP3868502A1 (en) Cutting tool
JP2023148468A (en) Surface coated cutting tool
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764743

Country of ref document: EP

Kind code of ref document: A1