JP4888710B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP4888710B2
JP4888710B2 JP2007015554A JP2007015554A JP4888710B2 JP 4888710 B2 JP4888710 B2 JP 4888710B2 JP 2007015554 A JP2007015554 A JP 2007015554A JP 2007015554 A JP2007015554 A JP 2007015554A JP 4888710 B2 JP4888710 B2 JP 4888710B2
Authority
JP
Japan
Prior art keywords
layer
plane
crystal
hard coating
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007015554A
Other languages
Japanese (ja)
Other versions
JP2008178955A (en
Inventor
興平 冨田
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007015554A priority Critical patent/JP4888710B2/en
Publication of JP2008178955A publication Critical patent/JP2008178955A/en
Application granted granted Critical
Publication of JP4888710B2 publication Critical patent/JP4888710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高い発熱を伴うとともに切刃に断続的かつ衝撃的な高負荷がかかる高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating even when cutting various materials such as steel and cast iron under high-speed heavy cutting conditions with high heat generation and intermittent and impactful loads on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着されたAlとZrの複合酸化物組織を有し、Zr成分の含有割合がAl成分との合量における原子比(Zr/(Al+Zr))で0.003〜0.05であり、さらに、Σ3の分布割合が60〜80%であるAlとZrの複合酸化物層(以下、「従来(Al,Zr)層」という)、
を蒸着形成してなる被覆工具(以下、従来被覆工具という)が、例えば各種の鋼や鋳鉄などの切削加工に用いられることは良く知られている。
Conventionally, a hard surface is formed on the surface of a base body (hereinafter collectively referred to as a tool base body) composed of a tungsten carbide (hereinafter referred to as WC) base cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) base cermet. As a coating layer,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer has a chemical vapor-deposited Al and Zr composite oxide structure, and the content ratio of the Zr component is 0.003 by atomic ratio (Zr / (Al + Zr)) in the total amount with the Al component. 0.05, and a composite oxide layer of Al and Zr (hereinafter referred to as “conventional (Al, Zr) 2 O 3 layer”) having a Σ3 distribution ratio of 60 to 80%,
It is well known that a coated tool formed by vapor deposition (hereinafter referred to as a conventional coated tool) is used for cutting various steels, cast irons and the like.

そして、上記従来(Al,Zr)層は、
例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、ZrCl:0.02〜0.13%、CO:1〜5%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で、下部層であるTi化合物層の表面に、
組成式:(Al1−YZr、(ただし、原子比で、Y:0.003〜0.05)を満足するAlとZrの複合酸化物核を形成し、引き続いて、加熱雰囲気を圧力:3〜13kPaの水素雰囲気に変え、かつ加熱雰囲気温度を1100〜1200℃に昇温した条件で前記AlとZrの複合酸化物核薄膜に加熱処理を施した状態で、硬質被覆層の上部層として、
反応ガス組成:容量%で、AlCl:2.3〜4%、ZrCl:0.02〜0.13%、CO:3〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、同じく組成式:(Al1−YZr、(ただし、原子比で、Y:0.003〜0.05)を満足するAlとZrの複合酸化物層を形成することによって得られることも知られている。
The conventional (Al, Zr) 2 O 3 layer is
For example, in a normal chemical vapor deposition system,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, ZrCl 4: 0.02~0.13%, CO 2: 1~5%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
On the surface of the Ti compound layer as the lower layer under the conditions
A composite oxide nucleus of Al and Zr satisfying the composition formula: (Al 1-Y Zr Y ) 2 O 3 (wherein Y: 0.003 to 0.05 in atomic ratio) is formed, and subsequently, The hard coating is applied in a state in which the heating atmosphere is changed to a hydrogen atmosphere of pressure: 3 to 13 kPa and the composite oxide core thin film of Al and Zr is heated under the condition that the heating atmosphere temperature is raised to 1100 to 1200 ° C. As the upper layer of the layer,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, ZrCl 4: 0.02~0.13%, CO 2: 3~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
A composite oxide layer of Al and Zr satisfying the same compositional formula: (Al 1 -Y Zr Y ) 2 O 3 (wherein the atomic ratio is Y: 0.003 to 0.05) It is also known to be obtained by doing.

また、上記の従来被覆工具において、硬質被覆層の下部層を構成するTi化合物層のTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開2006−289557号公報 特開平6−8010号公報
Further, in the conventional coated tool, the TiCN layer of the Ti compound layer constituting the lower layer of the hard coating layer is formed as an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus for the purpose of improving the strength of the layer itself. It is also known to form a vertically elongated crystal structure by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing benzene.
JP 2006-289557 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを高い発熱を伴うと共に、切刃に高負荷がかかる高速重切削加工に用いた場合には、硬質被覆層の上部層を構成する(Al,Zr)層における粒界強度が十分でないために、そこから生じたクラックによりチッピングが発生しやすくなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. For tools, there is no problem when this is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but this is accompanied by high heat generation and high load on the cutting edge. When used for high-speed heavy cutting, since the grain boundary strength in the (Al, Zr) 2 O 3 layer constituting the upper layer of the hard coating layer is not sufficient, chipping is likely to occur due to cracks generated therefrom. Therefore, it is the present situation that the service life is reached in a relatively short time due to this.

そこで、本発明者等は、上述のような観点から、上記の従来(Al,Zr)層が硬質被覆層の上部層を構成する被覆工具に着目し、特に、高速重切削加工における硬質被覆層の耐チッピング性のさらなる向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としての従来(Al,Zr)層は、すぐれた高温硬さと所定の高温強度を備えているが、AlとZrの複合酸化物からなる結晶粒の粒界強度が十分でないために、高速重切削加工において満足できる耐チッピング性を示さないが、蒸着形成した硬質被覆層の下部層であるTi化合物層上に、通常の化学蒸着装置にて、
(イ)反応ガス組成(容量%):
AlCl:6〜10%、
ZrCl:0.2〜0.5%、
CO2:4〜8%、
HCl:3〜5%、
S:0.25〜0.6%、
Ar:5〜50%、
2:残り、
(ロ)反応雰囲気温度;980〜1100℃、
(ハ)反応雰囲気圧力;5〜10kPa、
の条件で蒸着を行い、2〜15μmの平均層厚のAlとZrの複合酸化物層(以下、「改質(Al,Zr)層」という)からなる上部層を形成すると、この条件で形成された上部層は、該層におけるAl成分との合量に占めるZr成分の含有割合をX(但し、原子比)とした場合に、X=0.0001〜0.002を満足し、さらに、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位(以下、小角粒界面という)が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列を示す(以下、このような結晶粒界面配列を、小角粒界面比率35%以上の結晶粒界面配列という)こと。
In view of the above, the present inventors pay attention to the coated tool in which the above-described conventional (Al, Zr) 2 O 3 layer constitutes the upper layer of the hard coating layer, and particularly in high-speed heavy cutting. As a result of research to further improve the chipping resistance of the hard coating layer,
(A) The conventional (Al, Zr) 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated tool has excellent high-temperature hardness and predetermined high-temperature strength. Since the grain boundary strength of the crystal grains made of the product is not sufficient, it does not show satisfactory chipping resistance in high-speed heavy cutting, but the usual chemicals are formed on the Ti compound layer which is the lower layer of the vapor-deposited hard coating layer. In vapor deposition equipment,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
ZrCl 4: 0.2~0.5%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
Ar: 5 to 50%
H 2 : Remaining
(B) Reaction atmosphere temperature; 980-1100 ° C.
(C) Reaction atmosphere pressure; 5-10 kPa,
When an upper layer made of a composite oxide layer of Al and Zr (hereinafter referred to as “modified (Al, Zr) 2 O 3 layer”) having an average layer thickness of 2 to 15 μm is formed under the conditions of The upper layer formed under the conditions satisfies X = 0.0001 to 0.002 when the content ratio of the Zr component in the total amount with the Al component in the layer is X (however, the atomic ratio). Furthermore, using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam to form a crystal grain composed of a hexagonal crystal lattice. The angle at which each normal line of the crystal plane intersects the normal line of the surface-polished surface is measured, and from this measurement result, the (0001) plane and the {10-10} plane that are the crystal planes of the crystal grains are selected, and Selected (0001) plane and {10-10 When the angles at which the normals of the (0001) planes and the normals of the {10-10} planes intersect each other at the interface between adjacent crystal grains (grain interface unit) are obtained, A crystal grain interface unit (hereinafter referred to as a small-angle grain interface) in which the normals of the planes and the normal lines of the {10-10} planes intersect each other occupies a ratio of 35% or more of the total crystal grain interface units. The crystal grain interface arrangement is shown (hereinafter, such a crystal grain interface arrangement is referred to as a crystal grain interface arrangement with a small-angle grain interface ratio of 35% or more).

(b)上記(a)の化学蒸着条件で蒸着形成された改質(Al,Zr)層からなる上部層は、各結晶粒の結晶粒界強度が高められるため、前記従来被覆工具の従来(Al,Zr)層の備えるすぐれた高温硬さに加えて、さらに、一段とすぐれた高温強度を具備することから、これを硬質被覆層の上部層として備えた被覆工具は、高い発熱を伴い高負荷のかかる高速重切削という厳しい条件下での切削加工においても、従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、また、長期にわたってすぐれた耐摩耗性を発揮すること。
以上(a)、(b)に示される研究結果を得たのである。
(B) Since the upper layer composed of the modified (Al, Zr) 2 O 3 layer formed by vapor deposition under the chemical vapor deposition condition of (a) above has an increased grain boundary strength of each crystal grain, In addition to the excellent high-temperature hardness of the conventional (Al, Zr) 2 O 3 layer, the coating tool provided with this as the upper layer of the hard coating layer has a further excellent high-temperature strength. Even in cutting under severe conditions such as high-speed heavy cutting with high heat generation and high load, the hard coating layer has improved chipping resistance compared to conventional coated tools, and it has also been superior over a long period of time. Demonstrate wear resistance.
The research results shown in (a) and (b) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚を有し、化学蒸着されたAlとZrの複合酸化物層からなり、かつ、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位(小角粒界面)が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列(小角粒界面比率35%以上の結晶粒界面配列)を示し、さらに、AlとZrの複合酸化物層におけるZr成分の含有割合がAl成分との合量における原子比(Zr/(Al+Zr))で、0.0001〜0.002であるAlとZrの複合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer has an average layer thickness of 2 to 15 μm, is composed of a chemical vapor deposited Al and Zr composite oxide layer, and uses a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The angle at which each normal of the constituent crystal planes of the crystal grains composed of hexagonal crystal lattices intersects the normal of the polished surface is irradiated with an electron beam to each crystal grain existing within the measurement range of the polished surface. From this measurement result, the (0001) plane and the {10-10} plane which are the constituent crystal planes of the crystal grains are selected, and the selected (0001) plane and {10-10} plane are adjacent to each other. When the angles at which the normals of the (0001) planes and the normals of the {10-10} planes intersect each other at the interface between crystal grains (grain interface unit) are calculated, And the {10-10} plane Grain interface arrangement in which the crystal grain interface unit (small angle grain interface) where the angle between the lines intersects 15 degrees or less accounts for 35% or more of the total grain interface unit (grain interface arrangement with a small angle grain interface ratio of 35% or more) In addition, the content ratio of the Zr component in the composite oxide layer of Al and Zr is an atomic ratio (Zr / (Al + Zr)) in the total amount with the Al component and is 0.0001 to 0.002. A complex oxide layer of Zr,
A surface-coated cutting tool (coated tool) which is formed by vapor-depositing the hard coating layer composed of (a) and (b) and exhibits excellent chipping resistance. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質(Al,Zr)層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する接合強度を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer exists as a lower layer of the hard coating layer, In addition to contributing to improving the high temperature strength of the hard coating layer due to its excellent high temperature strength, it firmly adheres to both the tool base and the modified (Al, Zr) 2 O 3 layer, and thus the tool of the hard coating layer It has the effect of improving the bonding strength to the substrate. However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the average layer thickness exceeds 20 μm, it is particularly high speed with high heat generation. Intermittent cutting tends to cause thermoplastic deformation, which causes uneven wear, so the average layer thickness was determined to be 3 to 20 μm.

(b)上部層(改質(Al,Zr)層)
化学蒸着されたAlとZrの複合酸化物層の構成成分であるAl成分は、層の高温硬さおよび結晶粒界強度を向上させ、同Zr成分は、層中に微量(Alとの合量に占める割合で、Zr/(Al+Zr)が0.0001〜0.002(但し、原子比))含有されることにより、上部層(改質(Al,Zr)層)の高温強度の向上に寄与するが、Zr成分の含有割合が0.0001未満では、上記作用を期待することはできず、一方、Zr成分の含有割合が0.002を超えた場合には、AlとZrの複合酸化物層にZrO粒子が析出し、AlとZrの複合酸化物の粒界強度が低下するため、Al成分との合量に占めるZr成分の含有割合(Zr/(Al+Zr)の比の値)を0.0001〜0.002(但し、原子比))と定めた。
(B) Upper layer (modified (Al, Zr) 2 O 3 layer)
The Al component, which is a component of the chemical vapor deposited Al and Zr composite oxide layer, improves the high-temperature hardness and grain boundary strength of the layer, and the Zr component contains a trace amount (total amount of Al in the layer). Zr / (Al + Zr) is contained in a ratio of 0.0001 to 0.002 (however, atomic ratio)), so that the high temperature strength of the upper layer (modified (Al, Zr) 2 O 3 layer) is increased. Although it contributes to improvement, when the content ratio of the Zr component is less than 0.0001, the above effect cannot be expected. On the other hand, when the content ratio of the Zr component exceeds 0.002, the content of Al and Zr Since ZrO 2 particles are precipitated in the composite oxide layer and the grain boundary strength of the composite oxide of Al and Zr is lowered, the content ratio of the Zr component in the total amount with the Al component (Zr / (Al + Zr) ratio) Value) was defined as 0.0001 to 0.002 (however, atomic ratio)) .

Zr/(Al+Zr)の比の値が0.0001〜0.002(但し、原子比)となる改質(Al,Zr)層を化学蒸着で形成するためには、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、以下のとおり調整することが必要である。
即ち、
(イ)反応ガス組成(容量%):
AlCl:6〜10%、
ZrCl:0.2〜0.5%、
CO2:4〜8%、
HCl:3〜5%、
S: 0.25〜0.6%、
Ar:5〜50%、
2:残り、
(ロ)反応雰囲気温度;980〜1100℃、
(ハ)反応雰囲気圧力;5〜10kPa、
の条件で、2〜15μmの平均層厚の蒸着層を成膜すると、Zr/(Al+Zr)の比の値が原子比で0.0001〜0.002である改質(Al,Zr)層を形成することができる。
In order to form a modified (Al, Zr) 2 O 3 layer by chemical vapor deposition in which the value of the ratio of Zr / (Al + Zr) is 0.0001 to 0.002 (however, the atomic ratio), the reaction during vapor deposition It is necessary to adjust each chemical vapor deposition condition of gas composition, reaction atmosphere temperature, and reaction atmosphere pressure as follows.
That is,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
ZrCl 4: 0.2~0.5%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
Ar: 5 to 50%
H 2 : Remaining
(B) Reaction atmosphere temperature; 980-1100 ° C.
(C) Reaction atmosphere pressure; 5-10 kPa,
When a deposited layer having an average layer thickness of 2 to 15 μm is formed under the above conditions, a modified (Al, Zr) 2 O in which the value of the ratio of Zr / (Al + Zr) is 0.0001 to 0.002 in atomic ratio Three layers can be formed.

上記改質(Al,Zr)層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し(図1)、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下(図2)の結晶粒界面単位が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列(小角粒界面比率35%以上の結晶粒界面配列)を示していることから、Al23層を化学蒸着で形成する際に、その反応ガス中に微量(0.2〜0.5%)のZrClを添加し980〜1100℃の反応雰囲気温度でArを相対的に多くして蒸着することによって、小角粒界面比率が増大し、AlとZrの複合酸化物相における六方晶結晶格子からなる結晶粒の結晶粒界強度が強化され、そして、その結果として、高速重切削加工という厳しい切削条件の下であっても、硬質被覆層の上部層を構成する改質(Al,Zr)層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が防止され、硬質被覆層の耐チッピング性の向上が図られる。
ただ、上部層の層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えるとチッピングが発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
The modified (Al, Zr) 2 O 3 layer is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The angle at which each normal line of the constituent crystal plane of the crystal grain composed of hexagonal crystal lattice intersects the normal line of the surface polished surface is measured (FIG. 1), and from this measurement result, it is the constituent crystal plane of the crystal grain. The (0001) plane and the {10-10} plane are selected, and in the selected (0001) plane and {10-10} plane, the (0001) plane at the interface between adjacent crystal grains (crystal grain interface unit), respectively. The angle at which the normals of the {0001} plane and the normals of the {10-10} plane intersect is 15 degrees. Grain boundary below (Fig. 2) Since the unit indicates the grain boundaries sequences account for more than 35% of the total grain surface unit (angle grain surface ratio of 35% or more grain boundaries sequence), formed by chemical vapor deposition of the Al 2 O 3 layer In this case, a small amount (0.2 to 0.5%) of ZrCl 4 is added to the reaction gas, and Ar is relatively deposited at a reaction atmosphere temperature of 980 to 1100 ° C. The interface ratio increases, the grain boundary strength of the crystal grains composed of hexagonal crystal lattices in the composite oxide phase of Al and Zr is strengthened, and as a result, under severe cutting conditions such as high speed heavy cutting. However, the generation of cracks in the modified (Al, Zr) 2 O 3 layer constituting the upper layer of the hard coating layer is suppressed, and even if cracks occur, the growth and propagation of cracks is prevented. Prevented and hard coating layer Improvement of chipping resistance can be improved.
However, if the thickness of the upper layer is less than 2 μm, the excellent characteristics of the upper layer cannot be fully exhibited, while if the thickness of the upper layer exceeds 15 μm, chipping tends to occur. The average layer thickness of the upper layer was set to 2 to 15 μm.

一方、硬質被覆層の上部層が、従来(Al,Zr)層からなる従来被覆工具においては、その上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、小角粒界面比率は35%未満に過ぎないために、AlとZrの複合酸化物層における結晶粒の結晶粒界強度は弱く、その結果、高速断続切削加工という厳しい切削条件下では、上部層(従来(Al,Zr)層)にクラックが発生しやすく、また、発生したクラックの成長・伝播を抑えることもできないため、従来被覆工具の硬質被覆層の耐チッピング性は劣ったものとなる。 On the other hand, in the conventional coated tool in which the upper layer of the hard coating layer is a conventional (Al, Zr) 2 O 3 layer, the surface of the upper layer is measured using a field emission scanning electron microscope and an electron backscatter diffraction image device. Irradiate each crystal grain within the measurement range of the polished surface with an electron beam, and measure the angle at which each normal of the constituent crystal planes of the crystal grains composed of hexagonal crystal lattices intersects the normal of the surface polished surface Then, from this measurement result, the (0001) plane and the {10-10} plane, which are the constituent crystal planes of the crystal grains, are selected, and further, the adjacent crystals on the selected (0001) plane and {10-10} plane, respectively. When the angle at which the normals of the (0001) planes and the normals of the {10-10} planes intersect each other at the grain interface (grain interface unit) is determined, the small-angle grain interface ratio is only less than 35%. for, grain boundary strength of the crystal grains in the composite oxide layer of l and Zr is weak, as a result, the severe cutting conditions of high-speed intermittent cutting work, the upper layer (conventional (Al, Zr) 2 O 3 layer) to crack Since it is easy to generate and the growth and propagation of the generated crack cannot be suppressed, the chipping resistance of the hard coating layer of the conventional coated tool is inferior.

上記のとおり、この発明の被覆工具は、上部層を構成するAlとZrの改質複合酸化物層(改質(Al,Zr)層)について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し(図1)、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下(図2)の結晶粒界面単位が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列(小角粒界面比率35%以上の結晶粒界面配列)を示すことにより、従来被覆工具の従来(Al,Zr)層のもつすぐれた高温硬さに加えて、一段とすぐれた高温強度、潤滑性、耐熱性を具備し、各種の鋼や鋳鉄などを、高い発熱と高負荷がかかる高速重切削条件下で用いた場合にも、硬質被覆層がすぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 As described above, the coated tool according to the present invention includes a field emission scanning electron microscope and an electron backside of the modified composite oxide layer of Al and Zr (modified (Al, Zr) 2 O 3 layer) constituting the upper layer. Using a scattering diffraction image apparatus, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the respective normals of the constituent crystal planes of the crystal grains comprising the hexagonal crystal lattice are (FIG. 1), and from this measurement result, the (0001) plane and the {10-10} plane which are the constituent crystal planes of the crystal grains are selected, and the selected (0001) plane and In the {10-10} plane, when the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface between adjacent crystal grains (grain interface unit) are obtained. , The method of the (0001) plane Grain interface arrangement (small-angle grain interface) in which the crystal grain interface units having an angle of 15 ° or less (FIG. 2) intersecting each other and the normal lines of the {10-10} plane account for a proportion of 35% or more of the total crystal grain interface units In addition to the excellent high-temperature hardness of the conventional (Al, Zr) 2 O 3 layer of the conventional coated tool, it shows a much higher high-temperature strength, lubricity, and heat resistance. Even when various steels and cast irons are used under high-speed heavy cutting conditions where high heat generation and high load are applied, the hard coating layer exhibits excellent chipping resistance and further increases the service life. Life extension is possible.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成した。
次に、表4に示される蒸着条件により、同じく表5に示される目標層厚の改質(Al,Zr)層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 5 under the conditions shown in Table 5 are the conditions for forming the TiCN layer having the vertically grown crystal structure described, and the other conditions for forming the normal granular crystal structure. And Ti compound layer was vapor-deposited as a lower layer of a hard coating layer with target layer thickness.
Next, according to the deposition conditions shown in Table 4, the coated tool of the present invention is formed by vapor-depositing the target layer thickness modified (Al, Zr) 2 O 3 layer shown in Table 5 as the upper layer of the hard coating layer. 1 to 13 were produced.

また、比較の目的で、硬質被覆層の上部層として、表4に示される条件で、表6に示される目標層厚で従来(Al,Zr)層を形成することにより比較被覆工具1〜13をそれぞれ製造した。 For comparison purposes, a comparative coating tool is formed by forming a conventional (Al, Zr) 2 O 3 layer with the target layer thickness shown in Table 6 under the conditions shown in Table 4 as the upper layer of the hard coating layer. 1 to 13 were produced.

ついで、上記の本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の上部層を構成する改質(Al,Zr)層および従来(Al,Zr)層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、結晶粒界面配列を調査した。
すなわち、上記の本発明被覆工具1〜13の改質(Al,Zr)層および比較被覆工具1〜13の従来(Al,Zr)層について、まず、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶粒のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(小角粒界面比率という)を算出し、表5、6にそれぞれ示した。
なお、本発明被覆工具1〜13の硬質被覆層の上部層を構成する改質(Al,Zr)層および比較被覆工具1〜13の硬質被覆層の上部層を構成する従来(Al,Zr)層について、透過型電子顕微鏡により調査したところ、Zrが粒界に偏析していることが確認されている。
Subsequently, the modified (Al, Zr) 2 O 3 layer and the conventional (Al, Zr) 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13 described above. Was examined using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus.
That is, for the modified (Al, Zr) 2 O 3 layer of the present invention coated tools 1 to 13 and the conventional (Al, Zr) 2 O 3 layer of the comparative coated tools 1 to 13, the respective surfaces are first polished. In the state of the surface, set in a lens barrel of a field emission scanning electron microscope, and apply an electron beam with an acceleration voltage of 15 kV to the surface polishing surface at an incident angle of 70 degrees with an irradiation current of 1 nA. The crystal grains having a hexagonal crystal lattice existing within the measurement range of the surface are irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to divide the 30 × 50 μm region at an interval of 0.1 μm / step. The angle at which each normal line of each crystal grain intersects the normal line of the surface-polished surface is measured, and from this measurement result, the (0001) plane and {10-10} plane which are the constituent crystal planes of the crystal grain Select and then select In the (0001) plane and {10-10} plane, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface (grain interface unit) between adjacent crystal grains. The ratio of the crystal grain interface units of 15 degrees or less to the total crystal grain interface units (referred to as the small angle grain interface ratio) was calculated and shown in Tables 5 and 6, respectively.
In addition, the modified (Al, Zr) 2 O 3 layer constituting the upper layer of the hard coating layer of the present coated tool 1 to 13 and the conventional (Al) constituting the upper layer of the hard coating layer of the comparative coated tool 1 to 13 , Zr) 2 O 3 layer was examined with a transmission electron microscope, and it was confirmed that Zr was segregated at the grain boundaries.

表5、6にそれぞれ示される通り、本発明被覆工具の改質(Al,Zr)層の小角粒界面比率は、いずれも35%以上であるのに対して、比較被覆工具ではいずれも小角粒界面比率が35%未満の値であった。 As shown in Tables 5 and 6, respectively, the small-angle grain interface ratio of the modified (Al, Zr) 2 O 3 layer of the present invention coated tool is 35% or more, whereas in the comparative coated tool, The small-angle grain interface ratio was less than 35%.

また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, when the thicknesses of the constituent layers of the hard coating layers of the present coated tools 1 to 13 and the comparative coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement), both of them were the target layer thickness. The substantially same average layer thickness (average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆工具1〜13および比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・S20Cの丸棒、
切削速度: 450 m/min、
切り込み: 2.8 mm、
送り: 0.9 mm/rev、
切削時間: 5 分、
の条件での炭素鋼の乾式高速高送り切削試験(通常の切削速度および送りは、250m/min、0.3mm/rev)、
[切削条件B]
被削材:JIS・SCM420の丸棒、
切削速度: 380 m/min、
切り込み: 4.8 mm、
送り: 0.4 mm/rev、
切削時間: 5 分、
の条件でのクロムモリブデン鋼の乾式高速高切込み切削試験(通常の切削速度および切込みは、250m/min、2mm)、
[切削条件C]
被削材:JIS・FC300の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 550 m/min、
切り込み: 5.5 mm、
送り: 0.5 mm/rev、
切削時間: 5 分、
の条件での鋳鉄の湿式高速高切込み切削試験(通常の切削速度および切込みは250m/min、2.5mm)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, for the various coated tools of the present invention coated tools 1-13 and comparative coated tools 1-13, all are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS / S20C round bar,
Cutting speed: 450 m / min,
Cutting depth: 2.8 mm,
Feed: 0.9 mm / rev,
Cutting time: 5 minutes,
Dry high-speed high-feed cutting test of carbon steel under the conditions (normal cutting speed and feed are 250 m / min, 0.3 mm / rev),
[Cutting conditions B]
Work material: JIS / SCM420 round bar,
Cutting speed: 380 m / min,
Cutting depth: 4.8 mm,
Feed: 0.4 mm / rev,
Cutting time: 5 minutes,
Dry high-speed high-cut cutting test of chrome molybdenum steel under the conditions of (normal cutting speed and cutting is 250 m / min, 2 mm),
[Cutting conditions C]
Work material: JIS / FC300 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 550 m / min,
Cutting depth: 5.5 mm,
Feed: 0.5 mm / rev,
Cutting time: 5 minutes,
Wet high-speed high-cut cutting test of cast iron under normal conditions (normal cutting speed and cutting is 250 m / min, 2.5 mm)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

Figure 0004888710
Figure 0004888710

表5〜7に示される結果から、本発明被覆工具1〜13は、硬質被覆層の上部層が、AlとZrの複合酸化物からなる改質(Al,Zr)層として蒸着形成され、さらに、該改質(Al,Zr)層は、六方晶結晶格子からなる結晶粒の構成結晶面の結晶粒界面配列が、小角粒界面比率35%以上の値を示し、すぐれた高温硬さと粒界強度を備え、高い発熱を伴い、かつ、切刃に対して高負荷がかかる鋼や鋳鉄の高速重切削でも、硬質被覆層の下部層を形成するTi化合物層の有する高温強度と高い接合強度に加え、前記改質(Al,Zr)層が具備するすぐれた高温硬さと高温強度により、硬質被覆層の耐チッピング性が著しく改善され、長期にわたってすぐれた工具特性を示すのに対して、硬質被覆層の上部層として従来(Al,Zr)層が蒸着形成された比較被覆工具1〜13においては、高速重切削という厳しい切削条件下では、硬質被覆層の特に粒界強度および高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, according to the present invention coated tools 1 to 13, the upper layer of the hard coating layer is formed by vapor deposition as a modified (Al, Zr) 2 O 3 layer composed of a composite oxide of Al and Zr. In addition, the modified (Al, Zr) 2 O 3 layer has a crystal grain interface arrangement of crystal grains composed of hexagonal crystal lattices with a small-angle grain interface ratio of 35% or more. The high temperature of the Ti compound layer that forms the lower layer of the hard coating layer even in high-speed heavy cutting of steel or cast iron with high-temperature hardness and grain boundary strength, high heat generation, and high load on the cutting edge In addition to strength and high bonding strength, the excellent high temperature hardness and high temperature strength of the modified (Al, Zr) 2 O 3 layer significantly improve the chipping resistance of the hard coating layer and provide excellent tool properties over a long period of time. In contrast to the upper layer of the hard coating layer and Te in the conventional (Al, Zr) Comparative 2 O 3 layer is deposited formed coated tools 1 to 13, in severe cutting conditions of high speed heavy cutting, particularly the grain boundary strength and high temperature strength of the hard coating layer is insufficient Therefore, it is clear that chipping occurs in the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い発熱を伴い高負荷がかかる高速重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has an excellent hard coating layer not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed heavy cutting with high heat generation and high load. It exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, so that it can sufficiently satisfy cutting equipment performance, labor saving and energy saving, and cost reduction. It is.

表面研磨面の法線と、改質(Al,Zr)層における六方晶結晶格子からなる結晶粒の(0001)面の法線、{10−10}面の法線の関係を示す概略説明図である。The relationship between the normal of the surface polished surface, the normal of the (0001) plane of the crystal grains composed of hexagonal crystal lattices in the modified (Al, Zr) 2 O 3 layer, and the normal of the {10-10} plane is shown. It is a schematic explanatory drawing. 隣接する結晶粒相互の界面において、(0001)面の法線C,C’同士、また、{10−10}面の法線a,a’同士の交わる角度が15度以下であることを示す概略説明図である。It indicates that the angle between the normal lines C and C ′ of the (0001) plane and the normal lines a and a ′ of the {10-10} plane is 15 degrees or less at the interface between adjacent crystal grains. It is a schematic explanatory drawing.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚を有し、化学蒸着されたAlとZrの複合酸化物層からなり、かつ、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶粒の構成結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列を示し、さらに、AlとZrの複合酸化物層におけるZr成分の含有割合がAl成分との合量における原子比(Zr/(Al+Zr))で、0.0001〜0.002であるAlとZrの複合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer has an average layer thickness of 2 to 15 μm, is composed of a chemical vapor deposited Al and Zr composite oxide layer, and uses a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The angle at which each normal of the constituent crystal planes of the crystal grains composed of hexagonal crystal lattices intersects the normal of the polished surface is irradiated with an electron beam to each crystal grain existing within the measurement range of the polished surface. From this measurement result, the (0001) plane and the {10-10} plane which are the constituent crystal planes of the crystal grains are selected, and the selected (0001) plane and {10-10} plane are adjacent to each other. When the angles at which the normals of the (0001) planes and the normals of the {10-10} planes intersect each other at the interface between crystal grains (grain interface unit) are calculated, And the {10-10} plane The crystal grain interface unit in which the crystal grain interface unit whose line crossing angle is 15 degrees or less accounts for 35% or more of the total crystal grain interface unit is shown, and the inclusion of the Zr component in the composite oxide layer of Al and Zr A composite oxide layer of Al and Zr having an atomic ratio (Zr / (Al + Zr)) in a total amount of the Al component and 0.0001 to 0.002.
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer formed by vapor-depositing the hard coating layer constituted by (a) and (b).
JP2007015554A 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP4888710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015554A JP4888710B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015554A JP4888710B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008178955A JP2008178955A (en) 2008-08-07
JP4888710B2 true JP4888710B2 (en) 2012-02-29

Family

ID=39723241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015554A Active JP4888710B2 (en) 2007-01-25 2007-01-25 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4888710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019255B2 (en) * 2007-06-27 2012-09-05 三菱マテリアル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2008178955A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5019255B2 (en) Surface coated cutting tool
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5099490B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4888709B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4888710B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5077647B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5234512B2 (en) Surface coated cutting tool
JP2009279694A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008000882A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4888710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3