JP5585929B2 - Surface-coated cutting tool with excellent fracture resistance due to hard coating layer - Google Patents

Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Download PDF

Info

Publication number
JP5585929B2
JP5585929B2 JP2010015026A JP2010015026A JP5585929B2 JP 5585929 B2 JP5585929 B2 JP 5585929B2 JP 2010015026 A JP2010015026 A JP 2010015026A JP 2010015026 A JP2010015026 A JP 2010015026A JP 5585929 B2 JP5585929 B2 JP 5585929B2
Authority
JP
Japan
Prior art keywords
crystal
layer
tool
hard coating
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010015026A
Other languages
Japanese (ja)
Other versions
JP2011152601A (en
Inventor
耕一 田中
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010015026A priority Critical patent/JP5585929B2/en
Publication of JP2011152601A publication Critical patent/JP2011152601A/en
Application granted granted Critical
Publication of JP5585929B2 publication Critical patent/JP5585929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、硬質被覆層が微細な柱状晶として形成されるとともに、靭性にすぐれる二軸配向区分を備えることから、鋼や鋳鉄などの高速切削加工という厳しい切削条件下で用いられた場合にも、すぐれた耐熱性と耐欠損性を示し、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。
This invention is formed when the hard coating layer is formed as fine columnar crystals and has a biaxially oriented section with excellent toughness, so when used under severe cutting conditions such as high-speed cutting of steel or cast iron. Further, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent heat resistance and fracture resistance and can extend the life of the cutting tool.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金焼結体で構成された工具基体の表面に、Ti−Siの窒化物(以下、Ti1-xSiNで示す)層からなる硬質被覆層を物理蒸着してなる被覆工具が広く知られており、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
特にTiおよびSiなどの窒化物あるいは炭窒化物の結晶構造に着目した技術として、特許文献1および特許文献2に示される文献では、化学蒸着法によって蒸着された、チタンの炭窒化物が双晶構造を持つことにより、硬質被覆層を形成する粒同士の結合力を高める技術が提案されている。また、特許文献3に示される文献では、硬質被覆層を形成するTiSiNの結晶粒が、工具基体の法線方向から0度〜15度の方向に結晶方位<111>を有する結晶粒が全体の15%を占め、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0〜15度)の割合が50%であるような結晶配列を示すチタンの炭窒化物を構成することで、表面被覆切削工具の耐欠損性を向上させる技術が提案されている。
Further, a Ti—Si nitride (hereinafter referred to as Ti 1-x Si x N) is formed on the surface of a tool base composed of a tungsten carbide (hereinafter referred to as WC) based cemented carbide sintered body as a coated tool. A coating tool formed by physically vapor-depositing a hard coating layer is widely known, and is used for continuous cutting and intermittent cutting of various steels and cast iron.
In particular, as a technique paying attention to the crystal structure of nitride or carbonitride such as Ti and Si, in the documents shown in Patent Document 1 and Patent Document 2, titanium carbonitride deposited by chemical vapor deposition is twinned. There has been proposed a technique for increasing the bonding force between grains forming a hard coating layer by having a structure. Further, in the document shown in Patent Document 3, the TiSiN crystal grains forming the hard coating layer are entirely composed of crystal grains having a crystal orientation <111> in the direction of 0 to 15 degrees from the normal direction of the tool base. Titanium carbonitride showing a crystal arrangement in which the proportion of small-angle grain boundaries (0 to 15 degrees) is 50% when the angle between adjacent crystal grains occupying 15% is measured. Thus, techniques for improving the fracture resistance of surface-coated cutting tools have been proposed.

特許4004133号明細書Japanese Patent No. 4004133 特許3768136号明細書Japanese Patent No. 3768136 特開2009−220239号公報JP 2009-220239 A

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して衝撃的かつ断続的な高負荷が作用する乾式の高速フライス加工などの断続高速切削に用いた場合には、硬質被覆層の内部にクラックが発達しやすいとともに、硬質被覆層の耐熱性が低いことから、硬質被覆層の欠損を生じやすく切刃部の欠損が生じ、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there are no particular problems when various steels and cast irons are machined under normal conditions, but they are shocking and intermittent to the cutting edge. When it is used for intermittent high-speed cutting such as dry high-speed milling where high load is applied, cracks are likely to develop inside the hard coating layer and the heat resistance of the hard coating layer is low. The cutting edge portion is easily damaged, and this causes the service life to be reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、被覆工具の耐欠損性を高め、使用寿命の延命化を図るべく、Ti1-xSiN層からなる硬質被覆層の結晶形態に着目し、鋭意研究を行った結果、次のような知見を得た。 In view of the above, the inventors of the present invention have adopted the crystalline form of the hard coating layer composed of the Ti 1-x Si x N layer in order to increase the fracture resistance of the coated tool and extend the service life. The following findings were obtained as a result of intensive research.

従来の被覆工具のTi1-xSiN層からなる硬質被覆層は、例えば、図2に示される物理蒸着装置の1種であるスパッタリング(SP)装置に上記のWC基超硬合金焼結体からなる工具基体を装着し、例えば、
装置内加熱温度:300〜500℃、
工具基体に印加する直流バイアス電圧:−50〜−100V、
カソード電極:Ti-Si合金
スパッタリング電力:3〜6kW、
装置内ガス流量:窒素(N)ガス+アルゴン(Ar)ガス、
装置内ガス圧力:0.3〜1.5Pa、
の条件で、Ti1-xSiN層(以下、従来Ti1-xSiN層という)を形成することにより製造されている。
For example, a hard coating layer made of a Ti 1-x Si x N layer of a conventional coating tool can be obtained by sintering the above WC-based cemented carbide alloy in a sputtering (SP) apparatus, which is a kind of physical vapor deposition apparatus shown in FIG. Wearing a tool base consisting of a body, for example,
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the tool base: −50 to −100 V,
Cathode electrode: Ti-Si alloy Sputtering power: 3-6 kW,
Gas flow in the apparatus: nitrogen (N 2 ) gas + argon (Ar) gas,
In-apparatus gas pressure: 0.3 to 1.5 Pa,
Under these conditions, a Ti 1-x Si x N layer (hereinafter referred to as a conventional Ti 1-x Si x N layer) is formed.

しかし、本発明者等は、Ti1-xSiN層の形成を、例えば図1に概略説明図で示される物理蒸着装置の1種である圧力勾配型Arプラズマガスを利用したイオンプレーティング装置を用いて、装置内に上記の工具基体を装着し、
工具基体温度:240〜400 ℃、
蒸発源:金属Ti、金属Si
プラズマガン放電電力 金属Tiに対して:10〜12 kW、
プラズマガン放電電力 金属Siに対して:5〜8 kW、
反応ガス流量:窒素(N)ガス 80〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜50 sccm、
工具基体に印加する直流バイアス電圧: 0 V、
蒸着速度: 0.04〜0.11 nm/秒
という条件下で蒸着を行うと、このTi1-xSiN層(以下、改質Ti1-xSiN層という)は、前記従来Ti1-xSiN層に比して、切刃に対して高負荷がかかる高送り、高切り込みの重切削加工において、すぐれた耐摩耗性と耐欠損性を示すことを見出したのである。
However, the present inventors have formed a Ti 1-x Si x N layer by ion plating using, for example, a pressure gradient type Ar plasma gas which is a kind of physical vapor deposition apparatus schematically shown in FIG. Using the device, install the tool base in the device,
Tool substrate temperature: 240-400 ° C.
Evaporation source: Metal Ti, Metal Si
Plasma gun discharge power For metal Ti: 10-12 kW,
Plasma gun discharge power For metal Si: 5 to 8 kW,
Reaction gas flow rate: nitrogen (N 2) gas 80 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-50 sccm,
DC bias voltage applied to the tool base: 0 V,
Deposition rate: When Ti is deposited under the condition of 0.04 to 0.11 nm / second, this Ti 1-x Si x N layer (hereinafter referred to as a modified Ti 1-x Si x N layer) It has been found that it has excellent wear resistance and fracture resistance in heavy feed machining with high feed and high depth of cut, which requires a high load on the cutting edge, compared to the Ti 1-x Si x N layer. .

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金焼結体からなる工具基体の表面に、0.2〜2μmの平均層厚を有するTi1-xSiN膜からなる硬質被覆層を物理蒸着した表面被覆切削工具において、xが0.1≦x≦0.3を満たし、さらに、
上記Ti1-xSiN層は上記平均層厚と等しい高さを有する柱状晶組織からなり、さらに、電子線後方散乱回折装置で表面の結晶粒の結晶方位を測定した場合、隣り合う測定点との結晶方位の方位差が15度以上となる結晶界面によって囲まれた区分径0.2〜4μmの区分が、測定された全体の面積のうち20%以上を占有し、かつ、上記Ti 1-x Si N層の表面から100nmの深さの水平断面における結晶粒組織を観察した場合、粒径が10〜100nmの結晶粒が測定面積のうち90%以上を占有することを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
“A surface-coated cutting tool obtained by physically vapor-depositing a hard coating layer made of a Ti 1-x Si x N film having an average layer thickness of 0.2 to 2 μm on the surface of a tool base made of a tungsten carbide-based cemented carbide sintered body X satisfies 0.1 ≦ x ≦ 0.3, and
The Ti 1-x Si x N layer is made of columnar crystal structure having the same height as the average layer thickness, further, when measuring the crystal orientation of the crystal grains of the surface in electron backscatter diffraction apparatus, adjacent A section having a section diameter of 0.2 to 4 μm surrounded by a crystal interface in which the orientation difference of the crystal orientation with respect to the measurement point is 15 degrees or more occupies 20% or more of the total area measured , and When a crystal grain structure in a horizontal cross section having a depth of 100 nm is observed from the surface of the Ti 1-x Si x N layer, crystal grains having a grain size of 10 to 100 nm occupy 90% or more of the measurement area. A surface-coated cutting tool. "
It has the characteristics.

この発明について、以下に詳細に説明する。   The present invention will be described in detail below.

既に述べたように、この発明は、例えば図1に概略説明図で示される圧力勾配型Arプラズマガスを利用したイオンプレーティング装置を用いて、装置内にWC基超硬合金焼結体からなる工具基体を装着し、
工具基体温度:240〜400 ℃、
蒸発源:金属Ti、金属Si
プラズマガン放電電力 金属Tiに対して:10〜12 kW、
プラズマガン放電電力 金属Siに対して:5〜8 kW、
反応ガス流量:窒素(N)ガス 80〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜50 sccm、
工具基体に印加する直流バイアス電圧: 0 V、
蒸着速度: 0.04〜0.11 nm/秒、
という条件下で成膜を行うものである。従来Ti1-xSiN層の構成成分であるTi成分が高温強度を向上させ、Si成分が耐熱性を向上させ、また、Nが層の強度を向上させる作用があることはすでによく知られているが、これに加えて、この発明の改質Ti1-xSiN層は高速断続切削加工条件という厳しい使用条件下でも、すぐれた靭性と耐欠損性を発揮する。
そしてその理由は以下に述べるように、改質Ti1-xSiN層の特異な結晶粒形態と強い関連性を有する。
As already described, the present invention comprises, for example, a WC-based cemented carbide sintered body in an apparatus using an ion plating apparatus using a pressure gradient type Ar plasma gas shown schematically in FIG. Install the tool base,
Tool substrate temperature: 240-400 ° C.
Evaporation source: Metal Ti, Metal Si
Plasma gun discharge power For metal Ti: 10-12 kW,
Plasma gun discharge power For metal Si: 5 to 8 kW,
Reaction gas flow rate: nitrogen (N 2) gas 80 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-50 sccm,
DC bias voltage applied to the tool base: 0 V,
Deposition rate: 0.04-0.11 nm / second,
The film is formed under the conditions. It is already well known that the Ti component, which is a conventional component of the Ti 1-x Si x N layer, improves the high-temperature strength, the Si component improves the heat resistance, and N has the effect of improving the layer strength. In addition to this, the modified Ti 1-x Si x N layer of the present invention exhibits excellent toughness and fracture resistance even under severe use conditions such as high-speed interrupted cutting conditions.
The reason for this is strongly related to the unique grain morphology of the modified Ti 1-x Si x N layer, as will be described below.

まず、上記蒸着で形成された改質Ti1-xSiN層について、表面を研磨面とした状態で、電子線後方散乱回折装置を用いて前記硬質被覆層のTi1-xSiN層表面の水平断面の結晶方位を解析したところ、隣り合う測定点間での結晶方位の方位差が、特定軸周りでの回転角度(以下、回転角度という)で15度以上となる結晶粒界によって囲まれた区分0.2〜4μmの区分の占有する面積が、測定された面積の20%以上を占有することがわかった。
なお、前記方位差を記述する上での回転角度とは、向きの異なる2つの結晶の一方に対して、1回の回転操作で2つの結晶が完全に同じ向きとなる場合の回転角度を指し、また、ここでいう区分径とは、その区分領域と同じ面積をもつ真円の直径を指すものであると定義する
First, with respect to the modified Ti 1-x Si x N layer formed by the above vapor deposition, the hard coating layer Ti 1-x Si x N is formed using an electron beam backscattering diffractometer in a state where the surface is a polished surface. When the crystal orientation of the horizontal cross section of the layer surface is analyzed, the crystal grain boundary where the orientation difference in crystal orientation between adjacent measurement points is 15 degrees or more around a specific axis (hereinafter referred to as the rotation angle). It was found that the area occupied by the section having a section diameter of 0.2 to 4 μm surrounded by occupies 20% or more of the measured area.
Note that the rotation angle in describing the difference in orientation refers to the rotation angle when two crystals have the same orientation in one rotation operation with respect to one of two crystals having different orientations. In addition, the section diameter here is defined to indicate the diameter of a perfect circle having the same area as the section area.

さらに、膜の表面から0.1μmの深さの水平断面の結晶組織を、透過型電子顕微鏡を用いて観察し個々の結晶粒径を測定したところ、直径10〜100nmの結晶粒が全測定面積のうち面積割合で90%以上を占めることがわかった。
なお、ここでいう直径とは、その結晶粒と同じ面積をもつ真円の直径を指すものであると定義する
Furthermore, when the crystal structure of a horizontal cross section having a depth of 0.1 μm from the surface of the film was observed using a transmission electron microscope and the individual crystal grain sizes were measured, the crystal grains having a diameter of 10 to 100 nm were found to have a total measurement area. It was found that the area ratio accounted for 90% or more.
The diameter here is defined to indicate the diameter of a perfect circle having the same area as the crystal grain.

この特性について、以下に詳細に説明する。   This characteristic will be described in detail below.

上記、面積割合で90%以上の直径10〜100nmの結晶粒によって構成されており、かつ、区分内部で隣り合う結晶方位の角度差が15度未満となるような区分径0.2〜4μmの区分が面積割合で20%以上存在する前記改質Ti1-xSiN層においては、前記区分の内部を構成する結晶粒は少なくとも面積割合で50%以上の直径10〜100nmの結晶粒によって構成されている。
したがって、面積割合で前記区分内に存在する少なくとも50%以上の結晶粒は近傍に存在する結晶粒、特に同一の区分内に存在する結晶粒と、結晶方位の方位差が回転角度で15度未満となるような二軸配向性を示していることから、前記区分内に存在する結晶粒同士の界面整合性が高く、あたかも単結晶のような優れた靭性を具備するとともに、さらに、直径10〜100nmという微細組織をもち優れた耐欠損性を維持できることから、皮膜中に亀裂や欠損が生じやすい断続重切削加工においても、工具の長寿命化がはかられるものである。
Above, is constituted by 90% of the diameter 10~100nm grain in terms of area ratio, and crystal orientation adjacent piecewise internal angular difference is divided diameter 0.2~4μm such that less than 15 degrees In the modified Ti 1-x Si x N layer in which the section is present in an area ratio of 20% or more, the crystal grains constituting the inside of the section are at least an area ratio of 50% or more of crystal grains having a diameter of 10 to 100 nm. It is configured.
Thus, at least 50% or more of crystal grains present in said section in area ratio is crystal grains existing in the vicinity of the crystal grain and, misorientation of the crystal orientation is less than 15 degrees rotation angle in particular present in the same categories Since the biaxial orientation is such that the interfacial consistency between the crystal grains present in the section is high, it has excellent toughness like a single crystal, and further has a diameter of 10 to 10. Since it has a fine structure of 100 nm and can maintain excellent fracture resistance, the tool life can be extended even in intermittent heavy cutting, in which cracks and fractures tend to occur in the coating.

上記の改質Ti1-xSiN層について、xの値が0.05未満であるとSiの割合が相対的に少なくなり、Siが持つ耐熱特性効果が十分に得られず、0.3を超えるとTiの割合が相対的に少なくなり過ぎ、所望の高温強度が得られないため、xの値を0.05≦x≦0.3と定めた。
また、結晶粒の大きさが10nm未満であると、結晶粒自体の強度が得られず所望の強度を得られなくなり、また100nmを超えると結晶粒が粗大になりチッピングの原因となることから、面積割合で皮膜の90%以上を占める結晶粒の大きさを10nm〜100nmと定めた。
また、Ti1-xSiN層を構成する、結晶方位が15度以上の界面で囲まれる区分の面積割合が20%未満では、所望の靭性を得ることが出来ないため、該区分の面積割合を20%以上と定めた。
In the above modified Ti 1-x Si x N layer, when the value of x is less than 0.05, the proportion of Si is relatively reduced, and the heat resistance characteristic effect of Si cannot be sufficiently obtained. If it exceeds 3, the ratio of Ti becomes relatively small, and the desired high-temperature strength cannot be obtained. Therefore, the value of x was set to 0.05 ≦ x ≦ 0.3.
Also, if the size of the crystal grains is less than 10 nm, the strength of the crystal grains themselves cannot be obtained and the desired strength cannot be obtained, and if it exceeds 100 nm, the crystal grains become coarse and cause chipping. The size of crystal grains occupying 90% or more of the film in terms of area ratio was determined to be 10 nm to 100 nm.
Further, constituting the Ti 1-x Si x N layer, since the area ratio of the segments crystal orientation is enclosed at the interface of 15 degrees or more is less than 20%, which can not be obtained the desired toughness, the area of the segment The ratio was set to 20% or more.

この発明の被覆工具は、Ti1-xSiN層からなる硬質被覆層を構成するTi1-xSiN結晶粒のうち、粒径が10〜100nmの結晶粒が面積割合で全体の90%以上を占有し、かつ、電子線後方散乱回折装置で表面の結晶粒の結晶方位を測定した場合、隣り合う測定点との結晶方位の方位差が15度以上となる結晶界面によって囲まれた区分径0.2〜4μmの区分が、測定された全体の面積のうち20%以上を占有するため、切刃に対して高い負荷がかかる乾式断続高速切削加工においても、優れた高温強度、耐熱性に加えて、優れた耐欠損性と靭性を示し、すぐれた工具特性を発揮し、工具寿命の延命化に寄与するものである。
Coated tool of the present invention, among the Ti 1-x Si x N crystal grains constituting the hard coating layer comprising Ti 1-x Si x N layer, a particle size of 10~100nm crystal grains in total area ratio When the crystal orientation of the surface crystal grains occupies 90% or more and is measured with an electron beam backscattering diffractometer, the crystal interface is surrounded by a crystal interface where the crystal orientation difference between adjacent measurement points is 15 degrees or more. Since the section having a section diameter of 0.2 to 4 μm occupies 20% or more of the entire measured area, excellent high-temperature strength can be obtained even in dry intermittent high-speed cutting where a high load is applied to the cutting edge. In addition to heat resistance, it exhibits excellent fracture resistance and toughness, exhibits excellent tool properties, and contributes to prolonging tool life.

この発明の表面被覆切削工具の硬質被覆層(改質Ti1-xSiN層)を蒸着形成するため圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示し、(a)は概略正面図、(b)は概略平面図である。FIG. 2 shows a schematic diagram of an ion plating apparatus using a pressure gradient type Ar plasma gun for vapor-depositing a hard coating layer (modified Ti 1-x Si x N layer) of the surface-coated cutting tool of the present invention, Is a schematic front view, and (b) is a schematic plan view. 従来の表面被覆切削工具の硬質被覆層(従来Ti1-xSiN層)を蒸着形成するためスパッタリング(SP)装置の概略図を示す。It shows a schematic diagram of a conventional hard coating layer of the surface-coated cutting tool (conventional Ti 1-x Si x N layer) sputtering (SP) apparatus for depositing form. この発明の表面被覆切削工具の改質Ti1-xSiN層からなる硬質被覆層の模式図を示し、(a)は水平断面組織図を、また、(b)は結晶方位の方位差が15度以上となる結晶界面の分布の模式図を示す。Shows a schematic diagram of a modified Ti 1-x Si x N composed of layer hard layer of the surface-coated cutting tool of the present invention, (a) represents also a horizontal sectional structure view,, (b) the orientation difference in the crystal orientation The schematic diagram of the distribution of the crystal | crystallization interface which becomes 15 degrees or more is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。
なお、ここでは被覆インサートを中心にして説明するが、被覆インサートに限らず、被覆エンドミルや被覆ドリル等の各種の被覆工具に適用できるものである。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In addition, although demonstrated centering on a covering insert here, it is applicable not only to a covering insert but to various covering tools, such as a covering end mill and a covering drill.

原料粉末として、いずれも0.8〜4μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、表面を研磨し、ISO規格・SEEN1203のインサート形状をもったWC基超硬合金製のフライス加工用工具基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 4 μm are prepared. Blended into the composition shown, wet mixed with a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was held at a temperature of 1400 ° C. for 1 hour in a vacuum of 6 Pa. After sintering, the surface was polished, and tool bases A1 to A10 for milling made of WC-base cemented carbide having an ISO standard / SEEN1203 insert shape were formed.

ついで、上記の工具基体A1〜A10およびB1〜B10を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、蒸発源として、金属Tiを装着し、まず、装置内を排気して1.0×10−3Pa以下の真空に保持しながらヒーターで装置内を240〜420℃に加熱した後、Arガスを導入して2.3×10−2Paとしたのち、圧力勾配型プラズマガンの放電電力を2kWとし、装置内にArイオンを発生させ、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を10分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、
表2に示す条件で、圧力勾配型Arプラズマガンの放電電力を12kWとし、Arガスを60sccm,窒素ガスを100sccm流しながら、炉内の圧力を3×10−2〜6×10−2Paに保ち、金属Ti蒸発源および金属Si蒸発源にプラズマビームを入射し金属Tiおよび金属Siの蒸気を発生させるとともにプラズマビームでイオン化し、かつ、チャンバー内での改質Ti1-xSiN層の成長速度を、水晶発振式膜厚コントローラを用いて測定しながら、前記成長速度が目的の速度(0.04〜0.11nm/sec)から±0.01nm/secの範囲となるようプラズマガンの出力を調整しながら、工具基体表面に、表4に示される所定目標層厚の改質Ti1-xSiN層を蒸着形成させ、本発明被覆工具としての本発明被覆インサート(以下、本発明インサートという)1〜14を製造した。
なお、表2に、本発明インサート1〜14の改質Ti1-xSiN層の形成条件である圧力勾配型Arプラズマガンを利用したイオンプレーティングの各種条件を示す。
Next, the tool bases A1 to A10 and B1 to B10 are ultrasonically cleaned in acetone and dried, and attached to an ion plating apparatus using a pressure gradient type Ar plasma gun shown in FIG. As the evaporation source, metal Ti was attached. First, the inside of the apparatus was evacuated and the inside of the apparatus was heated to 240 to 420 ° C. with a heater while maintaining a vacuum of 1.0 × 10 −3 Pa or less. After being introduced to 2.3 × 10 −2 Pa, the discharge power of the pressure gradient plasma gun is set to 2 kW, Ar ions are generated in the apparatus, and a bias voltage of −200 V is applied to the tool base, The tool base was treated with Ar bombardment for 10 minutes, and then the inside of the apparatus was once evacuated to about 1 × 10 −3 Pa,
Under the conditions shown in Table 2, the discharge power of the pressure gradient type Ar plasma gun is 12 kW, the pressure in the furnace is 3 × 10 −2 to 6 × 10 −2 Pa while flowing Ar gas at 60 sccm and nitrogen gas at 100 sccm. A plasma beam is incident on the metal Ti evaporation source and the metal Si evaporation source to generate vapors of metal Ti and metal Si, ionize with the plasma beam, and the modified Ti 1-x Si x N layer in the chamber The plasma gun is measured so that the growth rate is within a range of ± 0.01 nm / sec from the target rate (0.04 to 0.11 nm / sec) while measuring the growth rate using a crystal oscillation type film thickness controller. The modified Ti 1-x Si x N layer having a predetermined target layer thickness shown in Table 4 is vapor-deposited on the surface of the tool base while adjusting the output of the tool. Light coated inserts (hereinafter referred to as the present invention inserts) 1 to 14 were produced.
Table 2 shows various conditions for ion plating using a pressure gradient type Ar plasma gun, which are conditions for forming the modified Ti 1-x Si x N layers of the inserts 1 to 14 of the present invention.

比較の目的で、上記の工具基体A1〜A10を、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるスパッタリング(SP)装置に装着し、カソード電極(蒸発源)として金属CrおよびTi-Si合金を装着し、まず、装置内を排気して0.01Pa以下の真空に保持しながらヒーターで装置内を400℃に加熱した後、Arガスを200sccm導入し、金属Crと前記工具基体との間に−800Vの直流バイアス電圧を印加し、前記工具基体表面を5分間Crボンバード処理し、ついで、表3に示す条件で、装置内に雰囲気ガスとして窒素ガスおよびArガスを導入して0.5Paの雰囲気とするとともに、前記金属Tiと前記工具基体との間にバイアス電圧として−50Vの直流バイアス電圧を印加し、もって前記工具基体の表面に、表6に示される目標層厚の従来Ti1-xSiN層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来表面被覆インサート(以下、従来インサートという)1〜14を製造した。
なお、表3には、従来インサート1〜14の従来Ti1-xSiN層の形成されるスパッタリング条件を示す。
For the purpose of comparison, the above tool bases A1 to A10 are ultrasonically cleaned in acetone and dried, and then mounted on the sputtering (SP) apparatus shown in FIG. 2, and metal Cr is used as a cathode electrode (evaporation source). And the Ti—Si alloy, first, the inside of the apparatus is evacuated and the inside of the apparatus is heated to 400 ° C. with a heater while maintaining a vacuum of 0.01 Pa or less, Ar gas is introduced at 200 sccm, and the metal Cr and the above-mentioned A DC bias voltage of −800 V is applied between the tool substrate and the surface of the tool substrate is subjected to Cr bombardment for 5 minutes, and then nitrogen gas and Ar gas are introduced into the apparatus as atmospheric gases under the conditions shown in Table 3. And an atmosphere of 0.5 Pa, and a DC bias voltage of −50 V is applied as a bias voltage between the metal Ti and the tool base, thereby the tool base. A conventional surface-coated insert (hereinafter referred to as a conventional insert) 1 as a conventional coated tool is formed by vapor-depositing a conventional Ti 1-x Si x N layer having a target layer thickness shown in Table 6 as a hard coating layer on the surface of ~ 14 were produced.
Table 3 shows sputtering conditions for forming the conventional Ti 1-x Si x N layers of the conventional inserts 1 to 14.

本発明インサート1〜10の改質Ti1-xSiN層および従来インサート1〜10の従来Ti1-xSiN層について、その表面を研磨面とした状態で、電子線後方散乱回折装置(EBSD)を用いて硬質被覆層表面の結晶方位を解析した。すなわち、10μm×10μmの領域を0.03μm/stepの間隔で、前記改質Ti1-xSiN層がもつ結晶方位を測定し、測定ノイズを除去したのち、隣り合う測定点間の結晶方位の方位差が回転角度で15度以上となる界面を図3(b)に例示されるように測定領域のマップ上に表示し、それらの界面によって区分される領域区分のうち、0.2〜4μmの区分径を有する全測定面積に対する面積割合を求め、この値を、区分径の平均値とともに表4および表5に示した。
さらに、前記硬質被覆層を基板側から約1mmの厚さまで機械研磨したのち、Arイオン研磨装置を用いて厚さ100nmとなるまで研磨し薄片とした状態で、透過型電子顕微鏡を用いて層の表面から100nmの深さ近傍におけるTi1-xSiN層の結晶粒径を観察し、図3(a)に例示されるように改質Ti1-xSiN層の工具基体表面のうち、幅10〜100nmの微細粒が占有する面積割合αを求め、区分の全測定面積に対する面積割合とともに表4および表5に示した。
表4から、本発明インサート1〜14の改質Ti1-xSiN層は、直径10〜100nmのTi1-xSiN結晶粒が面積割合で90%を占め、かつ、電子線後方散乱回折装置で結晶方位を解析したときに、回転角度で15度以上の結晶方位の方位差をもつ界面によって囲まれる区分径0.2〜4μmの区分の面積割合が、全測定面積の20%以上となっており、二軸配向性を有する10〜100nmの微細結晶によって構成されている区分が面積割合で20%以上存在ことが分かる。
一方、表5から、従来インサート1〜14の従来Ti1-xSiN層は、回転角度で15度以上の結晶方位の差をもつ界面によって区分される区分径0.2〜4μmの区分の面積割合が全測定面積の20%以上となるものの、10〜100nmの微細結晶の存在割合は面積割合で90%以下となっており、表面組織は直径100nm以上の粗大粒によって構成されている。すなわち、二軸配向性を有する10〜100nmの微細結晶によって構成される区分は全く存在せず、100nm以上の粗大な単結晶によってのみ構成されていることが分かる。
A conventional Ti 1-x Si x N layer of the reforming Ti 1-x Si x N layer and a conventional insert 10 of the present invention the insert 10, while the surface and the polishing surface, electron backscatter diffraction The crystal orientation of the hard coating layer surface was analyzed using an apparatus (EBSD). That is, the crystal orientation of the modified Ti 1-x Si x N layer is measured in a 10 μm × 10 μm region at an interval of 0.03 μm / step, measurement noise is removed, and then the crystal between adjacent measurement points is measured. the interface misorientation orientation is 15 degrees or more at a rotation angle displayed on the map of the measurement region as illustrated in FIG. 3 (b), among the realm segments are separated by their interfaces, 0. The area ratio with respect to the total measurement area having a segment diameter of 2 to 4 μm was determined, and this value is shown in Tables 4 and 5 together with the average value of the segment diameters.
Further, after mechanically polishing the hard coating layer from the substrate side to a thickness of about 1 mm, using an Ar ion polishing apparatus, the hard coating layer was polished to a thickness of 100 nm to form a thin piece, and then the layer was formed using a transmission electron microscope. The crystal grain size of the Ti 1-x Si x N layer in the vicinity of a depth of 100 nm from the surface is observed, and the surface of the tool base surface of the modified Ti 1-x Si x N layer is exemplified as shown in FIG. among them, measuring the area ratio α the width 10~100nm fine grains occupy, with the area percentage of the total measured area of the segment shown in tables 4 and 5.
From Table 4, the modified Ti 1-x Si x N layers of the inserts 1 to 14 of the present invention account for 90% of the area ratio of Ti 1-x Si x N crystal grains having a diameter of 10 to 100 nm, and an electron beam When analyzing the crystal orientation with a backscattering diffractometer, the area ratio of the section having a section diameter of 0.2 to 4 μm surrounded by an interface having a crystal orientation difference of 15 degrees or more at the rotation angle is 20% of the total measurement area. % has a higher, it can be seen that there more than 20% by indicator area ratio is formed by 10~100nm fine crystals having a biaxial orientation.
On the other hand, from Table 5, the conventional Ti 1-x Si x N layer of the conventional insert 1-14, partition segment diameter 0.2~4μm Segmented by interfacial having a difference in crystal orientation of 15 degrees or more at a rotation angle Although the area ratio is 20% or more of the total measurement area, the existence ratio of fine crystals of 10 to 100 nm is 90% or less in area ratio, and the surface structure is constituted by coarse grains having a diameter of 100 nm or more. . That is, it can be seen that there is no section constituted by a fine crystal of 10 to 100 nm having biaxial orientation, and only a coarse single crystal of 100 nm or more.



つぎに、上記本発明インサート1〜10及び従来インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:平面寸法 100mm×250mm 厚さ50mmの JIS規格・SUS316の板材
切削速度: 200 m/min.、
切り込み: 3 mm、
1刃あたりのテーブル送り: 0.3 mm/刃、
切削時間: 2 分、
の条件(切削条件1という)でのステンレス鋼の乾式高速フライス加工試験(通常の切削速度及びテーブル送りは、それぞれ、150m/min、0.2mm/rev.)、
被削材:平面寸法 100mm×250mm 厚さ50mmの JIS・SCM440の板材
切削速度: 250 m/min.、
切り込み: 3 mm、
1刃あたりのテーブル送り: 0.3 mm/刃、
切削時間: 2 分、
の条件(切削条件2という)での合金鋼の乾式高速フライス加工試験(通常の切削速度及びテーブル送りは、それぞれ、160m/min、0.2mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表6に示した。
Next, for the above-mentioned inserts 1 to 10 of the present invention and the conventional inserts 1 to 10, this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: Plane dimension 100 mm x 250 mm Thickness 50 mm JIS standard / SUS316 plate material Cutting speed: 200 m / min. ,
Cutting depth: 3 mm,
Table feed per blade: 0.3 mm / tooth,
Cutting time: 2 minutes,
Stainless steel dry high-speed milling test under the following conditions (referred to as cutting condition 1) (normal cutting speed and table feed are 150 m / min and 0.2 mm / rev., Respectively),
Work material: Plane size 100 mm × 250 mm JIS / SCM440 plate material with a thickness of 50 mm Cutting speed: 250 m / min. ,
Cutting depth: 3 mm,
Table feed per blade: 0.3 mm / tooth,
Cutting time: 2 minutes,
Dry high-speed milling test of alloy steel under the following conditions (referred to as cutting condition 2) (normal cutting speed and table feed are 160 m / min and 0.2 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 6.

表4、表6から、本発明インサート1〜14は、粒径が10〜100nmの結晶粒が測定面積のうち90%以上を占有し、かつ、電子線後方散乱回折装置で表面の結晶粒の結晶方位を測定した場合、隣り合う測定点との結晶方位の方位差が15度以上の回転角度となる結晶界面によって囲まれた区分径0.2〜4μmの区分が、測定された全体の面積のうち20%以上を占めており、すなわち、強く配向した10〜100nmの結晶粒によって構成される0.2〜4μmの区分が多く存在することにより、すぐれた耐欠損性と靭性を発揮し、乾式断続高速切削加工条件においても優れた工具寿命を実現していることが分かる。
これに対して、表5、表6から、従来インサート1〜14においては、従来Ti1-xSiN層は、10〜100nmの結晶粒の占める面積割合が小さく、粗大な単結晶粒子のみが存在することから、耐欠損性と靭性に劣り、乾式断続高速切削加工条件ではチッピングや欠損等により、比較的短時間で使用寿命に至ることが明らかである。
From Tables 4 and 6, according to the inserts 1 to 14 of the present invention, the crystal grains having a grain size of 10 to 100 nm occupy 90% or more of the measurement area, and the surface grain of the surface is measured by an electron beam backscattering diffractometer. when measuring the crystal orientation, the whole divisions segment surrounded by the crystal interface misorientation crystal orientation of adjacent measurement points is the rotation angle of 15 degrees or more diameter 0.2~4μm is measured area 20% or more of them, that is, the presence of many 0.2 to 4 μm sections composed of strongly oriented 10 to 100 nm crystal grains, exhibiting excellent fracture resistance and toughness, It can be seen that excellent tool life is achieved even under dry intermittent high-speed cutting conditions.
On the other hand, from Tables 5 and 6, in the conventional inserts 1 to 14, the conventional Ti 1-x Si x N layer has a small area ratio occupied by 10 to 100 nm crystal grains, and only coarse single crystal particles. Therefore, it is clear that the chipping resistance and toughness are inferior, and that the service life can be reached in a relatively short time due to chipping, chipping, etc. under dry intermittent high speed cutting conditions.

上述のように、この発明の被覆工具は、硬質被覆層(改質Ti1-xSiN層)がすぐれた耐欠損性、靭性を有することから、被覆インサートばかりでなく、被覆エンドミル、被覆ドリル等の各種被覆工具として用いることができ、そして、これによって、靭性不足、強度不足等に起因する工具欠損の発生を防止し、長期の使用に亘って優れた切削性能を発揮するものであるから、低コスト化に十分満足に対応できるとともに、工具寿命の延命化を図ることができるものである。 As described above, the coated tool according to the present invention has a hard coating layer (modified Ti 1-x Si x N layer) having excellent fracture resistance and toughness. It can be used as various types of coated tools such as drills, and thereby prevents the occurrence of tool defects due to insufficient toughness, insufficient strength, etc., and exhibits excellent cutting performance over a long period of use. Therefore, it is possible to sufficiently satisfy the cost reduction and prolong the tool life.

Claims (1)

炭化タングステン基超硬合金焼結体からなる工具基体の表面に、0.2〜2μmの平均層厚を有するTi1-xSiN膜からなる硬質被覆層を物理蒸着した表面被覆切削工具において、xが0.05≦x≦0.3を満たし、さらに、
上記Ti1-xSiN層は上記平均層厚と等しい高さを有する柱状晶組織からなり、さらに、電子線後方散乱回折装置で表面の結晶粒の結晶方位を測定した場合、隣り合う測定点との結晶方位の方位差が15度以上となる結晶界面によって囲まれた区分径0.2〜4μmの区分が、測定された全体の面積のうち20%以上を占有し、かつ、上記Ti1-xSiN層の表面から100nmの深さの水平断面における結晶粒組織を観察した場合、粒径が10〜100nmの結晶粒が測定面積のうち90%以上を占有することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer made of a Ti 1-x Si x N film having an average layer thickness of 0.2 to 2 μm is physically vapor-deposited on the surface of a tool base made of a tungsten carbide-based cemented carbide sintered body , X satisfies 0.05 ≦ x ≦ 0.3, and
The Ti 1-x Si x N layer has a columnar crystal structure having a height equal to the average layer thickness, and when the crystal orientation of the surface crystal grains is measured with an electron beam backscattering diffractometer, adjacent measurements are performed. A section having a section diameter of 0.2 to 4 μm surrounded by a crystal interface in which the orientation difference of the crystal orientation with respect to a point is 15 degrees or more occupies 20% or more of the total area measured, and the Ti When a crystal grain structure in a horizontal cross section having a depth of 100 nm is observed from the surface of the 1-x Si x N layer, crystal grains having a grain size of 10 to 100 nm occupy 90% or more of the measurement area. A surface-coated cutting tool.
JP2010015026A 2010-01-27 2010-01-27 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Active JP5585929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015026A JP5585929B2 (en) 2010-01-27 2010-01-27 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015026A JP5585929B2 (en) 2010-01-27 2010-01-27 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011152601A JP2011152601A (en) 2011-08-11
JP5585929B2 true JP5585929B2 (en) 2014-09-10

Family

ID=44538917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015026A Active JP5585929B2 (en) 2010-01-27 2010-01-27 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5585929B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004133B2 (en) * 1998-03-10 2007-11-07 日立ツール株式会社 Titanium carbonitride coated tool
JP3768136B2 (en) * 2001-10-04 2006-04-19 日立ツール株式会社 Coated tool
JP4284201B2 (en) * 2004-01-29 2009-06-24 京セラ株式会社 Surface covering member and cutting tool
KR101004277B1 (en) * 2004-03-18 2011-01-03 스미토모 덴키 고교 가부시키가이샤 Surface-coated cutting tool
JP2009214196A (en) * 2008-03-07 2009-09-24 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP2009220239A (en) * 2008-03-18 2009-10-01 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP5397690B2 (en) * 2009-12-11 2014-01-22 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Also Published As

Publication number Publication date
JP2011152601A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594577B2 (en) Surface coated cutting tool
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5585929B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2013184271A (en) Surface-coated cutting tool with hard coating layer maintaining excellent abrasion resistance and chipping resistance
JP5440352B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A131 Notification of reasons for refusal

Effective date: 20131119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131210

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140630

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5585929

Country of ref document: JP

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140713