JP4048364B2 - Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions - Google Patents

Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions Download PDF

Info

Publication number
JP4048364B2
JP4048364B2 JP2002220570A JP2002220570A JP4048364B2 JP 4048364 B2 JP4048364 B2 JP 4048364B2 JP 2002220570 A JP2002220570 A JP 2002220570A JP 2002220570 A JP2002220570 A JP 2002220570A JP 4048364 B2 JP4048364 B2 JP 4048364B2
Authority
JP
Japan
Prior art keywords
content point
highest
hard coating
highest content
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220570A
Other languages
Japanese (ja)
Other versions
JP2004058217A (en
Inventor
稔晃 植田
拓也 早樋
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002220570A priority Critical patent/JP4048364B2/en
Publication of JP2004058217A publication Critical patent/JP2004058217A/en
Application granted granted Critical
Publication of JP4048364B2 publication Critical patent/JP4048364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、AlとTiの相互含有割合を示すAl/(Al+Ti)が原子比で0.74〜0.98を満足するAlとTiの複合酸化物[以下、Al−Ti酸化物で示す]層からなる硬質被覆層を5〜20μmの平均層厚で蒸着してなる被覆超硬工具が提案され、前記硬質被覆層を構成するAl−Ti酸化物層が、Alによる高温硬さおよび耐熱性と、Tiによる靭性を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工を高速切削条件で行なった場合にすぐれた切削性能を発揮することも知られている。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示されるステンレス製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒーターで装置内を、例えば850〜1100℃の範囲内の所定の温度に加熱した後、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl3:0.5〜10%、
TiCl4:0.5〜30%、
CO2:0.5〜10%、
HCl:0.1〜10%、
2:残り、
からなる組成を有する反応ガスを用い、この反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して導入し、装置内の反応ガス圧力を、3〜30KPaの範囲内の所定の圧力に所定時間保持することによりAlとTiの相互含有割合を示すAl/(Al+Ti)が層厚方向に一定のAl−Ti酸化物層からなる硬質被覆層を形成することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向を強め、かつ高切り込みや高送りなどの重切削条件での切削加工を余儀なくされる傾向にあるが、上記の従来被覆超硬工具においては、これを高速切削加工条件で用いた場合には問題はないが、高い機械的衝撃を伴う高切り込みや高送りなどの重切削を高速で行なった場合には、特に層厚方向に一定の組成を有するAl−Ti酸化物層からなる硬質被覆層の強度不足が原因でチッピング(微小割れ)が発生し易く、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の化学蒸着装置を用いて形成された従来被覆超硬工具を構成するAl−Ti酸化物層からなる硬質被覆層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、さらに強度を有するが、上記の従来硬質被覆層を構成するAl−Ti酸化物に代って、硬質被覆層をAlとTiの複合酸化物[以下、Al−Ti酸化物で示す]で構成すると共に、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、Al−Ti酸化物からなる硬質被覆層に層厚方向にそってAl最高含有点とTi最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Al最高含有点およびTi最高含有点に対応した反応ガス組成、並びに前記両点間のAlおよびTiの連続変化に対応した反応ガス組成、さらに前記両点間の間隔を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのH2ガス、CO2ガス、およびHClガスの流量、AlCl3およびTiCl4の流量をそれぞれの原料ガス流量自動制御装置にて制御した状態で、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最低含有点へAlおよびTi含有量が連続的に変化する成分濃度分布構造をもつたAl−Ti酸化物層からなる硬質被覆層が形成されるようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のAl−Ti酸化物層において、
上記Al最高含有点におけるAlとTiの相互含有割合を示すAl/(Al+Ti)が原子比で0.70〜0.95、
上記Ti最高含有点におけるTiとAlの相互含有割合を示すTi/(Ti+Al)が原子比で0.70〜0.0.95、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Al最高含有点部分では、上記の従来Al−Ti酸化物層のもつ高温硬さと耐熱性に相当する高温硬さと耐熱性を示し、一方上記Ti最高含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、相対的にTi含有量の高いものとなるので、一段と高い強度が確保され、かつこれらAl最高含有点とTi最高含有点の間隔をきわめて小さくしたことから、層全体の特性として高温硬さと耐熱性を保持した状態で一段とすぐれた強度を具備するようになり、したがって、硬質被覆層がかかる構成のAl−Ti酸化物層からなる被覆超硬工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、化学蒸着装置を用い、反応ガス組成および流量中央制御装置からの制御信号にしたがって、個々の原料ガスを、流量を自動制御しながら反応ガス吹き出し管に導入して、Al−Ti酸化物層からなる硬質被覆層を5〜25μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点におけるAlとTiの相互含有割合を示すAl/(Al+Ti)が原子比で0.70〜0.95、
上記Ti最高含有点におけるTiとAlの相互含有割合を示すTi/(Ti+Al)が原子比で0.70〜0.0.95、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
Al最高含有点のAl−Ti酸化物層におけるTi成分は強度を向上させ、同Al成分は高温硬さおよび耐熱性を向上させる作用があり、したがってAl成分の含有割合が高くなればなるほど高温硬さおよび耐熱性は向上し、高熱発生を伴う高速切削に適合したものになるが、Al成分のTi成分との相互含有割合を示すAl/(Al+Ti)が原子比で0.95を越えると、高強度を有するTi最高含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同値が0.70未満になると高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Al成分のTi成分との相互含有割合を示すAl/(Al+Ti)を原子比で0.70〜0.95と定めた。
【0010】
(b)Ti最高含有点の組成
上記の通りAl最高含有点は相対的にすぐれた高温硬さおよび耐熱性を有するが、反面相対的に強度が不十分であるため、このAl最高含有点の強度不足を補う目的で、Ti含有割合が高く、一方Al含有量が低く、これによって高強度を有するようになるTi最高含有点を厚さ方向に交互に介在させるものである。しかし、Ti成分のAl成分との相互含有割合を示すTi/(Ti+Al)が原子比で0.95を越えると、Ti最高含有点に所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同値が0.70未満になると、所望のすぐれた強度を確保することができず、この結果チッピングが発生し易くなることから、Ti成分のAl成分との相互含有割合を示すTi/(Ti+Al)を原子比で0.70〜0.95と定めた。
【0011】
(c)Al最高含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば強度不足、Ti最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0012】
(d)硬質被覆層の全体平均層厚
その層厚が5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が25μmを越えると、チッピングが発生し易くなることから、その平均層厚を5〜25μmと定めた。
【0013】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0014】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、TiC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0015】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl4:4.2%、N2:30%、H2:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で30分間保持して下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に過去の実績にデータにしたがって表3に示されるAl最高含有点およびTi最高含有点の目標Al/(Al+Ti)および目標Ti/(Ti+Al)と反応ガス組成の関係、前記Al最高含有点とTi最高含有点間のAlとTi含有量の連続変化に対応する反応ガス組成、さらに表4,6に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内臓の原料ガス流量自動制御装置を通して、原料ガスであるH2ガス、CO2ガス、HClガス、AlCl3ガス、およびTiCl4ガス(この場合、AlCl3ガスはAlCl3ガス発生器で金属AlとHClガスを反応させることにより形成され、また、TiCl4ガスは、図示の通り流量制御されたH2ガスをキャリアガスとしてTiCl4ガス発生器に送り、ここで液体から気化されたTiCl4ガスと共に原料ガス流量自動制御装置に送られる)を、それぞれのガス流量を制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に10kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0016】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、反応雰囲気温度を1020℃に加熱した後、それぞれ表6,7に示される従来硬質被覆層のもつ組成に相当する目標Al/(Al+Zr)に対応した組成の反応ガスを反応ガス吹き出し管から導入し、反応雰囲気圧力を10kPaに一定とした条件で、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表6,7に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のないAl−Zr酸化物層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:350m/min.、
切り込み:8mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:1.5mm、
送り:0.65mm/rev.、
切削時間:3分、
の条件での鋳鉄の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:8mm、
送り:0.2mm/rev.、
切削時間:3分、
の条件での炭素鋼の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0018】
【表1】

Figure 0004048364
【0019】
【表2】
Figure 0004048364
【0020】
【表3】
Figure 0004048364
【0021】
【表4】
Figure 0004048364
【0022】
【表5】
Figure 0004048364
【0023】
【表6】
Figure 0004048364
【0024】
【表7】
Figure 0004048364
【0025】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってAlおよびTiの含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl/(Al+Ti)値、さらにTi/(Ti+Al)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Al最高含有点と、Ti最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつAl最高含有点からTi最高含有点、前記Ti最高含有点からAl最高含有点へAlとTiの含有量が連続的に変化する成分濃度分布構造を有することが確認され、また、硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。一方前記従来被覆超硬チップ1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示した。
【0026】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有するAl最高含有点と相対的に高強度を有するTi最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のないAl−Zr酸化物層からなる従来被覆超硬チップ1〜16においては、前記硬質被覆層が高温硬さと耐熱性を有するものの、強度に劣るものであるために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を示す概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムである。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has high strength and is excellent in high-temperature hardness and heat resistance, and therefore, high-speed cutting such as various steels and cast irons, especially high cutting with high mechanical impact, high feed, etc. The present invention also relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent chipping resistance even when performed under heavy cutting conditions.
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and cutting is performed in the same way as the solid type end mill Throwaway end mill tools are known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). ) Al / (Al + Ti) indicating the mutual content ratio of Al and Ti on the surface of Al / Ti composite oxide satisfying an atomic ratio of 0.74 to 0.98 [hereinafter referred to as Al-Ti oxide. A coated carbide tool formed by vapor-depositing a hard coating layer composed of a layer with an average layer thickness of 5 to 20 μm is proposed, and the Al—Ti oxide layer constituting the hard coating layer has high-temperature hardness and heat resistance due to Al. It is also known that this coated carbide tool exhibits excellent cutting performance when performing continuous cutting and intermittent cutting of various steels and cast irons under high-speed cutting conditions. It has been.
[0004]
Furthermore, as shown in the schematic longitudinal sectional view of FIG. 1, for example, the coated carbide tool has a stainless steel reaction gas blowing pipe standing at the center thereof. A stainless steel substrate support pallet illustrated in a schematic perspective view in (a) and a schematic plan view in (b) is skewered and laminated, and these are heated by a heater through a stainless steel cover. A chemical vapor deposition apparatus having a structure is used, and the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a number of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. And after heating the inside of the apparatus with a heater to a predetermined temperature within a range of 850 to 1100 ° C., for example, as a reaction gas, in volume% (hereinafter,% of the reaction gas indicates volume%),
AlCl 3 : 0.5 to 10%,
TiCl 4: 0.5~30%,
CO 2: 0.5~10%,
HCl: 0.1-10%
H 2 : Remaining
The reaction gas is introduced into the apparatus that has been evacuated in advance through the reaction gas blowing pipe, and the reaction gas pressure in the apparatus is set to a predetermined pressure in the range of 3 to 30 KPa. It is also known that Al / (Al + Ti) showing the mutual content ratio of Al and Ti by holding for a predetermined time is produced by forming a hard coating layer composed of a constant Al-Ti oxide layer in the layer thickness direction. ing.
[0005]
[Problems to be solved by the invention]
In recent years, there has been a remarkable increase in the performance of cutting equipment, while there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. Although there is a tendency to be forced to cut under heavy cutting conditions such as high feed, there is no problem with the above-mentioned conventional coated carbide tools when used under high-speed cutting conditions. When heavy cutting such as high cutting with impact and high feed is performed at high speed, chipping (due to insufficient strength of the hard coating layer made of an Al-Ti oxide layer having a constant composition in the layer thickness direction) At present, microcracks are likely to occur and the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer particularly in high-speed heavy cutting. As a result of conducting research with a focus on the hard coating layer,
(A) The hard coating layer composed of the Al-Ti oxide layer constituting the conventional coated carbide tool formed by using the chemical vapor deposition apparatus has a substantially uniform composition throughout the entire layer thickness. Therefore, it has uniform high temperature hardness and heat resistance, and further strength, but instead of the Al-Ti oxide constituting the conventional hard coating layer, the hard coating layer is made of a composite oxide of Al and Ti [hereinafter referred to as Al As shown in FIG. 3, for example, the reaction gas composition automatic control system is shown in a schematic chart diagram, and the reaction gas composition and flow rate central control unit is provided with a hard coating made of Al—Ti oxide. Reaction gas composition corresponding to the Al highest content point and Ti highest content point for the purpose of alternately and repeatedly forming the Al highest content point and the Ti highest content point at a predetermined interval along the layer thickness direction in the layer, and Both points The reaction gas composition corresponding to the continuous change of Al and Ti, and the interval between the two points are input based on the past actual data, and the raw material according to the control signal from the reaction gas composition and the flow rate central controller The H 2 gas, CO 2 gas, and HCl gas flow rates from the gas cylinders, and the flow rates of AlCl 3 and TiCl 4 are controlled by the respective raw material gas flow rate automatic control devices and introduced into the reaction gas blowing pipe of the chemical vapor deposition system. Then, along the layer thickness direction, the highest Al content point and the highest Ti content point are alternately present at predetermined intervals, and from the highest Al content point, the highest Ti content point, from the highest Ti content point A hard coating layer composed of an Al-Ti oxide layer having a component concentration distribution structure in which the Al and Ti contents continuously change to the Al minimum content point is formed. To become.
[0007]
(B) In the Al—Ti oxide layer having the repeated continuous change component concentration distribution structure of (a) above,
Al / (Al + Ti) indicating the mutual content ratio of Al and Ti at the Al highest content point is 0.70 to 0.95 in atomic ratio,
Ti / (Ti + Al) indicating the mutual content ratio of Ti and Al at the Ti highest content point is 0.70 to 0.0.95 in atomic ratio,
And the interval in the thickness direction of the adjacent Al highest content point and Ti highest content point adjacent to each other is 0.01 to 0.2 μm,
The Al highest content point portion shows high temperature hardness and heat resistance corresponding to the high temperature hardness and heat resistance of the conventional Al-Ti oxide layer, while the Ti highest content point portion has the Al highest content point portion. Since the Al content is lower than that of the Ti, and the Ti content is relatively high, a much higher strength is ensured, and the interval between the Al highest content point and the Ti highest content point is extremely small. The coated carbide tool composed of an Al-Ti oxide layer having such a structure that the hard coating layer is provided has excellent strength while maintaining high temperature hardness and heat resistance as characteristics of the entire layer. Even when cutting various types of steel and cast iron at high speeds and under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer exhibits excellent chipping resistance. To become so.
The research results shown in (a) and (b) above were obtained.
[0008]
The present invention has been made based on the above research results, and uses a chemical vapor deposition device on the surface of a cemented carbide substrate, and in accordance with a reaction gas composition and a control signal from a flow rate central control device, In a coated cemented carbide tool in which a hard coating layer made of an Al-Ti oxide layer is vapor-deposited with an overall average layer thickness of 5 to 25 μm, while automatically controlling the flow rate ,
In the hard coating layer, the highest Al content point and the highest Ti content point are repeatedly present at predetermined intervals along the layer thickness direction, and the highest Ti content point, the highest Ti content point, and the highest Ti content point A component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the Al highest content point,
Furthermore, Al / (Al + Ti) indicating the mutual content ratio of Al and Ti at the Al highest content point is 0.70 to 0.95 in atomic ratio,
Ti / (Ti + Al) indicating the mutual content ratio of Ti and Al at the Ti highest content point is 0.70 to 0.0.95 in atomic ratio,
And the interval between the adjacent Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.2 μm.
This is characterized by a coated carbide tool that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of Al highest content point The Ti component in the Al-Ti oxide layer having the highest Al content point improves the strength, and the Al component has the effect of improving the high-temperature hardness and heat resistance. The higher the content ratio, the higher the high-temperature hardness and heat resistance, and it is suitable for high-speed cutting with high heat generation, but Al / (Al + Ti) indicating the mutual content ratio with the Ti component of the Al component is an atom. When the ratio exceeds 0.95, even if the highest Ti content point having high strength is present adjacently, a decrease in the strength of the layer itself is unavoidable, and as a result, chipping or the like tends to occur, while the equivalent value is 0. When it is less than .70, the high-temperature hardness and heat resistance are drastically reduced, and this causes acceleration of wear. Therefore, Al / (Al + Ti) indicating the mutual content ratio of the Al component with the Ti component is 0.70 in atomic ratio. ~ 0.9 It was defined as.
[0010]
(B) Composition of the highest Ti content point As described above, the highest Al content point has relatively high high-temperature hardness and heat resistance, but on the other hand, the strength is relatively insufficient. In order to make up for the lack of strength, the Ti content ratio is high, while the Al content is low, thereby causing the highest Ti content point having high strength to intervene alternately in the thickness direction. However, if Ti / (Ti + Al) indicating the mutual content ratio of the Ti component with the Al component exceeds 0.95 by atomic ratio, the predetermined high-temperature hardness and heat resistance cannot be secured at the highest Ti content point. This is a cause of accelerated wear. On the other hand, if the same value is less than 0.70, the desired excellent strength cannot be ensured, and as a result, chipping is likely to occur. Ti / (Ti + Al) indicating the content ratio was determined to be 0.70 to 0.95 in atomic ratio.
[0011]
(C) Interval between the highest Al content point and the highest Ti content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. Hardness, heat resistance, and high strength cannot be ensured. Also, if the distance exceeds 0.2 μm, each point has defects, that is, if Al is the highest content point, insufficient strength, Ti highest content point If so, high-temperature hardness and insufficient heat resistance appear locally in the layer, which may cause chipping easily and promote the progress of wear. 2 μm was determined.
[0012]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 5 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 25 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 5 to 25 μm.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having ISO / CNMG120408 chip shape Formed.
[0014]
In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by weight ratio) powder, Mo 2 C powder, TiC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0015]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the carbide shown in FIG. 2 is placed in the chemical vapor deposition apparatus shown in FIG. First, when the inside of the apparatus was heated to 900 ° C. with a heater, it was loaded with TiCl 4 : 4.2%, N 2 : 30%, H 2 : remaining. A reactive gas having a composition is introduced through a reactive gas blowing tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 30 minutes, and the titanium nitride having an average layer thickness of 0.3 μm as a base adhesion layer ( TiN) layer is formed, and the atmospheric temperature in the apparatus is then heated to 1020 ° C. with a heater, and then the reaction gas composition and flow rate central control apparatus of the reaction gas composition automatic control system shown in FIG. The target Al / (Al + Ti) and target Ti / (Ti + Al) of the highest Al content point and the highest Ti content point shown in Table 3 according to the data of the actual results and the relationship between the target Ti / (Ti + Al) and reaction gas composition, the highest Al content point and the highest Ti content The reaction gas composition corresponding to the continuous change in the Al and Ti contents between points, and the target distance between the two points shown in Tables 4 and 6 and the target total layer thickness of the hard coating layer were input. The raw material gas H 2 gas, CO 2 gas, HCl gas, AlCl 3 gas, and TiCl 4 gas (in this case) through the automatic control device for the raw material gas flow rate built in the control valve that operates according to the signal from the central flow rate controller The AlCl 3 gas is formed by reacting metal Al and HCl gas with an AlCl 3 gas generator, and the TiCl 4 gas is shown in FIG. The H 2 gas whose flow rate is controlled as follows is sent to the TiCl 4 gas generator as a carrier gas, where it is sent to the raw material gas flow automatic control device together with the TiCl 4 gas vaporized from the liquid). However, it was introduced into the apparatus from the reaction gas blowing tube of the chemical vapor deposition apparatus of FIG. 1 (the reaction atmosphere pressure in the apparatus is always maintained at 10 kPa), and thus along the layer thickness direction on the surface of the cemented carbide substrate. The Al highest content point and the Ti highest content point of the target composition shown in Tables 3 and 4 are alternately repeated at the target intervals shown in Tables 3 and 4, and the highest Ti content from the Al highest content point. Point, having a component concentration distribution structure in which the content of Al and Ti continuously changes from the highest Ti content point to the highest Al content point, and the target total layer thickness shown in Tables 3 and 4 as well. By depositing the quality coating layer, the present invention coated carbide tool as the present invention the surface coating cemented carbide indexable (hereinafter, the present invention refers to the coating hard tip) 1 to 16 were prepared, respectively.
[0016]
For comparison purposes, these carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. After the reaction atmosphere temperature is heated to 1020 ° C., a reaction gas having a composition corresponding to the target Al / (Al + Zr) corresponding to the composition of the conventional hard coating layer shown in Tables 6 and 7 is introduced from the reaction gas blowing pipe. Then, under the condition that the reaction atmosphere pressure is constant at 10 kPa, each of the surfaces of the cemented carbide substrates A1 to A10 and B1 to B6 has the target composition and the target layer thickness shown in Tables 6 and 7, and By depositing a hard coating layer composed of an Al-Zr oxide layer having substantially no composition change along the thickness direction, a conventional surface-coated cemented carbide throwaway tip ( Under conventional coating referred to as hard tip) 1-16 were prepared, respectively.
[0017]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 8mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Dry-type continuous high-speed high-cut cutting test of alloy steel under the conditions of
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 350 m / min. ,
Incision: 1.5mm,
Feed: 0.65 mm / rev. ,
Cutting time: 3 minutes
Cast iron dry intermittent high-speed high-feed cutting test under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 350 m / min. ,
Cutting depth: 8mm,
Feed: 0.2 mm / rev. ,
Cutting time: 3 minutes
Carbon steel was subjected to a dry intermittent high-speed high-cut cutting test under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.
[0018]
[Table 1]
Figure 0004048364
[0019]
[Table 2]
Figure 0004048364
[0020]
[Table 3]
Figure 0004048364
[0021]
[Table 4]
Figure 0004048364
[0022]
[Table 5]
Figure 0004048364
[0023]
[Table 6]
Figure 0004048364
[0024]
[Table 7]
Figure 0004048364
[0025]
For the hard coating layers constituting the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chips 1 to 16 obtained as a result, the content of Al and Ti was measured along the thickness direction using an Auger spectrometer. The Al / (Al + Ti) value at each measurement point and further the Ti / (Ti + Al) value were calculated from the measurement results. In the hard coating layers of the coated carbide tips 1 to 16 of the present invention, the highest Al content point And the highest Ti content point alternately and repeatedly with substantially the same composition and interval as the target value, and the highest Al content point to the highest Ti content point, the highest Ti content point to the highest Al content point Al and It was confirmed that the Ti content had a component concentration distribution structure in which the content varied continuously, and the overall average layer thickness of the hard coating layer showed substantially the same value as the target overall layer thickness. On the other hand, in the hard coating layers of the conventional coated carbide chips 1 to 16, no composition change is observed along the thickness direction, and the composition is substantially the same as the target composition and the overall average layer thickness is substantially the same as the target overall layer thickness. Thickness indicated.
[0026]
【The invention's effect】
From the results shown in Tables 3 to 7, the Al highest content point having relatively high temperature hardness and heat resistance and the highest Ti content point having relatively high strength alternate in the layer thickness direction of the hard coating layer. And a concentration distribution structure in which the content of Al and Ti continuously changes from the highest Al content point to the highest Ti content point and from the highest Ti content point to the highest Al content point. The coated carbide chips 1 to 16 of the present invention having the above are all subjected to cutting of various steels and cast irons at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact In addition, the hard coating layer exhibits excellent chipping resistance, whereas the hard coating layer is made of an Al—Zr oxide layer having substantially no composition change along the layer thickness direction. 1-16, before Although the hard coating layer has high-temperature hardness and heat resistance, because it is inferior in strength, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated carbide tool of the present invention is capable of cutting various steels and cast irons as well as cutting under normal conditions at high speed and with high mechanical impact. Even under heavy cutting conditions such as high feed and high feed, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It can cope with cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
2A and 2B show a cemented carbide substrate support pallet that is a structural member of a chemical vapor deposition apparatus, in which FIG. 2A is a schematic perspective view, and FIG. 2B is a schematic plan view.
FIG. 3 is a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、化学蒸着装置を用い、反応ガス組成および流量中央制御装置からの制御信号にしたがって、個々の原料ガスを、流量を自動制御しながら反応ガス吹き出し管に導入して、AlとTiの複合酸化物層からなる硬質被覆層を5〜25μmの全体平均層厚で化学蒸着してなる表面被覆超硬合金製切削工具にして、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点におけるAlとTiの相互含有割合を示すAl/(Al+Ti)が原子比で0.70〜0.95、
上記Ti最高含有点におけるTiとAlの相互含有割合を示すTi/(Ti+Al)が原子比で0.70〜0.0.95、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
A chemical vapor deposition device is used on the surface of a tungsten carbide base cemented carbide substrate or titanium carbonitride cermet substrate, and the flow rate of each source gas is automatically controlled according to the reaction gas composition and the control signal from the flow rate central control unit. While introducing into the reaction gas blowing tube, a hard coating layer composed of a composite oxide layer of Al and Ti is a surface-coated cemented carbide cutting tool formed by chemical vapor deposition with an overall average layer thickness of 5 to 25 μm,
In the hard coating layer, the Al highest content point and the Ti highest content point are alternately present at predetermined intervals along the layer thickness direction, and the Ti highest content point, Ti A component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the Al highest content point,
Furthermore, Al / (Al + Ti) indicating the mutual content ratio of Al and Ti at the Al highest content point is 0.70 to 0.95 in atomic ratio,
Ti / (Ti + Al) indicating the mutual content ratio of Ti and Al at the Ti highest content point is 0.70 to 0.0.95 in atomic ratio,
The distance between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.2 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2002220570A 2002-07-30 2002-07-30 Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions Expired - Fee Related JP4048364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220570A JP4048364B2 (en) 2002-07-30 2002-07-30 Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220570A JP4048364B2 (en) 2002-07-30 2002-07-30 Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2004058217A JP2004058217A (en) 2004-02-26
JP4048364B2 true JP4048364B2 (en) 2008-02-20

Family

ID=31941125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220570A Expired - Fee Related JP4048364B2 (en) 2002-07-30 2002-07-30 Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP4048364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110053954A (en) * 2008-08-29 2011-05-24 쇼와 덴코 가부시키가이샤 Surface-covered cermet member and method for manufacturing same
JP4527199B1 (en) * 2010-01-27 2010-08-18 昭和電工株式会社 Extrusion method
JP4593680B1 (en) * 2010-02-10 2010-12-08 昭和電工株式会社 Reprocessing method for metal working tools
JP6590255B2 (en) 2015-03-13 2019-10-16 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016148056A1 (en) * 2015-03-13 2016-09-22 三菱マテリアル株式会社 Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance

Also Published As

Publication number Publication date
JP2004058217A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2004174615A (en) Surface covering cemented carbide cutting tool having hard covering layer exhibiting excellent chipping resistance under high speed multiple cutting conditions
JP2004130494A (en) Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees